Least and Greatest Fixpoints

Metodi Formali per il Software e i Servizi

Giuseppe De Giacomo

Sapienza Università di Roma Laurea Magistrale in Ingegneria Informatica

▲ロト ▲圖ト ▲ヨト ▲ヨト 三日

Fixpoints

We briefly recall few notions on fixpoints.

• Consider the equation:

$$X = f(X)$$

where f is an operator from 2^{S} to 2^{S} (2^{S} denotes the set of all subsets of a set S).

- Every solution \mathcal{E} of this equation is called a **fixpoint** of the operator f
- every set \mathcal{E} such that $f(\mathcal{E}) \subseteq \mathcal{E}$ is called **pre-fixpoint**, and
- every set \mathcal{E} such that $\mathcal{E} \subseteq f(\mathcal{E})$ is called **post-fixpoint**.
- In general, an equation as the one above may have either no solution, a finite number of solutions, or an infinite number of them. Among the various solutions, the smallest and the greatest solutions (with respect to set-inclusion) have a prominent position, if they exist.
- The the smallest and the greatest solutions are called **least fixpoint** and **greatest fixpoint**, respectively.

Sac

Tarski-Knaster fixpoint theorem

We say that f is **monotonic** wrt \subseteq (set-inclusion) whenever $\mathcal{E}_1 \subseteq \mathcal{E}_2$ implies $f(\mathcal{E}_1) \subseteq f(\mathcal{E}_2)$.

Theorem (Tarski'55)

Let S be a set, and f an operator from 2^S to 2^S that is monotonic wrt \subseteq . Then:

- There exists a unique least fixpoint of f, which is given by $\bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}.$
- There exists a unique greatest fixpoint of f, which is given by $\bigcup \{ \mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E}) \}.$

G. De Giacomo (UNIROMA1)

Proof of Tarski-Knaster theorem: least fixpoint

We start by showing the proof for the **least fixpoint** part. (The proof for the greatest fixpoint is analogous, see later).

< ロ ト < @ ト < 差 ト < 差 ト</p>

Let us define $\mathcal{L} = \bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}.$

Lemma

 $f(\mathcal{L}) \subseteq \mathcal{L}$

Proof.

- For every \mathcal{E} such that $f(\mathcal{E}) \subseteq \mathcal{E}$, we have $\mathcal{L} \subseteq \mathcal{E}$, by definition of \mathcal{L} .
- By monotonicity of f, we have $f(\mathcal{L}) \subseteq f(\mathcal{E})$.
- Hence $f(\mathcal{L}) \subseteq \mathcal{E}$ (for every \mathcal{E} such that $f(\mathcal{E}) \subseteq \mathcal{E}$).
- But then $f(\mathcal{L})$ is contained in the intersection of all such \mathcal{E} , so we have $f(\mathcal{L}) \subseteq \mathcal{L}$.

æ

Sac

3 / 18

Proof of Tarski-Knaster theorem: least fixpoint

・ロト ・ (日) ・ (日) ・ (日) ・ (日)

<ロト < 四ト < 臣ト < 臣ト = 臣

Proof of Tarski-Knaster theorem: least fixpoint

The previous two lemmas together show that \mathcal{L} is indeed a fixpoint: $\mathcal{L} = f(\mathcal{L})$. We still need to show that is the **least** fixpoint.

Lemma

 \mathcal{L} is the **least** fixpoint: for every $f(\mathcal{E}) = \mathcal{E}$ we have $\mathcal{L} \subseteq \mathcal{E}$.

Proof.

By contradiction.

G. De Giacomo (UNIROMA1)

- Suppose not. Then there exists an $\hat{\mathcal{E}}$ such that $f(\hat{\mathcal{E}}) = \hat{\mathcal{E}}$ and $\hat{\mathcal{E}} \subset \mathcal{L}$.
- Being $\hat{\mathcal{E}}$ a fixpoint (i.e., $f(\hat{\mathcal{E}}) = \hat{\mathcal{E}}$), we have in particular $f(\hat{\mathcal{E}}) \subseteq \hat{\mathcal{E}}$.
- Hence by definition of \mathcal{L} , we get $\mathcal{L} \subseteq \hat{\mathcal{E}}$. Contradiction.

nan

5 / 18

Proof of Tarski-Knaster theorem: greatest fixpoint

Now we prove the greatest fixpoint part.

Let us define $\mathcal{G} = \bigcup \{ \mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E}) \}.$

Lemma $\mathcal{G} \subseteq f(\mathcal{G})$

Proof.

- For every \mathcal{E} such that $\mathcal{E} \subseteq f(\mathcal{E})$, we have $\mathcal{E} \subseteq \mathcal{G}$, by definition of \mathcal{G} .
- Consider now e ∈ G. Then there exists an Ê such that Ê ⊆ f(Ê), e ∈ Ê, by definition of G.
- But $\hat{\mathcal{E}} \subseteq \mathcal{G}$, and by monotonicity $f(\hat{\mathcal{E}}) \subseteq f(\mathcal{G})$, hence $e \in f(\mathcal{G})$.

G.	De	Giacomo	(UNIROMA1)

Proof of Tarski-Knaster theorem: greatest fixpoint

Lemma	
$f(\mathcal{G})\subseteq \mathcal{G}$	

Proof.

- By the previous lemma we have $\mathcal{G} \subseteq f(\mathcal{G})$
- But then, we have that $f(\mathcal{G}) \subseteq f(f(\mathcal{G}))$, by monotonicity.
- Hence, $\overline{\mathcal{E}} = f(\mathcal{G})$ is such that $\overline{\mathcal{E}} \subseteq f(\overline{\mathcal{E}})$.
- Thus, $f(\mathcal{G}) \subseteq \mathcal{G}$, by definition of \mathcal{G} .

ク < (~ 7 / 18

ヘロト 人間ト 人間ト 人間ト 三日

<ロト < 四ト < 臣 > < 臣 > 三 臣

Proof of Tarski-Knaster theorem: greatest fixpoint

The previous two lemmas together show that \mathcal{L} is indeed a fixpoint: $\mathcal{G} = f(\mathcal{G})$. We still need to show that is the **greatest** fixpoint.

Lemma

 \mathcal{G} is the greatest fixpoint: for every $\mathcal{E} = f(\mathcal{E})$ we have $\mathcal{E} \subseteq \mathcal{G}$.

Proof.

By contradiction.

- Suppose not. Then there exists an $\hat{\mathcal{E}}$ such that $\hat{\mathcal{E}} = f(\hat{\mathcal{E}})$ and $\mathcal{G} \subset \hat{\mathcal{E}}$.
- Being $\hat{\mathcal{E}}$ a fixpoint, we have $\hat{\mathcal{E}} \subseteq f(\hat{\mathcal{E}})$.
- Hence by definition of \mathcal{G} , we get $\hat{\mathcal{E}} \subseteq \mathcal{G}$. Contradiction.

G. De Giacomo (UNIROMA1)

Approximates of least fixpoints

The approximates for a least fixpoint $\mathcal{L} = \bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}$ are as follows:

$$egin{aligned} &Z_0 \doteq \emptyset \ &Z_1 \doteq f(Z_0) \ &Z_2 \doteq f(Z_1) \end{aligned}$$

Lemma

For all $i, Z_i \subseteq Z_{i+1}$.

Proof.

By induction on *i*.

- Base case: i = 0. By definition $Z_0 = \emptyset$, and trivially $\emptyset \subseteq Z_1$.
- Inductive case: i = k + 1. By inductive hypothesis we assume $Z_{k-1} \subseteq Z_k$, and we show that $Z_k \subseteq Z_{k+1}$.
 - $f(Z_{k-1}) \subseteq f(Z_k)$, by monotonicity.
 - But $f(Z_{k-1}) = Z_k$ and $f(Z_k) = Z_{k+1}$, hence we have $Z_k \subseteq Z_{k+1}$.

 \square

500

Approximates of least fixpoints

Lemma

For all $i, Z_i \subseteq \mathcal{L}$.

Proof.

By induction on *i*.

- Base case: i = 0. By definition $Z_0 = \emptyset$, and trivially $\emptyset \subseteq \mathcal{L}$.
- Inductive case: i = k + 1. By inductive hypothesis we assume Z_k ⊆ L, and we show that Z_{k+1} ⊆ L.
 - $f(Z_k) \subseteq f(\mathcal{L})$, by monotonicity.
 - But then $f(Z_k) \subseteq \mathcal{L}$, since $\mathcal{L} = f(\mathcal{L})$.
 - Hence, considering that $f(Z_k) = Z_{k+1}$, we have $Z_{k+1} \subseteq \mathcal{L}$.

G. De Giacomo (UNIROMA1)

Approximates of least fixpoints

Theorem (Tarski-Knaster on approximates of least fixpoints) If for some n, $Z_{n+1} = Z_n$, then $Z_n = \mathcal{L}$.

Proof.

- $Z_n \subseteq \mathcal{L}$ by the above lemma.
- On the other hand, since $Z_{n+1} = f(Z_n) = Z_n$, we trivially get $f(Z_n) \subseteq Z_n$, and hence $\mathcal{L} \subseteq Z_n$ by definition of \mathcal{L} .

Observe also that once for some n, $Z_{n+1} = Z_n$, then for all $m \ge n$ we have $Z_{m+1} = Z_m$, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of natural numbers.

Sac

11 / 18

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Approximates of least fixpoints

The above theorem gives us a simple sound procedure to compute the least fixpoint:

Least fixpoint algorithm

 $Z_{old} := \emptyset;$ $Z := f(Z_{old});$ while $(Z \neq Z_{old})$ { $Z_{old} := Z;$ Z := f(Z);}

If in $\mathcal{L} = \bigcap \{ \mathcal{E} \subseteq \mathcal{S} \mid f(\mathcal{E}) \subseteq \mathcal{E} \}$ the set \mathcal{S} is finite then the above procedure terminates in $|\mathcal{S}|$ steps and becomes sound and complete.

Notice the above procedure is **polynomial** in the size of S.

Approximates of greatest fixpoints

The approximates for the greatest fixpoint $\mathcal{G} = \bigcup \{ \mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E}) \}$ are as follows:

$$Z_0 \doteq S$$
$$Z_1 \doteq f(Z_0)$$
$$Z_2 \doteq f(Z_1)$$
$$\cdots$$

Lemma

For all $i, Z_{i+1} \subseteq Z_i$.

Proof.

By induction on *i*.

- Base case: i = 0. By definition $Z_0 = S$, and trivially $Z_1 \subseteq S$.
- Inductive case: i = k + 1: by inductive hypothesis we assume Z_k ⊆ Z_{k-1}, and we show that Z_{k+1} ⊆ Z_k.
 - $f(Z_k) \subseteq f(Z_{k-1})$, by monotonicity.
 - But $f(Z_k = Z_{k+1} \text{ and } f(Z_{k-1}) = Z_k \text{ hence } Z_{k+1} \subseteq Z_k$.

Approximates of greatest fixpoints

Lemma

For all $i, \mathcal{G} \subseteq Z_i$.

Proof.

By induction on *i*.

- Base case: i = 0. By definition $Z_0 = S$, and trivially $\mathcal{G} \subseteq S$.
- Inductive case: i = k + 1: by inductive hypothesis we assume G ⊆ Z_k, and we show that G ⊆ Z_{k+1}.
 - $f(\mathcal{G}) \subseteq f(Z_k)$, by monotonicity.
 - But then $\mathcal{G} \subseteq f(Z_k)$, since $\mathcal{G} = f(\mathcal{G})$.
 - Hence, considering that $f(Z_k) = Z_{k+1}$, we get $\mathcal{G} \subseteq Z_{k+1}$.

G. De Giacomo (UNIROMA1)

Approximates of greatest fixpoints

Theorem (Tarski-Knaster on approximates of greatest fixpoint) If for some n, $Z_{n+1} = Z_n$, then $Z_n = \mathcal{G}$.

Proof.

- $\mathcal{G} \subseteq Z_n$ by the above lemma.
- On the other hand, since $Z_{n+1} = f(Z_n) = Z_n$, we trivially get $Z_n \subseteq f(Z_n)$, and hence $Z_n \subseteq \mathcal{G}$ by definition of \mathcal{G} .

Observe also that once for some n, $Z_{n+1} = Z_n$, then for all $m \ge n$ we have $Z_{m+1} = Z_m$, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of natural numbers.

Sac

15 / 18

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Approximates of greatest fixpoints

The above theorem gives us a simple sound procedure to compute the greatest fixpoint:

Greatest fixpoint algorithm

 $Z_{old} := S;$ $Z := f(Z_{old});$ while $(Z \neq Z_{old})$ { $Z_{old} := Z;$ Z := f(Z);}

If in $\mathcal{G} = \bigcup \{ \mathcal{E} \subseteq \mathcal{S} \mid \mathcal{E} \subseteq f(\mathcal{E}) \}$ the set \mathcal{S} is finite then the above procedure terminates in $|\mathcal{S}|$ steps and becomes sound and complete.

Notice the above procedure is **polynomial** in the size of S.

Discussion

For simplicity we have considered fixpoint wrt set-inclusion. In fact, the only property of set inclusion that we have used is the **lattice** implicitly defined by it.

We recall that a lattice is a the partial order (defined by set inclusion in our case), with the minimal element (\emptyset in our case) and maximal element (S in our case).

We can immediately extend all the results presented here to arbitrary lattices substituting to the relation \subseteq the relation \leq of the lattice.