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Fixpoints

We briefly recall few notions on fixpoints.

Consider the equation:
X = f (X )

where f is an operator from 2S to 2S (2S denotes the set of all subsets of a
set S).
Every solution E of this equation is called a fixpoint of the operator f

every set E such that f (E) ⊆ E is called pre-fixpoint, and

every set E such that E ⊆ f (E) is called post-fixpoint.

In general, an equation as the one above may have either no solution, a finite
number of solutions, or an infinite number of them. Among the various
solutions, the smallest and the greatest solutions (with respect to
set-inclusion) have a prominent position, if they exist.

The the smallest and the greatest solutions are called least fixpoint and
greatest fixpoint, respectively.
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Tarski-Knaster fixpoint theorem

We say that f is monotonic wrt ⊆ (set-inclusion) whenever E1 ⊆ E2 implies
f (E1) ⊆ f (E2).

Theorem (Tarski’55)

Let S be a set, and f an operator from 2S to 2S that is monotonic wrt ⊆. Then:

There exists a unique least fixpoint of f , which is given by�
{E ⊆ S | f (E) ⊆ E}.

There exists a unique greatest fixpoint of f , which is given by�
{E ⊆ S | E ⊆ f (E)}.
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Proof of Tarski-Knaster theorem: least fixpoint

We start by showing the proof for the least fixpoint part. (The proof for the
greatest fixpoint is analogous, see later).

Let us define L =
�
{E ⊆ S | f (E) ⊆ E}.

Lemma
f (L) ⊆ L

Proof.
For every E such that f (E) ⊆ E , we have L ⊆ E , by definition of L.
By monotonicity of f , we have f (L) ⊆ f (E).
Hence f (L) ⊆ E (for every E such that f (E) ⊆ E).
But then f (L) is contained in the intersection of all such E , so we have
f (L) ⊆ L.
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Proof of Tarski-Knaster theorem: least fixpoint

Lemma
L ⊆ f (L)

Proof.
By the previous lemma, we have f (L) ⊆ L.
But then f (f (L)) ⊆ f (L), by monotonicity.

Hence, Ē = f (L) is such that f (Ē) ⊆ Ē .

Thus, L ⊆ f (L), by definition of L.
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Proof of Tarski-Knaster theorem: least fixpoint

The previous two lemmas together show that L is indeed a fixpoint: L = f (L).
We still need to show that is the least fixpoint.

Lemma
L is the least fixpoint: for every f (E) = E we have L ⊆ E .

Proof.
By contradiction.

Suppose not. Then there exists an Ê such that f (Ê) = Ê and Ê ⊂ L.
Being Ê a fixpoint (i.e., f (Ê) = Ê), we have in particular f (Ê) ⊆ Ê .
Hence by definition of L, we get L ⊆ Ê . Contradiction.
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Proof of Tarski-Knaster theorem: greatest fixpoint

Now we prove the greatest fixpoint part.

Let us define G =
�
{E ⊆ S | E ⊆ f (E)}.

Lemma
G ⊆ f (G)

Proof.
For every E such that E ⊆ f (E), we have E ⊆ G, by definition of G.
Consider now e ∈ G. Then there exists an Ê such that Ê ⊆ f (Ê), e ∈ Ê , by
definition of G.
But Ê ⊆ G, and by monotonicity f (Ê) ⊆ f (G), hence e ∈ f (G).
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Proof of Tarski-Knaster theorem: greatest fixpoint

Lemma
f (G) ⊆ G

Proof.
By the previous lemma we have G ⊆ f (G )

But then, we have that f (G) ⊆ f (f (G)), by monotonicity.

Hence, Ē = f (G) is such that Ē ⊆ f (Ē).
Thus, f (G) ⊆ G, by definition of G.
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Proof of Tarski-Knaster theorem: greatest fixpoint

The previous two lemmas together show that L is indeed a fixpoint: G = f (G).
We still need to show that is the greatest fixpoint.

Lemma
G is the greatest fixpoint: for every E = f (E) we have E ⊆ G.

Proof.
By contradiction.

Suppose not. Then there exists an Ê such that Ê = f (Ê) and G ⊂ Ê .
Being Ê a fixpoint, we have Ê ⊆ f (Ê).
Hence by definition of G, we get Ê ⊆ G. Contradiction.

G. De Giacomo (UNIROMA1) Fixpoints 9 / 18

Approximates of least fixpoints
The approximates for a least fixpoint L =

�
{E ⊆ S | f (E) ⊆ E} are as follows:

Z0

.
= ∅

Z1

.
= f (Z0)

Z2

.
= f (Z1)

. . .

Lemma
For all i , Zi ⊆ Zi+1.

Proof.
By induction on i .

Base case: i = 0. By definition Z0 = ∅, and trivially ∅ ⊆ Z1.

Inductive case: i = k + 1. By inductive hypothesis we assume Zk−1 ⊆ Zk ,
and we show that Zk ⊆ Zk+1.

� f (Zk−1) ⊆ f (Zk), by monotonicity.

� But f (Zk−1) = Zk and f (Zk) = Zk+1, hence we have Zk ⊆ Zk+1.

G. De Giacomo (UNIROMA1) Fixpoints 10 / 18



Approximates of least fixpoints

Lemma
For all i , Zi ⊆ L.

Proof.
By induction on i .

Base case: i = 0. By definition Z0 = ∅, and trivially ∅ ⊆ L.
Inductive case: i = k + 1. By inductive hypothesis we assume Zk ⊆ L, and
we show that Zk+1 ⊆ L.

� f (Zk) ⊆ f (L), by monotonicity.

� But then f (Zk) ⊆ L, since L = f (L).
� Hence, considering that f (Zk) = Zk+1, we have Zk+1 ⊆ L.
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Approximates of least fixpoints

Theorem (Tarski-Knaster on approximates of least fixpoints)

If for some n, Zn+1 = Zn, then Zn = L.

Proof.
Zn ⊆ L by the above lemma.

On the other hand, since Zn+1 = f (Zn) = Zn, we trivially get f (Zn) ⊆ Zn,
and hence L ⊆ Zn by definition of L.

Observe also that once for some n, Zn+1 = Zn, then for all m ≥ n we have
Zm+1 = Zm, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of
natural numbers.
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Approximates of least fixpoints

The above theorem gives us a simple sound procedure to compute the least
fixpoint:

Least fixpoint algorithm

Zold := ∅;
Z := f (Zold);
while (Z �= Zold){

Zold := Z ;
Z := f (Z );

}

If in L =
�
{E ⊆ S | f (E) ⊆ E} the set S is finite then the above procedure

terminates in |S| steps and becomes sound and complete.

Notice the above procedure is polynomial in the size of S.
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Approximates of greatest fixpoints
The approximates for the greatest fixpoint G =

�
{E ⊆ S | E ⊆ f (E)} are as

follows:
Z0

.
= S

Z1

.
= f (Z0)

Z2

.
= f (Z1)

. . .

Lemma
For all i , Zi+1 ⊆ Zi .

Proof.
By induction on i .

Base case: i = 0. By definition Z0 = S, and trivially Z1 ⊆ S.
Inductive case: i = k + 1: by inductive hypothesis we assume Zk ⊆ Zk−1,
and we show that Zk+1 ⊆ Zk .

� f (Zk) ⊆ f (Zk−1), by monotonicity.

� But f (Zk = Zk+1 and f (Zk−1) = Zk hence Zk+1 ⊆ Zk .
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Approximates of greatest fixpoints

Lemma
For all i , G ⊆ Zi .

Proof.
By induction on i .

Base case: i = 0. By definition Z0 = S, and trivially G ⊆ S.
Inductive case: i = k + 1: by inductive hypothesis we assume G ⊆ Zk , and
we show that G ⊆ Zk+1.

� f (G) ⊆ f (Zk), by monotonicity.

� But then G ⊆ f (Zk), since G = f (G).
� Hence, considering that f (Zk) = Zk+1, we get G ⊆ Zk+1.
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Approximates of greatest fixpoints

Theorem (Tarski-Knaster on approximates of greatest fixpoint)

If for some n, Zn+1 = Zn, then Zn = G.

Proof.
G ⊆ Zn by the above lemma.

On the other hand, since Zn+1 = f (Zn) = Zn, we trivially get Zn ⊆ f (Zn),
and hence Zn ⊆ G by definition of G.

Observe also that once for some n, Zn+1 = Zn, then for all m ≥ n we have
Zm+1 = Zm, by definition of approximates.

In fact this theorem can be generalized by ranging n over ordinals instead of
natural numbers.

G. De Giacomo (UNIROMA1) Fixpoints 16 / 18



Approximates of greatest fixpoints

The above theorem gives us a simple sound procedure to compute the greatest
fixpoint:

Greatest fixpoint algorithm

Zold := S;
Z := f (Zold);
while (Z �= Zold){

Zold := Z ;
Z := f (Z );

}

If in G =
�
{E ⊆ S | E ⊆ f (E)} the set S is finite then the above procedure

terminates in |S| steps and becomes sound and complete.

Notice the above procedure is polynomial in the size of S.
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Discussion

For simplicity we have considered fixpoint wrt set-inclusion. In fact, the only
property of set inclusion that we have used is the lattice implicitly defined by it.

We recall that a lattice is a the partial order (defined by set inclusion in our case),
with the minimal element (∅ in our case) and maximal element (S in our case).

We can immediately extend all the results presented here to arbitrary lattices
substituting to the relation ⊆ the relation ≤ of the lattice.
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