
Query answering in description logics:

DL-LiteA

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

Query answering in description logics: DL-LiteA (1/65)



Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

Query answering in description logics: DL-LiteA (2/65)

Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/65)



Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/65)

Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/65)



Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/65)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/65)



Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/65)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/65)



Questions addressed in this part of the tutorial

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology
and the data sources?

4 How can tools for ontology-based data access and integration

fully take into account all these issues?

Query answering in description logics: DL-LiteA (5/65)

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

Query answering in description logics: DL-LiteA (6/65)



Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/65)

Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/65)



Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/65)

Conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query of the form

q(�x) ← ∃�y.R1(�x, �y) ∧ · · · ∧Rk(�x, �y)

where each Ri(�x, �y) is an atom using (some of) the free variables �x, the
existentially quantified variables �y, and possibly constants.

We will also use the simpler Datalog notation:

q(�x) ← R1(�x, �y), . . . , Rk(�x, �y)

Note:
CQs contain no disjunction, no negation, no universal
quantification.
Correspond to SQL/relational algebra select-project-join (SPJ)

queries – the most frequently asked queries.
They can also be written as SPARQL queries.
A Boolean CQ is a CQ without free variables ⇒
q() ← ∃�y.R1(�y) ∧ · · · ∧Rk(�y).

Query answering in description logics: DL-LiteA (8/65)



Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/65)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/65)



Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/65)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .
worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf ) ∧ name(d,nd) ∧
age(f, af ) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/65)



Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1 ), isHeadOf(d1 , c2 ),
name(f2 ,nf ), name(d2 ,nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/65)

Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1 ), isHeadOf(d1 , c2 ),
name(f2 ,nf ), name(d2 ,nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/65)



Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1 ), isHeadOf(d1 , c2 ),
name(f2 ,nf ), name(d2 ,nd), age(f3 , af ), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/65)

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-LiteA (11/65)



Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-LiteA (11/65)

Query answering under the database assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

❀ Query answering amounts to query evaluation, which is
computationally easy.

Query answering in description logics: DL-LiteA (12/65)



Query answering under the database assumption (cont’d)

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/65)

Query answering under the database assumption (cont’d)

ResultQuery

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/65)



Query answering under the database assumption (cont’d)

Reasoning

ResultQuery

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/65)

Query answering under the database assumption – Example

 
 

Professor

CollegeworksFor

 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: ???

{

Query answering in description logics: DL-LiteA (14/65)



Query answering under the database assumption – Example

 
 

Professor

CollegeworksFor

 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: ???

{

Query answering in description logics: DL-LiteA (14/65)

Query answering under the database assumption – Example

 
 

Professor

CollegeworksFor

 

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, paul }

Professor = { john, paul }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: { john }

{

Query answering in description logics: DL-LiteA (14/65)



Query answering under the KR assumption

An ontology imposes constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such
constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

❀ Query answering amounts to logical inference, which is
computationally more costly.

Note:

Size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.

Query answering in description logics: DL-LiteA (15/65)

Query answering under the KR assumption (cont’d)

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (16/65)



Query answering under the KR assumption (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (16/65)

Query answering under the KR assumption – Example

 
 

Professor

CollegeworksFor

 

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, paul }

College ⊇ { collA, collB }

worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: ???

{

Query answering in description logics: DL-LiteA (17/65)



Query answering under the KR assumption – Example

 
 

Professor

CollegeworksFor

 

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, paul }

College ⊇ { collA, collB }

worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: { john, paul, mary }

{

Query answering in description logics: DL-LiteA (17/65)

Query answering under the KR assumption – Example 2

 

Person

 

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }

hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: ???

{

to q2: ???

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/65)



Query answering under the KR assumption – Example 2

 

Person

 

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }

hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: ???

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/65)

Query answering under the KR assumption – Example 2

 

Person

 

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }

hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/65)



Query answering under the KR assumption – Example 2

 

Person

 

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }

hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: { john, paul, toni }

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/65)

Query answering under the KR assumption – Example 2

 

Person

 

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, paul, toni }

hasFather ⊇ { (john,paul), (paul,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,paul), (paul,toni) }

{

to q2: { john, paul, toni }

{

to q3: { john, paul, toni }

{

to q4: { }

{

Query answering in description logics: DL-LiteA (18/65)



QA under the KR assumption – Andrea’s Example

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate Professor ≡ AssocProf � FullProf

Faculty ⊇ { andrea, paul, mary, john }
Professor ⊇ { andrea, paul, mary }
AssocProf ⊇ { paul }
FullProf ⊇ { mary }

isAdvisedBy ⊇ { (john,andrea), (john,mary) }
officeMate ⊇ { (mary,andrea), (andrea,paul) }

john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

Query answering in description logics: DL-LiteA (19/65)

QA under the KR assumption – Andrea’s Example (cont’d)

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes or no?

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/65)



QA under the KR assumption – Andrea’s Example (cont’d)

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes or no?

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/65)

QA under the KR assumption – Andrea’s Example (cont’d)

 
Faculty

 

 
 

Professor

 
 

AssocProf

 
 

FullProf

isAdvisedBy 

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes!

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/65)



Query answering when accessing data through ontologies

We have to face the difficulties of both DB and KB assumptions:

The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints

expressed in the ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.

Query answering in description logics: DL-LiteA (21/65)

Certain answers to a query

Let O = �T ,A� be an ontology, I an interpretation for O, and
q(�x) ← ∃�y. conj (�x, �y) a CQ.

Def.: The answer to q(�x) over I, denoted qI

. . . is the set of tuples �c of constants of A such that the formula
∃�y. conj (�c, �y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(�x) over O = �T ,A�, denoted
cert(q,O)

. . . are the tuples �c of constants of A such that �c ∈ qI , for every
model I of O.

Note: when q is boolean, we write O |= q iff q evaluates to true in every
model I of O, O �|= q otherwise.

Query answering in description logics: DL-LiteA (22/65)



Certain answers to a query

Let O = �T ,A� be an ontology, I an interpretation for O, and
q(�x) ← ∃�y. conj (�x, �y) a CQ.

Def.: The answer to q(�x) over I, denoted qI

. . . is the set of tuples �c of constants of A such that the formula
∃�y. conj (�c, �y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(�x) over O = �T ,A�, denoted
cert(q,O)

. . . are the tuples �c of constants of A such that �c ∈ qI , for every
model I of O.

Note: when q is boolean, we write O |= q iff q evaluates to true in every
model I of O, O �|= q otherwise.

Query answering in description logics: DL-LiteA (22/65)

Certain answers to a query

Let O = �T ,A� be an ontology, I an interpretation for O, and
q(�x) ← ∃�y. conj (�x, �y) a CQ.

Def.: The answer to q(�x) over I, denoted qI

. . . is the set of tuples �c of constants of A such that the formula
∃�y. conj (�c, �y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(�x) over O = �T ,A�, denoted
cert(q,O)

. . . are the tuples �c of constants of A such that �c ∈ qI , for every
model I of O.

Note: when q is boolean, we write O |= q iff q evaluates to true in every
model I of O, O �|= q otherwise.

Query answering in description logics: DL-LiteA (22/65)



Data complexity

Various parameters affect the complexity of query answering over an
ontology.

Depending on which parameters we consider, we get different
complexity measures:

Data complexity: only the size of the ABox (i.e., the data)
matters.
TBox and query are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema)
matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the integration setting, the size of the data largely dominates the
size of the conceptual layer (and of the query).
❀ Data complexity is the relevant complexity measure.

Query answering in description logics: DL-LiteA (23/65)

Data complexity

Various parameters affect the complexity of query answering over an
ontology.

Depending on which parameters we consider, we get different
complexity measures:

Data complexity: only the size of the ABox (i.e., the data)
matters.
TBox and query are considered fixed.

Schema complexity: only the size of the TBox (i.e., the schema)
matters.
ABox and query are considered fixed.

Combined complexity: no parameter is considered fixed.

In the integration setting, the size of the data largely dominates the
size of the conceptual layer (and of the query).
❀ Data complexity is the relevant complexity measure.

Query answering in description logics: DL-LiteA (23/65)



Inference in query answering

cert(q, �T ,A�)

Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

❀ Query answering by query rewriting.

Query answering in description logics: DL-LiteA (24/65)

Query rewriting

rewriting
Perfect

(under OWA)

Query

(under CWA)

evaluation

q

T

A cert(q, �T ,A�)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T ).

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T ).
❀ Produces cert(q, �T ,A�).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .

Query answering in description logics: DL-LiteA (25/65)



Query rewriting (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (26/65)

Query rewriting (cont’d)

Reasoning

Rewritten 

Query

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (26/65)



Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (27/65)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (27/65)



Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (27/65)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (27/65)



Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (28/65)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (28/65)



Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (28/65)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (28/65)



Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

Query answering in description logics: DL-LiteA (29/65)

The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.

Query answering in description logics: DL-LiteA (30/65)



The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.

Query answering in description logics: DL-LiteA (30/65)

DL-LiteA ontologies

TBox assertions:

Class (concept) inclusion assertions: B � C, with:

B −→ A | ∃Q
C −→ B | ¬B

Property (role) inclusion assertions: Q � R, with:

Q −→ P | P−

R −→ Q | ¬Q

Functionality assertions: (funct Q)

Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties
(ignored here).

Query answering in description logics: DL-LiteA (31/65)



Semantics of DL-LiteA

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o�) | (o�, o) ∈ P I}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. B � C Father � ∃child BI ⊆ CI

role incl. Q � R hasFather � child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e�.(d, e) ∈ QI ∧ (d, e�) ∈ QI → e = e�

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2 ) ∈ P I

DL-LiteA (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.

Query answering in description logics: DL-LiteA (32/65)

Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 � A2

Disjointness between classes A1 � ¬A2

Domain and range of properties ∃P � A1 ∃P− � A2

Mandatory participation (min card = 1) A1 � ∃P A2 � ∃P−

Functionality of relations (max card = 1) (funct P ) (funct P−)

ISA between properties Q1 � Q2

Disjointness between properties Q1 � ¬Q2

Note 1: DL-LiteA cannot capture completeness of a hierarchy. This
would require disjunction (i.e., OR).

Note2: DL-LiteA can be extended to capture also min cardinality

constraints (A �≤ nQ) and max cardinality constraints (A �≥ nQ)
(not considered here for simplicity).

Query answering in description logics: DL-LiteA (33/65)



Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 � A2

Disjointness between classes A1 � ¬A2

Domain and range of properties ∃P � A1 ∃P− � A2

Mandatory participation (min card = 1) A1 � ∃P A2 � ∃P−

Functionality of relations (max card = 1) (funct P ) (funct P−)

ISA between properties Q1 � Q2

Disjointness between properties Q1 � ¬Q2

Note 1: DL-LiteA cannot capture completeness of a hierarchy. This
would require disjunction (i.e., OR).

Note2: DL-LiteA can be extended to capture also min cardinality

constraints (A �≤ nQ) and max cardinality constraints (A �≥ nQ)
(not considered here for simplicity).

Query answering in description logics: DL-LiteA (33/65)

Example

name: String

age: Integer

Faculty

 

 
 
Professor

 
 
AssocProf

 

Dean

1..1

1..*

isAdvisedBy

 

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � xsd:integer

(funct age)

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

∃isHeadOf � Dean
∃isHeadOf− � College

Dean � ∃isHeadOf
College � ∃isHeadOf−

isHeadOf � worksFor
(funct isHeadOf)
(funct isHeadOf−)

...

Query answering in description logics: DL-LiteA (34/65)



Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of
the ER Model . . .

. . . except covering constraints in generalizations.

Is the logical underpinning of OWL2 QL, one of the OWL 2
Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.

Query answering in description logics: DL-LiteA (35/65)

Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of
the ER Model . . .

. . . except covering constraints in generalizations.

Is the logical underpinning of OWL2 QL, one of the OWL 2
Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.

Query answering in description logics: DL-LiteA (35/65)



Query answering in DL-LiteA

We study answering of UCQs over DL-LiteA ontologies via query
rewriting.

We first consider query answering over satisfiable ontologies, i.e., that
admit at least one model.

Then, we show how to exploit query answering over satisfiable ontologies
to establish ontology satisfiability.

Remark

we call positive inclusions (PIs) assertions of the form

B1 � B2

Q1 � Q2

whereas we call negative inclusions (NIs) assertions of the form

B1 � ¬B2

Q1 � ¬Q2

Query answering in description logics: DL-LiteA (36/65)

Query answering in DL-LiteA

We study answering of UCQs over DL-LiteA ontologies via query
rewriting.

We first consider query answering over satisfiable ontologies, i.e., that
admit at least one model.

Then, we show how to exploit query answering over satisfiable ontologies
to establish ontology satisfiability.

Remark

we call positive inclusions (PIs) assertions of the form

B1 � B2

Q1 � Q2

whereas we call negative inclusions (NIs) assertions of the form

B1 � ¬B2

Q1 � ¬Q2

Query answering in description logics: DL-LiteA (36/65)



Query answering over satisfiable DL-LiteA ontologies

Theorem

Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox s.t.

TPI is a set of PIs
TNI is a set of NIs
Tfunct is a set of functionalities.

For each ABox A such that �T ,A� is satisfiable, we have that

�T ,A� |= q iff �TPI,A� |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation nor
inequality. TNI and Tfunct only contribute to infer new negative
consequences, i.e, sentences involving negation.

If q is non-boolean, we have that cert(q, �T ,A�) = cert(q, �TPI,A�).

Query answering in description logics: DL-LiteA (37/65)

Query answering over satisfiable DL-LiteA ontologies

Theorem

Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox s.t.

TPI is a set of PIs
TNI is a set of NIs
Tfunct is a set of functionalities.

For each ABox A such that �T ,A� is satisfiable, we have that

�T ,A� |= q iff �TPI,A� |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation nor
inequality. TNI and Tfunct only contribute to infer new negative
consequences, i.e, sentences involving negation.

If q is non-boolean, we have that cert(q, �T ,A�) = cert(q, �TPI,A�).

Query answering in description logics: DL-LiteA (37/65)



Query answering over satisfiable DL-LiteA ontologies

Theorem

Let q be a boolean UCQs and T = TPI ∪ TNI ∪ Tfunct be a TBox s.t.

TPI is a set of PIs
TNI is a set of NIs
Tfunct is a set of functionalities.

For each ABox A such that �T ,A� is satisfiable, we have that

�T ,A� |= q iff �TPI,A� |= q.

Proof [intuition]

q is a positive query, i.e., it does not contain atoms with negation nor
inequality. TNI and Tfunct only contribute to infer new negative
consequences, i.e, sentences involving negation.

If q is non-boolean, we have that cert(q, �T ,A�) = cert(q, �TPI,A�).

Query answering in description logics: DL-LiteA (37/65)

Satisfiability of DL-LiteA ontologies

�T , ∅� is always satisfiable. That is, inconsistency in DL-LiteA may arise
only when ABox assertions contradict the TBox.

�TPI,A�, where TPI contains only PIs, is always satisfiable. That is,
inconsistency in DL-LiteA may arise only when ABox assertions violate
functionalities or NIs.

Example: TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Violations of functionalities and of NIs can be checked separately!

Query answering in description logics: DL-LiteA (38/65)



Satisfiability of DL-LiteA ontologies

�T , ∅� is always satisfiable. That is, inconsistency in DL-LiteA may arise
only when ABox assertions contradict the TBox.

�TPI,A�, where TPI contains only PIs, is always satisfiable. That is,
inconsistency in DL-LiteA may arise only when ABox assertions violate
functionalities or NIs.

Example: TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Violations of functionalities and of NIs can be checked separately!

Query answering in description logics: DL-LiteA (38/65)

Satisfiability of DL-LiteA ontologies

�T , ∅� is always satisfiable. That is, inconsistency in DL-LiteA may arise
only when ABox assertions contradict the TBox.

�TPI,A�, where TPI contains only PIs, is always satisfiable. That is,
inconsistency in DL-LiteA may arise only when ABox assertions violate
functionalities or NIs.

Example: TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Violations of functionalities and of NIs can be checked separately!

Query answering in description logics: DL-LiteA (38/65)



Satisfiability of DL-LiteA ontologies

�T , ∅� is always satisfiable. That is, inconsistency in DL-LiteA may arise
only when ABox assertions contradict the TBox.

�TPI,A�, where TPI contains only PIs, is always satisfiable. That is,
inconsistency in DL-LiteA may arise only when ABox assertions violate
functionalities or NIs.

Example: TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

Violations of functionalities and of NIs can be checked separately!

Query answering in description logics: DL-LiteA (38/65)

Satisfiability of DL-LiteA ontologies: Checking functs

Theorem

Let TPI be a TBox with only PIs, and (funct Q) a functionality
assertion. Then, for any ABox A,
�TPI ∪ {(funct Q)},A� is sat iff A �|= ∃x, y, z.Q(x, y)∧Q(x, z)∧ y �= z.

Proof [sketch]

�TPI ∪ {(funct Q)},A� is satisfiable iff �TPI,A� �|= ¬(funct Q). This
holds iff A �|= ¬(funct Q) (separability property – sophisticated proof).
From separability, the claim easily follows, by noticing that (funct Q)
corresponds to the FOL sentence ∀x, y, z.Q(x, y) ∧Q(x, z) → y = z.

For a set of functionalities, we take the union of sentences of the form
above (which corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate
a FOL query over the ABox.

Query answering in description logics: DL-LiteA (39/65)



Satisfiability of DL-LiteA ontologies: Checking functs

Theorem

Let TPI be a TBox with only PIs, and (funct Q) a functionality
assertion. Then, for any ABox A,
�TPI ∪ {(funct Q)},A� is sat iff A �|= ∃x, y, z.Q(x, y)∧Q(x, z)∧ y �= z.

Proof [sketch]

�TPI ∪ {(funct Q)},A� is satisfiable iff �TPI,A� �|= ¬(funct Q). This
holds iff A �|= ¬(funct Q) (separability property – sophisticated proof).
From separability, the claim easily follows, by noticing that (funct Q)
corresponds to the FOL sentence ∀x, y, z.Q(x, y) ∧Q(x, z) → y = z.

For a set of functionalities, we take the union of sentences of the form
above (which corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate
a FOL query over the ABox.

Query answering in description logics: DL-LiteA (39/65)

Satisfiability of DL-LiteA ontologies: Checking functs

Theorem

Let TPI be a TBox with only PIs, and (funct Q) a functionality
assertion. Then, for any ABox A,
�TPI ∪ {(funct Q)},A� is sat iff A �|= ∃x, y, z.Q(x, y)∧Q(x, z)∧ y �= z.

Proof [sketch]

�TPI ∪ {(funct Q)},A� is satisfiable iff �TPI,A� �|= ¬(funct Q). This
holds iff A �|= ¬(funct Q) (separability property – sophisticated proof).
From separability, the claim easily follows, by noticing that (funct Q)
corresponds to the FOL sentence ∀x, y, z.Q(x, y) ∧Q(x, z) → y = z.

For a set of functionalities, we take the union of sentences of the form
above (which corresponds to a boolean FOL query).

Checking satisfiability wrt functionalities therefore amounts to evaluate
a FOL query over the ABox.

Query answering in description logics: DL-LiteA (39/65)



Example

TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

The query we associate to the functionality is:

q() ← teaches(x, y), teaches(x, z), y �= z

which evaluated over the ABox

ABox A: teaches(John, databases)
Student(John)
teaches(Mark, databases)

returns true.

Query answering in description logics: DL-LiteA (40/65)

Satisfiability of DL-LiteA ontologies: Checking NIs

Theorem

Let TPI be a TBox with only PIs, and A1 � ¬A2 a NI. For any ABox A,
�TPI ∪ {A1 � ¬A2},A� is sat iff �TPI,A� �|= ∃x.A1(x) ∧A2(x).

Proof [sketch]

�TPI ∪ {A1 � ¬A2},A� is satisfiable iff �TPI,A� �|= ¬(A1 � ¬A2). The
claim follows easily by noticing that A1 � ¬A2 corresponds to the FOL
sentence ∀x.A1(x) → ¬A2(x).

The property holds for all kinds of NIs (A � ∃Q, ∃Q1 � ∃Q2, etc.)

For a set of NIs, we take the union of sentences of the form above
(which corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over an
ontology with only PIs (this can be reduced to evaluating a UCQ over
the ABox – see later).

Query answering in description logics: DL-LiteA (41/65)



Satisfiability of DL-LiteA ontologies: Checking NIs

Theorem

Let TPI be a TBox with only PIs, and A1 � ¬A2 a NI. For any ABox A,
�TPI ∪ {A1 � ¬A2},A� is sat iff �TPI,A� �|= ∃x.A1(x) ∧A2(x).

Proof [sketch]

�TPI ∪ {A1 � ¬A2},A� is satisfiable iff �TPI,A� �|= ¬(A1 � ¬A2). The
claim follows easily by noticing that A1 � ¬A2 corresponds to the FOL
sentence ∀x.A1(x) → ¬A2(x).

The property holds for all kinds of NIs (A � ∃Q, ∃Q1 � ∃Q2, etc.)

For a set of NIs, we take the union of sentences of the form above
(which corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over an
ontology with only PIs (this can be reduced to evaluating a UCQ over
the ABox – see later).

Query answering in description logics: DL-LiteA (41/65)

Satisfiability of DL-LiteA ontologies: Checking NIs

Theorem

Let TPI be a TBox with only PIs, and A1 � ¬A2 a NI. For any ABox A,
�TPI ∪ {A1 � ¬A2},A� is sat iff �TPI,A� �|= ∃x.A1(x) ∧A2(x).

Proof [sketch]

�TPI ∪ {A1 � ¬A2},A� is satisfiable iff �TPI,A� �|= ¬(A1 � ¬A2). The
claim follows easily by noticing that A1 � ¬A2 corresponds to the FOL
sentence ∀x.A1(x) → ¬A2(x).

The property holds for all kinds of NIs (A � ∃Q, ∃Q1 � ∃Q2, etc.)

For a set of NIs, we take the union of sentences of the form above
(which corresponds to a UCQ).

Checking satisfiability wrt NIs amounts to answering a UCQ over an
ontology with only PIs (this can be reduced to evaluating a UCQ over
the ABox – see later).

Query answering in description logics: DL-LiteA (41/65)



Example

TBox T : Professor � ¬Student
∃teaches � Professor
(funct teaches−)

The query we associate to the NI is:

q() ← Student(x),Professor(x)

whose answer over the ontology

∃teaches � Professor
teaches(John, databases)
Student(John)
teaches(Mark, databases)

is true.

Query answering in description logics: DL-LiteA (42/65)

Checking satisfiability of DL-LiteA ontologies

Satisfiability of a DL-LiteA ontology O = �T ,A� is reduced to
evaluation of a first order query over A, obtained by uniting

(a) the FOL query associated to functionalities in T to

(b) the UCQs produced by a rewriting procedure (depending only on
the PIs in T ) applied to the query associated to NIs in T .

❀ Ontology satisfiability in DL-LiteA can be done using RDMBS
technology.

Query answering in description logics: DL-LiteA (43/65)



Query answering in DL-LiteA: Query rewriting

To the aim of answering queries, from now on we assume that T
contains only PIs.

Given a CQ q and a satisfiable ontology O = �T ,A�, we compute
cert(q,O) as follows

1 using T , reformulate q as a union rq,T of CQs.

2 Evaluate rq,T directly over A managed in secondary storage via a

RDBMS.

Correctness of this procedure shows FOL-rewritability of query
answering in DL-LiteA
❀ Query answering over DL-LiteA ontologies can be done using
RDMBS technology.

Query answering in description logics: DL-LiteA (44/65)

Query answering in DL-LiteA: Query rewriting

To the aim of answering queries, from now on we assume that T
contains only PIs.

Given a CQ q and a satisfiable ontology O = �T ,A�, we compute
cert(q,O) as follows

1 using T , reformulate q as a union rq,T of CQs.

2 Evaluate rq,T directly over A managed in secondary storage via a

RDBMS.

Correctness of this procedure shows FOL-rewritability of query
answering in DL-LiteA
❀ Query answering over DL-LiteA ontologies can be done using
RDMBS technology.

Query answering in description logics: DL-LiteA (44/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor � Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step:

when the atom unifies with the head of the rule (with mgu σ).

substitute the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input
query above the following query (σ = {z/x})

q(x) ← AssProfessor(x)

We say that the PI AssProfessor � Professor applies to the atom
Professor(x).

Query answering in description logics: DL-LiteA (45/65)

Query answering in DL-LiteA: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor � Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step:

when the atom unifies with the head of the rule (with mgu σ).

substitute the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input
query above the following query (σ = {z/x})

q(x) ← AssProfessor(x)

We say that the PI AssProfessor � Professor applies to the atom
Professor(x).

Query answering in description logics: DL-LiteA (45/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

q(x) ← Professor(x)

AssProfessor � Professor
as a logic rule: Professor(z) ← AssProfessor(z)

Basic rewriting step:

when the atom unifies with the head of the rule (with mgu σ).

substitute the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input
query above the following query (σ = {z/x})

q(x) ← AssProfessor(x)

We say that the PI AssProfessor � Professor applies to the atom
Professor(x).

Query answering in description logics: DL-LiteA (45/65)

Query answering in DL-LiteA: Query rewriting (cont’d)

Consider now the query

q(x) ← teaches(x, y)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

We add to the reformulation the query (σ = {z1/x, z2/y})

q(x) ← Professor(x)

Query answering in description logics: DL-LiteA (46/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not

unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)

Query answering in description logics: DL-LiteA (47/65)

Query answering in DL-LiteA: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not

unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)

Query answering in description logics: DL-LiteA (47/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

Conversely, for the query

q(x) ← teaches(x, databases)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

teaches(x, databases) does not unify with teaches(z1, z2), since the
existentially quantified variable z2 in the head of the rule does not

unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

q(x, y) ← teaches(x, y)

Query answering in description logics: DL-LiteA (47/65)

Query answering in DL-LiteA: Query rewriting (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x, y),Course(y)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− � Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (σ = {z2/y})

q(x) ← teaches(x, y), teaches(z1, y)

Query answering in description logics: DL-LiteA (48/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

An analogous behavior with join variables

q(x) ← teaches(x, y),Course(y)

Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

The PI above does not apply to the atom teaches(x, y).

Conversely, the PI

∃teaches− � Course
as a logic rule: Course(z2) ← teaches(z1, z2)

applies to the atom Course(y).

We add to the perfect rewriting the query (σ = {z2/y})

q(x) ← teaches(x, y), teaches(z1, y)

Query answering in description logics: DL-LiteA (48/65)

Query answering in DL-LiteA: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

does not apply to teaches(x, y) nor teaches(z, y), since y is a join
variable.

However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z1, y). This rewriting step is called reduce, and
produces the following query

q(x) ← teaches(x, y)

We can now apply the PI above (sigma{z1/x, z2/y}), and add to the
reformulation the query

q(x) ← Professor(x)

Query answering in description logics: DL-LiteA (49/65)



Query answering in DL-LiteA: Query rewriting (cont’d)

We now have the query

q(x) ← teaches(x, y), teaches(z, y)

The PI Professor � ∃teaches
as a logic rule: teaches(z1, z2) ← Professor(z1)

does not apply to teaches(x, y) nor teaches(z, y), since y is a join
variable.

However, we can transform the above query by unifying the atoms
teaches(x, y), teaches(z1, y). This rewriting step is called reduce, and
produces the following query

q(x) ← teaches(x, y)

We can now apply the PI above (sigma{z1/x, z2/y}), and add to the
reformulation the query

q(x) ← Professor(x)

Query answering in description logics: DL-LiteA (49/65)

Answering by rewriting in DL-LiteA: The algorithm

1 Rewrite the CQ q into a UCQs: apply to q in all possible ways the
PIs in the TBox T .

2 This corresponds to exploiting ISAs, role typings, and mandatory
participations to obtain new queries that could contribute to the
answer.

3 Unifying atoms can make applicable rules that could not be applied
otherwise.

4 The UCQs resulting from this process is the perfect rewriting rq,T .

5 rq,T is then encoded into SQL and evaluated over A managed in
secondary storage via a RDBMS, to return the set cert(q,O).

Query answering in description logics: DL-LiteA (50/65)



Query answering in DL-LiteA: Example

TBox: Professor � ∃teaches
∃teaches− � Course

Query: q(x) ← teaches(x, y),Course(y)

Perfect Rewriting: q(x) ← teaches(x, y),Course(y)
q(x) ← teaches(x, y), teaches(z, y)
q(x) ← teaches(x, z)
q(x) ← Professor(x)

ABox: teaches(John, databases)
Professor(Mary)

It is easy to see that the evaluation of rq,T over A in this case produces
the set {John, Mary}.

Query answering in description logics: DL-LiteA (51/65)

Example 1

Express in DL-LiteA the following ontology:

C

B

D

{subset}

<R 

Q> 
1..1

{disjoint,complete}

1..*A

Considering the following ABox A = {A(a)} compute the answer to the
following queries:

q(x) ← Q(x, y), R(y, z).
q�() ← B(x).

Query answering in description logics: DL-LiteA (52/65)



Example 1 (solution)

Expansions:

q(x) ← Q(x, y), R(y, z).
q(x) ← Q(x, y), Q(z, y). Q � R−

q(x) ← Q(x, y). unify: z = x
q(x) ← A(x). A � ∃Q

=⇒ answer x = a

q�() ← B(x).
q�() ← R(x, y). ∃R. � B
q�() ← A(y). A � ∃R−

=⇒ answer true (by y = a)

Query answering in description logics: DL-LiteA (53/65)

Example 1 (solution)

Expansions:

q(x) ← Q(x, y), R(y, z).
q(x) ← Q(x, y), Q(z, y). Q � R−

q(x) ← Q(x, y). unify: z = x
q(x) ← A(x). A � ∃Q

=⇒ answer x = a

q�() ← B(x).
q�() ← R(x, y). ∃R. � B
q�() ← A(y). A � ∃R−

=⇒ answer true (by y = a)

Query answering in description logics: DL-LiteA (53/65)



Example 2

Express in DL-LiteA the following ontology:

A

C

B

D

{subset}

R >

Q >

1..1

{disjoint,complete}

0..*

0..*

0..*

Considering the following ABox A = {Q(a, b), R(b, b), C(c)} compute
the answer to the following queries:

q(x) ← R(x, y), R(y, z), A(z).

Query answering in description logics: DL-LiteA (54/65)

Example 2 (solution)

Expansions:

q(x) :- R(x,y), R(y,z), A(z).
q(x) :- R(x,x), A(x). --- unify
q(x) :- R(x,x), R(x,y). --- Exists R ISA A
q(x) :- R(x,x). --- unify

answer x = b

......

Query answering in description logics: DL-LiteA (55/65)



Example 2 (solution)

Expansions:

.....

q(x) :- R(x,y), R(y,z), A(z).
q(x) :- R(x,y), R(y,z), C(z). --- C ISA A
q(x) :- R(x,y), R(y,z), Q(w,z). --- Exists Q- ISA C
q(x) :- R(x,y), Q(y,z), Q(w,z). --- Q ISA R
q(x) :- R(x,y), Q(y,z). --- unify
q(x) :- R(x,y), A(y). --- A ISA Exists Q
q(x) :- R(x,y), C(y). --- C ISA A
q(x) :- R(x,y), Q(z,y). --- Exists Q- ISA C
q(x) :- Q(x,y), Q(z,y). --- Q ISA R
q(x) :- Q(x,y). --- unify

answer x = a

q(x) :- A(x). --- A ISA Exists Q
q(x) :- C(x). --- C ISA A

answer x = c

Query answering in description logics: DL-LiteA (56/65)

Example 3

Express in DL-LiteA the following ontology:

A

D

B

E

{subset}

R >

Q > 1..1

{disjoint,complete}

0..*

1..*

1..*

C

Considering the following ABox A = {C(a)} compute the answer to the
following queries:

q(x) ← R(x, y), B(y).
q�(x) ← A(x).

Can we simplify the diagram?
Query answering in description logics: DL-LiteA (57/65)



Example 3 (solution)

Expansions:

q(x) :- R(x,y), B(y).
q(x) :- R(x,y), D(y). --- D ISA B
q(x) :- R(x,y), Q(z,y). --- Exists Q- ISA D
q(x) :- Q(x,y), Q(z,y). --- Q ISA R
q(x) :- Q(x,y). --- unify
q(x) :- C(x). --- C ISA Exists Q

answer x = a

q’(x):- A(x).
q’(x):- R(x,y). --- A ISA Exists R
q’(x):- Q(x,y). --- Q ISA R
q’(x):- C(x). --- C ISA Exists Q

answer x = a

Query answering in description logics: DL-LiteA (58/65)

Example 4

Express in DL-LiteA the following ontology:

B

A

C

{subset}

<R 

<Q 
1..1

{disjoint,complete}

1..*

Considering the following ABox A = {B(b)} compute the answer to the
following queries:

q(z) ← R(x, y), R(y, z).
q�() ← C(x).

Query answering in description logics: DL-LiteA (59/65)



Example 4 (solution)

Expansions:

q(z) :- R(x,y), R(y,z).
q(z) :- A(y), R(y,z). --- A ISA Exists R-
q(z) :- C(y), R(y,z). --- C ISA A
q(z) :- R(y,w), R(y,z). --- Exists R ISA C
q(z) :- R(y,z). --- unify
q(z) :- A(z). --- A ISA Exists R-
q(z) :- B(z). --- B ISA A

answer z = b

q’() :- C(x).
q’() :- R(x,y). -- Exists R ISA C
q’() :- A(y). -- A ISA Exists R-
q’() :- B(y). -- B ISA A

answer z = b

Query answering in description logics: DL-LiteA (60/65)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:
PTime in the size of TBox.
LogSpace in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (�), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).

Query answering in description logics: DL-LiteA (61/65)



Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:
PTime in the size of TBox.
LogSpace in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (�), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).

Query answering in description logics: DL-LiteA (61/65)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:
PTime in the size of TBox.
LogSpace in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (�), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).

Query answering in description logics: DL-LiteA (61/65)



Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:
Efficiently tractable in the size of TBox (i.e., PTime).
Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:
PTime in the size of TBox.
LogSpace in the size of the ABox.
Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

By adding essentially any other DL construct, e.g., union (�), value
restriction (∀R.C), etc., without some limitations we lose these nice
computational properties (see later).

Query answering in description logics: DL-LiteA (61/65)

Beyond DL-LiteA: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA
√
*

√
* in LogSpace

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 �A2 A − − PTime-hard
5 A | A1 �A2 A | ∀P .A − − PTime-hard
6 A | A1 �A2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−
.A A | ∃P − − PTime-hard

8 A | ∃P | ∃P− A | ∃P | ∃P− √ √
PTime-hard

9 A | ¬A A − − coNP-hard

10 A A | A1 �A2 − − coNP-hard

11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL � AT �AF suffices! ❀ No hope of including covering constraints.

Query answering in description logics: DL-LiteA (62/65)



Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (63/65)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (63/65)



Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (63/65)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (63/65)



SparSQL

Full SQL, but with relations in the FROM clause that are UCQs,
expressed in SPARQL, over the ontology.

SPARQL queries are used to query what is true in the domain.

SQL is used to query what the ontology knows about the domain.

Example: negation

Return all known people that are neither known to be male nor
known to be female.

SELECT persons.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Person’}
) persons

EXCEPT (
SELECT males.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Male’}
) males

UNION
SELECT females.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Female’}
) females

)

Example: aggregates

Return the people and the number of their known
spouses, but only if they are known to be married to
at least two people.

SELECT marriage.x, count(marriage.y)
FROM SparqlTable(SELECT ?x ?y

WHERE {?x :MarriedTo ?y}
) marriage

GROUP BY marriage.x
HAVING count(marriage.y) >= 2

Query answering in description logics: DL-LiteA (64/65)

SparSQL in DL-LiteA

Answering of SparSQL queries in DL-LiteA:

1 Expand and unfold the UCQs (in the SparqlTables) as usual in
DL-LiteA ❀ an SQL query over the ABox (seen as a database) for
each SparqlTable in the FROM clauses.

2 Substitute SparqlTables with the new SQL queries. ❀ the result is
again an SQL query over the ABox (seen as a database)!

3 Evaluate the resulting SQL query over the ABox (seen as a
database)

Query answering in description logics: DL-LiteA (65/65)


