First Order Logic & Conjunctive Queries

Metodi Formali per il Software e i Servizi

Giuseppe De Giacomo

Sapienza Università di Roma Laurea Magistrale in Ingegneria Informatica

First-order logic

- ► First-order logic (FOL) is the logic to speak about objects, which are the domain of discourse or universe.
- ► FOL is concerned about properties of these objects and relations over objects (resp., unary and *n*-ary predicates).
- ► FOL also has functions including constants that denote objects.

FOL syntax - Terms

We first introduce:

- A set $Vars = \{x_1, \dots, x_n\}$ of individual variables (i.e., variables that denote single objects).
- A set of functions symbols, each of given arity ≥ 0 . Functions of arity 0 are called constants.

Def.: The set of *Terms* is defined inductively as follows:

- Vars ⊆ Terms;
- ▶ If $t_1, ..., t_k \in Terms$ and f^k is a k-ary function symbol, then $f^k(t_1, ..., t_k) \in Terms$;
- ▶ Nothing else is in *Terms*.

FOL syntax - Formulas

Def.: The set of Formulas is defined inductively as follows:

- ▶ If $t_1, ..., t_k \in Terms$ and P^k is a k-ary predicate, then $P^k(t_1, ..., t_k) \in Formulas$ (atomic formulas).
- ▶ If $t_1, t_2 \in Terms$, then $t_1 = t_2 \in Formulas$.
- If $\varphi \in \textit{Formulas}$ and $\psi \in \textit{Formulas}$ then
 - $ightharpoonup
 eg \varphi \in Formulas$
 - $\varphi \wedge \psi \in Formulas$
 - $ightharpoonup \varphi \lor \psi \in Formulas$
 - $\varphi \to \psi \in \textit{Formulas}$
- ▶ If $\varphi \in Formulas$ and $x \in Vars$ then
 - ▶ $\exists x. \varphi \in Formulas$
 - $\forall x.\varphi \in Formulas$
- Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition of propositional logic.

Interpretations

Given an alphabet of predicates P_1, P_2, \ldots and functions f_1, f_2, \ldots , each with an associated arity, a FOL interpretation is:

$$\mathcal{I} = \left(\Delta^{\mathcal{I}}, P_1^{\mathcal{I}}, P_2^{\mathcal{I}}, \ldots, f_1^{\mathcal{I}}, f_2^{\mathcal{I}}, \ldots\right)$$

where:

- $ightharpoonup \Delta^{\mathcal{I}}$ is the domain (a set of objects)
- lacktriangledown if P_i is a k-ary predicate, then $P_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \cdots imes \Delta^\mathcal{I}$ (k times)
- if f_i is a k-ary function, then $f_i^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \cdots \times \Delta^{\mathcal{I}} \longrightarrow \Delta^{\mathcal{I}}$ (k times)
- if f_i is a constant (i.e., a 0-ary function), then $f_i^{\mathcal{I}}:()\longrightarrow \Delta^{\mathcal{I}}$ (i.e., f_i denotes exactly one object of the domain)

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation \mathcal{I} , an assignment is a function

$$\alpha: Vars \longrightarrow \Delta^{\mathcal{I}}$$

that assigns to each variable $x \in Vars$ an object $\alpha(x) \in \Delta^{\mathcal{I}}$.

It is convenient to extend the notion of assignment to terms. We can do so by defining a function $\hat{\alpha}: Terms \longrightarrow \Delta^{\mathcal{I}}$ inductively as follows:

- $\hat{\alpha}(x) = \alpha(x)$, if $x \in Vars$
- $\hat{\alpha}(f(t_1,\ldots,t_k)) = f^{\mathcal{I}}(\hat{\alpha}(t_1),\ldots,\hat{\alpha}(t_k))$

Note: for constants $\hat{\alpha}(c) = c^{\mathcal{I}}$.

Truth in an interpretation wrt an assignment

We define when a FOL formula φ is true in an interpretation \mathcal{I} wrt an assignment α , written $\mathcal{I}, \alpha \models \varphi$:

- $ightharpoonup \mathcal{I}, \alpha \models P(t_1, \ldots, t_k) \quad \text{if } (\hat{\alpha}(t_1), \ldots, \hat{\alpha}(t_k)) \in P^{\mathcal{I}}$
- $ightharpoonup \mathcal{I}, \alpha \models t_1 = t_2 \quad \text{if } \hat{\alpha}(t_1) = \hat{\alpha}(t_2)$
- $ightharpoonup \mathcal{I}, \alpha \models \varphi \land \psi \quad \text{ if } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$
- $ightharpoonup \mathcal{I}, \alpha \models \varphi \lor \psi \quad \text{ if } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi$
- $ightharpoonup \mathcal{I}, \alpha \models \varphi \rightarrow \psi \quad \text{ if } \mathcal{I}, \alpha \models \varphi \text{ implies } \mathcal{I}, \alpha \models \psi$
- ▶ $\mathcal{I}, \alpha \models \exists x. \varphi$ if for some $a \in \Delta^{\mathcal{I}}$ we have $\mathcal{I}, \alpha[x \mapsto a] \models \varphi$
- ▶ $\mathcal{I}, \alpha \models \forall x. \varphi$ if for every $a \in \Delta^{\mathcal{I}}$ we have $\mathcal{I}, \alpha[x \mapsto a] \models \varphi$

Here, $\alpha[x \mapsto a]$ stands for the new assignment obtained from α as follows:

$$\alpha[x \mapsto a](x) = a$$

 $\alpha[x \mapsto a](y) = \alpha(y)$ for $y \neq x$

Open vs. closed formulas

Definitions

- A variable x in a formula φ is free if x does not occur in the scope of any quantifier, otherwise it is bounded.
- ▶ An open formula is a formula that has some free variable.
- ► A closed formula, also called sentence, is a formula that has no free variables.

For closed formulas (but not for open formulas) we can define what it means to be true in an interpretation, written $\mathcal{I} \models \varphi$, without mentioning the assignment, since the assignment α does not play any role in verifying $\mathcal{I}, \alpha \models \varphi$.

Instead, open formulas are strongly related to queries — cf. relational databases.

FOL queries

Def.: A FOL query is an (open) FOL formula.

When φ is a FOL query with free variables (x_1, \ldots, x_k) , then we sometimes write it as $\varphi(x_1, \ldots, x_k)$, and say that φ has arity k.

Given an interpretation \mathcal{I} , we are interested in those assignments that map the variables x_1, \ldots, x_k (and only those). We write an assignment α s.t. $\alpha(x_i) = a_i$, for $i = 1, \ldots, k$, as $\langle a_1, \ldots, a_k \rangle$.

Def.: Given an interpretation \mathcal{I} , the answer to a query $\varphi(x_1, \ldots, x_k)$ is

$$\varphi(x_1,\ldots,x_k)^{\mathcal{I}}=\{(a_1,\ldots,a_k)\mid \mathcal{I},\langle a_1,\ldots,a_k\rangle\models\varphi(x_1,\ldots,x_k)\}$$

Note: We will also use the notation $\varphi^{\mathcal{I}}$, which keeps the free variables implicit, and $\varphi(\mathcal{I})$ making apparent that φ becomes a functions from interpretations to set of tuples.

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free variables.

Hence, the answer to a boolean query $\varphi()$ is defined as follows:

$$\varphi()^{\mathcal{I}} = \{() \mid \mathcal{I}, \langle \rangle \models \varphi()\}$$

Such an answer is

- ightharpoonup (), if $\mathcal{I} \models \varphi$
- \blacktriangleright \emptyset , if $\mathcal{I} \not\models \varphi$.

As an obvious convention we read () as "true" and \emptyset as "false".

FOL formulas: logical tasks

Definitions

- ▶ Validity: φ is valid iff for all \mathcal{I} and α we have that $\mathcal{I}, \alpha \models \varphi$.
- ▶ Satisfiability: φ is satisfiable iff there exists an \mathcal{I} and α such that $\mathcal{I}, \alpha \models \varphi$, and unsatisfiable otherwise.
- ▶ Logical implication: φ logically implies ψ , written $\varphi \models \psi$ iff for all \mathcal{I} and α , if $\mathcal{I}, \alpha \models \varphi$ then $\mathcal{I}, \alpha \models \psi$.
- ▶ Logical equivalence: φ is logically equivalent to ψ , iff for all \mathcal{I} and α , we have that $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \alpha \models \psi$ (i.e., $\varphi \models \psi$ and $\psi \models \varphi$).

FOL queries – Logical tasks

- ▶ Validity: if φ is valid, then $\varphi^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \cdots \times \Delta^{\mathcal{I}}$ for all \mathcal{I} , i.e., the query always returns all the tuples of \mathcal{I} .
- ▶ Satisfiability: if φ is satisfiable, then $\varphi^{\mathcal{I}} \neq \emptyset$ for some \mathcal{I} , i.e., the query returns at least one tuple.
- ▶ Logical implication: if φ logically implies ψ , then $\varphi^{\mathcal{I}} \subseteq \psi^{\mathcal{I}}$ for all \mathcal{I} , written $\varphi \subseteq \psi$, i.e., the answer to φ is contained in that of ψ in every interpretation. This is called query containment.
- Logical equivalence: if φ is logically equivalent to ψ , then $\varphi^{\mathcal{I}} = \psi^{\mathcal{I}}$ for all \mathcal{I} , written $\varphi \equiv \psi$, i.e., the answer to the two queries is the same in every interpretation. This is called query equivalence and corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have axioms, i.e., constraints on the admissible interpretations.

Query evaluation

Let us consider:

- ▶ a finite alphabet, i.e., we have a finite number of predicates and functions, and
- ▶ a finite interpretation \mathcal{I} , i.e., an interpretation (over the finite alphabet) for which $\Delta^{\mathcal{I}}$ is finite.

Then we can consider query evaluation as an algorithmic problem, and study its computational properties.

Note: To study the computational complexity of the problem, we need to define a corresponding decision problem.

Query evaluation problem

Definitions

• Query answering problem: given a finite interpretation \mathcal{I} and a FOL query $\varphi(x_1, \ldots, x_k)$, compute

$$\varphi^{\mathcal{I}} = \{(a_1, \ldots, a_k) \mid \mathcal{I}, \langle a_1, \ldots, a_k \rangle \models \varphi(x_1, \ldots, x_k)\}$$

▶ Recognition problem (for query answering): given a finite interpretation \mathcal{I} , a FOL query $\varphi(x_1, \ldots, x_k)$, and a tuple (a_1, \ldots, a_k) , with $a_i \in \Delta^{\mathcal{I}}$, check whether $(a_1, \ldots, a_k) \in \varphi^{\mathcal{I}}$, i.e., whether

$$\mathcal{I}, \langle a_1, \ldots, a_k \rangle \models \varphi(x_1, \ldots, x_k)$$

Note: The recognition problem for query answering is the decision problem corresponding to the query answering problem.

Query evaluation algorithm

We define now an algorithm that computes the function $\mathtt{Truth}(\mathcal{I}, \alpha, \varphi)$ in such a way that $\mathtt{Truth}(\mathcal{I}, \alpha, \varphi) = \mathtt{true}$ iff $\mathcal{I}, \alpha \models \varphi$.

We make use of an auxiliary function TermEval(\mathcal{I}, α, t) that, given an interpretation \mathcal{I} and an assignment α , evaluates a term t returning an object $o \in \Delta^{\mathcal{I}}$:

```
\begin{array}{lll} \Delta^{\mathcal{I}} & \texttt{TermEval}(\mathcal{I},\alpha,t) & \{ & \texttt{if } (t \texttt{ is } x \in \textit{Vars}) \\ & \texttt{return } \alpha(x); & \\ & \texttt{if } (t \texttt{ is } f(t\_1,\ldots,t\_k)) & \\ & \texttt{return } f^{\mathcal{I}}(\texttt{TermEval}(\mathcal{I},\alpha,t\_1),\ldots,\texttt{TermEval}(\mathcal{I},\alpha,t\_k)); \\ \} \end{array}
```

Then, Truth $(\mathcal{I}, \alpha, \varphi)$ can be defined by structural recursion on φ .

Query evaluation algorithm (cont'd)

```
boolean Truth(\mathcal{I}, \alpha, \varphi) {
    if (\varphi is t_1 = t_2)
       return TermEval(\mathcal{I}, \alpha, t_{-}1) = TermEval(\mathcal{I}, \alpha, t_{-}2);
    if (\varphi \text{ is } P(t_{-1},\ldots,t_{-k}))
       return P^{\mathcal{I}}(\text{TermEval}(\mathcal{I}, \alpha, t_{-1}), \dots, \text{TermEval}(\mathcal{I}, \alpha, t_{-k}));
    if (\varphi \text{ is } \neg \psi)
return \neg \text{Truth}(\mathcal{I}, \alpha, \psi);
    if (\varphi \text{ is } \psi \circ \psi')
      return Truth(\mathcal{I}, \alpha, \psi) \circ Truth(\mathcal{I}, \alpha, \psi');
    if (\varphi is \exists x.\psi) {
       boolean b = false;
       for all (a \in \Delta^{\mathcal{I}})
             b = b \vee Truth(\mathcal{I}, \alpha[x \mapsto a], \psi);
       return b;
    if (\varphi \text{ is } \forall x.\psi) {
       boolean b = true;
        for all (a \in \Delta^{\mathcal{I}})
            b = b \wedge Truth(\mathcal{I}, \alpha[x \mapsto a], \psi);
       return b;
```

Query evaluation - Results

Theorem (Termination of Truth($\mathcal{I}, \alpha, \varphi$))

The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., $\mathcal{I}, \alpha \models \varphi$ if and only if $Truth(\mathcal{I}, \alpha, \varphi) = \mathsf{true}$.

Proof. Easy, since the algorithm is very close to the semantic definition of $\mathcal{I}, \alpha \models \varphi$.

Query evaluation - Time complexity I

Theorem (Time complexity of Truth($\mathcal{I}, \alpha, \varphi$))

The time complexity of $Truth(\mathcal{I}, \alpha, \varphi)$ is $O((|\mathcal{I}| + |\alpha| + |\varphi|)^{|\varphi|})$, i.e., polynomial in the size of \mathcal{I} and exponential in the size of φ .

Proof.

- $f^{\mathcal{I}}$ (of arity k) can be represented as k-dimensional array, hence accessing the required element can be done in time linear in $|\mathcal{I}|$.
- ▶ TermEval(...) visits the term, so it generates a linear number of recursive calls, hence its time cost is $O(|\varphi| \cdot (|\mathcal{I}| + |\alpha|))$, i.e., polynomial time in $(|\mathcal{I}| + |\alpha| + |\varphi|)$.
- ▶ $P^{\mathcal{I}}$ (of arity k) can be represented as k-dimensional boolean array, hence accessing the required element can be done in time linear in $|\mathcal{I}|$.
- ► Truth(...) for the boolean cases simply visits the formula, so generates either one or two recursive calls.

Query evaluation - Time complexity II

- ▶ Truth(...) for the quantified cases $\exists x.\varphi$ and $\forall x.\psi$ involves looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments.
- ▶ The total number of such testings is $O(|\Delta^{\mathcal{I}}|^{\sharp Vars})$.

Considering that

$$O((|\varphi| \cdot (|\mathcal{I}| + |\alpha|)) \cdot |\Delta^{\mathcal{I}}|^{\sharp Vars}) \leq O(|\mathcal{I}| + |\alpha| + |\varphi|)^{(2+|\varphi|)})$$
, the claim holds.

Query evaluation - Space complexity I

Theorem (Space complexity of Truth($\mathcal{I}, \alpha, \varphi$))

The space complexity of $Truth(\mathcal{I}, \alpha, \varphi)$ is $O(|\varphi| \cdot (|\varphi| \cdot \log |\mathcal{I}|))$, i.e., logarithmic in the size of \mathcal{I} and polynomial in the size of φ .

Proof.

- $ightharpoonup f^{\mathcal{I}}(\ldots)$ can be represented as k-dimensional array, hence accessing the required element requires $O(\log |\mathcal{I}|)$;
- ► TermEval(...) simply visits the term, so it generates a linear number of recursive calls. Each activation record has a size $O(\log |\mathcal{I}|)$ to evaluate the function call it represent, and we need $O(|\varphi|)$ activation records;
- $ightharpoonup P^{\mathcal{I}}(\ldots)$ can be represented as k-dimensional boolean array, hence accessing the required element requires $O(\log |\mathcal{I}|)$;
- ▶ Truth(...) for the boolean cases simply visits the formula, so generates either one or two recursive calls, each requiring constant
- ▶ Truth(...) for the quantified cases $\exists x.\varphi$ and $\forall x.\psi$ involves looping for all elements in $\Delta^{\mathcal{I}}$ and testing the resulting assignments;

Query evaluation - Space complexity II

▶ The total number of activation records that need to be at the same time on the stack is $O(\sharp Vars)$.

Hence, we have $O(\sharp Vars \cdot (|\varphi| \cdot log(|\mathcal{I}|)) \leq O(|\varphi| \cdot (|\varphi| \cdot \log(|\mathcal{I}|))$ the claim holds.

Note: the worst case form for the formula is

$$\forall x_1.\exists x_2.\cdots \forall x_{n-1}.\exists x_n.P(x_1,x_2,\ldots,x_{n-1},x_n).$$

Query evaluation - Complexity measures [Var82]

Definition (Combined complexity)

The combined complexity is the complexity of $\{\langle \mathcal{I}, \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi \}$, i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)

The data complexity is the complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models \varphi \}$, i.e., the query φ is fixed (and hence not considered part of the input).

Definition (Query complexity)

The query complexity is the complexity of $\{\langle \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi \}$, i.e., the interpretation \mathcal{I} is fixed (and hence not considered part of the input).

Query evaluation - Combined, data, query complexity

Theorem (Combined complexity of query evaluation)

The complexity of $\{\langle \mathcal{I}, \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi \}$ is:

▶ time: exponential

► space: PSPACE-complete — see [Var82] for hardness

Theorem (Data complexity of query evaluation)

The complexity of $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models \varphi \}$ is:

time: polynomialspace: LogSpace

Theorem (Query complexity of query evaluation)

The complexity of $\{\langle \alpha, \varphi \rangle \mid \mathcal{I}, \alpha \models \varphi \}$ is:

▶ time: exponential

▶ space: PSPACE-complete — see [Var82] for hardness

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

$$\exists \vec{y}.conj(\vec{x},\vec{y})$$

where $conj(\vec{x}, \vec{y})$ is a conjunction (i.e., an "and") of atoms and equalities, over the free variables \vec{x} , the existentially quantified variables \vec{y} , and possibly constants.

Note:

- CQs contain no disjunction, no negation, no universal quantification, and no function symbols besides constants.
- Hence, they correspond to relational algebra select-project-join (SPJ) queries.
- ► CQs are the most frequently asked queries.

Conjunctive queries and SQL - Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: return name and age of all persons that live in the same city as their boss.

Conjunctive queries and SQL – Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: return name and age of all persons that live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Conjunctive queries and SQL - Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: return name and age of all persons that live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:

```
\exists b, e, p_1, c_1, p_2, c_2. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, e) \land \mathsf{Lives}(p1, c1) \land \mathsf{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2
```


Conjunctive queries and SQL - Example

Relational alphabet:

```
Person(name, age), Lives(person, city), Manages(boss, employee)
```

Query: return name and age of all persons that live in the same city as their boss.

Expressed in SQL:

```
SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND
    M.boss = L2.person AND L1.city = L2.city
```

Expressed as a CQ:

```
\exists b, e, p_1, c_1, p_2, c_2. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, e) \land \mathsf{Lives}(p1, c1) \land \mathsf{Lives}(p2, c2) \land n = p1 \land n = e \land b = p2 \land c1 = c2

\mathsf{Or} \ \mathsf{simpler:} \ \exists b, c. \mathsf{Person}(n, a) \land \mathsf{Manages}(b, n) \land \mathsf{Lives}(n, c) \land \mathsf{Lives}(b, c)
```

Datalog notation for CQs

A CQ $q = \exists \vec{y}.conj(\vec{x}, \vec{y})$ can also be written using datalog notation as

$$q(\vec{x}_1) \leftarrow conj'(\vec{x}_1, \vec{y}_1)$$

where $conj'(\vec{x}_1, \vec{y}_1)$ is the list of atoms in $conj(\vec{x}, \vec{y})$ obtained by equating the variables \vec{x} , \vec{y} according to the equalities in $conj(\vec{x}, \vec{y})$.

As a result of such an equality elimination, we have that \vec{x}_1 and \vec{y}_1 can contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

- $ightharpoonup q(\vec{x}_1)$ the head;
- $ightharpoonup conj'(\vec{x}_1,\vec{y}_1)$ the body;
- ▶ the variables in \vec{x}_1 the distinguished variables;
- ▶ the variables in \vec{y}_1 the non-distinguished variables.

Conjunctive queries - Example

- ▶ Consider an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$, where $E^{\mathcal{I}}$ is a binary relation note that such interpretation is a (directed) graph.
- ► The following CQ q returns all nodes that participate to a triangle in the graph:

$$\exists y, z. E(x, y) \land E(y, z) \land E(z, x)$$

► The query *q* in datalog notation becomes:

$$q(x) \leftarrow E(x, y), E(y, z), E(z, x)$$

▶ The query q in SQL is (we use Edge(f,s) for E(x,y):

```
SELECT E1.f

FROM Edge E1, Edge E2, Edge E3

WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f
```

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it by:

- 1. guessing a truth assignment for the non-distinguished variables;
- 2. evaluating the resulting formula (that has no quantifications).

```
boolean ConjTruth(\mathcal{I}, \alpha, \exists \vec{y}.conj(\vec{x}, \vec{y})) {

GUESS assignment \alpha[\vec{y} \mapsto \vec{a}] {

return Truth(\mathcal{I}, \alpha[\vec{y} \mapsto \vec{a}], conj(\vec{x}, \vec{y}));
}
```

where $\mathtt{Truth}(\mathcal{I}, \alpha, \varphi)$ is defined as for FOL queries, considering only the required cases.

◆□▶◆□▶◆臺▶ 臺 ∽♀◎

Nondeterministic CQ evaluation algorithm

```
boolean \operatorname{Truth}(\mathcal{I}, \alpha, \varphi) {
   if (\varphi \text{ is } t\_1 = t\_2)
     return \operatorname{TermEval}(\mathcal{I}, \alpha, t\_1) = \operatorname{TermEval}(\mathcal{I}, \alpha, t\_2);
   if (\varphi \text{ is } P(t\_1, \ldots, t\_k))
     return P^{\mathcal{I}}(\operatorname{TermEval}(\mathcal{I}, \alpha, t\_1), \ldots, \operatorname{TermEval}(\mathcal{I}, \alpha, t\_k));
   if (\varphi \text{ is } \psi \wedge \psi')
     return \operatorname{Truth}(\mathcal{I}, \alpha, \psi) \wedge \operatorname{Truth}(\mathcal{I}, \alpha, \psi');
}
\Delta^{\mathcal{I}} \text{ TermEval}(\mathcal{I}, \alpha, t) \text{ {}}
   if (t \text{ is a variable } x) \text{ return } \alpha(x);
   if (t \text{ is a constant } c) \text{ return } c^{\mathcal{I}};
}
```

CQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)

 $\{\langle \mathcal{I}, \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is *NP-complete* — see below for hardness

time: exponential

space: polynomial

Theorem (Data complexity of CQ evaluation)

 $\{\langle \mathcal{I}, \alpha \rangle \mid \mathcal{I}, \alpha \models q\}$ is LogSpace

time: polynomialspace: logarithmic

Theorem (Query complexity of CQ evaluation)

 $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is NP-complete — see below for hardness

time: exponentialspace: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k colors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

3-colorability

A graph is k-colorable if it is possible to assign to each node one of kcolors in such a way that every two nodes connected by an edge have different colors.

Def.: 3-colorability is the following decision problem

Given a graph G = (V, E), is it 3-colorable?

Theorem

3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query evaluation.

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:

- ▶ An Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, E^{\mathcal{I}})$ where:

 - $\Delta^{\mathcal{I}} = \{ \mathbf{r}, \mathbf{g}, \mathbf{b} \}$ $E^{\mathcal{I}} = \{ (\mathbf{r}, \mathbf{g}), (\mathbf{g}, \mathbf{r}), (\mathbf{r}, \mathbf{b}), (\mathbf{b}, \mathbf{r}), (\mathbf{g}, \mathbf{b}), (\mathbf{b}, \mathbf{g}) \}$
- ▶ A conjunctive query: Let $V = \{x_1, \dots, x_n\}$, then consider the boolean conjunctive query defined as:

$$q_G = \exists x_1, \ldots, x_n. \bigwedge_{(x_i, x_j) \in E} E(x_i, x_j) \wedge E(x_j, x_i)$$

Theorem

G is 3-colorable iff $\mathcal{I} \models q_G$.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined complexity.

Theorem

CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on the actual graph. Hence, the reduction provides also the lower-bound for query complexity.

Theorem

CQ evaluation is NP-hard in query (and combined) complexity.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query q of arity k. Then

$$\mathcal{I}, \alpha \models q(x_1, \ldots, x_k)$$
 iff $\mathcal{I}_{\alpha, \vec{c}} \models q(c_1, \ldots, c_k)$

where $\mathcal{I}_{\alpha,\vec{c}}$ is identical to \mathcal{I} but includes new constants c_1,\ldots,c_k that are interpreted as $c_i^{\mathcal{I}_{\alpha,\vec{c}}} = \alpha(x_i)$.

That is, we can reduce the recognition problem to the evaluation of a boolean query.

Homomorphism

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ and $\mathcal{J} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$ be two interpretations over the same alphabet (for simplicity, we consider only constants as functions).

Def.: A homomorphism from $\mathcal I$ to $\mathcal J$

is a mapping $h:\Delta^{\mathcal{I}} o \Delta^{\mathcal{I}}$ such that:

- $h(c^{\mathcal{I}}) = c^{\mathcal{J}}$
- $lackbox{(}o_1,\ldots,o_k)\in P^\mathcal{I}$ implies $(h(o_1),\ldots,h(o_k))\in P^\mathcal{I}$

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic. \Box

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query $\exists x_1, \dots, x_n$.conj

Def.: The canonical interpretation \mathcal{I}_q associated with q

is the interpretation $\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, P^{\mathcal{I}_q}, \dots, c^{\mathcal{I}_q}, \dots)$, where

- ▶ $\Delta^{\mathcal{I}_q} = \{x_1, \dots, x_n\} \cup \{c \mid c \text{ constant occurring in } q\}$, i.e., all the variables and constants in q;
- $ightharpoonup c^{\mathcal{I}_q} = c$, for each constant c in q;
- $lacksquare (t_1,\ldots,t_k)\in P^{\mathcal{I}_q}$ iff the atom $P(t_1,\ldots,t_k)$ occurs in q.

Canonical interpretation of a (boolean) CQ - Example

Consider the boolean query q

$$q(c) \leftarrow E(c, y), E(y, z), E(z, c)$$

Then, the canonical interpretation \mathcal{I}_q is defined as

$$\mathcal{I}_q = (\Delta^{\mathcal{I}_q}, E^{\mathcal{I}_q}, c^{\mathcal{I}_q})$$

where

- $ightharpoonup E^{\mathcal{I}_q} = \{(c, y), (y, z), (z, c)\}$
- $ightharpoonup c^{\mathcal{I}_q} = c$

Homomorphism theorem

Theorem ([CM77])

For boolean CQs, $\mathcal{I} \models q$ iff there exists a homomorphism from \mathcal{I}_q to \mathcal{I} .

Proof.

" \Rightarrow " Let $\mathcal{I} \models q$, let α be an assignment to the existential variables that makes q true in \mathcal{I} , and let $\hat{\alpha}$ be its extension to constants. Then $\hat{\alpha}$ is a homomorphism from \mathcal{I}_q to \mathcal{I} .

" \Leftarrow " Let h be a homomorphism from \mathcal{I}_q to \mathcal{I} . Then restricting h to the variables only we obtain an assignment to the existential variables that makes q true in \mathcal{I} .

Illustration of homomorphism theorem - Interpretation

Consider the following interpretation \mathcal{I} :

- $\qquad \qquad \boldsymbol{\Delta}^{\mathcal{I}} = \{\textit{john}, \textit{paul}, \textit{george}, \textit{mick}, \textit{ny}, \textit{london}\}$
- ▶ $Person^{\mathcal{I}} = \{(john, 30), (paul, 60), (george, 35), (mick, 35)\}$
- $\qquad \textbf{Lives}^{\mathcal{I}} = \{(\textit{john}, \textit{ny}), (\textit{paul}, \textit{ny}), (\textit{george}, \textit{london}), (\textit{mick}, \textit{london})\}$
- ▶ $Manages^{\mathcal{I}} = \{(paul, john), (george, mick), (paul, mick)\}$

In relational notation:

 $Person^{\mathcal{I}}$

name	age
john	30
paul	60
george	35
mick	35

 $Manages^{\mathcal{I}}$

boss	emp. name
paul	john
george	mick
paul	mick

 $Lives^{\mathcal{I}}$

name	city
john	ny
paul	ny
george	london
mick	london

Illustration of homomorphism theorem - Query

Consider the following query q:

$$q() \leftarrow Person(john, z), Manages(x, john), Lives(x, y), Lives(john, y)$$

"There exists a manager that has john as an employee and lives in the same city of him?"

The canonical model \mathcal{I}_q is:

- $Person^{\mathcal{I}_q} = \{(john, z)\}$
- $Lives^{\mathcal{I}_q} = \{(john, y), (x, y)\}$

In relational notation:

$Person^{\mathcal{I}_q}$		
name	age	
john	Z	

$\underline{Lives}^{\mathcal{I}_q}$	
name	city
john	У
X	У

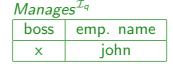


Illustration of homomorphism theorem - If-direction

Hp: $\mathcal{I} \models q$. **Th**: There exists an homomrphism $h : \mathcal{I}_q \to \mathcal{I}$. If $\mathcal{I} \models q$, then there exists an assignment $\hat{\alpha}$ such that $\langle \mathcal{I}, \alpha \rangle \models q$:

- $ightharpoonup \alpha(x) = paul$
- ▶ $\alpha(z) = 30$
- $\qquad \qquad \alpha(y) = ny$

Let us extend $\hat{\alpha}$ to constants:

 $ightharpoonup \hat{\alpha}(john) = john$

 $h=\hat{\alpha}$ is an homomorphism from \mathcal{I}_{q_1} to \mathcal{I} :

- $h(john^{\mathcal{I}_q}) = john^{\mathcal{I}}? Yes!$
- ▶ (john, z)) ∈ $Person^{\mathcal{I}_q}$ implies $(h(john), h(z)) \in Person^{\mathcal{I}}$? Yes: $(john, 30) \in Person^{\mathcal{I}}$;
- ▶ $(john, x) \in Lives^{\mathcal{I}_q}$ implies $h(john), h(x)) \in Lives^{\mathcal{I}}$? Yes: $(john, ny) \in Lives^{\mathcal{I}}$;
- ► $(x, y) \in Lives^{\mathcal{I}_q}$ implies $(h(x), h(y)) \in Lives^{\mathcal{I}}$? Yes: $(paul, ny) \in Lives^{\mathcal{I}}$;
- ▶ $(x, john) \in Manages^{\mathcal{I}_q}$ implies $(h(x), h(john)) \in Manages^{\mathcal{I}}$? Yes: $(paul, john) \in Manages^{\mathcal{I}}$.

Illustration of homomorphism theorem - Only-if-direction

Hp: There exists an homomrphism $h: \mathcal{I}_q \to \mathcal{I}$. **Th**: $\mathcal{I} \models q$. Let $h: \mathcal{I}_q \to \mathcal{I}$:

- \blacktriangleright h(john) = john;
- \blacktriangleright h(x) = paul;
- ► h(z) = 30;
- \blacktriangleright h(y) = ny.

Let us define an assignment α by restricting h to variables:

- $\qquad \qquad \alpha(x) = paul;$
- $\alpha(z) = 30;$

Then $\langle \mathcal{I}, \alpha \rangle \models q$. Indeed:

- ▶ $(john, \alpha(z)) = (john, 30) \in Person^{\mathcal{I}};$
- $(\alpha(x), john) = (paul, john) \in Manages^{\mathcal{I}};$
- \blacktriangleright $(\alpha(x), \alpha(y)) = (paul, ny) \in Lives^{\mathcal{I}};$
- $(john, \alpha(y)) = (john, ny) \in Lives^{\mathcal{I}}.$

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational structures) is also known as solving a Constraint Satisfaction Problem (CSP), a problem well-studied in AI – see also [KV98].

Observations

Theorem

 $\mathcal{I}_q \models q$ is always true.

Proof. By Chandra Merlin theorem: $\mathcal{I}_q \models q$ iff there exists homomorph. from \mathcal{I}_q to \mathcal{I}_q . Identity is one such homomorphism. \square

Theorem

Let h be a homomorphism from \mathcal{I}_1 to \mathcal{I}_2 , and h' be a homomorphism from \mathcal{I}_2 to \mathcal{I}_3 . Then $h \circ h'$ is a homomorphism form \mathcal{I}_1 to \mathcal{I}_3 .

Proof. Just check that $h \circ h'$ satisfied the definition of homomorphism: i.e. $h'(h(\cdot))$ is a mapping from $\Delta^{\mathcal{I}_1}$ to $\Delta^{\mathcal{I}_3}$ such that:

- $(o_1,\ldots,o_k) \in P^{\mathcal{I}_1} \text{ implies } (h'(h(o_1)),\ldots,h'(h(o_k))) \in P^{\mathcal{I}_3}.$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ か900

The CQs characterizing property

Def.: Homomorphic equivalent interpretations

Two interpretations \mathcal{I} and \mathcal{J} are homomorphically equivalent if there is homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

Theorem (model theoretic characterization of CQs)

CQs are unable to distinguish between interpretations that are homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations \mathcal{I} and \mathcal{J} with homomorphism $h_{\mathcal{I},\mathcal{J}}$ from \mathcal{I} to \mathcal{J} and homomorphism $h_{\mathcal{J},\mathcal{I}}$ from \mathcal{J} to \mathcal{I} .

- ▶ If $\mathcal{I} \models q$ then there exists a homomorphism h from \mathcal{I}_q to \mathcal{I} . But then $h \circ h_{\mathcal{I},\mathcal{J}}$ is an hom form \mathcal{I}_q to \mathcal{J} , hence $\mathcal{J} \models q$.
- ▶ Similarly, if $\mathcal{J} \models q$ then there exists a homomorph. g from \mathcal{I}_q to \mathcal{J} . But then $g \circ h_{\mathcal{J},\mathcal{I}}$ is a homomorph. form \mathcal{I}_q to \mathcal{I} , hence $\mathcal{I} \models q$.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations $\mathcal I$ and all assignments α we have that

$$\mathcal{I}, \alpha \models \varphi \quad \text{implies} \quad \mathcal{I}, \alpha \models \psi$$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

Query containment

Def.: Query containment

Given two FOL queries φ and ψ of the same arity, φ is contained in ψ , denoted $\varphi \subseteq \psi$, if for all interpretations $\mathcal I$ and all assignments α we have that

$$\mathcal{I}, \alpha \models \varphi \quad \text{implies} \quad \mathcal{I}, \alpha \models \psi$$

(In logical terms: $\varphi \models \psi$.)

Note: Query containment is of special interest in query optimization.

Theorem

For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

Query containment for CQs

For CQs, query containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ can be reduced to query evaluation.

- 1. Freeze the free variables, i.e., consider them as constants. This is possible, since $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff
 - $\blacktriangleright \mathcal{I}, \alpha \models q_1(\vec{x}) \text{ implies } \mathcal{I}, \alpha \models q_2(\vec{x}), \text{ for all } \mathcal{I} \text{ and } \alpha; \text{ or equivalently}$
 - ▶ $\mathcal{I}_{\alpha,\vec{c}} \models q_1(\vec{c})$ implies $\mathcal{I}_{\alpha,\vec{c}} \models q_2(\vec{c})$, for all $\mathcal{I}_{\alpha,\vec{c}}$, where \vec{c} are new constants, and $\mathcal{I}_{\alpha,\vec{c}}$ extends \mathcal{I} to the new constants with $c^{\mathcal{I}_{\alpha,\vec{c}}} = \alpha(x)$.
- 2. Construct the canonical interpretation $\mathcal{I}_{q_1(\vec{c})}$ of the CQ $q_1(\vec{c})$ on the left hand side . . .
- 3. ... and evaluate on $\mathcal{I}_{q_1(\vec{c})}$ the CQ $q_2(\vec{c})$ on the right hand side, i.e., check whether $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])

For CQs, $q_1(\vec{x}) \subseteq q_2(\vec{x})$ iff $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$, where \vec{c} are new constants. Proof.

- " \Rightarrow " Assume that $q_1(\vec{x}) \subseteq q_2(\vec{x})$.
 - ▶ Since $\mathcal{I}_{q_1(\vec{c})} \models q_1(\vec{c})$ it follows that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.
- "\(\)" Assume that $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$.
 - ▶ By [CM77] on hom., for every \mathcal{I} such that $\mathcal{I} \models q_1(\vec{c})$ there exists a homomorphism h from $\mathcal{I}_{q_1(\vec{c})}$ to \mathcal{I} .
 - ▶ On the other hand, since $\mathcal{I}_{q_1(\vec{c})} \models q_2(\vec{c})$, again by [CM77] on hom., there exists a homomorphism h' from $\mathcal{I}_{q_2(\vec{c})}$ to $\mathcal{I}_{q_1(\vec{c})}$.
 - ▶ The mapping $h \circ h'$ (obtained by composing h and h') is a homomorphism from $\mathcal{I}_{q_2(\vec{c})}$ to \mathcal{I} . Hence, once again by [CM77] on hom., $\mathcal{I} \models q_2(\vec{c})$.

So we can conclude that $q_1(\vec{c}) \subseteq q_2(\vec{c})$, and hence $q_1(\vec{x}) \subseteq q_2(\vec{x})$.

Query containment for CQs

For CQs, we also have that (boolean) query evaluation $\mathcal{I} \models q$ can be reduced to query containment.

Let
$$\mathcal{I} = (\Delta^{\mathcal{I}}, P^{\mathcal{I}}, \dots, c^{\mathcal{I}}, \dots)$$
.

We construct the (boolean) $\overline{\mathsf{CQ}}\ q_{\mathcal{I}}$ as follows:

- $ightharpoonup q_{\mathcal{I}}$ has no existential variables (hence no variables at all);
- ▶ the constants in $q_{\mathcal{I}}$ are the elements of $\Delta^{\mathcal{I}}$;
- for each relation P interpreted in \mathcal{I} and for each fact $(a_1, \ldots, a_k) \in P^{\mathcal{I}}$, $q_{\mathcal{I}}$ contains one atom $P(a_1, \ldots, a_k)$ (note that each $a_i \in \Delta^{\mathcal{I}}$ is a constant in $q_{\mathcal{I}}$).

Theorem

For CQs, $\mathcal{I} \models q$ iff $q_{\mathcal{I}} \subseteq q$.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Query containment for CQs - Complexity

From the previous results and NP-completenss of combined complexity of CQ evaluation, we immediately get:

Theorem

Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above result can be strengthened:

Theorem

Containment $q_1(\vec{x}) \subseteq q_2(\vec{x})$ of CQs is NP-complete, even when q_1 is considered fixed.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of the form

$$\bigvee_{i=1,...,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

where each $conj_i(\vec{x}, \vec{y_i})$ is a conjunction of atoms and equalities with free variables \vec{x} and $\vec{y_i}$, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive queries.

Datalog notation for UCQs

A union of conjunctive queries

$$q = \bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x},\vec{y}_i)$$

is written in datalog notation as

$$\{ q(\vec{x}) \leftarrow conj'_1(\vec{x}, \vec{y_1}')$$

$$\vdots$$

$$q(\vec{x}) \leftarrow conj'_n(\vec{x}, \vec{y_n}') \}$$

where each element of the set is the datalog expression corresponding to the conjunctive query $q_i = \exists \vec{y_i}.conj_i(\vec{x}, \vec{y_i})$.

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition of FOL query we have that:

$$\mathcal{I}, \alpha \models \bigvee_{i=1,\ldots,n} \exists \vec{y}_i.conj_i(\vec{x}, \vec{y}_i)$$

if and only if

$$\mathcal{I}, \alpha \models \exists \vec{y}_i.conj_i(\vec{x}, \vec{y}_i)$$
 for some $i \in \{1, ..., n\}$.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

UCQ evaluation - Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)

 $\{\langle \mathcal{I}, \alpha, \mathbf{q} \rangle \mid \mathcal{I}, \alpha \models \mathbf{q} \}$ is *NP*-complete.

time: exponential

space: polynomial

Theorem (Data complexity of UCQ evaluation)

 $\{\langle \mathcal{I}, q \rangle \mid \mathcal{I}, \alpha \models q\}$ is LogSpace-complete (query q fixed).

time: polynomial

space: logarithmic

Theorem (Query complexity of UCQ evaluation)

 $\{\langle \alpha, q \rangle \mid \mathcal{I}, \alpha \models q \}$ is NP-complete (interpretation \mathcal{I} fixed).

time: exponentialspace: polynomial

◆□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ * りへ(~)

Query containment for UCQs

Theorem

For UCQs, $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ iff for each q_i there is a q'_j such that $q_i \subseteq q'_i$.

Proof.

"

—" Obvious.

" \Rightarrow " If the containment holds, then we have $\{q_1(\vec{c}), \ldots, q_k(\vec{c})\} \subseteq \{q'_1(\vec{c}), \ldots, q'_n(\vec{c})\}\$, where \vec{c} are new constants:

- Now consider $\mathcal{I}_{q_i(\vec{c})}$. We have $\mathcal{I}_{q_i(\vec{c})} \models q_i(\vec{c})$, and hence $\mathcal{I}_{q_i(\vec{c})} \models \{q_1(\vec{c}), \dots, q_k(\vec{c})\}.$
- ▶ By the containment, we have that $\mathcal{I}_{q_i(\vec{c})} \models \{q'_1(\vec{c}), \dots, q'_n(\vec{c})\}$. I.e., there exists a $q'_i(\vec{c})$ such that $\mathcal{I}_{q_i(\vec{c})} \models q'_i(\vec{c})$.
- ▶ Hence, by [CM77] on containment of CQs, we have $q_i \subseteq q'_j$.

Query containment for UCQs - Complexity

From the previous result, we have that we can check $\{q_1, \ldots, q_k\} \subseteq \{q'_1, \ldots, q'_n\}$ by at most $k \cdot n$ CQ containment checks.

We immediately get:

Theorem

Containment of UCQs is NP-complete.

References

[CM77] A. K. Chandra and P. M. Merlin.

Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages 77–90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS'98), pages 205–213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC'82), pages 137–146, 1982.