
Metodi Formali per il Software e i Servizi
FOL & Conjunctive Queries

Giuseppe De Giacomo

Sapienza Università di Roma

Laurea Magistrale in Ingegneria Informatica

2010/11

First-order logic

� First-order logic (FOL) is the logic to speak about objects, which are
the domain of discourse or universe.

� FOL is concerned about properties of these objects and relations
over objects (resp., unary and n-ary predicates).

� FOL also has functions including constants that denote objects.

FOL syntax – Terms

We first introduce:

� A set Vars = {x1, . . . , xn} of individual variables (i.e., variables that
denote single objects).

� A set of functions symbols, each of given arity ≥ 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

� Vars ⊆ Terms;

� If t1, . . . , tk ∈ Terms and f k is a k-ary function symbol, then
f k(t1, . . . , tk) ∈ Terms;

� Nothing else is in Terms.

FOL syntax – Formulas

Def.: The set of Formulas is defined inductively as follows:

� If t1, . . . , tk ∈ Terms and Pk is a k-ary predicate, then
Pk(t1, . . . , tk) ∈ Formulas (atomic formulas).

� If t1, t2 ∈ Terms, then t1 = t2 ∈ Formulas.
� If ϕ ∈ Formulas and ψ ∈ Formulas then

� ¬ϕ ∈ Formulas
� ϕ ∧ ψ ∈ Formulas
� ϕ ∨ ψ ∈ Formulas
� ϕ → ψ ∈ Formulas

� If ϕ ∈ Formulas and x ∈ Vars then
� ∃x .ϕ ∈ Formulas
� ∀x .ϕ ∈ Formulas

� Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition of propositional logic.

Interpretations

Given an alphabet of predicates P1,P2, . . . and functions f1, f2, . . ., each
with an associated arity, a FOL interpretation is:

I = (∆I ,PI
1 ,P

I
2 , . . . , f

I
1 , f I2 , . . .)

where:

� ∆I is the domain (a set of objects)

� if Pi is a k-ary predicate, then PI
i
⊆ ∆I × · · · ×∆I (k times)

� if fi is a k-ary function, then f I
i

: ∆I × · · · ×∆I −→ ∆I (k times)

� if fi is a constant (i.e., a 0-ary function), then f I
i

: () −→ ∆I

(i.e., fi denotes exactly one object of the domain)

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation I, an assignment is a function

α : Vars −→ ∆I

that assigns to each variable x ∈ Vars an object α(x) ∈ ∆I .

It is convenient to extend the notion of assignment to terms. We can do
so by defining a function α̂ : Terms −→ ∆I inductively as follows:

� α̂(x) = α(x), if x ∈ Vars

� α̂(f (t1, . . . , tk)) = f I(α̂(t1), . . . , α̂(tk))

Note: for constants α̂(c) = cI .

Truth in an interpretation wrt an assignment

We define when a FOL formula ϕ is true in an interpretation I wrt an
assignment α, written I, α |= ϕ:

� I, α |= P(t1, . . . , tk) if (α̂(t1), . . . , α̂(tk)) ∈ PI

� I, α |= t1 = t2 if α̂(t1) = α̂(t2)

� I, α |= ¬ϕ if I, α �|= ϕ

� I, α |= ϕ ∧ ψ if I, α |= ϕ and I, α |= ψ

� I, α |= ϕ ∨ ψ if I, α |= ϕ or I, α |= ψ

� I, α |= ϕ → ψ if I, α |= ϕ implies I, α |= ψ

� I, α |= ∃x .ϕ if for some a ∈ ∆I we have I, α[x �→ a] |= ϕ

� I, α |= ∀x .ϕ if for every a ∈ ∆I we have I, α[x �→ a] |= ϕ

Here, α[x �→ a] stands for the new assignment obtained from α as
follows:

α[x �→ a](x) = a

α[x �→ a](y) = α(y) for y �= x

Open vs. closed formulas

Definitions
� A variable x in a formula ϕ is free if x does not occur in the scope

of any quantifier, otherwise it is bounded.

� An open formula is a formula that has some free variable.

� A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it
means to be true in an interpretation, written I |= ϕ, without mentioning
the assignment, since the assignment α does not play any role in
verifying I, α |= ϕ.

Instead, open formulas are strongly related to queries — cf. relational
databases.

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ϕ is a FOL query with free variables (x1, . . . , xk), then we
sometimes write it as ϕ(x1, . . . , xk), and say that ϕ has arity k .

Given an interpretation I, we are interested in those assignments that
map the variables x1, . . . , xk (and only those). We write an assignment α
s.t. α(xi) = ai , for i = 1, . . . , k , as �a1, . . . , ak�.

Def.: Given an interpretation I, the answer to a query
ϕ(x1, . . . , xk) is

ϕ(x1, . . . , xk)I = {(a1, . . . , ak) | I, �a1, . . . , ak� |= ϕ(x1, . . . , xk)}
Note: We will also use the notation ϕI , which keeps the free variables
implicit, and ϕ(I) making apparent that ϕ becomes a functions from
interpretations to set of tuples.

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free
variables.

Hence, the answer to a boolean query ϕ() is defined as follows:

ϕ()I = {() | I, �� |= ϕ()}

Such an answer is

� (), if I |= ϕ

� ∅, if I �|= ϕ.

As an obvious convention we read () as “true” and ∅ as “false”.

FOL formulas: logical tasks

Definitions
� Validity: ϕ is valid iff for all I and α we have that I, α |= ϕ.

� Satisfiability: ϕ is satisfiable iff there exists an I and α such that
I, α |= ϕ, and unsatisfiable otherwise.

� Logical implication: ϕ logically implies ψ, written ϕ |= ψ iff for all I
and α, if I, α |= ϕ then I, α |= ψ.

� Logical equivalence: ϕ is logically equivalent to ψ, iff for all I and
α, we have that I, α |= ϕ iff I, α |= ψ (i.e., ϕ |= ψ and ψ |= ϕ).

FOL queries – Logical tasks

� Validity: if ϕ is valid, then ϕI = ∆I × · · · ×∆I for all I, i.e., the
query always returns all the tuples of I.

� Satisfiability: if ϕ is satisfiable, then ϕI �= ∅ for some I, i.e., the
query returns at least one tuple.

� Logical implication: if ϕ logically implies ψ, then ϕI ⊆ ψI for all I,
written ϕ ⊆ ψ, i.e., the answer to ϕ is contained in that of ψ in
every interpretation. This is called query containment.

� Logical equivalence: if ϕ is logically equivalent to ψ, then ϕI = ψI

for all I, written ϕ ≡ ψ, i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.

Query evaluation

Let us consider:

� a finite alphabet, i.e., we have a finite number of predicates and
functions, and

� a finite interpretation I, i.e., an interpretation (over the finite
alphabet) for which ∆I is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.

Query evaluation problem

Definitions
� Query answering problem: given a finite interpretation I and a FOL

query ϕ(x1, . . . , xk), compute

ϕI = {(a1, . . . , ak) | I, �a1, . . . , ak� |= ϕ(x1, . . . , xk)}

� Recognition problem (for query answering): given a finite
interpretation I, a FOL query ϕ(x1, . . . , xk), and a tuple (a1, . . . , ak),
with ai ∈ ∆I , check whether (a1, . . . , ak) ∈ ϕI , i.e., whether

I, �a1, . . . , ak� |= ϕ(x1, . . . , xk)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.

Query evaluation algorithm

We define now an algorithm that computes the function Truth(I, α, ϕ)
in such a way that Truth(I, α, ϕ) = true iff I, α |= ϕ.

We make use of an auxiliary function TermEval(I, α, t) that, given an
interpretation I and an assignment α, evaluates a term t returning an
object o ∈ ∆I :

∆I TermEval(I,α,t) {
if (t is x ∈ Vars)

return α(x);
if (t is f (t 1, . . . , t k))

return f I(TermEval(I,α,t 1),...,TermEval(I,α,t k));
}

Then, Truth(I, α, ϕ) can be defined by structural recursion on ϕ.

Query evaluation algorithm (cont’d)

boolean Truth(I,α,ϕ) {
if (ϕ is t 1 = t 2)

return TermEval(I,α,t 1) = TermEval(I,α,t 2);
if (ϕ is P(t 1, . . . , t k))

return P
I(TermEval(I,α,t 1),...,TermEval(I,α,t k));

if (ϕ is ¬ψ)
return ¬Truth(I,α,ψ);

if (ϕ is ψ ◦ ψ�)
return Truth(I,α,ψ) ◦ Truth(I,α,ψ�);

if (ϕ is ∃x .ψ) {
boolean b = false;
for all (a ∈ ∆

I)
b = b ∨ Truth(I,α[x �→ a],ψ);

return b;
}
if (ϕ is ∀x .ψ) {

boolean b = true;
for all (a ∈ ∆

I)
b = b ∧ Truth(I,α[x �→ a],ψ);

return b;
}

}

Query evaluation – Results

Theorem (Termination of Truth(I, α, ϕ))
The algorithm Truth terminates.

Proof. Immediate.

Theorem (Correctness)
The algorithm Truth is sound and complete, i.e., I, α |= ϕ if and only if

Truth(I, α, ϕ) = true.

Proof. Easy, since the algorithm is very close to the semantic definition
of I, α |= ϕ.

Query evaluation – Time complexity I

Theorem (Time complexity of Truth(I, α, ϕ))
The time complexity of Truth(I, α, ϕ) is O((|I|+ |α|+ |ϕ|)|ϕ|), i.e.,
polynomial in the size of I and exponential in the size of ϕ.

Proof.

� f I (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |I|.

� TermEval(. . .) visits the term, so it generates a linear number of
recursive calls, hence its time cost is O(|ϕ| · (|I|+ |α|)), i.e.,
polynomial time in (|I|+ |α|+ |ϕ|).

� PI (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
|I|.

� Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.

Query evaluation – Time complexity II

� Truth(. . .) for the quantified cases ∃x .ϕ and ∀x .ψ involves looping
for all elements in ∆I and testing the resulting assignments.

� The total number of such testings is O(|∆I |�Vars).

Considering that
O((|ϕ| · (|I|+ |α|)) · |∆I |�Vars) ≤ O(|I|+ |α|+ |ϕ|)(2+|ϕ|)), the claim
holds.

Query evaluation – Space complexity I

Theorem (Space complexity of Truth(I, α, ϕ))
The space complexity of Truth(I, α, ϕ) is O(|ϕ| · (|ϕ| · log |I|)), i.e.,
logarithmic in the size of I and polynomial in the size of ϕ.

Proof.

� f I(. . .) can be represented as k-dimensional array, hence accessing
the required element requires O(log |I|);

� TermEval(. . .) simply visits the term, so it generates a linear
number of recursive calls. Each activation record has a size
O(log |I|) to evaluate the function call it represent, and we need
O(|ϕ|) activation records;

� PI(. . .) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log |I|);

� Truth(. . .) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

� Truth(. . .) for the quantified cases ∃x .ϕ and ∀x .ψ involves looping
for all elements in ∆I and testing the resulting assignments;

Query evaluation – Space complexity II

� The total number of activation records that need to be at the same
time on the stack is O(�Vars).

Hence, we have O(�Vars · (|ϕ| · log(|I|)) ≤ O(|ϕ| · (|ϕ| · log(|I|)) the
claim holds.

Note: the worst case form for the formula is

∀x1.∃x2. · · · ∀xn−1.∃xn.P(x1, x2, . . . , xn−1, xn).

Query evaluation – Complexity measures [Var82]

Definition (Combined complexity)
The combined complexity is the complexity of {�I, α, ϕ� | I, α |= ϕ},
i.e., interpretation, tuple, and query are all considered part of the input.

Definition (Data complexity)
The data complexity is the complexity of {�I, α� | I, α |= ϕ}, i.e., the
query ϕ is fixed (and hence not considered part of the input).

Definition (Query complexity)
The query complexity is the complexity of {�α,ϕ� | I, α |= ϕ}, i.e., the
interpretation I is fixed (and hence not considered part of the input).

Query evaluation – Combined, data, query complexity

Theorem (Combined complexity of query evaluation)
The complexity of {�I, α, ϕ� | I, α |= ϕ} is:

� time: exponential

� space: PSpace-complete — see [Var82] for hardness

Theorem (Data complexity of query evaluation)
The complexity of {�I, α� | I, α |= ϕ} is:

� time: polynomial

� space: LogSpace

Theorem (Query complexity of query evaluation)
The complexity of {�α,ϕ� | I, α |= ϕ} is:

� time: exponential

� space: PSpace-complete — see [Var82] for hardness

Conjunctive queries (CQs)

Def.: A conjunctive query (CQ) is a FOL query of the form

∃�y .conj(�x , �y)

where conj(�x , �y) is a conjunction (i.e., an “and”) of atoms and
equalities, over the free variables �x , the existentially quantified
variables �y , and possibly constants.

Note:

� CQs contain no disjunction, no negation, no universal quantification,
and no function symbols besides constants.

� Hence, they correspond to relational algebra select-project-join
(SPJ) queries.

� CQs are the most frequently asked queries.

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

Conjunctive queries and SQL – Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age
FROM Person P, Manages M, Lives L1, Lives L2
WHERE P.name = L1.person AND P.name = M.employee AND

M.boss = L2.person AND L1.city = L2.city

Expressed as a CQ:

∃b, e, p1, c1, p2, c2.Person(n, a) ∧Manages(b, e) ∧ Lives(p1, c1) ∧ Lives(p2, c2) ∧
n = p1 ∧ n = e ∧ b = p2 ∧ c1 = c2

Or simpler: ∃b, c.Person(n, a) ∧Manages(b, n) ∧ Lives(n, c) ∧ Lives(b, c)

Datalog notation for CQs

A CQ q = ∃�y .conj(�x , �y) can also be written using datalog notation as

q(�x1) ← conj
�(�x1, �y1)

where conj �(�x1, �y1) is the list of atoms in conj(�x , �y) obtained by equating
the variables �x , �y according to the equalities in conj(�x , �y).

As a result of such an equality elimination, we have that �x1 and �y1 can
contain constants and multiple occurrences of the same variable.

Def.: In the above query q, we call:

� q(�x1) the head;

� conj
�(�x1, �y1) the body;

� the variables in �x1 the distinguished variables;

� the variables in �y1 the non-distinguished variables.

Conjunctive queries – Example

� Consider an interpretation I = (∆I ,EI), where EI is a binary
relation – note that such interpretation is a (directed) graph.

� The following CQ q returns all nodes that participate to a triangle in
the graph:

∃y , z.E (x , y) ∧ E (y , z) ∧ E (z , x)

� The query q in datalog notation becomes:

q(x) ← E (x , y),E (y , z),E (z , x)

� The query q in SQL is (we use Edge(f,s) for E (x , y):

SELECT E1.f
FROM Edge E1, Edge E2, Edge E3
WHERE E1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f

Nondeterministic evaluation of CQs

Since a CQ contains only existential quantifications, we can evaluate it
by:

1. guessing a truth assignment for the non-distinguished variables;

2. evaluating the resulting formula (that has no quantifications).

boolean ConjTruth(I,α,∃�y .conj(�x , �y)) {
GUESS assignment α[�y �→ �a] {

return Truth(I,α[�y �→ �a],conj(�x , �y));
}

where Truth(I, α, ϕ) is defined as for FOL queries, considering only the
required cases.

Nondeterministic CQ evaluation algorithm

boolean Truth(I,α,ϕ) {
if (ϕ is t 1 = t 2)

return TermEval(I,α,t 1) = TermEval(I,α,t 2);
if (ϕ is P(t 1, . . . , t k))

return PI(TermEval(I,α,t 1),...,TermEval(I,α,t k));
if (ϕ is ψ ∧ ψ�)

return Truth(I,α,ψ) ∧ Truth(I,α,ψ�);
}

∆I TermEval(I,α,t) {
if (t is a variable x) return α(x);
if (t is a constant c) return cI;

}

CQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{�I, α, q� | I, α |= q} is NP-complete — see below for hardness

� time: exponential

� space: polynomial

Theorem (Data complexity of CQ evaluation)
{�I, α� | I, α |= q} is LogSpace

� time: polynomial

� space: logarithmic

Theorem (Query complexity of CQ evaluation)
{�α, q� | I, α |= q} is NP-complete — see below for hardness

� time: exponential

� space: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V ,E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V ,E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

Reduction from 3-colorability to CQ evaluation

Let G = (V ,E) be a graph. We define:
� An Interpretation: I = (∆I ,EI) where:

� ∆I = {r, g, b}
� EI = {(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

� A conjunctive query: Let V = {x1, . . . , xn}, then consider the
boolean conjunctive query defined as:

qG = ∃x1, . . . , xn.
�

(xi ,xj)∈E

E (xi , xj) ∧ E (xj , xi)

Theorem
G is 3-colorable iff I |= qG .

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k . Then

I, α |= q(x1, . . . , xk) iff Iα,�c |= q(c1, . . . , ck)

where Iα,�c is identical to I but includes new constants c1, . . . , ck that

are interpreted as c
Iα,�c

i
= α(xi).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

Homomorphism

Let I = (∆I ,PI , . . . , cI , . . .) and J = (∆J ,PJ , . . . , cJ , . . .) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from I to J
is a mapping h : ∆I → ∆J such that:

� h(cI) = cJ

� (o1, . . . , ok) ∈ PI implies (h(o1), . . . , h(ok)) ∈ PJ

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem
FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic.

Canonical interpretation of a (boolean) CQ

Let q be a conjunctive query ∃x1, . . . , xn.conj

Def.: The canonical interpretation Iq associated with q
is the interpretation Iq = (∆Iq ,PIq , . . . , cIq , . . .), where

� ∆Iq = {x1, . . . , xn} ∪ {c | c constant occurring in q},
i.e., all the variables and constants in q;

� cIq = c , for each constant c in q;

� (t1, . . . , tk) ∈ PIq iff the atom P(t1, . . . , tk) occurs in q.

Canonical interpretation of a (boolean) CQ – Example

Consider the boolean query q

q(c) ← E (c , y),E (y , z),E (z , c)

Then, the canonical interpretation Iq is defined as

Iq = (∆Iq ,EIq , cIq)

where

� ∆Iq = {y , z , c}
� EIq = {(c , y), (y , z), (z , c)}
� cIq = c

Homomorphism theorem

Theorem ([CM77])
For boolean CQs, I |= q iff there exists a homomorphism from Iq to I.

Proof.

“⇒” Let I |= q, let α be an assignment to the existential variables that
makes q true in I, and let α̂ be its extension to constants. Then α̂ is a
homomorphism from Iq to I.

“⇐” Let h be a homomorphism from Iq to I. Then restricting h to the
variables only we obtain an assignment to the existential variables that
makes q true in I.

Illustration of homomorphism theorem – Interpretation
Consider the following interpretation I:

� ∆I = {john, paul , george,mick, ny , london}
� PersonI = {(john, 30), (paul , 60), (george, 35), (mick, 35)}
� LivesI = {(john, ny), (paul , ny), (george, london), (mick, london)}
� ManagesI = {(paul , john), (george,mick), (paul ,mick)}

In relational notation:

PersonI

name age
john 30
paul 60
george 35
mick 35

LivesI

name city
john ny
paul ny
george london
mick london

ManagesI

boss emp. name
paul john
george mick
paul mick

Illustration of homomorphism theorem – Query

Consider the following query q:

q() ← Person(john, z),Manages(x , john), Lives(x , y), Lives(john, y)

“There exists a manager that has john as an employee and lives in the same
city of him?”
The canonical model Iq is:

� PersonIq = {(john, z)}
� LivesIq = {(john, y), (x , y)}
� ManagesIq = {(x , john)}

In relational notation:

PersonIq

name age
john z

LivesIq

name city
john y
x y

ManagesIq

boss emp. name
x john

Illustration of homomorphism theorem – If-direction

Hp: I |= q. Th: There exists an homomrphism h : Iq → I.
If I |= q, then there exists an assignment α̂ such that �I, α� |= q:

� α(x) = paul
� α(z) = 30
� α(y) = ny

Let us extend α̂ to constants:

� α̂(john) = john

h = α̂ is an homomorphism from Iq1
to I:

� h(johnIq) = johnI? Yes!
� (john, z)) ∈ PersonIq implies (h(john), h(z)) ∈ PersonI?

Yes: (john, 30) ∈ PersonI ;
� (john, x) ∈ LivesIq implies h(john), h(x)) ∈ LivesI?

Yes: (john, ny) ∈ LivesI ;
� (x , y) ∈ LivesIq implies (h(x), h(y)) ∈ LivesI?

Yes: (paul , ny) ∈ LivesI ;
� (x , john) ∈ ManagesIq implies (h(x), h(john)) ∈ ManagesI?

Yes: (paul , john) ∈ ManagesI .

Illustration of homomorphism theorem – Only-if-direction

Hp: There exists an homomrphism h : Iq → I. Th: I |= q.
Let h : Iq → I:

� h(john) = john;
� h(x) = paul ;
� h(z) = 30;
� h(y) = ny .

Let us define an assignment α by restricting h to variables:

� α(x) = paul ;
� α(z) = 30;
� α(y) = ny .

Then �I, α� |= q. Indeed:

� (john, α(z)) = (john, 30) ∈ PersonI ;
� (α(x), john) = (paul , john) ∈ ManagesI ;
� (α(x), α(y)) = (paul , ny) ∈ LivesI ;
� (john, α(y)) = (john, ny) ∈ LivesI .

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced
to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in AI – see also [KV98].

Observations

Theorem
Iq |= q is always true.

Proof. By Chandra Merlin theorem: Iq |= q iff there exists homomorph.
from Iq to Iq. Identity is one such homomorphism.

Theorem
Let h be a homomorphism from I1 to I2, and h� be a homomorphism

from I2 to I3. Then h ◦ h� is a homomorphism form I1 to I3.

Proof. Just check that h ◦ h� satisfied the definition of homomorphism:
i.e. h�(h(·))is a mapping from ∆I1 to ∆I3 such that:

� h�(h(cI1)) = cI3 ;

� (o1, . . . , ok) ∈ PI1 implies (h�(h(o1)), . . . , h�(h(ok))) ∈ PI3 .

The CQs characterizing property

Def.: Homomorphic equivalent interpretations
Two interpretations I and J are homomorphically equivalent if there is
homomorphism hI,J from I to J and homomorphism hJ ,I from J to I.

Theorem (model theoretic characterization of CQs)
CQs are unable to distinguish between interpretations that are

homomorphic equivalent.

Proof. Consider any two homomorphically equivalent interpretations I
and J with homomorphism hI,J from I to J and homomorphism hJ ,I
from J to I.

� If I |= q then there exists a homomorphism h from Iq to I. But
then h ◦ hI,J is an hom form Iq to J , hence J |= q.

� Similarly, if J |= q then there exists a homomorph. g from Iq to J .
But then g ◦ hJ ,I is a homomorph. form Iq to I, hence I |= q.

Query containment

Def.: Query containment
Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we have
that

I, α |= ϕ implies I, α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

Query containment

Def.: Query containment
Given two FOL queries ϕ and ψ of the same arity, ϕ is contained in ψ,
denoted ϕ ⊆ ψ, if for all interpretations I and all assignments α we have
that

I, α |= ϕ implies I, α |= ψ

(In logical terms: ϕ |= ψ.)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication.

Query containment for CQs

For CQs, query containment q1(�x) ⊆ q2(�x) can be reduced to query
evaluation.

1. Freeze the free variables, i.e., consider them as constants.
This is possible, since q1(�x) ⊆ q2(�x) iff

� I, α |= q1(�x) implies I, α |= q2(�x), for all I and α; or equivalently
� Iα,�c |= q1(�c) implies Iα,�c |= q2(�c), for all Iα,�c , where �c are new

constants, and Iα,�c extends I to the new constants with
cIα,�c = α(x).

2. Construct the canonical interpretation Iq1(�c) of the CQ q1(�c) on the
left hand side . . .

3. . . . and evaluate on Iq1(�c) the CQ q2(�c) on the right hand side,
i.e., check whether Iq1(�c) |= q2(�c).

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For CQs, q1(�x) ⊆ q2(�x) iff Iq1(�c) |= q2(�c), where �c are new constants.

Proof.

“⇒” Assume that q1(�x) ⊆ q2(�x).

� Since Iq1(�c) |= q1(�c) it follows that Iq1(�c) |= q2(�c).

“⇐” Assume that Iq1(�c) |= q2(�c).

� By [CM77] on hom., for every I such that I |= q1(�c) there exists a
homomorphism h from Iq1(�c) to I.

� On the other hand, since Iq1(�c) |= q2(�c), again by [CM77] on hom., there
exists a homomorphism h� from Iq2(�c) to Iq1(�c).

� The mapping h ◦ h� (obtained by composing h and h�) is a homomorphism
from Iq2(�c) to I. Hence, once again by [CM77] on hom., I |= q2(�c).

So we can conclude that q1(�c) ⊆ q2(�c), and hence q1(�x) ⊆ q2(�x).

Query containment for CQs

For CQs, we also have that (boolean) query evaluation I |= q can be
reduced to query containment.

Let I = (∆I ,PI , . . . , cI , . . .).
We construct the (boolean) CQ qI as follows:

� qI has no existential variables (hence no variables at all);

� the constants in qI are the elements of ∆I ;

� for each relation P interpreted in I and for each fact
(a1, . . . , ak) ∈ PI , qI contains one atom P(a1, . . . , ak) (note that
each ai ∈ ∆I is a constant in qI).

Theorem
For CQs, I |= q iff qI ⊆ q.

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above
result can be strengthened:

Theorem
Containment q1(�x) ⊆ q2(�x) of CQs is NP-complete, even when q1 is

considered fixed.

Query containment for CQs – Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above
result can be strengthened:

Theorem
Containment q1(�x) ⊆ q2(�x) of CQs is NP-complete, even when q1 is

considered fixed.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of
the form

�

i=1,...,n

∃�yi .conj i (�x , �yi)

where each conj i (�x , �yi) is a conjunction of atoms and equalities with free
variables �x and �yi , and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive
queries.

Datalog notation for UCQs

A union of conjunctive queries

q =
�

i=1,...,n

∃�yi .conj i (�x , �yi)

is written in datalog notation as

{ q(�x) ← conj
�
1(�x , �y1

�)
...

q(�x) ← conj
�
n(�x , �yn

�) }

where each element of the set is the datalog expression corresponding to
the conjunctive query qi = ∃�yi .conj i (�x , �yi).

Note: in general, we omit the set brackets.

Evaluation of UCQs

From the definition of FOL query we have that:

I, α |=
�

i=1,...,n

∃�yi .conj i (�x , �yi)

if and only if

I, α |= ∃�yi .conj i (�x , �yi) for some i ∈ {1, . . . , n}.

Hence to evaluate a UCQ q, we simply evaluate a number (linear in the
size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

UCQ evaluation – Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{�I, α, q� | I, α |= q} is NP-complete.

� time: exponential

� space: polynomial

Theorem (Data complexity of UCQ evaluation)
{�I, q� | I, α |= q} is LogSpace-complete (query q fixed).

� time: polynomial

� space: logarithmic

Theorem (Query complexity of UCQ evaluation)
{�α, q� | I, α |= q} is NP-complete (interpretation I fixed).

� time: exponential

� space: polynomial

Query containment for UCQs

Theorem
For UCQs, {q1, . . . , qk} ⊆ {q�1, . . . , q�n} iff for each qi there is a q�

j
such

that qi ⊆ q�
j
.

Proof.

“⇐” Obvious.

“⇒” If the containment holds, then we have
{q1(�c), . . . , qk(�c)} ⊆ {q�1(�c), . . . , q�n(�c)}, where �c are new constants:

� Now consider Iqi (�c). We have Iqi (�c) |= qi (�c), and hence
Iqi (�c) |= {q1(�c), . . . , qk(�c)}.

� By the containment, we have that Iqi (�c) |= {q�1(�c), . . . , q�n(�c)}. I.e.,
there exists a q�

j
(�c) such that Iqi (�c) |= q�

j
(�c).

� Hence, by [CM77] on containment of CQs, we have qi ⊆ q�
j
.

Query containment for UCQs – Complexity

From the previous result, we have that we can check
{q1, . . . , qk} ⊆ {q�1, . . . , q�n} by at most k · n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete.

References

[CM77] A. K. Chandra and P. M. Merlin.

Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC’77), pages

77–90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.

Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of

Database Systems (PODS’98), pages 205–213, 1998.

[Var82] M. Y. Vardi.

The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing

(STOC’82), pages 137–146, 1982.

