
Operational semantics of programs

Giuseppe De Giacomo

1

Programs

We will consider a very simple programming language:

a atomic action

skip empty action

δ1; δ2 sequence

if φ then δ1else δ2 if-then-else

while φ do δ while-loop

As atomic action we will typically consider assignments:

x := v

As test any boolean condition on the current state of the memory.

Notice that our consideration extend to full-fledged programming lan-

guage (as Java).

2



Program semantics

Programs are syntactic objects.

How do we assign a formal semantics to them?

Any idea of what the semantics should talk about?

3

Evaluation semantics

Idea: describe the overall result of the evaluation of the program.

Given a program δ and a memory state s compute the memory state s′ obtained
by executing δ in s.

More formally: Define the relation:

(δ, s)−−−→ s′

where δ is a program, s is the memory state in which the program is evaluated, and
s′ is the memory state obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called
evaluation (structural) rules

4



Evaluation semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This whole-computation semantics is often call: evaluation semantics or natural se-
mantics or computation semantic.

5

Evaluation rules for our programming constructs

Act :
(a, s)−−−→ s′

true
if s |= Pre(a) and s′ = Post(a, s)

special case: assignment
(x := v, s)−−−→ s′

true
if s′ = s[x = v]

Skip :
(skip, s)−−−→ s

true

Seq :
(δ1; δ2, s)−−−→ s′

(δ1, s)−−−→ s′′ ∧ (δ2, s′′)−−−→ s′

if :
(if φ then δ1else δ2, s)−−−→ s′

(δ1, s)−−−→ s′
if s |= φ

(if φ then δ1else δ2, s)−−−→ s′

(δ2, s)−−−→ s′
if s |= ¬φ

while :
(while φ do δ, s)−−−→ s

true
if s |= ¬φ

(while φ do δ, s)−−−→ s′

(δ, s)−−−→ s′′ ∧ (while φ do δ, s′′)−−−→ s′
if s |= φ

6



Structural rules

The structural rules have the following schema:

CONSEQUENT

ANTECEDENT

if SIDE-CONDITION

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION ⊃ CONSEQUENT)

where ∀Q stands for the universal closure of all free variables occurring in Q, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

7

Examples

Compute sf in the following cases, assuming that in the memory state

S0 we have x = 10 and y = 0:

• (x := x + 1;x := x ∗ 2, S0)−−−→ sf

• (x := x + 1;

if (x < 10) then x := 0 else x := 1;

x := x + 1,

S0)−−−→ sf

• (y := 0;while (y < 4) do {x := x∗2; y := y+1}, S0)−−−→ sf

8



Transition semantics

Idea: describe the result of executing a single step of the program.

• Given a program δ and a memory state s compute the memory state s′ and
the program δ′ that remains to be executed obtained by executing a single
step of δ in s.

• Assert when a program δ can be considered successfully terminated in a
memory state s.

9

Transition semantics (cont.)

More formally:

• Define the relation, named Trans and denoted by “−−−→”):

(δ, s)−−−→(δ′, s′)

where δ is a program, s is the memory state in which the program is executed,
and s′ is the memory state obtained by executing a single step of δ and δ′ is
what remains to be executed of δ after such a single step.

• Define a predicate. named Final and denoted by “
√
”:

(δ, s)
√

where δ is a program that can be considered (successfully) terminated in the
memory state s.

Such a relation and predicate can be defined inductively in a standard way, using the
so called transition (structural) rules

10



Transition semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This single-step semantics is often call: transition semantics or computation seman-
tics.

11

Transition rules for our programming constructs

Act :
(a, s)−−−→(ε, s′)

true
if s |= Pre(a) and s′ = Post(a, s)

special case: assignment
(x := v, s)−−−→(ε, s′)

true
if s′ = s[x = v]

Skip :
(skip, s)−−−→(ε, s)

true

Seq :
(δ1; δ2, s)−−−→(δ′1; δ2, s′)

(δ1, s)−−−→(δ′1, s
′)

(δ1; δ2, s)−−−→(δ′2, s
′)

(δ2, s)−−−→(δ′2, s
′)

if (δ1, s)
√

if :
(if φ then δ1else δ2, s)−−−→(δ′1, s

′)

(δ1, s)−−−→(δ′1, s
′)

if s |= φ
(if φ then δ1else δ2, s)−−−→(δ′2, s

′)

(δ2, s)−−−→(δ′2, s
′)

if s |= ¬φ

while :
(while φ do δ, s)−−−→(δ′;while φ do δ, s)

(δ, s)−−−→(δ′, s′)
if s |= φ

ε is the empty program.

12



Termination rules for our programming constructs

ε :
(ε, s)

√

true

Seq :
(δ1; δ2, s)

√

(δ1, s)
√

∧ (δ2; s)
√

if :
(if φ then δ1else δ2, s)

√

(δ1, s)
√ if s |= φ

(if φ then δ1else δ2, s)
√

(δ2, s)
√ if s |= ¬φ

while :
(while φ do δ, s)

√

true
if s |= ¬φ

(while φ do δ, s)
√

(δ, s)
√ if s |= φ

13

Structural rules

The structural rules have the following schema:

CONSEQUENT

ANTECEDENT

if SIDE-CONDITION

which is to be interpreted logically as:

∀(ANTECEDENT ∧ SIDE-CONDITION ⊃ CONSEQUENT)

where ∀Q stands for the universal closure of all free variables occurring in Q, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

14



Examples

Compute δ′, s′ in the following cases, assuming that in the memory

state S0 we have x = 10 and y = 0:

• (x := x + 1;x := x ∗ 2, S0)−−−→(δ′, s′)

• (if (x < 10) then {x := 0; y := 50} else {x := 1; y := 100};
x := x + 1,

S0)−−−→(δ′, s′)

• (while (y < 4) do {x := x ∗ 2; y := y + 1}, S0)−−−→(δ′, s′)

15

Evaluation vs. transition semantics

How do we characterize a whole computation using single steps?

First we define the relation, named Trans∗, denoted by −−−→∗ by the
following rules:

0 step :
(δ, s)−−−→∗(δ, s)

true

n step :
(δ, s)−−−→∗(δ′′, s′′)

(δ, s)−−−→(δ′, s′) ∧ (δ′, s′)−−−→∗(δ′′, s′′)
(for some δ′, s′)

Notice that such relation is the reflexive-transitive closure of (single step) −−−→.

Then it can be shown that:

(δ, s0)−−−−−→ sf ≡
(δ, s0)−−−→∗(δf , sf) ∧ (δf , sf)

√
for some δf

16



Examples

Compute sf , using the definition based on −−−→∗, in the following

cases, assuming that in the memory state S0 we have x = 10 and

y = 0:

• (x := x + 1;x := x ∗ 2, S0)−−−→ sf

• (x := x + 1;

if (x < 10) then {x := 0; y := 50} else {x := 1; y := 100};
x := x + 1,

S0)−−−→ sf

• (y := 0;while (y < 4) do {x := x∗2; y := y+1}, S0)−−−→ sf

17

Concurrency

The transition semantics extends immediately to constructs for concur-

rency: The evaluation semantics can still be defined but only in terms

of the transition semantics (as above).

We model concurrent processes by interleaving: A concurrent ex-

ecution of two processes is one where the primitive actions in both

processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other pro-

cesses will continue and eventually unblock it.

18



Constructs for concurrency

if φ then δ1 else δ2, synchronized conditional

while φ do δ, synchronized loop

(δ1 ‖ δ2), concurrent execution

The constructs if φ then δ1 else δ2 and while φ do δ are the synchronized: testing
the condition φ does not involve a transition per se, the evaluation of the condition
and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent
programming.

19

Transition and termination rules for concurrency

transition :
(δ1 ‖ δ2, s)−−−→(δ′1 ‖ δ2, s′)

(δ1, s)−−−→(δ′1, s
′)

(δ1 ‖ δ2, s)−−−→(δ1 ‖ δ′2, s
′)

(δ2, s)−−−→(δ′2, s
′)

termination :
(δ1 ‖ δ2, s)

√

(δ1, s)
√

∧ (δ2, s)
√

20


