Operational semantics of programs

Giuseppe De Giacomo

Programs

We will consider a very simple programming language:

aatomic actionskipempty action $\delta_1; \delta_2$ sequenceif ϕ then δ_1 else δ_2 if-then-elsewhile ϕ do δ while-loop

As atomic action we will typically consider assignments:

x := v

As test any boolean condition on the current state of the memory.

Notice that our consideration extend to full-fledged programming language (as Java).

1

Program semantics

Programs are syntactic objects.

How do we assign a formal semantics to them?

Any idea of what the semantics should talk about?

Evaluation semantics

Idea: describe the overall result of the evaluation of the program.

Given a program δ and a memory state s compute the memory state s' obtained by executing δ in s.

More formally: Define the relation:

 $(\delta, s) \longrightarrow s'$

where δ is a program, s is the memory state in which the program is evaluated, and s' is the memory state obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called evaluation (structural) rules

3

Evaluation semantics: references

The general approach we follows is is the *structural operational semantics* approach[Plotkin81, Nielson&Nielson99].

This whole-computation semantics is often call: *evaluation semantics* or *natural semantics* or *computation semantic*.

5

Evaluation rules for our programming constructs

$$\begin{aligned} Act: \quad & \frac{(a,s) - \cdots s'}{true} \quad \text{if } s \models Pre(a) \text{ and } s' = Post(a,s) \\ & \text{special case: assignment} \quad \frac{(x := v, s) - \cdots s'}{true} \quad \text{if } s' = s[x = v] \end{aligned}$$

$$\begin{aligned} Skip: \quad & \frac{(skip, s) - \cdots s}{true} \\ Seq: \quad & \frac{(\delta_1; \delta_2, s) - \cdots s'}{(\delta_1, s) - \cdots s'' \wedge (\delta_2, s'') - \cdots s'} \\ & \text{if } : \quad & \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s) - \cdots s'}{(\delta_1, s) - \cdots s'} \quad \text{if } s \models \phi \quad & \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s) - \cdots s'}{(\delta_2, s) - \cdots s'} \\ & \text{if } : \quad & \frac{(\text{while } \phi \text{ do } \delta, s) - \cdots s'}{true} \quad & \text{if } s \models \neg \phi \quad & \frac{(\text{while } \phi \text{ do } \delta, s) - \cdots s'}{(\delta, s) - \cdots s'' \wedge (\text{while } \phi \text{ do } \delta, s'') - \cdots s'} \quad & \text{if } s \models \phi \end{aligned}$$

Structural rules

The structural rules have the following schema:

CONSEQUENT ANTECEDENT if SIDE-CONDITION

which is to be interpreted logically as:

 \forall (ANTECEDENT \land SIDE-CONDITION \supset CONSEQUENT)

where $\forall Q$ stands for the universal closure of all free variables occurring in Q, and, typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: **the smallest relation sat-isfying the rules**.

7

Examples

Compute s_f in the following cases, assuming that in the memory state S_0 we have x = 10 and y = 0:

- $(x := x + 1; x := x * 2, S_0) \longrightarrow s_f$
- (x := x + 1;if (x < 10) then x := 0 else x := 1; x := x + 1, $S_0) \longrightarrow s_f$
- $(y := 0; \text{ while } (y < 4) \text{ do } \{x := x * 2; y := y + 1\}, S_0) \longrightarrow s_f$

Transition semantics

Idea: describe the result of executing a single step of the program.

- Given a program δ and a memory state s compute the memory state s' and the program δ' that remains to be executed obtained by executing a single step of δ in s.
- Assert when a program δ can be considered successfully terminated in a memory state s.

9

Transition semantics (cont.)

More formally:

• Define the **relation**, named *Trans* and denoted by "-------"):

$$(\delta,s) \longrightarrow (\delta',s')$$

where δ is a program, s is the memory state in which the program is executed, and s' is the memory state obtained by executing a single step of δ and δ' is what remains to be executed of δ after such a single step.

• Define a **predicate**. named *Final* and denoted by " $\sqrt{}$ ":

 $(\delta,s)^{\sqrt{2}}$

where δ is a program that can be considered (successfully) terminated in the memory state s.

Such a relation and predicate can be defined inductively in a standard way, using the so called **transition (structural) rules**

Transition semantics: references

The general approach we follows is is the *structural operational semantics* approach[Plotkin81, Nielson&Nielson99].

This single-step semantics is often call: *transition semantics* or *computation semantics*.

11

Transition rules for our programming constructs

$$Act: \frac{(a,s) \longrightarrow (\epsilon,s')}{true} \quad \text{if } s \models Pre(a) \text{ and } s' = Post(a,s)$$

$$special case: assignment \quad \frac{(x := v, s) \longrightarrow (\epsilon, s')}{true} \quad \text{if } s' = s[x = v]$$

$$Skip: \frac{(skip, s) \longrightarrow (\epsilon, s)}{true}$$

$$Seq: \frac{(\delta_1; \delta_2, s) \longrightarrow (\delta'_1; \delta_2, s')}{(\delta_1, s) \longrightarrow (\delta'_1, s')} \quad \frac{(\delta_1; \delta_2, s) \longrightarrow (\delta'_2, s')}{(\delta_2, s) \longrightarrow (\delta'_2, s')} \quad \text{if } (\delta_1, s)^{\checkmark}$$

$$if : \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s) \longrightarrow (\delta'_1, s')}{(\delta_1, s) \longrightarrow (\delta'_1, s')} \quad \text{if } s \models \phi \qquad \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s) \longrightarrow (\delta'_2, s')}{(\delta_2, s) \longrightarrow (\delta'_2, s')} \quad \text{if } s \models -\phi$$

$$while : \frac{(\text{while } \phi \text{ do } \delta, s) \longrightarrow (\delta', s')}{(\delta_3, s) \longrightarrow (\delta', s')} \quad \text{if } s \models \phi$$

 ϵ is the empty program.

Termination rules for our programming constructs

$$\epsilon: \qquad \frac{(\epsilon, s)^{\sqrt{-1}}}{true}$$

$$Seq: \qquad \frac{(\delta_1; \delta_2, s)^{\sqrt{-1}}}{(\delta_1, s)^{\sqrt{-1}} \wedge (\delta_2; s)^{\sqrt{-1}}}$$

$$if: \qquad \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s)^{\sqrt{-1}}}{(\delta_1, s)^{\sqrt{-1}}} \text{ if } s \models \phi \qquad \frac{(\text{if } \phi \text{ then } \delta_1 \text{else } \delta_2, s)^{\sqrt{-1}}}{(\delta_2, s)^{\sqrt{-1}}} \text{ if } s \models \neg \phi$$

$$while: \qquad \frac{(\text{while } \phi \text{ do } \delta, s)^{\sqrt{-1}}}{true} \text{ if } s \models \neg \phi \qquad \frac{(\text{while } \phi \text{ do } \delta, s)^{\sqrt{-1}}}{(\delta_2, s)^{\sqrt{-1}}} \text{ if } s \models \phi$$

13

Structural rules

The structural rules have the following schema:

CONSEQUENT ANTECEDENT if SIDE-CONDITION

which is to be interpreted logically as:

 \forall (ANTECEDENT \land SIDE-CONDITION \supset CONSEQUENT)

where $\forall Q$ stands for the universal closure of all free variables occurring in Q, and, typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: **the smallest relation sat-isfying the rules**.

Examples

Compute δ', s' in the following cases, assuming that in the memory state S_0 we have x = 10 and y = 0:

- $(x := x + 1; x := x * 2, S_0) \longrightarrow (\delta', s')$
- (if (x < 10) then $\{x := 0; y := 50\}$ else $\{x := 1; y := 100\};$ x := x + 1, $S_0) \longrightarrow (\delta', s')$
- (while (y < 4) do $\{x := x * 2; y := y + 1\}, S_0 \longrightarrow (\delta', s')$

15

Evaluation vs. transition semantics

How do we characterize a whole computation using single steps?

First we define the relation, named $Trans^*$, denoted by \longrightarrow^* by the following rules:

$$\begin{array}{ccc} 0 \ step : & \underbrace{(\delta, s) \longrightarrow^*(\delta, s)}_{true} \\ n \ step : & \underbrace{(\delta, s) \longrightarrow^*(\delta'', s'')}_{(\delta, s) \longrightarrow (\delta', s') \land \ (\delta', s') \longrightarrow^*(\delta'', s'')} & (\text{for some } \delta', s') \end{array}$$

Notice that such relation is the **reflexive-transitive closure** of (single step) \longrightarrow . Then it can be shown that:

$$\begin{array}{c} (\delta, s_0) & \longrightarrow s_f \equiv \\ & (\delta, s_0) & \longrightarrow^* (\delta_f, s_f) \ \land \ (\delta_f, s_f)^{\checkmark} \quad \text{for some } \delta_f \end{array}$$

Examples

Compute s_f , using the definition based on \longrightarrow^* , in the following cases, assuming that in the memory state S_0 we have x = 10 and y = 0:

- $(x := x + 1; x := x * 2, S_0) \longrightarrow s_f$
- (x := x + 1;if (x < 10) then $\{x := 0; y := 50\}$ else $\{x := 1; y := 100\};$ x := x + 1, $S_0) \longrightarrow s_f$
- $(y := 0; \text{ while } (y < 4) \text{ do } \{x := x * 2; y := y + 1\}, S_0) \longrightarrow s_f$

17

Concurrency

The transition semantics extends immediately to constructs for concurrency: The evaluation semantics can still be defined but only in terms of the transition semantics (as above).

We model concurrent processes by **interleaving**: A concurrent execution of two processes is one where the primitive actions in both processes occur, interleaved in some fashion.

It is OK for a process to remain **blocked** for a while, the other processes will continue and eventually unblock it.

Constructs for concurrency

if ϕ then δ_1 else δ_2 , while ϕ do δ , $(\delta_1 \parallel \delta_2)$,

synchronized conditional synchronized loop concurrent execution

The constructs if ϕ then δ_1 else δ_2 and while ϕ do δ are the synchronized: testing the condition ϕ does not involve a transition per se, the evaluation of the condition and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent programming.

1	9
٦	9

Transition and termination rules for concurrency

transition :	$\frac{(\delta_1 \parallel \delta_2, s) \longrightarrow (\delta'_1 \parallel \delta_2, s')}{(\delta_1, s) \longrightarrow (\delta'_1, s')}$	$\frac{(\delta_1 \parallel \delta_2, s) \longrightarrow (\delta_1 \parallel \delta'_2, s')}{(\delta_2, s) \longrightarrow (\delta'_2, s')}$
termination :	$\frac{(\delta_1 \parallel \delta_2, s)^{}}{(\delta_1, s)^{} \land (\delta_2, s)^{}}$	

20