
Query answering in description logics:

DL-LiteA

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 References

Query answering in description logics: DL-LiteA (1/56)

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 References

Query answering in description logics: DL-LiteA (2/56)

Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/56)

Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/56)

Ontologies and data

The best current DL reasoning systems can deal with moderately
large ABoxes. ❀ 104 individuals (and this is a big achievement of
the last years)!

But data of interests in typical information systems are much larger

❀ 106 − 109 individuals

The best technology to deal with large amounts of data are
relational databases.

Question:

How can we use ontologies together with large amounts of data?

Query answering in description logics: DL-LiteA (3/56)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/56)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/56)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/56)

Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

We have to fully take into account the ontology.
❀ inference

We have to deal very large amounts of data.
❀ relational databases

We want flexibility in querying the data.
❀ expressive query language

We want to keep the data in the sources, and not move it around.
❀ map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-LiteA (4/56)

Questions addressed in this part of the tutorial

1 Which is the “right” query language?

2 Which is the “right” ontology language?

3 How can we bridge the semantic mismatch between the ontology
and the data sources?

4 How can tools for ontology-based data access and integration

fully take into account all these issues?

Query answering in description logics: DL-LiteA (5/56)

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 References

Query answering in description logics: DL-LiteA (6/56)

Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/56)

Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/56)

Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

1 Just classes and properties of the ontology ❀ instance checking
Ontology languages are tailored for capturing intensional
relationships.
They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of join, namely chaining.

2 Full SQL (or equivalently, first-order logic)
Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-LiteA (7/56)

Conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query of the form

q(�x) ← ∃�y.R1(�x, �y) ∧ · · · ∧Rk(�x, �y)

where each Ri(�x, �y) is an atom using (some of) the free variables �x, the
existentially quantified variables �y, and possibly constants.

We will also use the simpler Datalog notation:

q(�x) ← R1(�x, �y), . . . , Rk(�x, �y)

Note:

CQs contain no disjunction, no negation, no universal
quantification.

Correspond to SQL/relational algebra select-project-join (SPJ)

queries – the most frequently asked queries.

They can also be written as SPARQL queries.
Query answering in description logics: DL-LiteA (8/56)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

q(nf , af ,nd) ← ∃f, c, d, ad .

worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf) ∧ name(d,nd) ∧
age(f, af) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/56)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .

worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf) ∧ name(d,nd) ∧
age(f, af) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/56)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .

worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf) ∧ name(d,nd) ∧
age(f, af) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/56)

Example of conjunctive query

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age
∃age− � Integer

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

...

name: String

age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← ∃f, c, d, ad .

worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf) ∧ name(d,nd) ∧
age(f, af) ∧ age(d, ad) ∧ af = ad

Query answering in description logics: DL-LiteA (9/56)

Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1), isHeadOf(d1 , c2),
name(f2 ,nf), name(d2 ,nd), age(f3 , af), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/56)

Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1), isHeadOf(d1 , c2),
name(f2 ,nf), name(d2 ,nd), age(f3 , af), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/56)

Conjunctive queries and SQL – Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p, n), age(p, a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND
W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf , af ,nd) ← worksFor(f1 , c1), isHeadOf(d1 , c2),
name(f2 ,nf), name(d2 ,nd), age(f3 , af), age(d3 , ad),
f1 = f2 , f1 = f3 , d1 = d2 , d1 = d3 , c1 = c2 , af = ad

Query answering in description logics: DL-LiteA (10/56)

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-LiteA (11/56)

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

traditional database assumption

knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-LiteA (11/56)

Query answering under the database assumption

Data are completely specified (CWA), and typically large.

Schema/intensional information used in the design phase.

At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

Queries allow for complex navigation paths in the data (cf. SQL).

❀ Query answering amounts to query evaluation, which is
computationally easy.

Query answering in description logics: DL-LiteA (12/56)

Query answering under the database assumption (cont’d)

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/56)

Query answering under the database assumption (cont’d)

ResultQuery

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/56)

Query answering under the database assumption (cont’d)

Reasoning

ResultQuery

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (13/56)

Query answering under the database assumption – Example

Professor

CollegeworksFor

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, nick }

Professor = { john, nick }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: ???

{

Query answering in description logics: DL-LiteA (14/56)

Query answering under the database assumption – Example

Professor

CollegeworksFor

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, nick }

Professor = { john, nick }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: ???

{

Query answering in description logics: DL-LiteA (14/56)

Query answering under the database assumption – Example

Professor

CollegeworksFor

Faculty

For each class/property we have a (complete) table in the database.
DB: Faculty = { john, mary, nick }

Professor = { john, nick }

College = { collA, collB }

worksFor = { (john,collA), (mary,collB) }

Query: q(x) ← ∃c.Professor(x),College(c),worksFor(x, c)

Answer: { john }

{

Query answering in description logics: DL-LiteA (14/56)

Query answering under the KR assumption

An ontology imposes constraints on the data.

Actual data may be incomplete or inconsistent w.r.t. such
constraints.

The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

❀ Query answering amounts to logical inference, which is
computationally more costly.

Note:

Size of the data is not considered critical (comparable to the size of the
intensional information).

Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.

Query answering in description logics: DL-LiteA (15/56)

Query answering under the KR assumption (cont’d)

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (16/56)

Query answering under the KR assumption (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (16/56)

Query answering under the KR assumption – Example

Professor

CollegeworksFor

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, nick }

College ⊇ { collA, collB }

worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: ???

{

Query answering in description logics: DL-LiteA (17/56)

Query answering under the KR assumption – Example

Professor

CollegeworksFor

Faculty

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor ⊇ { john, nick }

College ⊇ { collA, collB }

worksFor ⊇ { (john,collA), (mary,collB) }

Query: q(x) ← Faculty(x)

Answer: { john, nick, mary }

{

Query answering in description logics: DL-LiteA (17/56)

Query answering under the KR assumption – Example 2

Person

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }

hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: ???

{

to q2: ???

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/56)

Query answering under the KR assumption – Example 2

Person

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }

hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: ???

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/56)

Query answering under the KR assumption – Example 2

Person

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }

hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: ???

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/56)

Query answering under the KR assumption – Example 2

Person

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }

hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: ???

{

Query answering in description logics: DL-LiteA (18/56)

Query answering under the KR assumption – Example 2

Person

hasFather

1..* Each person has a father, who is a person.

DB: Person ⊇ { john, nick, toni }

hasFather ⊇ { (john,nick), (nick,toni) }

Queries: q1(x, y) ← hasFather(x, y)
q2(x) ← ∃y. hasFather(x, y)
q3(x) ← ∃y1, y2, y3. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)
q4(x, y3) ← ∃y1, y2. hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

Answers: to q1: { (john,nick), (nick,toni) }

{

to q2: { john, nick, toni }

{

to q3: { john, nick, toni }

{

to q4: { }

{

Query answering in description logics: DL-LiteA (18/56)

QA under the KR assumption – Andrea’s Example

Faculty

Professor

AssocProf

FullProf

isAdvisedBy

{disjoint, complete}

officeMate Professor ≡ AssocProf � FullProf

Faculty ⊇ { andrea, nick, mary, john }
Professor ⊇ { andrea, nick, mary }

AssocProf ⊇ { nick }
FullProf ⊇ { mary }

isAdvisedBy ⊇ { (john,andrea), (john,mary) }
officeMate ⊇ { (mary,andrea), (andrea,nick) }

john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

Query answering in description logics: DL-LiteA (19/56)

QA under the KR assumption – Andrea’s Example (cont’d)

Faculty

Professor

AssocProf

FullProf

isAdvisedBy

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes or no?

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/56)

QA under the KR assumption – Andrea’s Example (cont’d)

Faculty

Professor

AssocProf

FullProf

isAdvisedBy

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes or no?

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/56)

QA under the KR assumption – Andrea’s Example (cont’d)

Faculty

Professor

AssocProf

FullProf

isAdvisedBy

{disjoint, complete}

officeMate john

andrea:Professor mary:FullProf
officeMate

isAdvisedBy isAdvisedBy

paul:AssocProf

officeMate

q() ← ∃y, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes!

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-LiteA (20/56)

Query answering when accessing data through ontologies

We have to face the difficulties of both DB and KB assumptions:

The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

We want to take into account at runtime the constraints

expressed in the ontology.

We want to answer complex database-like queries.

We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.

Query answering in description logics: DL-LiteA (21/56)

Certain answers to a query

Let O = �T ,A� be an ontology, I an interpretation for O, and
q(�x) ← ∃�y. conj (�x, �y) a CQ.

Def.: The answer to q(�x) over I, denoted qI

. . . is the set of tuples �c of constants of A such that the formula
∃�y. conj (�c, �y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(�x) over O = �T ,A�, denoted
cert(q,O)

. . . are the tuples �c of constants of A such that �c ∈ qI , for every
model I of O.

Query answering in description logics: DL-LiteA (22/56)

Certain answers to a query

Let O = �T ,A� be an ontology, I an interpretation for O, and
q(�x) ← ∃�y. conj (�x, �y) a CQ.

Def.: The answer to q(�x) over I, denoted qI

. . . is the set of tuples �c of constants of A such that the formula
∃�y. conj (�c, �y) evaluates to true in I.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to q(�x) over O = �T ,A�, denoted
cert(q,O)

. . . are the tuples �c of constants of A such that �c ∈ qI , for every
model I of O.

Query answering in description logics: DL-LiteA (22/56)

Inference in query answering

cert(q, �T ,A�)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

❀ Query answering by query rewriting.

Query answering in description logics: DL-LiteA (23/56)

Query rewriting

rewriting
Perfect

(under OWA)

Query

(under CWA)

evaluation

q

T

A cert(q, �T ,A�)

rq,T

Query answering can always be thought as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T).

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T).
❀ Produces cert(q, �T ,A�).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .

Query answering in description logics: DL-LiteA (24/56)

Query rewriting (cont’d)

Reasoning

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (25/56)

Query rewriting (cont’d)

Reasoning

Rewritten

Query

Query Result

Reasoning

Data
Source

Logical

Schema

Schema /

Ontology

Query answering in description logics: DL-LiteA (25/56)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (26/56)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (26/56)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (26/56)

Language of the rewriting

The expressiveness of the ontology language affects the query

language into which we are able to rewrite CQs:

When we can rewrite into FOL/SQL.
❀ Query evaluation can be done in SQL, i.e., via an RDBMS

(Note: FOL is in LogSpace).

When we can rewrite into an NLogSpace-hard language.
❀ Query evaluation requires (at least) linear recursion.

When we can rewrite into a PTime-hard language.
❀ Query evaluation requires full recursion (e.g., Datalog).

When we can rewrite into a coNP-hard language.
❀ Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-LiteA (26/56)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (27/56)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (27/56)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (27/56)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (2)

OWL 2 (and less) 2ExpTime-complete coNP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LogSpace)?

If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-LiteA (27/56)

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 References

Query answering in description logics: DL-LiteA (28/56)

The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.

Query answering in description logics: DL-LiteA (29/56)

The DL-Lite family

A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteA, an expressive member of the DL-Lite family.

DL-LiteA provides robust foundations for Ontology-Based Data Access.

Query answering in description logics: DL-LiteA (29/56)

DL-LiteA ontologies

TBox assertions:

Class inclusion assertions: B � C, with:

B −→ A | ∃Q
C −→ C | ¬C

Property inclusion assertions: Q � R, with:

Q −→ P | P−

R −→ Q | ¬Q

Functionality assertions: (funct Q)
Proviso: functional properties cannot be specialized.

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteA distinguishes also between object and data properties
(ignored here).

Query answering in description logics: DL-LiteA (30/56)

Semantics of the DL-LiteA assertions

Assertion Syntax Example Semantics

class incl. B � C Father � ∃child BI ⊆ CI

o-prop. incl. Q � R father � anc QI ⊆ RI

v.dom. incl. E � F ρ(age) � xsd:int EI ⊆ F I

d-prop. incl. U � V offPhone � phone UI ⊆ V I

o-prop. funct. (funct Q) (funct father) ∀o, o, o��.(o, o�) ∈ QI ∧
(o, o��) ∈ QI → o� = o��

d-prop. funct. (funct U) (funct ssn) ∀o, v, v�.(o, v) ∈ UI ∧
(o, v�) ∈ UI → v = v�

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , cI2) ∈ P I

mem. asser. U(c, d) phone(bob, ’2345’) (cI , val(d)) ∈ UI

Query answering in description logics: DL-LiteA (31/56)

Capturing basic ontology constructs in DL-LiteA

ISA between classes A1 � A2

Disjointness between classes A1 � ¬A2

Domain and range of properties ∃P � A1 ∃P− � A2

Mandatory participation (min card = 1) A1 � ∃P A2 � ∃P−

Functionality of relations (max card = 1) (funct P) (funct P−)

ISA between properties Q1 � Q2

Disjointness between properties Q1 � ¬Q2

Query answering in description logics: DL-LiteA (32/56)

Example

name: String

age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College

1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor � Faculty
AssocProf � Professor

Dean � Professor
AssocProf � ¬Dean

Faculty � ∃age

∃age
− � xsd:int
(funct age)

∃worksFor � Faculty
∃worksFor− � College

Faculty � ∃worksFor
College � ∃worksFor−

∃isHeadOf � Dean
∃isHeadOf− � College

Dean � ∃isHeadOf
College � ∃isHeadOf−

isHeadOf � worksFor
(funct isHeadOf)

(funct isHeadOf−)
...

Note: DL-LiteA cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).

Query answering in description logics: DL-LiteA (33/56)

Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of
the ER Model . . .

. . . except covering constraints in generalizations.

Is one of the three candidate OWL 2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.

Query answering in description logics: DL-LiteA (34/56)

Observations on DL-LiteA

Captures all the basic constructs of UML Class Diagrams and of
the ER Model . . .

. . . except covering constraints in generalizations.

Is one of the three candidate OWL 2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Is completely symmetric w.r.t. direct and inverse properties.

Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.

Query answering in description logics: DL-LiteA (34/56)

Query answering in DL-LiteA

Based on query reformulation: given an (U)CQ and an ontology:

1 Compute its perfect rewriting, which turns out to be a UCQ.

2 Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

expand positive inclusions & simplify redundant atoms, or

unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.

Query answering in description logics: DL-LiteA (35/56)

Query answering in DL-LiteA

Based on query reformulation: given an (U)CQ and an ontology:

1 Compute its perfect rewriting, which turns out to be a UCQ.

2 Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

expand positive inclusions & simplify redundant atoms, or

unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.

Query answering in description logics: DL-LiteA (35/56)

Query answering in DL-LiteA

Based on query reformulation: given an (U)CQ and an ontology:

1 Compute its perfect rewriting, which turns out to be a UCQ.

2 Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

expand positive inclusions & simplify redundant atoms, or

unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.

Query answering in description logics: DL-LiteA (35/56)

Query answering in DL-LiteA – Example

TBox: Professor � ∃worksFor
∃worksFor− � College

Query: q(x) ← worksFor(x, y),College(y)

Perfect Reformulation: q(x) ← worksFor(x, y),College(y)
q(x) ← worksFor(x, y),worksFor(, y)
q(x) ← worksFor(x,)
q(x) ← Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.

Query answering in description logics: DL-LiteA (36/56)

Query answering in DL-LiteA – Example

TBox: Professor � ∃worksFor
∃worksFor− � College

Query: q(x) ← worksFor(x, y),College(y)

Perfect Reformulation: q(x) ← worksFor(x, y),College(y)
q(x) ← worksFor(x, y),worksFor(, y)
q(x) ← worksFor(x,)
q(x) ← Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.

Query answering in description logics: DL-LiteA (36/56)

Query answering in DL-LiteA – Example

TBox: Professor � ∃worksFor
∃worksFor− � College

Query: q(x) ← worksFor(x, y),College(y)

Perfect Reformulation: q(x) ← worksFor(x, y),College(y)
q(x) ← worksFor(x, y),worksFor(, y)
q(x) ← worksFor(x,)
q(x) ← Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.

Query answering in description logics: DL-LiteA (36/56)

Riccardo Rosati - OWL profiles and

DL-Lite

1

Query answering in DL-Lite

query Q’

 (SQL) Query

expander
DBMS

ABox

query Q

 (UCQ)

TBox

answers to Q’

Query answering in description logics: DL-LiteA (37/56)

Riccardo Rosati - OWL profiles and

DL-Lite

2

Example

TBox:

MALE ! PERSON FEMALE ! PERSON

MALE ! ¬FEMALE

PERSON ! "hasFather PERSON ! "hasMother

"hasFather! ! MALE "hasMother! ! FEMALE

input query:

q(x) # PERSON(x)

rewritten query:

q’(x) # PERSON(x) $

 FEMALE(x) $

 MALE(x) $
 hasFather(y,x) $
 hasMother(y,x)

Query answering in description logics: DL-LiteA (38/56)

Riccardo Rosati - OWL profiles and

DL-Lite

3

Example

ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Paul,Ann)
hasMother(Mary,Paul)

rewritten query:

q’(x) ! PERSON(x) "

 FEMALE(x) "

 MALE(x) "
 hasFather(y,x) "
 hasMother(y,x)

answers to query:

{ Bob, Paul, Ann, Mary }

Query answering in description logics: DL-LiteA (39/56)

Riccardo Rosati - OWL profiles and

DL-Lite

4

Answering queries: chasing the ABox

MALE(Bob) MALE(Paul) FEMALE(Ann) hasFather(Paul,Ann) hasMother(Mary,Paul)

PERSON(Bob)

hasFather(Bob,x1) hasMother(Bob,x2)

MALE(x1) FEMALE(x2)

PERSON(x1) PERSON(x2)

(6)

(1)

(4)

(5)

(1)

.....

(2)

(7)

(4) (6) (6) (4)

.....

CHASE of the ABox
with respect to the TBox
= adding to the ABox all
instance assertions that
are logical consequences
of the TBox

the chase represents the
canonical model of the
whole KB

problem: the chase of the
ABox is in general
infinite

.....

Query answering in description logics: DL-LiteA (40/56)

Riccardo Rosati - OWL profiles and

DL-Lite

5

Query rewriting algorithm for DL-Lite

q(x) ! PERSON(x)

q(x) ! MALE(x) q(x) ! FEMALE(x)

q(x) ! hasFather(y,x) q(x) ! hasMother(y,x)

how to avoid the infinite chase of the ABox?

CHASE of the query:

•! inclusions are applied “from right to left”

•! this chase always terminates

•! this chase is computed independently of the ABox

Query answering in description logics: DL-LiteA (41/56)

Riccardo Rosati - OWL profiles and

DL-Lite

6

Query rewriting algorithm for DL-Lite

The rewriting algorithm iteratively applies two rewriting
rules:

•!atom-rewrite: takes an atom of the conjunctive query
and rewrites it applying a TBox inclusion

•! the inclusion is used as a rewriting rule (right-to-left)

•!reduce: takes two unifiable atoms of the conjunctive
query and merges (unifies) them

Query answering in description logics: DL-LiteA (42/56)

Riccardo Rosati - OWL profiles and

DL-Lite

7

Query rewriting algorithm for DL-Lite

Algorithm PerfectRef (q; T)
Input: conjunctive query q, DL-Lite TBox T

Output: union of conjunctive queries PR
PR := {q};
repeat

 PR0 := PR;
 for each q ! PR0 do
 (a) for each g in q do

 for each positive inclusion I in T do
 if I is applicable to g then PR := PR "{q[g/gr(g,I)]};

(b) for each g1, g2 in q do
 if g1 and g2 unify then PR := PR "{f (reduce(q,g1,g2))}

until PR0 = PR;
return PR

Query answering in description logics: DL-LiteA (43/56)

KB
• TBOX:

- A ISA SOME R

- SOME R ISA A

- SOME R- ISA B

- B ISA A

• ABOX:

- B(c)

B A

R
(1,n)

• QUERY:

- q(x) :- R(x,y), R(y,z)

Query answering in description logics: DL-LiteA (44/56)

Query Answering
Expansion:

• q(x) :- R(x,y), R(y,z)

• q(x) :- R(x,y), R(y,_)

• q(x) :- R(x,y), A(y)

• q(x) :- R(x,y), B(y)

• q(x) :- R(x,y), R(_,y)

• q(x) :- R(x,y)

• q(x) :- R(x,_)

• q(x) :- A(x)

• q(x) :- B(x)

All queries empty except
for the last!

Certain Answer: {c}

Query answering in description logics: DL-LiteA (45/56)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

No! By adding essentially any additional constructor we lose these nice
computational properties.

Query answering in description logics: DL-LiteA (46/56)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

No! By adding essentially any additional constructor we lose these nice
computational properties.

Query answering in description logics: DL-LiteA (46/56)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

No! By adding essentially any additional constructor we lose these nice
computational properties.

Query answering in description logics: DL-LiteA (46/56)

Complexity of reasoning in DL-LiteA

Ontology satisfiability and all classical DL reasoning tasks are:

Efficiently tractable in the size of TBox (i.e., PTime).

Very efficiently tractable in the size of the ABox (i.e., LogSpace).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:

PTime in the size of TBox.

LogSpace in the size of the ABox.

Exponential in the size of the query (NP-complete).
Bad? . . . not really, this is exactly as in relational DBs.

Can we go beyond DL-LiteA?

No! By adding essentially any additional constructor we lose these nice
computational properties.

Query answering in description logics: DL-LiteA (46/56)

Beyond DL-LiteA: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA
√

*
√

* in LogSpace
1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 �A2 A − − PTime-hard
5 A | A1 �A2 A | ∀P .A − − PTime-hard
6 A | A1 �A2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−
.A A | ∃P − − PTime-hard

8 A | ∃P | ∃P− A | ∃P | ∃P− √ √
PTime-hard

9 A | ¬A A − − coNP-hard

10 A A | A1 �A2 − − coNP-hard

11 A | ∀P .A A − − coNP-hard

Notes:

* with the “proviso” of not specializing functional properties.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL � AT �AF suffices! ❀ No hope of including covering constraints.

Query answering in description logics: DL-LiteA (47/56)

Example of query

q(x, y, z) ← GraduateStudent(x), University(y), Department(z),
hasUndergraduateDegreeFrom(x, y), isMemberOf(x, z),
subOrganizationOf(z, t), subOrganizationOf(t, y)

x y z

t

hasUGDegreeFrom

GraduateStudent University Department

isMemberOf

subOrganizationOf subOrganizationOf

SELECT ?X ?Y ?Z WHERE
?X rdf:type ’GraduateStudent’ . ?Y rdf:type ’University’ .
?Z rdf:type ’Department’ .
?X :hasUndergraduateDegreeFrom ?Y . ?X :isMemberOf ?Z .
?Z subOrganizationOf ?T . ?T subOrganizationOf ?Y

Query answering in description logics: DL-LiteA (48/56)

Example of query

q(x, y, z) ← GraduateStudent(x), University(y), Department(z),
hasUndergraduateDegreeFrom(x, y), isMemberOf(x, z),
subOrganizationOf(z, t), subOrganizationOf(t, y)

x y z

t

hasUGDegreeFrom

GraduateStudent University Department

isMemberOf

subOrganizationOf subOrganizationOf

SELECT ?X ?Y ?Z WHERE
?X rdf:type ’GraduateStudent’ . ?Y rdf:type ’University’ .
?Z rdf:type ’Department’ .
?X :hasUndergraduateDegreeFrom ?Y . ?X :isMemberOf ?Z .
?Z subOrganizationOf ?T . ?T subOrganizationOf ?Y

Query answering in description logics: DL-LiteA (48/56)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (49/56)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (49/56)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (49/56)

Beyond union of conjunctive queries

Till now we have assumed that the client queries are UCQs (aka positive
queries).
Can we go beyond UCQ? Can we go to full FOL/SQL queries?

No! Answering FOL queries in presence of incomplete information
is undecidable: Consider an empty source (no data), still a
(boolean) FOL query may return true because it is valid! (FOL
validity is undecidable)

Yes! With some compromises:
Query what the ontology knows about the domain, not what is
true in the domain!
On knowledge we have complete information, so evaluating FOL
queries is LogSpace.

Query answering in description logics: DL-LiteA (49/56)

SparSQL

Full SQL, but with relations in the FROM clause that are UCQs,
expressed in SPARQL, over the ontology.

SPARQL queries are used to query what is true in the domain.

SQL is used to query what the ontology knows about the domain.

Example: negation

Return all known people that are neither known to be male nor
known to be female.

SELECT persons.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Person’}
) persons

EXCEPT (
SELECT males.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Male’}
) males

UNION
SELECT females.x
FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ’Female’}
) females

)

Example: aggregates

Return the people and the number of their known
spouses, but only if they are known to be married to
at least two people.

SELECT marriage.x, count(marriage.y)
FROM SparqlTable(SELECT ?x ?y

WHERE {?x :MarriedTo ?y}
) marriage

GROUP BY marriage.x
HAVING count(marriage.y) >= 2

Query answering in description logics: DL-LiteA (50/56)

SparSQL in DL-LiteA

Answering of SparSQL queries in DL-LiteA:

1 Expand and unfold the UCQs (in the SparqlTables) as usual in
DL-LiteA ❀ an SQL query over the ABox (seen as a database) for
each SparqlTable in the FROM clauses.

2 Substitute SparqlTables with the new SQL queries. ❀ the result is
again an SQL query over the ABox (seen as a database)!

3 Evaluate the resulting SQL query over the ABox (seen as a
database)

Query answering in description logics: DL-LiteA (51/56)

Outline

1 Introduction

2 Querying data through ontologies

3 DL-LiteA: an ontology language for accessing data

4 References

Query answering in description logics: DL-LiteA (52/56)

References I

[1] D. Berardi, D. Calvanese, and G. De Giacomo.

Reasoning on UML class diagrams.

Artificial Intelligence, 168(1–2):70–118, 2005.

[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.

Linking data to ontologies: The description logic DL-LiteA.

In Proc. of the 2nd Int. Workshop on OWL: Experiences and Directions

(OWLED 2006), volume 216 of CEUR Electronic Workshop Proceedings,

http://ceur-ws.org/Vol-216/, 2006.

[3] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Tailoring OWL for data intensive ontologies.

In Proc. of the 1st Int. Workshop on OWL: Experiences and Directions

(OWLED 2005), volume 188 of CEUR Electronic Workshop Proceedings,

http://ceur-ws.org/Vol-188/, 2005.

Query answering in description logics: DL-LiteA (53/56)

References II

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

DL-Lite: Tractable description logics for ontologies.

In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages
602–607, 2005.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Data complexity of query answering in description logics.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2006), pages 260–270, 2006.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Tractable reasoning and efficient query answering in description logics: The
DL-Lite family.

J. of Automated Reasoning, 39(3):385–429, 2007.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Path-based identification constraints in description logics.

In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation

and Reasoning (KR 2008), pages 231–241, 2008.

Query answering in description logics: DL-LiteA (54/56)

References III

[8] D. Calvanese and M. Rodŕıguez.

An extension of DIG 2.0 for handling bulk data.

In Proc. of the 3rd Int. Workshop on OWL: Experiences and Directions

(OWLED 2007), volume 258 of CEUR Electronic Workshop Proceedings,

http://ceur-ws.org/Vol-258/, 2007.

[9] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.

Linking data to ontologies.

J. on Data Semantics, X:133–173, 2008.

[10] A. Poggi, M. Rodriguez, and M. Ruzzi.

Ontology-based database access with DIG-Mastro and the OBDA Plugin for
Protégé.

In K. Clark and P. F. Patel-Schneider, editors, Proc. of the OWL: Experiences

and Directions 2008 (OWLED 2008 DC) Workshop, 2008.

Query answering in description logics: DL-LiteA (55/56)

References IV

[11] M. Rodriguez-Muro, L. Lubyte, and D. Calvanese.

Realizing ontology based data access: A plug-in for Protégé.

In Proc. of the 24th Int. Conf. on Data Engineering Workshops (ICDE 2008),
pages 286–289, 2008.

Query answering in description logics: DL-LiteA (56/56)

