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1 Trivia

The word trivial has an interesting entymology. It is composed of “tri” (meaning
“3”) and “via” (meaning “ways”). It originally referred to the trivium, the three
fundamental curriculae: grammar, rhetorics, and logic. Mastery of these sub-
jects was considered essential before study could continue with the quadrivium,
which consisted of arithmetic, geometry, music, and astronomy.

Why was logic considered to be fundamental to one’s education? To answer
this question, it is necessary to explain what we mean by the term “logic”.

Lewis Carroll, Through the Looking Glass:

“Contrariwise,” continued Tweedledee, “if it was so, it might be;;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

Some attempts by the class to define logic were:
1. The ability to determine correct answers through a standardized process.
2. The study of formal inference.
3. A sequence of verified statements.
4. Reasoning, as opposed to intuition.
5. The deduction of statements from a set of statements.

In a sense, all of these definitions are correct.

Logic was originally studied by the Sophists, who engaged in formal debates.
Eventually, they sought to devise an objective system of rules to determine be-
yond any doubt who had won an argument. Logic was devised for this purpose.

As Francis Bacon put it, in 1605,

“Logic differeth from rhetoric..in this, that logic handleth reason
exact and in truth, and rhetoric handleth it as it is planted in popular
opinions and manners.”



So logic deals with a set of rules for reasoning and arguing. Thus, it deals with
a fundamental problem in intellectual pursuits: how to distinguish what is true
from what is false, what is right from what is wrong.

2 The First Age of Logic: Symbolic Logic (500
B.C. - 19th Century)

Originally, logic dealt with arguments in the natural languages used by humans.
For example, it would be used to demonstrate the correctness of arguments like
the following;:

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

If we change “all” to “some”, the argument doesn’t hold. But how could we
demonstrate this? We could attempt to define words such as “all” and “some”
in terms of what inferences we could draw from them. Then the demonstration
would follow from these definitions. The problem is that natural language turns
out to be very ambiguous. For example, consider the word “any”. In the
sentence

“Eric does not believe that Mary can pass any test.”

it could be taken to mean either “all” or “one”. (Note: in this class, or in any
technical context, don’t use the term “any”).
Also, consider the sentence

“T only borrowed your car.”.

Different inflections imply different meanings.
Another problem with natural language was that it led to many paradoxes.
The most famous is The Liar’s Paradox. Consider the sentence

“This sentence is a lie.”

If it were true, then it must be a lie, as it says, but this is impossible. Similarly,
if it were a lie, then what it says is true!
Other examples are:

The Sophist’s Paradox. A Sophist is sued for his tuition by the school that
educated him. He argues that he must win, since, if he loses, the school
didn’t educate him well enough, and doesn’t deserve the money. The
school argues that he must lose, since, if he wins, he was educated well
enough and therefore should pay for it.



The Surprise paradox. A logic professor announces to his class that there will
be a test next week, but he won’t tell which day. He promises, “When
you get it, you’ll be surprised.”. The students deduce that the test can’t
be given on Friday: if it were, then, come Friday morning, they would
know it had to be given on that day, and, therefore, they wouldn’t be
surprised. But since they now know it can’t be on Friday, they reason that
it can’t be on Thursday either, since they would no longer be surprised on
Thursday morning. Similarly, it couldn’t be held on Wednesday, Tuesday,
or Monday, But on Tuesday, the professor does give the test, and the
students are very surprised.

These paradoxes, along with the ambiguities of natural language, eventually
led to the effort to formulate logic in a symbolic language.

3 The 2nd Age of Logic: Algebraic Logic (Mid
to late 19th Century)

In 1847, George Boole, in “The Mathematical Analysis of Logic” attempted to
formulate logic in terms of a mathematical language. Rules of inference were
modeled after various laws for manipulating algebraic expressions:

“The design of the following treatise is to investigate the funda-
mental laws of the operations of the mind by which reasoning is
performed; to give expressions to them in the symbolic language of
a calculus, and upon this foundation to establish the science of logic
and construct its methods.”

The basis for his work was the similarity between the relationship of set union
and intersection and that of numerical addition and multiplication, e.g.,

a(b+ ¢) = (ab) + (ac) is similar to zN (yU 2z) = (zNy) U (z N z).

Unfortunately, Boole would sometimes take the analogy too far. For example,
he tried to find a set operation analogous to division, even though no such
operation exists in logic.

Soon to follow Boole’s work was that of Charles Ludwig Dodgeson, known
as Lewis Carol, who published several texts on the subject, and developed Venn
Diagrams as a means of reasoning about sets.

It was also during this period that Ernst Schréeder anticipated the impor-
tance of developing fast algorithms to decide various logical and mathematical
problems. In “The Algebra of Logic” he writes:

“Getting a handle on the consequences of any premisses, or at least
the fastest method for obtaining these consequences, seems to me to
be one of the noblest, if not the ultimate goal of mathematics and
logic.”

Once symbolic logic matured, it became tremendously useful in resolving many
serious problems developing in mathematics.



4 The 3rd Age of Logic: Mathematical Logic
(late 19th to mid 20th Century)

As mathematical proofs became more sophisticated, paradoxes began to show
up in them just as they did in natural language.
For example, in 1820: Cauchy “proved” that for all infinite sequences

fi(@), f2(z), fo(z), - -

of continous functions, the sum

was also continuous. But in 1826 Abel found a counterexample!

To deal with issues such as these, in 1879, Frege proposed logic as a lan-
guage for mathematics. This development was anticipated centuries earlier by
Leibnitz, but it wasn’t until the late 19th Century that the logical tools existed
to allow for it. The rigor of mathematical proofs increased dramatically. In
the field of analysis, the now standard epsilon-delta definition of limits resolved
ambiguities such as the one above.

With the rigor of this new foundation, Cantor was able to analyze the notion
of infinity in ways that were previously impossible. He concluded that, instead of
there being just one infinity, there was a whole hierarchy of them. His argument
was follows:

Consider the set 2"V of all subsets natural numbers. Suppose, for a contra-
diction, that there is only one infinity. Then this set, which is infinitely large,
must be of the same size as the natural numbers, which is also infinitely large.
Therefore, we could assign each subset of N a distinct n € N, forming an infi-
nite sequence Py, P, P», ... of subsets of N. Now consider the set () of natural
numbers n such that n ¢ P,. Since @ € 2V, it must have been assigned some
number j. But then consider the question of whether j € Q:

JEQEjeEP e jEQ

A contradiction.

Therefore, our original supposition is incorrect, and 2% is strictly larger than
N. (Note that this leaves open the question of the existence of other sets with
sizes falling in between these constructed sizes. See below.) We could further
devise an analogous argument that 22" ig strictly larger than 2%, and so on,
forming an infinite hierarchy of infinities.

So how do we determine the size of infinite sets? Cantor defined the relative
size of two sets as follows:

Definition: |A| < |B| iff there exists a one-to-one function from A to
B.



This leads to a range of all possible sizes known as the cardinal numbers. It
starts with a size for each of the natural numbers, and then continues with sizes
for infinitely large sets. These new sizes are denoted with the symbol X (read
as “aleph”). The first such size (Rg) is the size of the natural numbers.

0,1,..R0,8y,...

Then, at the turn of the 20th Century, David Hilbert, the most prominent
mathematician of his time, proposed a grand program to devise a single formal
procedure that would derive all mathematical truth:

“Once a logical formalism is established one can expect that a sys-
tematic, so-to-say computational, treatment of logic formulas is pos-
sible, which would somewhat correspond to the theory of equations
in algebra.”

The first major stumbling block came when Bertrand Russell discovered that
naive set theory, again like the natural language logics, led to paradoxes. Russell
wondered whether the collection of all sets is a set. He concluded that this leads
to the so-called Russell’s Paradoz: Consider the set

T ={S|S ¢S}

Then T € T & T ¢ T (a contradiction).

Russell worked around this problem by reformulating mathematics in terms
of a hierarchy of sets. Sets of a given hierarchy could only contain sets from
lower hierarchies. His work culminated in the Principia Mathematica, a joint
work with Alfred North Whitehead. This work formally proved (i.e., with sheer
symbolic manipulation) the bulk of the mathematical knowledge of its time.

In addition, mathematicians soon took advantage of the fact that symbolic
logic, being a formal system, could itself be the object of mathematical investi-
gation. To the limited extent that logic formed a foundation for mathematics,
the results of this investigation yielded results on the nature of mathematics
itself.

For example, a natural question that arose from Cantor’s proof of higher
infinities was: what is the relationship between 2§ and ®;? It was conjectured
that 2 = N;. This was known as the Continuum Hypothesis (CH). Despite
many attempts to prove and disprove it, nobody succeeded. Later, in the 1930’s,
Kurt Gddel proved that, within the framework of logic and formal set theory
as the foundation of mathematics, supposing CH to be true will never lead to a
contradiction. Then, in the 1960’s, Cohen proved that supposing the negation of
CH wouldn’t lead to a contradiction either. This established the independence
of CH from mathematics as based on set theory.

Although the analysis of logic as a mathematical object proved to be a very
powerful technique, it was soon to yield two results that proved devastating to
Hilbert’s Program:

1. Godel’s First Incompleteness Theorem. Kurt Godel proved that, in a
formal system powerful enough to form statements about what it can



prove, there will always be true statements that the system can express but
can’t prove. These statements could be proven with even more powerful
systems, but these new systems could then express new statements that
they couldn’t prove, and so on.

2. Godel’s Second Incompleteness Theorem. Kurt Godel proved that a for-
mal system powerful enough to form statements about arithmetics cannot
prove its own consistency.

3. Alonzo Church and Alan Turing showed that there are some problems that
no algorithm could ever solve. If such problems exist, then there could be
no hope of finding a single algorithm to produce all mathematical truth.

Despite these results, logic continued to flourish, not as the universally accepted
ultimate foundation of all mathematics, but simply as another branch of it. Also,
various independent formal systems could still serve as the foundations for the
individual, well-defined, branches of mathematics.

5 The 4th Age of Logic: Logic in Computer Sci-
ence

Logic gave us characterization of computability or solvability. Before 1920’s
people did computing in their heads, which became incredibly complicated with
time. Today, with the advent of the electronic computer, a new home has been
found for logic: computer science. In computer science, we design and study
systems through the use of formal languages that can themselves be interpreted
by a formal system. In short, “Description is our business”. So it is quite
natural that the formal descriptive languages of modern logic could serve as a
working tool for computer science. Some of the most basic applications of this
tool are:

1. Boolean circuits: The design of hardware built out of gates that implement
Boolean logic primitives. This forms the foundation of modern digital
design. ENTAC - an early digital computer implemented in decimal digits.
But it was found that working in boolean logic is much easier. Billions
of dollars are spent yearly in this industry. Boole intended to discovered
the “laws of the mind”, but his biggest impact has been on the computer
industry. In Electrical Engineering boolean logic is hardware consisting of
gates.

2. Some problems seem to be so hard that computers cannot solve them no
matter how fast they are. The reason for the difficulty is a combinatorial
explosion that seem to be inherent in this problems. Logic played a crucial
role in the development of the theory of NP-completeness, which formalize
the concept of combinatorial explosion.



3. A computer has to be told what to do, in very precise and formal way. An
application of this exact description is SQL (Standard Query Language):
a language used for interfacing with databases. Although the syntax is
different, it is essentially equivalent to standard first-order logic.

4. Semantics: To make sure that different implementation of a programming
language yield the same results, programming languages need to have a
formal semantics. Logic provides the tool to develop such a semantics.

5. Design Validation and verification: to verify the correctness of a design
with a certainty beyond that of conventional testing. It uses temporal loic.
The famous Intel bug of 1995, involving faulty floating point divisions cost
500 million dollars.

6. AI: mechanized reasoning and expert systems. There are many domains
in which expertise, acquired by humans over decades, can be described
with a formal system. The resulting system can often yield results on
par with the human expert, and sometimes better. It tries to capture
”common-sense reasoning” in a formal way.

7. Security: With increasing use of network, security has become a big issue.
Hence, the concept of proof-carrying code. If an applet came with it’s own
proof of safety and correctness, then it would be really nice.

As our understanding of computer science, and logic, improve, increasingly
deeper connections are made. As a result, logic is sometimes described as the
“calculus of computer science”. We will learn propositional and First-Order
Logic, with applications in Complexity, Database, and Verification.



