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System’s computations

The behaviors (computations) of a system can be seen as sequences
of propositions.

MODULE main
VAR done: Boolean;
ASSIGN

init(done):=0;
next(done):= case

!done: {0,1};
done: done;

esac;

Since the state space is finite, the set of computations can be
represented by a finite automaton.

or
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Correct computations

Some computations are correct and others are not acceptable.

We can build an automaton for the set of all acceptable computations.

Example: eventually, done will be true forever.
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Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2) ⇐⇒ L(A1) ∩ L(A2) = {}

To solve the language containment problem, we need to know:

1 how to complement an automaton,

2 how to intersect two automata,

3 how to check the language emptiness of an automaton.
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Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a, b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.

A language U is a set of words, i.e. U ⊆ Σ∗.

Example: Words over Σ = {a, b} with equal number of a’s and b’s.
(E.g. aabb or abba.)

Language recognition problem:
determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition
problems.
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Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

Embedded System Controllers.
Languages: Ester-el, Lustre, Verilog.

Synchronous Circuits.

Regular Expression Pattern Matching
Grep, Lex, Emacs.

Protocols
Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...
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Notation

a, b ∈ Σ finite alphabet.
u, v ,w ∈ Σ∗ finite words.

ε empty word.
u.v catenation.
ui = u.u. .u repeated i-times.

U,V ⊆ Σ∗ Finite word languages.
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FSA Definition

Nondeterministic Finite State Automaton (NFA):
NFA is (Q,Σ, δ, I ,F )

Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of final states.
δ ⊆ Q × Σ× Q transition relation (edges).

We use q
a−→ q′ to denote (q, a, q′) ∈ δ.

Deterministic Finite State Automaton (DFA):

DFA has δ : Q × Σ → Q, a total function.
Single initial state I = {q0}.
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Regular Languages

A run of NFA A on u = a0, a1, . . . , an−1 is a finite sequence of states

q0, q1, . . . , qn s.t. q0 ∈ I and qi
ai−→ qi+1 for 0 ≤ i < n.

An accepting run is one where the last state qn ∈ F .

The language accepted by A
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.
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Finite State Automata

Example: DFA A1 over Σ = {a, b}.
Recognizes words which do not end in b.

NFA A2. Recognizes words which end in b.
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Determinisation

Theorem (determinisation) Given a NFA A we can construct a DFA A′ s.t.
L(A) = L(A′). Size |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q ′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The deterministic transition relation δ′ : 2Q × Σ *−→ 2Q is
{s} a−→ {si | s

a−→ si}
{s1, ..., sj , ..., sn}

a−→
⋃n

j=1{si | sj
a−→ si}

The (unique) initial state is I ′ =def {si | si ∈ I}
The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ..., n}
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Determinisation [cont.]

NFA A2: Words which end in b.

A2 can be determinised into the automaton DA2 below.
States = 2Q .

There are NFAs of size n for which the size of the minimum sized DFA
must have size O(2n).
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Closure Properties

Theorem (Boolean closure) Given NFA A1,A2 over Σ we can construct
NFA A over Σ s.t.

L(A) = L(A1) (Complement). |A| = 2O(|A1|).

L(A) = L(A1) ∪ L(A2) (union). |A| = |A1| + |A2|.
L(A) = L(A1) ∩ L(A2) (intersection). |A| = |A1| · |A2|.
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Complementation of a NFA

A NFA A = (Q,Σ, δ, I ,F ) is complemented by:

determinizing it into a DFA A′ = (Q ′,Σ′, δ′, I ′,F ′)

complementing it: A′ = (Q ′,Σ′, δ′, I ′,F ′)

|A′| = |A′| = 2O(|A|)

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods
A.A. 2008-2009 Last update: February 14, 2009 18

/ 93

Union of two NFAs

Two NFAs A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2),
A = A1 ∪ A2 = (Q,Σ, δ, I ,F ) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s ′) :=

{
R1(s, s ′) if s ∈ Q1

R2(s, s ′) if s ∈ Q2

=⇒A is an automaton which just runs nondeterministically either A1

or A2

L(A) = L(A1) ∪ L(A2)

|A| = |A1| + |A2|
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Synchronous Product Construction

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2). Then,
A1 × A2 = (Q,Σ, δ, I ,F ) where

Q = Q1 × Q2. I = I1 × I2.
F = F1 × F2.

< p, q >
a−→< p′, q′ > iff p

a−→ p′ and q
a−→ q′.

Theorem L(A1 × A2) = L(A1) ∩ L(A2).
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Example

A1 recognizes words with an even number of b’s.

A2 recognizes words with a number of a’s multiple of 3.

The Product Automaton A1 × A2 with F = {s0, t0}.
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Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.

Every regular expression reg denotes a language L(reg).

Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive b’s.

Theorem: For every regular expression reg we can construct a language
equivalent NFA of size O(|reg |).

Theorem: For every DFA A we can construct a language equivalent regular
expression reg(A).
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Infinite Word Languages

Modeling infinite computations of reactive systems.

An ω-word α over Σ is an infinite sequence
a0, a1, a2 . . ..

Formally, α : N → Σ.
The set of all infinite words is denoted by Σω.

A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example All words over {a, b} with infinitely many a’s.

Notation
omega words α, β, γ ∈ Σω.
omega-languages L, L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .
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Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb . . .. There are several possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .
Acceptance Conditions Büchi, (Muller, Rabin, Street).
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)
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Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I ,F ), where F ⊆ Q is the set of accepting states.

A run ρ of A on omega word α is an infinite sequence
ρ = qo , q1, q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .

The run ρ is accepting if

Inf (ρ) ∩ F .= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}
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Büchi Automaton: Example

Let Σ = {a, b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely many
a’s.

With F = {s2} the automaton recognizes words with infinitely many
b’s.
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Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A2 be

With F = {s2}, automaton A2 recognizes words with finitely many a.
Thus, L(A2) = L(A1).
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Deterministic vs. Nondeterministic Büchi Automata

Theorem DBAs are strictly less powerful than NBAs.

The subset construction does not work: let DA2 be

DA2 is not equivalent to A2

(e.g., it recognizes (b.a)ω)

There is no DBA equivalent to A2
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Closure Properties

Theorem (union, intersection)
For the NBAs A1,A2 we can construct
– the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1| + |A2|
– the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| = |A1| · |A2| · 2.
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Union of two NBAs

Two NBAs A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2),
A = A1 ∪ A2 = (Q,Σ, δ, I ,F ) is defined as follows

Q := Q1 ∪ Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s ′) :=

{
R1(s, s ′) if s ∈ Q1

R2(s, s ′) if s ∈ Q2

=⇒A is an automaton which just runs nondeterministically either A1

or A2

L(A) = L(A1) ∪ L(A2)

|A| = |A1| + |A2|
(same construction as with ordinary automata)
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Synchronous Product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I ,F ), where

Q = Q1 × Q2 × {1, 2}.
I = I1 × I2 × {1}.
F = F1 × Q2 × {1}.

< p, q, 1 >
a−→< p′, q′, 1 > iff p

a−→ p′ and q
a−→ q′ and p .∈ F1.

< p, q, 1 >
a−→< p′, q′, 2 > iff p

a−→ p′ and q
a−→ q′ and p ∈ F1.

< p, q, 2 >
a−→< p′, q′, 2 > iff p

a−→ p′ and q
a−→ q′ and q .∈ F2.

< p, q, 2 >
a−→< p′, q′, 1 > iff p

a−→ p′ and q
a−→ q′ and q ∈ F2.

Theorem L(A1 × A2) = L(A1) ∩ L(A2).
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Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA, and
it points to one of the two tracks

As soon as it goes through an accepting state of the current track, it
switches to the other track
=⇒to visit infinitely often a state in F (i.e., F1), it must visit
infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 × Q2.
I = I1 × I2.
F = F1 × Q2.
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Product of NBAs: Example
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Closure Properties (2)

Theorem (complementation)
For the NBA A1 we can construct an NBA A2 such that L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)
(1) convert a Büchi automaton into a Non-Deterministic Rabin automaton.
(2) determinize and Complement the Rabin automaton
(3) convert the Rabin automaton into a Büchi automaton
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Omega Regular Expressions

A language is called ω-regular if it has the form ∪n
i=1 Ui .(Vi )ω where

Ui ,Vi are regular languages.
Theorem A language L is ω-regular iff it is NBA-recognizable.
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NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.

It can be solved with a DFS or a BFS.

A DFS finds a counterexample on the fly (it is stored in the stack of
the procedure).

A BFS finds a final state reachable with a shortest counterexample,
but it requires a further backward search to reproduce the path.

Complexity: O(n).

Henceafter, assume w.l.o.g. that there is only one initial state.
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NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.

A naive algorithm:
a DFS finds the final states f reachable from an initial state;
for each f , a DFS finds if there exists a loop.
Complexity: O(n2).

SCC-based algorithm:
the Tarjan’s algorithm uses a DFS to finds the SCCs of a graph in
linear time;
another DFS finds if a non-trivial final SCC is reachable from an initial
state.
Complexity: O(n).
It stores too much information and does not find directly a
counterexample.
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Automata-Theoretic LTL Model Checking

M |= Aψ (CTL∗)

⇐⇒ M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)

⇐⇒ L(M) ∩ L(ψ) = {}
⇐⇒ L(AM) ∩ L(A¬ψ) = {}
⇐⇒ L(AM × A¬ψ) = {}

AM is a Büchi Automaton equivalent to M (which represents all and
only the executions of M)

A¬ψ is a Büchi Automaton which represents all and only the paths
that satisfy ¬ψ (do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and not
in ψ.
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Automata-Theoretic LTL M.C. (dual version)

M |= Eϕ

⇐⇒ M .|= A¬ϕ

⇐⇒ ...

⇐⇒ L(AM × Aϕ) .= {}
AM is a Büchi Automaton equivalent to M (which represents all and
only the executions of M)

Aϕ is a Büchi Automaton which represents all and only the paths that
satisfy ϕ

=⇒ AM × Aϕ represents all and only the paths appearing in both AM and
Aϕ.
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Automata-Theoretic LTL Model Checking

Four steps:

1 Compute AM

2 Compute Aϕ

3 Compute the product AM × Aϕ

4 Check the emptiness of L(AM × Aϕ)
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Computing an NBA AM from a Kripke Structure M

Transforming a K.S. M = 〈S ,S0,R, L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I ,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q
a−→ q′ iff (q, q′) ∈ R and L(q′) = a

init
a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M| + 1
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Computing a NBA AM from a Kripke Structure M :
Example

{p,q}

{p,q}

{p,q}

Kripke Structure Buechi Auromaton

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

=⇒Substantially, add one initial state, move labels from states to
incoming edges, set all states as accepting states
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Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels of
a Kripke Structure. Also graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other
propositions are false;

in a Büchi Automaton, it means that p is true and all other
propositions are uncertain (they can be either true or false).
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Translation problem

Problem
Given an LTL formula φ, find a Büchi Automaton that accepts the same
language of φ.

It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).

We will translate LTL in a (equivalent) variant of Büchi Automata
called Labeled Generalized Büchi Automata (LGBA).
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1 Compute AM :

2 Compute Aϕ:

3 Compute the product AM × Aϕ:

4 Check the emptiness of L(AM × Aϕ):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1 Compute AM : |AM | = O(|M|)
2 Compute Aϕ:

3 Compute the product AM × Aϕ:

4 Check the emptiness of L(AM × Aϕ):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1 Compute AM : |AM | = O(|M|)
2 Compute Aϕ: |Aϕ| = O(2|ϕ|)

3 Compute the product AM × Aϕ:

4 Check the emptiness of L(AM × Aϕ):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1 Compute AM : |AM | = O(|M|)
2 Compute Aϕ: |Aϕ| = O(2|ϕ|)

3 Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

4 Check the emptiness of L(AM × Aϕ):
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Automata-Theoretic LTL Model Checking: complexity

Four steps:

1 Compute AM : |AM | = O(|M|)
2 Compute Aϕ: |Aϕ| = O(2|ϕ|)

3 Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

4 Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)

=⇒the complexity of LTL M.C. grows linearly wrt. the size of the model
M and exponentially wrt. the size of the property ϕ

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods
A.A. 2008-2009 Last update: February 14, 2009 92

/ 93

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒Some tools (e.g., Spin, ObjectGEODE) allow specifications to be
expressed directly as NBAs
=⇒complementation of NBA important!

for every LTL formula, there are many possible equivalent NBAs
=⇒lots of research for finding “the best” conversion algorithm

performing the product and checking emptiness very relevant
=⇒lots of techniques developed (e.g., partial order reduction)
=⇒lots on ongoing research
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