

Introduction to Formal Methods

08 - Automata-Theoretic LTL Model Checking

Roberto Sebastiani - rseba@disi.unitn.it

Stefano Tonetta - tonettas@fbk.eu

A.A. 2008-2009

Last update: February 14, 2009

Content

1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

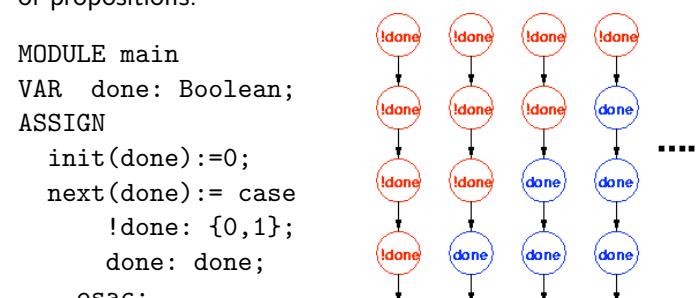
Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

- The behaviors (computations) of a system can be seen as sequences of propositions.

```

MODULE main
VAR done: Boolean;
ASSIGN
  init(done):=0;
  next(done):= case
    !done: {0,1};
    done: done;
  esac;

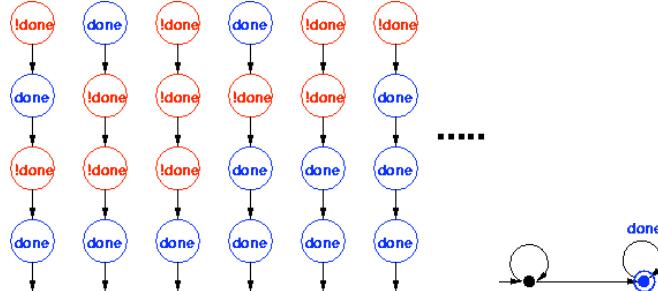
```



- Since the state space is finite, the set of computations can be represented by a finite automaton.

Correct computations

- Some computations are correct and others are not acceptable.
- We can build an automaton for the set of all acceptable computations.
- Example: eventually, done will be true forever.



Language Containment Problem

- Solution to the verification problem
⇒ Check if language of the system automaton is contained in the language accepted by the property automaton.
- The language containment problem is the problem of deciding if a language is a subset of another language.

$$\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2) \iff \mathcal{L}(A_1) \cap \overline{\mathcal{L}(A_2)} = \{\}$$

To solve the language containment problem, we need to know:

- ① how to complement an automaton,
- ② how to intersect two automata,
- ③ how to check the language emptiness of an automaton.

Content

1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Finite Word Languages

- An **Alphabet** Σ is a collection of symbols (letters).
E.g. $\Sigma = \{a, b\}$.
- A **finite word** is a finite sequence of letters. (E.g. $aabb$.)
The set of all **finite** words is denoted by Σ^* .
- A **language** U is a set of words, i.e. $U \subseteq \Sigma^*$.

Example: Words over $\Sigma = \{a, b\}$ with equal number of a 's and b 's.
(E.g. $aabb$ or $abba$.)

Language recognition problem:

determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition problems.

Finite State Automata

Basic model of computational systems with finite memory.

Widely applicable

- Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.

- Synchronous Circuits.

- Regular Expression Pattern Matching

Grep, Lex, Emacs.

- Protocols

Network Protocols

Architecture: Bus, Cache Coherence, Telephony,...

Notation

$a, b \in \Sigma$ finite alphabet.

$u, v, w \in \Sigma^*$ finite words.

ϵ empty word.

$u.v$ catenation.

$u^i = u.u. .u$ repeated i -times.

$U, V \subseteq \Sigma^*$ Finite word languages.

FSA Definition

Nondeterministic Finite State Automaton (NFA):

NFA is $(Q, \Sigma, \delta, I, F)$

Q Finite set of states.

Σ is a finite alphabet

$I \subseteq Q$ set of initial states.

$F \subseteq Q$ set of final states.

$\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).

We use $q \xrightarrow{a} q'$ to denote $(q, a, q') \in \delta$.

Deterministic Finite State Automaton (DFA):

DFA has $\delta: Q \times \Sigma \rightarrow Q$, a **total function**.

Single initial state $I = \{q_0\}$.

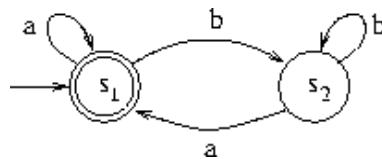
Regular Languages

- A **run** of NFA A on $u = a_0, a_1, \dots, a_{n-1}$ is a finite sequence of states q_0, q_1, \dots, q_n s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i < n$.
- An **accepting run** is one where the last state $q_n \in F$.
- The language accepted by A
 $\mathcal{L}(A) = \{u \in \Sigma^* \mid A \text{ has an accepting run on } u\}$
- The languages accepted by a NFA are called **regular languages**.

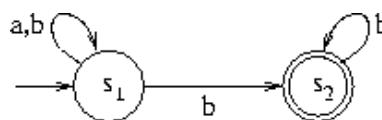
Finite State Automata

Example: DFA A_1 over $\Sigma = \{a, b\}$.

Recognizes words which do not end in b .



NFA A_2 . Recognizes words which end in b .



Determinisation

Theorem (determinisation) Given a NFA A we can construct a DFA A' s.t. $\mathcal{L}(A) = \mathcal{L}(A')$. Size $|A'| = 2^{|Q|}$.

- Each state of A' corresponds to a set $\{s_1, \dots, s_j\}$ of states in A ($Q' \subseteq 2^Q$), with the intended meaning that :
 - A' is in the state $\{s_1, \dots, s_j\}$ if A is in one of the states s_1, \dots, s_j
- The deterministic transition relation $\delta' : 2^Q \times \Sigma \mapsto 2^Q$ is
 - $\{s\} \xrightarrow{a} \{s_i \mid s \xrightarrow{a} s_i\}$
 - $\{s_1, \dots, s_j, \dots, s_n\} \xrightarrow{a} \bigcup_{i=1}^n \{s_i \mid s_j \xrightarrow{a} s_i\}$
- The (unique) initial state is $I' =_{\text{def}} \{s_i \mid s_i \in I\}$
- The set of final states F' is such that $\{s_1, \dots, s_n\} \in F'$ iff $s_i \in F$ for some $i \in \{1, \dots, n\}$

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

AMN 2008-2009 - Last update: 19/01/2009

7/93

Roberto Sebastiani, Stefano Tonetta ()

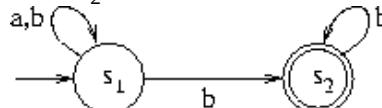
Introduction to Formal Methods

AMN 2008-2009 - Last update: 19/01/2009

7/93

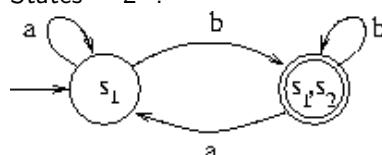
Determinisation [cont.]

NFA A_2 : Words which end in b .



A_2 can be determinised into the automaton DA_2 below.

States = 2^Q .



There are NFAs of size n for which the size of the minimum sized DFA must have size $O(2^n)$.

Closure Properties

Theorem (Boolean closure) Given NFA A_1, A_2 over Σ we can construct NFA A over Σ s.t.

- $\mathcal{L}(A) = \overline{\mathcal{L}(A_1)}$ (Complement). $|A| = 2^{|Q_1|}$.
- $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ (union). $|A| = |A_1| + |A_2|$.
- $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ (intersection). $|A| = |A_1| \cdot |A_2|$.

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

7/93

Roberto Sebastiani, Stefano Tonetta ()

Introduction to Formal Methods

7/93

Complementation of a NFA

A NFA $A = (Q, \Sigma, \delta, I, F)$ is complemented by:

- determinizing it into a DFA $A' = (Q', \Sigma', \delta', I', F')$
- complementing it: $\overline{A} = (Q', \Sigma', \delta', I', \overline{F})$
- $|\overline{A}| = |A'| = 2^{O(|A|)}$

Union of two NFAs

Two NFAs $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$, $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$

- $R(s, s') := \begin{cases} R_1(s, s') & \text{if } s \in Q_1 \\ R_2(s, s') & \text{if } s \in Q_2 \end{cases}$

$\Rightarrow A$ is an automaton which just runs nondeterministically either A_1 or A_2

- $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$
- $|A| = |A_1| + |A_2|$

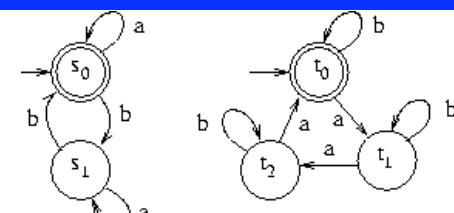
Synchronous Product Construction

Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$. Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$ where

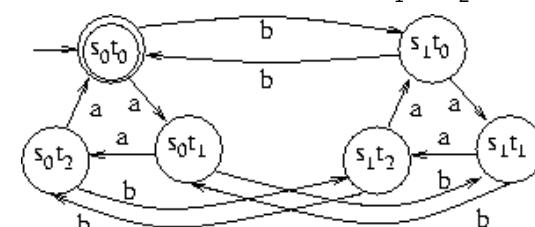
- $Q = Q_1 \times Q_2$. $I = I_1 \times I_2$.
- $F = F_1 \times F_2$.
- $\langle p, q \rangle \xrightarrow{a} \langle p', q' \rangle$ iff $p \xrightarrow{a} p'$ and $q \xrightarrow{a} q'$.

Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

Example



- A_1 recognizes words with an even number of b 's.
- A_2 recognizes words with a number of a 's multiple of 3.
- The Product Automaton $A_1 \times A_2$ with $F = \{s_0, t_0\}$.



Regular Expressions

Syntax: $\emptyset \mid \epsilon \mid a \mid reg_1 \cdot reg_2 \mid reg_1 | reg_2 \mid reg^*$.

Every regular expression reg denotes a language $\mathcal{L}(reg)$.

Example: $a^*.(b|bb).a^*$. The words with either 1 b or 2 consecutive b 's.

Theorem: For every regular expression reg we can construct a language equivalent NFA of size $O(|reg|)$.

Theorem: For every DFA A we can construct a language equivalent regular expression $reg(A)$.

Content

1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Infinite Word Languages

Modeling infinite computations of reactive systems.

- An ω -word α over Σ is an **infinite** sequence

$a_0, a_1, a_2 \dots$

Formally, $\alpha : \mathbb{N} \rightarrow \Sigma$.

The set of all infinite words is denoted by Σ^ω .

- A ω -language L is collection of ω -words, i.e. $L \subseteq \Sigma^\omega$.

Example All words over $\{a, b\}$ with infinitely many a 's.

Notation

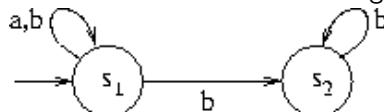
omega words $\alpha, \beta, \gamma \in \Sigma^\omega$.

omega-languages $L, L_1 \subseteq \Sigma^\omega$

For $u \in \Sigma^+$, let $u^\omega = u.u.u\dots$

Omega-Automata

We consider automaton running over infinite words.



Let $\alpha = aabbba\dots$. There are several possible runs.

Run $\rho_1 = s_1, s_1, s_1, s_1, s_2, s_2 \dots$

Run $\rho_2 = s_1, s_1, s_1, s_1, s_1, s_1 \dots$

Acceptance Conditions Büchi, (Muller, Rabin, Street).

Acceptance is based on states occurring infinitely often

Notation Let $\rho \in Q^\omega$. Then,

$Inf(\rho) = \{s \in Q \mid \exists^{\infty} i \in \mathbb{N}. \rho(i) = s\}$.

(The set of states occurring infinitely many times in ρ .)

Büchi Automata

Nondeterministic Büchi Automaton

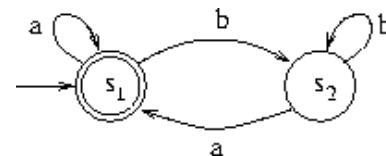
$A = (Q, \Sigma, \delta, I, F)$, where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is an infinite sequence $\rho = q_0, q_1, q_2, \dots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \leq i$.
- The run ρ is **accepting** if $\text{Inf}(\rho) \cap F \neq \emptyset$.
- The language accepted by A $\mathcal{L}(A) = \{\alpha \in \Sigma^\omega \mid A \text{ has an accepting run on } \alpha\}$

Büchi Automaton: Example

Let $\Sigma = \{a, b\}$.

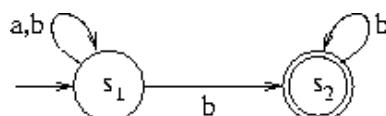
Let a Deterministic Büchi Automaton (DBA) A_1 be



- With $F = \{s_1\}$ the automaton recognizes words with infinitely many a 's.
- With $F = \{s_2\}$ the automaton recognizes words with infinitely many b 's.

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A_2 be

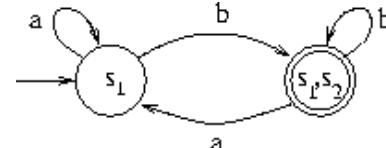


With $F = \{s_2\}$, automaton A_2 recognizes words with finitely many a . Thus, $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$.

Deterministic vs. Nondeterministic Büchi Automata

Theorem DBAs are strictly less powerful than NBAs.

The subset construction does not work: let DA_2 be



- DA_2 is not equivalent to A_2 (e.g., it recognizes $(b.a)^\omega$)
- There is no DBA equivalent to A_2

Closure Properties

Theorem (union, intersection)

For the NBAs A_1, A_2 we can construct

- the NBA A s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$. $|A| = |A_1| + |A_2|$
- the NBA A s.t. $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$. $|A| = |A_1| \cdot |A_2| \cdot 2$.

Union of two NBAs

Two NBAs $A_1 = (Q_1, \Sigma_1, \delta_1, I_1, F_1)$, $A_2 = (Q_2, \Sigma_2, \delta_2, I_2, F_2)$, $A = A_1 \cup A_2 = (Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q := Q_1 \cup Q_2$, $I := I_1 \cup I_2$, $F := F_1 \cup F_2$

- $R(s, s') := \begin{cases} R_1(s, s') & \text{if } s \in Q_1 \\ R_2(s, s') & \text{if } s \in Q_2 \end{cases}$

$\implies A$ is an automaton which just runs nondeterministically either A_1 or A_2

- $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$

- $|A| = |A_1| + |A_2|$

- (same construction as with ordinary automata)

Synchronous Product of NBAs

Let $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$.

Then, $A_1 \times A_2 = (Q, \Sigma, \delta, I, F)$, where

$$Q = Q_1 \times Q_2 \times \{1, 2\}.$$

$$I = I_1 \times I_2 \times \{1\}.$$

$$F = F_1 \times F_2 \times \{1\}.$$

$$\langle p, q, 1 \rangle \xrightarrow{a} \langle p', q', 1 \rangle \text{ iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } p \notin F_1.$$

$$\langle p, q, 1 \rangle \xrightarrow{a} \langle p', q', 2 \rangle \text{ iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } p \in F_1.$$

$$\langle p, q, 2 \rangle \xrightarrow{a} \langle p', q', 2 \rangle \text{ iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } q \notin F_2.$$

$$\langle p, q, 2 \rangle \xrightarrow{a} \langle p', q', 1 \rangle \text{ iff } p \xrightarrow{a} p' \text{ and } q \xrightarrow{a} q' \text{ and } q \in F_2.$$

Theorem $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks

- As soon as it goes through an accepting state of the current track, it switches to the other track

\implies to visit infinitely often a state in F (i.e., F_1), it must visit infinitely often some state also in F_2

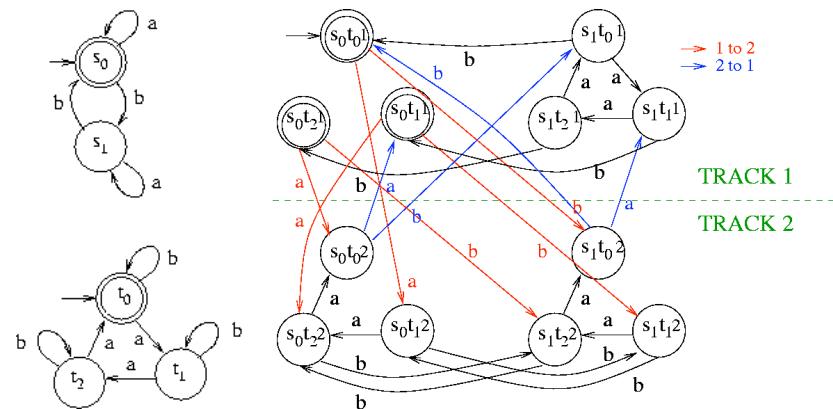
- Important subcase: If $F_2 = Q_2$, then

$$Q = Q_1 \times Q_2.$$

$$I = I_1 \times I_2.$$

$$F = F_1 \times Q_2.$$

Product of NBAs: Example



Closure Properties (2)

Theorem (complementation)

For the NBA A_1 we can construct an NBA A_2 such that $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$. $|A_2| = O(2^{|A_1|} \cdot \log(|A_1|))$.

Method: (hint)

- (1) convert a Büchi automaton into a Non-Deterministic Rabin automaton.
- (2) determinize and Complement the Rabin automaton
- (3) convert the Rabin automaton into a Büchi automaton

Omega Regular Expressions

A language is called **ω -regular** if it has the form $\bigcup_{i=1}^n U_i \cdot (V_i)^\omega$ where U_i, V_i are regular languages.

Theorem A language L is ω -regular iff it is NBA-recognizable.

Content

1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Nonemptiness of NFA Automata

- The **nonemptiness** problem for an automaton is to decide whether there is at least one word for which there is an accepting run.
- For NFA (i.e., standard nondeterministic finite automata), nonemptiness algorithms are based on **reachability**
- In Datalog/Prolog notation:

```
nonempty :- initial(X), cn(X, Y), final(Y).  
cn(X, Y) :- r(X, A, Y).  
cn(X, Y) :- r(X, A, Z), cn(Z, Y).
```

where `initial(X)` denotes that X is an initial state; `final(X)` denotes that X is a final state; `r(X, A, Y)` denotes that a transition from X to Y reading A ; and `cn(., .)` is the **transitive closure** of `r(X, A, Y)` projected on X, Y .

Notice that `cn(., .)` is not expressible in FOL.

- Reachability is a well-known problem on graphs, its complexity is NLOGSPACE-complete.
→

Thm. Nonemptiness for NFA a is **NLOGSPACE**-complete.

Practical algorithms have a **linear** cost.

Nonemptiness of Büchi Automata

- For Büchi automata, nonemptiness algorithms are based on **fair reachability**
- In Datalog/Prolog notation:

```
nonempty :- initial(X), cn(X, Y), final(Y), cn(Y, X).
```

```
cn(X, Y) :- r(X, A, Y).
```

```
cn(X, Y) :- r(X, A, Z), cn(Z, Y).
```

where, as before, `initial(X)` denotes that X is an initial state; `final(X)` denotes that X is a final state; `r(X, A, Y)` denotes that a transition from X to Y reading A ; and `cn(., .)` is the **transitive closure** of `r(X, A, Y)` projected on X, Y .

- Fair reachability amounts to two separate reachability problems: (1) reach a final state from the initial state, (2) from that final state reach itself through a loop.
- Fair reachability has the same complexity as reachability: NLOGSPACE-complete. →

Thm. Nonemptiness for Büchi automata is **NLOGSPACE**-complete.

Practical algorithms have a **linear** cost.

NFA emptiness checking

- Equivalent of finding a final state reachable from an initial state.
- It can be solved with a DFS or a BFS.
- A DFS finds a counterexample on the fly (it is stored in the stack of the procedure).
- A BFS finds a final state reachable with a shortest counterexample, but it requires a further backward search to reproduce the path.
- Complexity: $O(n)$.
- Henceafter, assume w.l.o.g. that there is only one initial state.

NBA emptiness checking

- Equivalent of finding an accepting cycle reachable from an initial state.
- A naive algorithm:
 - a DFS finds the final states f reachable from an initial state;
 - for each f , a DFS finds if there exists a loop.
 - Complexity: $O(n^2)$.
- SCC-based algorithm:
 - the Tarjan's algorithm uses a DFS to finds the SCCs of a graph in linear time;
 - another DFS finds if a non-trivial final SCC is reachable from an initial state.
 - Complexity: $O(n)$.
 - It stores too much information and does not find directly a counterexample.

Content

1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Automata-Theoretic LTL Model Checking

- $M \models A\psi$ (CTL*)
 $\iff M \models \psi$ (LTL)
 $\iff \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
 $\iff \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)} = \{\}$
 $\iff \mathcal{L}(A_M) \cap \mathcal{L}(A_{\neg\psi}) = \{\}$
 $\iff \mathcal{L}(A_M \times A_{\neg\psi}) = \{\}$
- A_M is a **Büchi Automaton** equivalent to M (which represents all and only the executions of M)
- $A_{\neg\psi}$ is a **Büchi Automaton** which represents all and only the paths that satisfy $\neg\psi$ (do not satisfy ψ)
 $\implies A_M \times A_{\neg\psi}$ represents all and only the paths appearing in M and not in ψ .

Automata-Theoretic LTL M.C. (dual version)

- $M \models E\varphi$
 $\iff M \not\models A_{\neg\varphi}$
 $\iff \dots$
 $\iff \mathcal{L}(A_M \times A_{\varphi}) \neq \{\}$
- A_M is a **Büchi Automaton** equivalent to M (which represents all and only the executions of M)
- A_{φ} is a **Büchi Automaton** which represents all and only the paths that satisfy φ
 $\implies A_M \times A_{\varphi}$ represents all and only the paths appearing in both A_M and A_{φ} .

Automata-Theoretic LTL Model Checking

Four steps:

- 1 Compute A_M
- 2 Compute A_{φ}
- 3 Compute the product $A_M \times A_{\varphi}$
- 4 Check the emptiness of $\mathcal{L}(A_M \times A_{\varphi})$

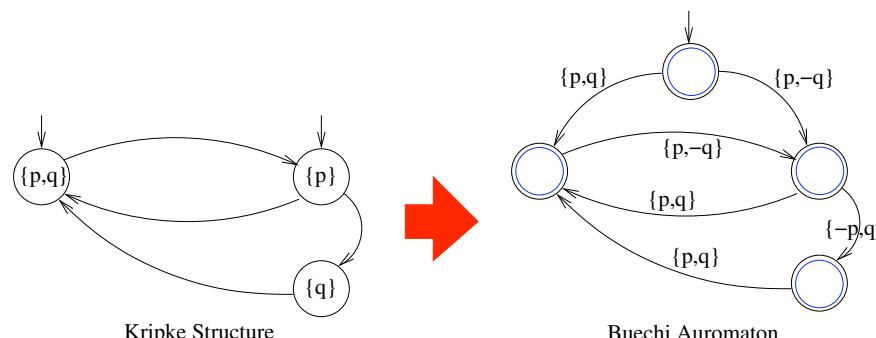
1 Automata-Theory Overview

- Language Containment
- Automata on Finite Words
- Automata on Infinite Words
- Emptiness Checking

2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Computing a NBA A_M from a Kripke Structure M : Example



⇒ Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states

Computing an NBA A_M from a Kripke Structure M

- Transforming a K.S. $M = \langle S, \Sigma, R, L, AP \rangle$ into an NBA $A_M = \langle Q, \Sigma, \delta, I, F \rangle$ s.t.:

- States: $Q := S \cup \{init\}$, $init$ being a new initial state
- Alphabet: $\Sigma := 2^{AP}$
- Initial State: $I := \{init\}$
- Accepting States: $F := Q = S \cup \{init\}$
- Transitions:

$$\delta : q \xrightarrow{a} q' \text{ iff } (q, q') \in R \text{ and } L(q') = a$$

$$init \xrightarrow{a} q \text{ iff } q \in S_0 \text{ and } L(q) = a$$

- $\mathcal{L}(A_M) = \mathcal{L}(M)$
- $|A_M| = |M| + 1$

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are uncertain (they can be either true or false).

- 1 Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking

- 2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
 - Exponential construction of Büchi Automata
 - On-the-fly construction of Büchi Automata
 - Complexity

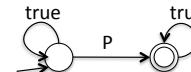
Problem

Given an LTL formula ϕ , find a Büchi Automaton that accepts the same language of ϕ .

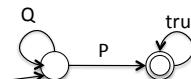
- It is a fundamental problem in LTL model checking (in other words, every model checking algorithm that verifies the correctness of an LTL formula translates it in some sort of finite-state machine).
- We will translate LTL in a (equivalent) variant of Büchi Automata called Labeled Generalized Büchi Automata (LGBA).

Translation from LTL to Büchi Automata: examples

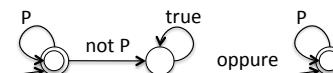
- $\diamond P$
 $\mathcal{L} = \text{true}^* P \text{ true}^\omega$



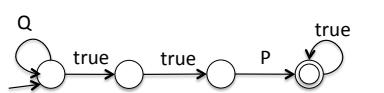
- $Q \cup P$
 $\mathcal{L} = Q^* P \text{ true}^\omega$



- $\Box P$
 $\mathcal{L} = P^\omega$

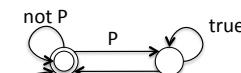


- $Q \cup \bullet \bullet P$
 $\mathcal{L} = Q^* \text{ true true } P \text{ true}^\omega$

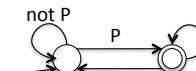


Translation from LTL to Büchi Automata: examples

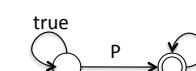
- $\Box(P \rightarrow \diamond Q)$
 $\mathcal{L} = (\text{not } P^* P \text{ true } Q \text{ true})^\omega \cup (\text{not } P^* P \text{ true } Q \text{ true})^* \text{ not } P^\omega$



- $\Box \diamond P$
 $\mathcal{L} = (\text{true}^* P)^\omega$



- $\diamond \Box P$
 $\mathcal{L} = \text{true}^* P^\omega$



- 1 Automata-Theory Overview
 - Language Containment
 - Automata on Finite Words
 - Automata on Infinite Words
 - Emptiness Checking

- 2 The Automata-Theoretic Approach to Model Checking

- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata
- Exponential construction of Büchi Automata
- On-the-fly construction of Büchi Automata
- Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- 1 Compute A_M :
- 2 Compute A_φ :
- 3 Compute the product $A_M \times A_\varphi$:
- 4 Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- 1 Compute A_M : $|A_M| = O(|M|)$
- 2 Compute A_φ :
- 3 Compute the product $A_M \times A_\varphi$:
- 4 Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- 1 Compute A_M : $|A_M| = O(|M|)$
- 2 Compute A_φ : $|A_\varphi| = O(2^{|\varphi|})$
- 3 Compute the product $A_M \times A_\varphi$:
- 4 Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- ① Compute A_M : $|A_M| = O(|M|)$
- ② Compute A_φ : $|A_\varphi| = O(2^{|\varphi|})$
- ③ Compute the product $A_M \times A_\varphi$:
 $|A_M \times A_\varphi| = |A_M| \cdot |A_\varphi| = O(|M| \cdot 2^{|\varphi|})$
- ④ Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$:

Automata-Theoretic LTL Model Checking: complexity

Four steps:

- ① Compute A_M : $|A_M| = O(|M|)$
- ② Compute A_φ : $|A_\varphi| = O(2^{|\varphi|})$
- ③ Compute the product $A_M \times A_\varphi$:
 $|A_M \times A_\varphi| = |A_M| \cdot |A_\varphi| = O(|M| \cdot 2^{|\varphi|})$
- ④ Check the emptiness of $\mathcal{L}(A_M \times A_\varphi)$: $O(|A_M \times A_\varphi|) = O(|M| \cdot 2^{|\varphi|})$

⇒ the complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Final Remarks

- Büchi automata are in general more expressive than LTL!
 - ⇒ Some tools (e.g., Spin, ObjectGODE) allow specifications to be expressed directly as NBAs
 - ⇒ complementation of NBA important!
- for every LTL formula, there are many possible equivalent NBAs
 - ⇒ lots of research for finding “the best” conversion algorithm
- performing the product and checking emptiness very relevant
 - ⇒ lots of techniques developed (e.g., partial order reduction)
 - ⇒ lots of ongoing research