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@ The behaviors (computations) of a system can be seen as sequences

@ Automata-Theory Overview of propositions.
@ Language Containment

MODULE main
VAR done: Boolean;
ASSIGN
init(done) :=0;
next (done) := case
'done: {0,1};
done: done;
esac;

@ Since the state space is finite, the set of computations can be
represented by a finite automaton.

o) L Qe ()
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Correct computations Language Containment Problem

@ Some computations are correct and others are not acceptable. @ Solution to the verification problem

. . — Check if language of the system automaton is contained in the

@ We can build an automaton for the set of all acceptable computations. suag Y
language accepted by the property automaton.

@ Example: eventually, done will be true forever. @ The language containment problem is the problem of deciding if a

language is a subset of another language.

ﬁ(Al) - L:(Az) <— ﬁ(Al) N E(AQ) = {}

To solve the language containment problem, we need to know:

dane © how to complement an automaton,

M @ how to intersect two automata,

© how to check the language emptiness of an automaton.
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@ An Alphabet X is a collection of symbols (letters).
@ Automata-Theory Overview Eg. zp: {a,b). Y ( )

@ A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by >*.

@ Automata on Finite Words

@ A language U is a set of words, i.e. U C X*.

Example: Words over ¥ = {a, b} with equal number of a's and b's.
(E.g. aabb or abba.)

Language recognition problem:
determine whether a word belongs to a language.

Automata are computational devices able to solve language recognition
problems.
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Finite State Automata Notation

Basic model of computational systems with finite memory. a, b € ¥ finite alphabet.

Widely applicable u,v,w € X* finite words.

€ empty word.
u.v catenation.

u' = u.u. .u repeated /-times.

@ Embedded System Controllers.
Languages: Ester-el, Lustre, Verilog.

@ Synchronous Circuits. U,V C =* Finite word languages.

@ Regular Expression Pattern Matching
Grep, Lex, Emacs.

@ Protocols
Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...
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FSA Definition Regular Languages

Nondeterministic Finite State Automaton (NFA): @ Arunof NFAAonu = ag,ai,...,an—1 is a finite sequence of states
NFAis (Q,X,4,1,F)
Q@ Finite set of states.
2 is a finite alphabet
| C Q set of initial states.
F C Q@ set of final states.
5§ C Q x ¥ x Q transition relation (edges). @ The languages accepted by a NFA are called regular languages.
We use g — ¢’ to denote (q,a,q’) € .

90,G1, .-, Gn s.t. go € | and g = gi+1 for 0 <7 < n.
@ An accepting run is one where the last state g, € F.

@ The language accepted by A
L(A) = {ueX* | A hasan accepting run on u}

Deterministic Finite State Automaton (DFA):

DFA has 6 : Q x ¥ — @, a total function.
Single initial state | = {qo}.
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Finite State Automata

Example: DFA A; over X = {a, b}.
Recognizes words which do not end in b.

a
NFA Az. Recognizes words which end in b.

a,b b
L

Y b
Introduction to Formal Methods
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Determinisation [cont.]

NFA A,: Words which end in b.
a,b

Ao can be determinised into the automaton DAs below.
States = 2€.
a

There are NFAs of size n for which the size of the minimum sized DFA
must have size O(2").
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Determinisation

Theorem (determinisation) Given a NFA A we can construct a DFA A’ s.t.
L(A) = L(A). Size |A| = 2004D.

e Each state of A’ corresponds to a set {sy, ..., s;} of states in A
(Q C 2Q), with the intended meaning that :
o A’is in the state {si,..,s;} if Ais in one of the states s;, ..., 5

@ The deterministic transition relation ¢’ : 29 x ¥ —— 29 js
o {s} = {si|s—= s}
° {517"'75ja"'75n} = Ujr'lzl{si | Sj o Si}
@ The (unique) initial state is I’ =g4er {si | s; € I}
@ The set of final states F’ is such that
{s1,...,sn} € F'iff s; € F for some i € {1,...,n}

Introduction to Formal Methods
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Closure Properties

Theorem (Boolean closure) Given NFA Aj, Ay over ¥ we can construct
NFA A over X s.t.

o L(A) = L(A;) (Complement). |A| = 20040,
e L(A) = L(A1)UL(A2) (union). |Al = |A1| + |A2].
o L(A) = L(A1) N L(A2) (intersection). |[A| = |A1]-|As|.
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Complementation of a NFA Union of two NFAs

A NFA A= (Q,X,6,1,F) is complemented by: Two NFAs Ay = (Qu,X1,01, b, 1), A2 = (Q2, 22,02, b, F2),
o determinizing it into a DFA A’ = (Q', 5/, &', I, F') A=A1UA; = (Q,%,4,1,F) is defined as follows
e complementing it: A’ = (Q', %', ¢, I, F) °® Q=AU I'=hUh F=FkRUF

al Ri(s,s') if s€ @
7| = |A/| = 20(1A]) n._ | R, 1
o [A|=|A|=2 ° R(s:s): {Rz(s,s/),-fseag

=—>A is an automaton which just runs nondeterministically either A;
or A2

o L(A) = L(A)UL(A)
o Al = |Ai] + | Az
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Synchronous Product Construction Example

Let Al = (Qlaza(slvllaFl) and A2 - (02)2»627I2)F2)- Then,
A1 x Ay = (Q,X,4,1,F) where

OQ:leQQ. I:Il><12.
F = F1><F2.

a / / . a / a /
e <p,g>—<p,qgd>iffp—p and g — ¢
p-a p-a P P 7 9 @ A; recognizes words with an even number of b's.

Theorem L£(A; x Az) = L(A1) N L(Ay). @ A, recognizes words with a number of a's multiple of 3.
@ The Product Automaton A; x Ay with F = {sp, tp}.
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Syntax: 0 | € | a | regi.re reg|re, reg*.
Y | | | regireg; | regalregs | reg @ Automata-Theory Overview

Every regular expression reg denotes a language L(reg).

Example: a*.(b|bb).a*. The words with either 1 b or 2 consecutive b's. _
@ Automata on Infinite Words

Theorem: For every regular expression reg we can construct a language
equivalent NFA of size O(|reg]).

Theorem: For every DFA A we can construct a language equivalent regular
expression reg(A).
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Omega-Automata

Infinite Word Languages

Modeling infinite computations of reactive systems. We consider automaton running over infinite words.
@ An w-word « over X is an infinite sequence a,b(\ b
dp, di, a2.... \f/;\] 5
Formally, o : N — ¥. Vb :
The set of all infinite words is denoted by 3. Let « = aabbbb.... There are several possible runs.
@ A w-language L is collection of w-words, i.e. L C X%, Run p1 = s1,51,51,5,5,5. ..
Example All words over {a, b} with infinitely many a's. Run po = s1,51,51,81,51,89 ..

Acceptance Conditions Biichi, (Muller, Rabin, Street).

Notation Acceptance is based on states occurring infinitely often
omega words a, 3,7 € L. Notation Let p € Q. Then,

omega-languages L, L; C ¥¥ Inf(p) = {s€Q | 3®ieN. p(i)=s}.
Forue Xt letu” = vuu... (The set of states occurring infinitely many times in p.)
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Nondeterministic Buchi Automaton

Let X = {a, b}.
A = (Q,X,0,1,F), where F C Q is the set of accepting states. Let a Deterministic Biichi Automaton (DBA) A; be
@ A run p of A on omega word « is an infinite sequence a b b
aj .
P = Go,q1,q92,-..5St. go € | and g — gj41 for 0 < J.
@ The run p is accepting if
Inf(p) N F # (. a
@ The language accepted by A . . P
. o With F = {s;} the automaton recognizes words with infinitely man
L(A) = {a«€X¥ | A has an accepting run on a} s {su} & y y
e With F = {s,} the automaton recognizes words with infinitely many
b's.
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Biichi Automaton: Example (2) Deterministic vs. Nondeterministic Biichi Automata

Let a Nondeterministic Biichi Automaton (NBA) A be Theorem DBAs are strictly less powerful than NBAs.
a’b(—\ﬂ b The subset construction does not work: let DA, be
s , 2 b
L .
With F = {s,}, automaton A, recognizes words with finitely many a.

ThUS, ﬁ(Az) = ﬁ(Al)
@ DA, is not equivalent to A;
(e.g., it recognizes (b.a)*)
@ There is no DBA equivalent to A
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Closure Properties Union of two NBAs

Theorem (union, intersection) Two NBAs Ay = (Q1,X1,01, h, F1), Az = (Q2, X2, 02, b2, F2),
For the NBAs A1, A> we can construct A=A UA =(Q,L,4,/,F) is defined as follows

—the NBA As.t. L(A) = L(A1)UL(A2). |Al = |A1] + |A2] 0 R:=QUQ, I:'=hUb, F:=FRUF

—the NBA As.t. L(A) = L(A1)NL(A2). |Al = |A1]-|A] - 2. Ri(s,s") if s€ @

o R(s,s') = .
(s5) { Ro(s,s’) if s€ Qo
=—>A is an automaton which just runs nondeterministically either A;

or A2
o L(A) = L(A1)UL(A)
o Al = |Ai] + | Az

(same construction as with ordinary automata)
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Synchronous Product of NBAs Product of NBAs: Intuition
Let Ay = (Q1,%,01,h,F1)and Ay = (Q2,%,02, b, F2). @ The automaton remembers two tracks, one for each source NBA, and
Then, A; x Ay = (Q,%,6,1,F), where it points to one of the two tracks
Q = Q1 x @ x{1,2}. @ As soon as it goes through an accepting state of the current track, it
I = h xhx{1}. switches to the other track
F = FL x Q x{1}. =to visit infinitely often a state in F (i.e., F1), it must visit
<pgl>cp g, 1>iff p—sp and g ¢ and p & Fi. infinitely often some state also in F
<p,q1 >, p.q.,2>iffp N p and g N q and p € Fi. @ Important subcase: If F, = @5, then
<p,q2>-<p,qd,2>iff p-2p and g -2 ¢ and q & Fo. Q = A xQ.
<p,g2>—<p, g, 1>iff p—2 p and g —> ¢ and g € F>. I'= hxbh.
Theorem L(A1 x A2) = L(A1) N L(A2). Fr=hxQ
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Product of NBAs: Example Closure Properties (2)

Theorem (complementation)

For the NBA A; we can construct an NBA A, such that £(A2) = L(A1).
|Az| = 0(2\A1|'|Og(\A1|))_

Method:  (hint)

(1) convert a Biichi automaton into a Non-Deterministic Rabin automaton.
(2) determinize and Complement the Rabin automaton

(3) convert the Rabin automaton into a Biichi automaton

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods

Roberto Sebastiani, Stefano Tonetta () Introduction to Formal Methods i ) /93

A language is called w-regular if it has the form U, U;.(V;)“ where
ghae e = Un(V) @ Automata-Theory Overview
U;, V; are regular languages.

Theorem A language L is w-regular iff it is NBA-recognizable.

@ Emptiness Checking
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Nonemptiness of NFA Automata Nonemptiness of Blichi Automata

* The nonemptiness problem for an automaton is to decide whether there is at least one * For Biichi automata, nonemptiness algorithms are based on fair reachability
word for which there is an accepting run. «  In Datalog/Prolog notation:

*  For NFA (i.e., standard nondeterministic finite automata), nonemptiness algorithms are nonempty :- initial(X),cn(X,Y),final(Y),cn(Y,Y).
based on reachability
cn(X,Y) :- r(X,A,Y).
* In Datalog/Prolog notation: cn(X,Y) :- r(X,A,Z),cn(Z,Y).
nonempty :- initial(X),cn(X,Y),final(Y). where, as before, initial (X) denotes that X is an initial state;
en(X,Y) i- T(X,A,¥). final (X) denotesthat X isa final state; r (X, A, Y) denotes that a

transition from X to Y reading A;and cn (., .) is the transitive closure of
X,Y) :- r(X,A,Z), Z,Y) . ‘ ’ ’
en (X, ¥) T (X, )rend ) r(X,A,Y) projected on X,Y.
where initial (X) denotesthat X is an initial state; final (X) denotesthatX is

afinal state; r (X, A, Y) denotes that a transition from X to Y reading A;and cn (., .) * Fair reachability amounts to two separate reachability problems: (1) reach a
is the transitive closure of r (X, A, Y) projected on X,Y. final state from the initial state, (2) from that final state reach itself through a
Notice that cn (., . ) is not expressible in FOL. loop.

* Reachability is a well-known problem on graphs, its complexity is NLOGSPACE-complete. * Fair reachability has the same complexity as reachability: NLOGSPACE-
S complete. >
Thm. Nonemptiness for NFA a is NLOGSPACE-complete. Thm. Nonemptiness for Biichi automata is NLOGSPACE-complete.

Practical algorithms have a linear cost.

Practical algorithms have a linear cost.

NFA emptiness checking NBA emptiness checking
@ Equivalent of finding a final state reachable from an initial state. @ Equivalent of finding an accepting cycle reachable from an initial
@ It can be solved with a DFS or a BFS. state.
o A DFS finds a counterexample on the fly (it is stored in the stack of ® A naive algorithm:

the procedure). e a DFS finds the fin:.al sta.tes f reachable from an initial state;
o for each f, a DFS finds if there exists a loop.

e A BFS finds a final state reachable with a shortest counterexample, o Complexity: O(n?).
but it requires a further backward search to reproduce the path. o SCC-based algorithm:
o Complexity: O(n). e the Tarjan's algorithm uses a DFS to finds the SCCs of a graph in
linear time;
. .. e another DFS finds if a non-trivial final SCC is reachable from an initial
@ Henceafter, assume w.l.o.g. that there is only one initial state.

state.

o Complexity: O(n).

o It stores too much information and does not find directly a
counterexample.
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M = Ay (CTL¥)
M =1 (LTL)
L(M) C L(¥)
LMy L) = {}
L(Am) N L(A~y) = {}
L(Am x A~y) = {}
Aw is a Biichi Automaton equivalent to M (which represents all and
only the executions of M)

© The Automata-Theoretic Approach to Model Checking
@ Automata-Theoretic LTL Model Checking

S A I

@ A_, is a Biichi Automaton which represents all and only the paths
that satisfy =1 (do not satisfy 1)

= Am X A represents all and only the paths appearing in M and not

in .
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Automata-Theoretic LTL M.C. (dual version)
e MEEp Four steps:

= M} A-p @ Compute Ay

= .. @ Compute A,

— L(Am x Ap) #{} © Compute the product Ay x A,
@ Ay is a Biichi Automaton equivalent to M (which represents all and © Check the emptiness of L(Ay x A,)

only the executions of M)
@ A, is a Biichi Automaton which represents all and only the paths that
satisfy ¢

= Apm X A, represents all and only the paths appearing in both Ay and

A,.
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e Transforming a K.S. M = (S, Sy, R, L, AP) into an NBA
Av=(Q,XL,,1,F) s.t.:

States: Q := S U {init}, init being a new initial state

Alphabet: ¥ := 247

Initial State: | := {init}

Accepting States: F := Q = S U {init}

Transitions:

© The Automata-Theoretic Approach to Model Checking §: q-—4q iff(q,q) € Rand L(q') = a
init = qiff g€ Sy and L(q) = a

@ From Kripke Structures to Biichi Automata

o L(Am) = L(M)
o |Ay|l=IM|+1
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Labels on Kripke Structures and BA's - Remark

Computing a NBA Ay from a Kripke Structure M:
Example

Note that the labels of a Biichi Automaton are different from the labels of
a Kripke Structure. Also graphically, they are interpreted differently:

()

@ in a Kripke Structure, it means that p is true and all other
propositions are false;

@ in a Biichi Automaton, it means that p is true and all other
propositions are uncertain (they can be either true or false).

Kripke Structure Buechi Auromaton

=>Substantially, add one initial state, move labels from states to
incoming edges, set all states as accepting states
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Problem

Given an LTL formula ¢, find a Biichi Automaton that accepts the same
language of ¢.

@ It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an

© The Automata-Theoretic Approach to Model Checking LTL formula translates it in some sort of finite-state machine).
e We will translate LTL in a (equivalent) variant of Biichi Automata
called Labeled Generalized Biichi Automata (LGBA).

@ From LTL Formulas to Biichi Automata
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Translation from LTL to Biichi Automata: examples Translation from LTL to Biichi Automata: examples
. ’P true
p not P
L=true* P true® ' O’ - H(P-> ‘Q) P e
L= (not P* P true Q true)* U a

true (not P* P true Q true)* not P®

Q
- QuP
L=Q* P truev .. ’ O. . n o P
- HOP
(L O

. HP P true P L= (true*p)» not P

- not P o ure%
L=P pp true p

a i (O

true L=true*p¥

* Queep %tru% true —~ P ’(9
L=Q* true true P true® / -/




Automats Thcreic LTL. Model Checking: compesy

Four steps:
@ Compute Ay
@ Compute A:
© Compute the product Ay x A,:
@ Check the emptiness of L(Ap x A,):

© The Automata-Theoretic Approach to Model Checking

@ Complexity
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Automata-Theoretic LTL Model Checking: complexity
Four steps: Four steps:
@ Compute Ay |Ay| = O(IM]) @ Compute Ay |Ay| = O(IM])
@ Compute A,: @ Compute A,: |A, | = O(2¥))
© Compute the product Ay x Ag: © Compute the product Ay x Ag:
© Check the emptiness of L(Apy x A,): © Check the emptiness of L(Ay x Ay):
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Automata-Theoretic LTL Model Checking: complexity Automata-Theoretic LTL Model Checking: complexity

Four steps: Four steps:
@ Compute Ay [Ay| = O(IM]) @ Compute Ay: |[Ap| = O(IM])
@ Compute A,: |A,| = 0(2¥)) @ Compute A,: |A,| = 0(21¥))
© Compute the product Ay x A,: © Compute the product Ay x A,:
Aw Al = [Au] - 1A, = O(IM] -2/ |Aw Al = [Au] - 1A, = O(IM] - 217
@ Check the emptiness of L(Apy x A): @ Check the emptiness of L(Ay x A,): O(|Ay x A,|) = O(IM] - 21¢])

=—>the complexity of LTL M.C. grows linearly wrt. the size of the model
M and exponentially wrt. the size of the property ¢
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Final Remarks

@ Biichi automata are in general more expressive than LTL!
=—Some tools (e.g., Spin, ObjectGEODE) allow specifications to be
expressed directly as NBAs
=-complementation of NBA important!

o for every LTL formula, there are many possible equivalent NBAs
=—lots of research for finding “the best” conversion algorithm

@ performing the product and checking emptiness very relevant

= lots of techniques developed (e.g., partial order reduction)
—lots on ongoing research
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