

COMPUTATION TREE LOGIC (CTL)

Slides by Alessandro Artale
<http://www.inf.unibz.it/~artale/>

Some material (text, figures) displayed in these slides is courtesy of:

M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani.

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- p. 1/35

Computation Tree logic Vs. LTL

- LTL implicitly quantifies *universally* over paths.

$\langle \mathcal{KM}, s \rangle \models \phi$ iff for every path π starting at s $\langle \mathcal{KM}, \pi \rangle \models \phi$

- Properties that assert the *existence* of a path cannot be expressed. In particular, properties which *mix* existential and universal path quantifiers cannot be expressed.
- The *Computation Tree Logic*, CTL, solves these problems!
 - CTL explicitly introduces *path quantifiers*!
 - CTL is the natural temporal logic interpreted over Branching Time Structures.

- p. 3/35

- p. 2/35

CTL at a glance

- CTL is evaluated over branching-time structures (Trees).
- CTL explicitly introduces *path quantifiers*:
 - All Paths: **A**
 - Exists a Path: **E**
- Every temporal operator – $\Box(G)$, $\Diamond(F)$, $\bigcirc(X)$, $\mathcal{U}(U)$ – preceded by a path quantifier (**A** or **E**).
- **Universal modalities:** **AF, AG, AX, AU**
The temporal formula is true in **all** the paths starting in the current state.
- **Existential modalities:** **EF, EG, EX, EU**
The temporal formula is true in **some** path starting in the current state.

- p. 4/35

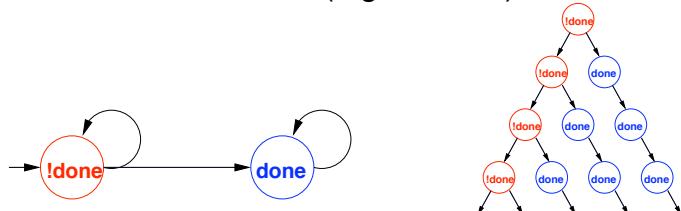
Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- 0. 5/35

CTL: Semantics

- We interpret our CTL temporal formulas over Kripke Models linearized as trees (e.g. **AF**done).



- Universal modalities (**AF**, **AG**, **AX**, **AU**): the temporal formula is true in **all** the paths starting in the current state.
- Existential modalities (**EF**, **EG**, **EX**, **EU**): the temporal formula is true in **some** path starting in the current state.

- 0. 7/35

CTL: Syntax

Countable set Σ of *atomic propositions*: p, q, \dots the set FORM of formulas is:

$\varphi, \psi \rightarrow p \mid \top \mid \perp \mid \neg\varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid$

AX $\varphi \mid \mathbf{AG}\varphi \mid \mathbf{AF}\varphi \mid \varphi \mathbf{AU}\psi$

EX $\varphi \mid \mathbf{EG}\varphi \mid \mathbf{EF}\varphi \mid \varphi \mathbf{EU}\psi$

Intuition:

E there **Exists** a path

A in **All** paths

F sometime in the **Future**

G **Globally** in the future

- 0. 6/35

CTL: Semantics (Cont.)

Let Σ be a set of atomic propositions. We interpret our CTL temporal formulas over Kripke Models:

$\mathcal{KM} = \langle S, I, R, \Sigma, L \rangle$

The semantics of a temporal formula is provided by the *satisfaction relation*:

$\models : (\mathcal{KM} \times S \times \text{FORM}) \rightarrow \{\text{true, false}\}$

- 0. 8/35

CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a state/time “ s_i ”

$$\mathcal{KM}, s_i \models p \text{ iff } p \in L(s_i) \quad (\text{for } p \in \Sigma)$$

The semantics for the classical operators is as expected:

$$\begin{aligned} \mathcal{KM}, s_i \models \neg\varphi &\text{ iff } \mathcal{KM}, s_i \not\models \varphi \\ \mathcal{KM}, s_i \models \varphi \wedge \psi &\text{ iff } \mathcal{KM}, s_i \models \varphi \text{ and } \mathcal{KM}, s_i \models \psi \\ \mathcal{KM}, s_i \models \varphi \vee \psi &\text{ iff } \mathcal{KM}, s_i \models \varphi \text{ or } \mathcal{KM}, s_i \models \psi \\ \mathcal{KM}, s_i \models \varphi \Rightarrow \psi &\text{ iff } \text{if } \mathcal{KM}, s_i \models \varphi \text{ then } \mathcal{KM}, s_i \models \psi \\ \mathcal{KM}, s_i \models \top & \\ \mathcal{KM}, s_i \not\models \perp & \end{aligned}$$

– d. 9/35

CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with temporal operators.

- > “**Necessarily Next**”. $\text{AX}\varphi$ is true in s_t iff φ is true in every successor state s_{t+1}
- > “**Possibly Next**”. $\text{EX}\varphi$ is true in s_t iff φ is true in one successor state s_{t+1}
- > “**Necessarily in the future**” (or “Inevitably”). $\text{AF}\varphi$ is true in s_t iff φ is inevitably true in **some** $s_{t'}$ with $t' \geq t$
- > “**Possibly in the future**” (or “Possibly”). $\text{EF}\varphi$ is true in s_t iff φ may be true in **some** $s_{t'}$ with $t' \geq t$

– d. 11/35

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where $\pi = (s_i, s_{i+1}, \dots)$ is a generic path outgoing from state s_i in \mathcal{KM} .

$$\begin{aligned} \mathcal{KM}, s_i \models \text{AX}\varphi &\text{ iff } \forall \pi = (s_i, s_{i+1}, \dots) \mathcal{KM}, s_{i+1} \models \varphi \\ \mathcal{KM}, s_i \models \text{EX}\varphi &\text{ iff } \exists \pi = (s_i, s_{i+1}, \dots) \mathcal{KM}, s_{i+1} \models \varphi \\ \mathcal{KM}, s_i \models \text{AG}\varphi &\text{ iff } \forall \pi = (s_i, s_{i+1}, \dots) \forall j \geq i. \mathcal{KM}, s_j \models \varphi \\ \mathcal{KM}, s_i \models \text{EG}\varphi &\text{ iff } \exists \pi = (s_i, s_{i+1}, \dots) \forall j \geq i. \mathcal{KM}, s_j \models \varphi \\ \mathcal{KM}, s_i \models \text{AF}\varphi &\text{ iff } \forall \pi = (s_i, s_{i+1}, \dots) \exists j \geq i. \mathcal{KM}, s_j \models \varphi \\ \mathcal{KM}, s_i \models \text{EF}\varphi &\text{ iff } \exists \pi = (s_i, s_{i+1}, \dots) \exists j \geq i. \mathcal{KM}, s_j \models \varphi \\ \mathcal{KM}, s_i \models (\varphi \text{AU} \psi) &\text{ iff } \forall \pi = (s_i, s_{i+1}, \dots) \exists j \geq i. \mathcal{KM}, s_j \models \psi \text{ and } \forall i \leq k < j : M, s_k \models \varphi \\ \mathcal{KM}, s_i \models \varphi \text{EU} \psi) &\text{ iff } \exists \pi = (s_i, s_{i+1}, \dots) \exists j \geq i. \mathcal{KM}, s_j \models \psi \text{ and } \forall i \leq k < j : \mathcal{KM}, s_k \models \varphi \end{aligned}$$

– d. 10/35

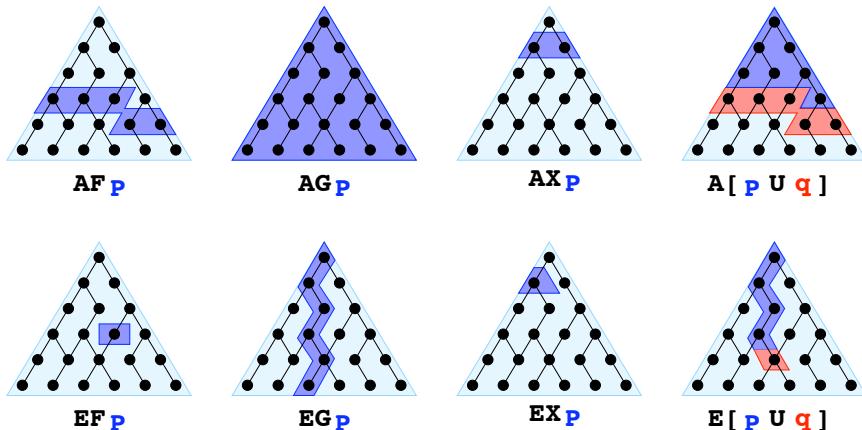
CTL Semantics: Intuitions (Cont.)

- > “**Globally**” (or “always”). $\text{AG}\varphi$ is true in s_t iff φ is true in **all** $s_{t'}$ with $t' \geq t$
- > “**Possibly henceforth**”. $\text{EG}\varphi$ is true in s_t iff φ is possibly true henceforth
- > “**Necessarily Until**”. $(\varphi \text{AU} \psi)$ is true in s_t iff necessarily φ holds until ψ holds.
- > “**Possibly Until**”. $(\varphi \text{EU} \psi)$ is true in s_t iff possibly φ holds until ψ holds.

– d. 12/35

CTL Semantics: Intuitions (Cont.)

finally P globally P next P P until q



- d. 13/35

A Complete Set of CTL Operators

All CTL operators can be expressed via: **EX, EG, EU**

- $AX\varphi \equiv \neg EX\neg\varphi$
- $AF\varphi \equiv \neg EG\neg\varphi$
- $EF\varphi \equiv (\top EU\varphi)$
- $AG\varphi \equiv \neg EF\neg\varphi \equiv \neg(\top EU\neg\varphi)$
- $(\varphi AU\psi) \equiv \neg EG\neg\psi \wedge \neg(\neg\psi EU(\neg\varphi \wedge \neg\psi))$

- d. 14/35

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- **CTL in Computer Science**.
- CTL and Model Checking: Examples.
- CTL Vs. LTL.
- CTL*.

- d. 15/35

Safety Properties

Safety:

“something bad will not happen”

Typical examples:

$AG\neg(reactor_temp > 1000)$

$AG\neg(one_way \wedge AXother_way)$

$AG\neg((x = 0) \wedge AXAXAX(y = z/x))$

and so on.....

Usually: $AG\neg....$

- d. 16/35

Liveness Properties

Liveness:

“something good will happen”

Typical examples:

AFrich

AF($x > 5$)

AG($start \Rightarrow AF_{terminat}$)

and so on.....

Usually: **AF**...

– d. 17/35

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- **CTL and Model Checking: Examples.**
- CTL Vs. LTL.
- CTL*.

– d. 19/35

Fairness Properties

Often only really useful when scheduling processes, responding to messages, etc.

Fairness:

“something is successful/allocated infinitely often”

Typical example:

AG(**AFenabled**)

Usually: **AGAF**...

– d. 18/35

The CTL Model Checking Problem

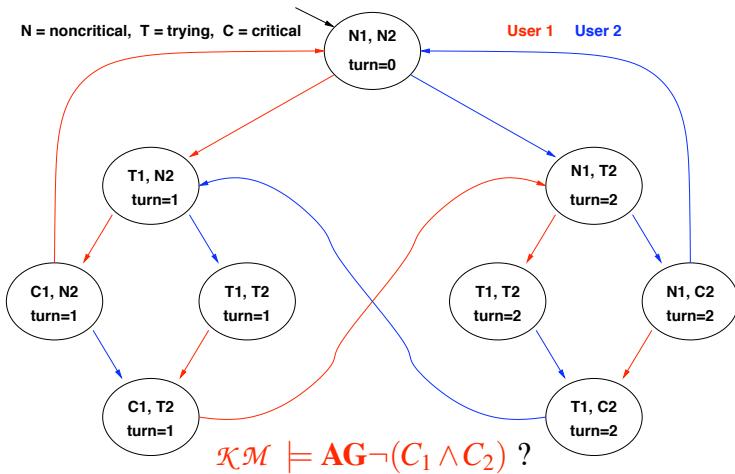
The CTL Model Checking Problem is formulated as:

$\mathcal{KM} \models \phi$

Check if $\mathcal{KM}, s_0 \models \phi$, for **every initial state**, s_0 , of the Kripke structure \mathcal{KM} .

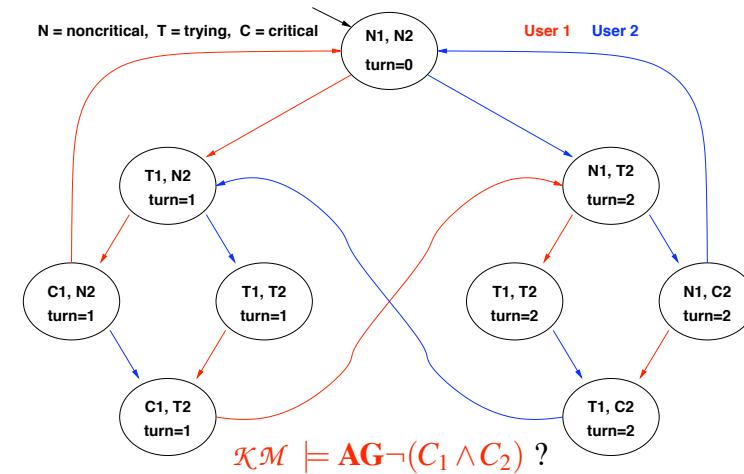
– d. 20/35

Example 1: Mutual Exclusion (Safety)



- d. 21/35

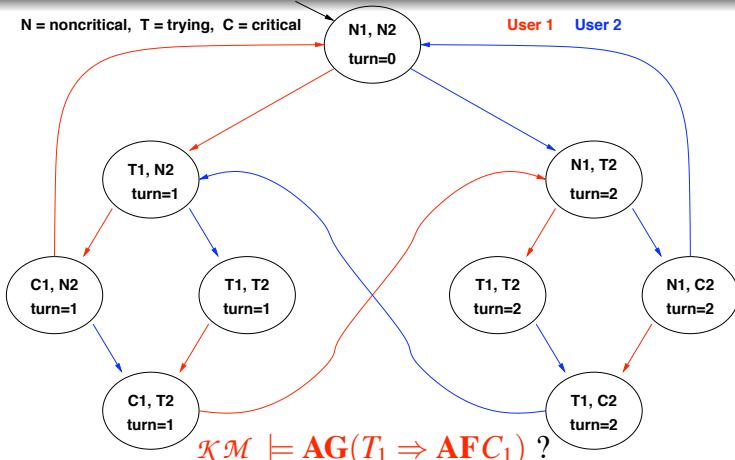
Example 1: Mutual Exclusion (Safety)



YES: There is no reachable state in which $(C_1 \wedge C_2)$ holds!
(Same as the $\square \neg(C_1 \wedge C_2)$ in LTL.)

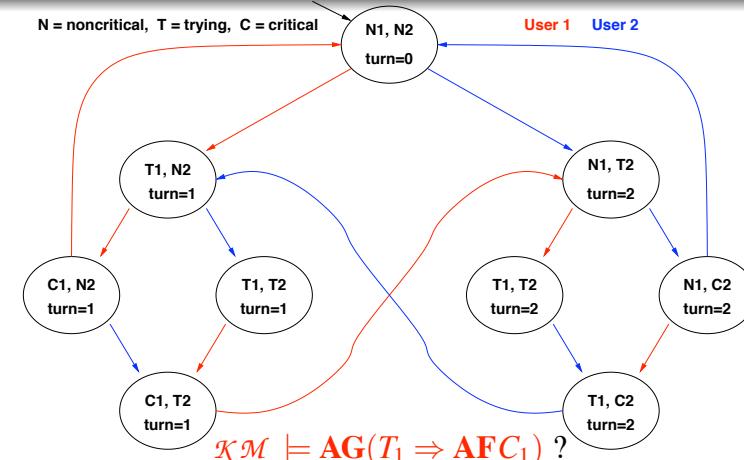
- d. 21/35

Example 2: Liveness



- d. 22/35

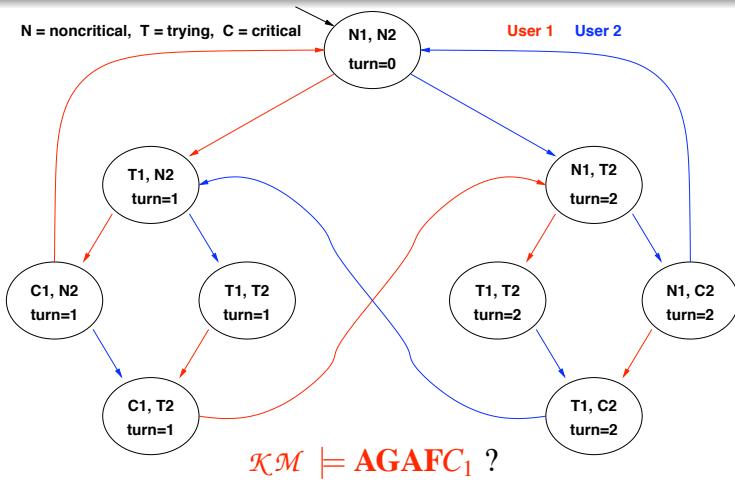
Example 2: Liveness



YES: every path starting from each state where T_1 holds passes through a state where C_1 holds.
(Same as $\square(T_1 \Rightarrow \diamond C_1)$ in LTL)

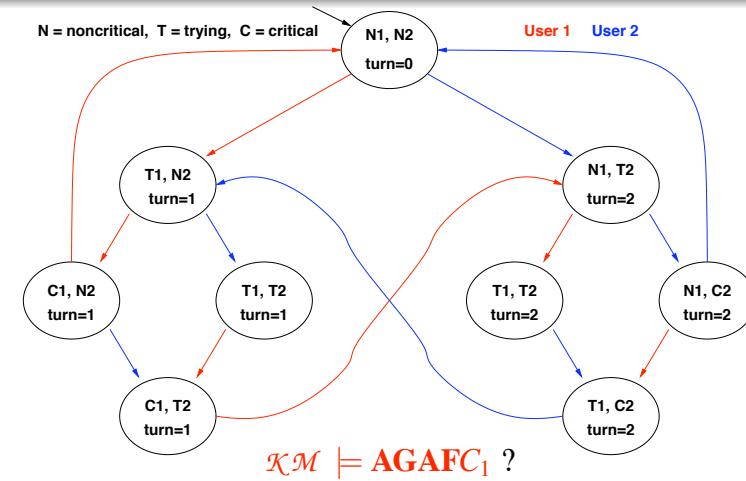
- d. 22/35

Example 3: Fairness



- p. 23/35

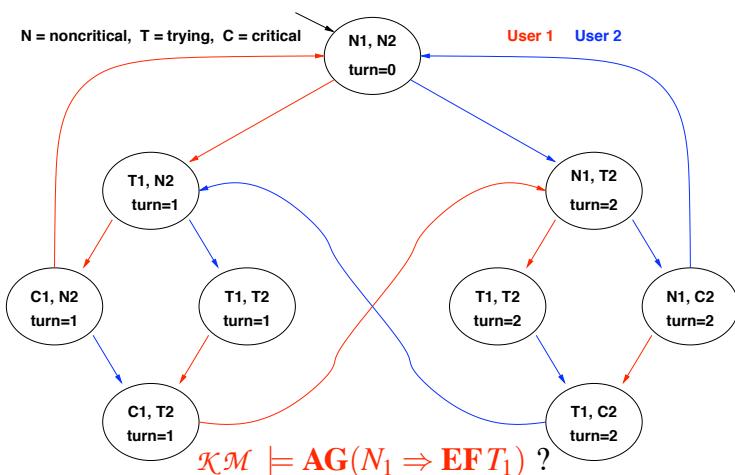
Example 3: Fairness



NO: e.g., in the initial state, there is the blue cyclic path in which C_1 never holds! (Same as $\square \lozenge C_1$ in LTL)

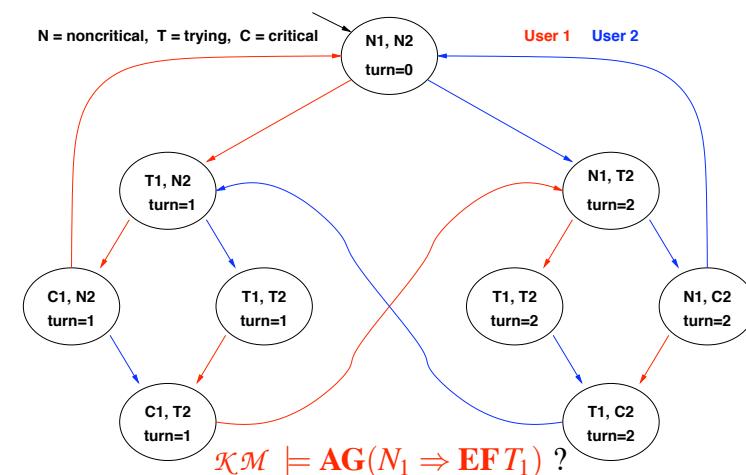
- p. 23/35

Example 4: Non-Blocking



- p. 24/35

Example 4: Non-Blocking



YES: from each state where N_1 holds there is a path leading to a state where T_1 holds. (No corresponding LTL formulas)

- p. 24/35

Summary

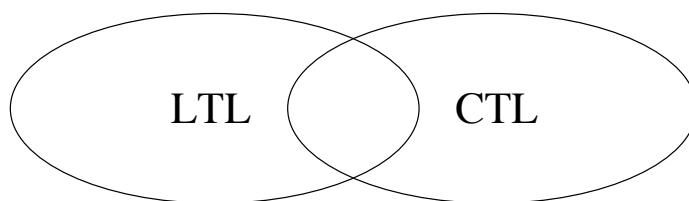
- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- [CTL Vs. LTL](#).
- CTL^* .

- p. 25/35

LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the application and the personal preferences.



- p. 27/35

LTL Vs. CTL: Expressiveness

- > Many CTL formulas cannot be expressed in LTL (e.g., those containing paths quantified existentially)
E.g., $\text{AG}(N_1 \Rightarrow \text{EFT}_1)$
- > Many LTL formulas cannot be expressed in CTL
E.g., $\Box \Diamond T_1 \Rightarrow \Box \Diamond C_1$ (Strong Fairness in LTL)
i.e, formulas that select a *range* of paths with a property ($\Diamond p \Rightarrow \Diamond q$ Vs. $\text{AG}(p \Rightarrow \text{AF}q)$)
- > Some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1)
E.g., $\Box \neg(C_1 \wedge C_2)$, $\Diamond C_1$, $\Box(T_1 \Rightarrow \Diamond C_1)$, $\Box \Diamond C_1$

- p. 26/35

Summary

- Computation Tree Logic: Intuitions.
- CTL: Syntax and Semantics.
- CTL in Computer Science.
- CTL and Model Checking: Examples.
- [CTL Vs. LTL](#).
- CTL^* .

- p. 28/35

The Computation Tree Logic CTL*

- CTL* is a logic that combines the expressive power of LTL and CTL.
- Temporal operators can be applied without any constraints.
- **A(X φ \vee XX φ).**
Along all paths, φ is true in the next state or the next two steps.
- **E(GF φ).**
There is a path along which φ is infinitely often true.

- d. 29/35

CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a state " s_0 "

$$\mathcal{KM}, s_0 \models p \quad \text{iff} \quad p \in L(s_0) \quad (\text{for } p \in \Sigma)$$

The semantics for *State Formulas* is the following where $\pi = (s_0, s_1, \dots)$ is a generic path outgoing from state s_0 :

$\mathcal{KM}, s_0 \models \neg\varphi$	iff	$\mathcal{KM}, s_0 \not\models \varphi$
$\mathcal{KM}, s_0 \models \varphi \wedge \psi$	iff	$\mathcal{KM}, s_0 \models \varphi$ and $\mathcal{KM}, s_0 \models \psi$
$\mathcal{KM}, s_0 \models \varphi \vee \psi$	iff	$\mathcal{KM}, s_0 \models \varphi$ or $\mathcal{KM}, s_0 \models \psi$
$\mathcal{KM}, s_0 \models \mathbf{E}\alpha$	iff	$\exists \pi = (s_0, s_1, \dots)$ such that $\mathcal{KM}, \pi \models \alpha$
$\mathcal{KM}, s_0 \models \mathbf{A}\alpha$	iff	$\forall \pi = (s_0, s_1, \dots)$ then $\mathcal{KM}, \pi \models \alpha$

- d. 31/35

CTL*: Syntax

Countable set Σ of atomic propositions: p, q, \dots we distinguish between *States Formulas* (evaluated on states):

$$\varphi, \psi \rightarrow p \mid \top \mid \perp \mid \neg\varphi \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \mathbf{A}\alpha \mid \mathbf{E}\alpha$$

and *Path Formulas* (evaluated on paths):

$$\alpha, \beta \rightarrow \varphi \mid \neg\alpha \mid \alpha \wedge \beta \mid \alpha \vee \beta \mid \mathbf{X}\alpha \mid \mathbf{G}\alpha \mid \mathbf{F}\alpha \mid (\alpha \mathbf{U} \beta)$$

The set of CTL* formulas FORM is the set of state formulas.

- d. 30/35

CTL* Semantics: Path Formulas

The semantics for *Path Formulas* is the following where $\pi = (s_0, s_1, \dots)$ is a generic path outgoing from state s_0 and π^i denotes the suffix path (s_i, s_{i+1}, \dots) :

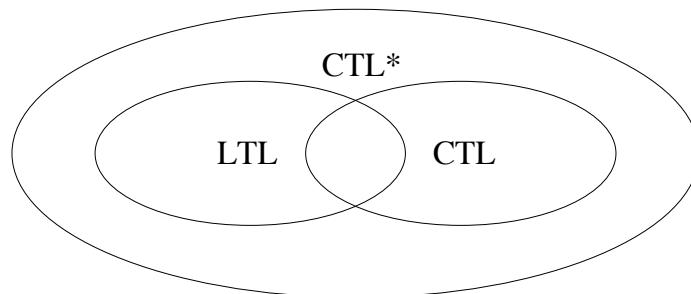
$\mathcal{KM}, \pi \models \varphi$	iff	$\mathcal{KM}, s_0 \models \varphi$
$\mathcal{KM}, \pi \models \neg\alpha$	iff	$\mathcal{KM}, \pi \not\models \alpha$
$\mathcal{KM}, \pi \models \alpha \wedge \beta$	iff	$\mathcal{KM}, \pi \models \alpha$ and $\mathcal{KM}, \pi \models \beta$
$\mathcal{KM}, \pi \models \alpha \vee \beta$	iff	$\mathcal{KM}, \pi \models \alpha$ or $\mathcal{KM}, \pi \models \beta$
$\mathcal{KM}, \pi \models \mathbf{F}\alpha$	iff	$\exists i \geq 0$ such that $\mathcal{KM}, \pi^i \models \alpha$
$\mathcal{KM}, \pi \models \mathbf{G}\alpha$	iff	$\forall i \geq 0$ then $\mathcal{KM}, \pi^i \models \alpha$
$\mathcal{KM}, \pi \models \mathbf{X}\alpha$	iff	$\mathcal{KM}, \pi^1 \models \alpha$
$\mathcal{KM}, \pi \models \alpha \mathbf{U} \beta$	iff	$\exists i \geq 0$ such that $\mathcal{KM}, \pi^i \models \beta$ and $\forall j. (0 \leq j \leq i) \text{ then } \mathcal{KM}, \pi^j \models \alpha$

- d. 32/35

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

- > φ in CTL $\implies \varphi$ in CTL* (e.g., $\text{AG}(N_1 \Rightarrow \text{EFT}_1)$)
- > φ in LTL $\implies \text{A}\varphi$ in CTL* (e.g., $\text{A}(\text{GFT}_1 \Rightarrow \text{GFC}_1)$)
- > LTL \cup CTL \subset CTL* (e.g., $\text{E}(\text{GF}p \Rightarrow \text{GF}q)$)



- 33/35

CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of checking *Satisfiability*

Logic	Complexity
LTL	PSpace-Complete
CTL	ExpTime-Complete
CTL*	2ExpTime-Complete

- 34/35

CTL* Vs LTL Vs CTL: Complexity (Cont.)

The following Table shows the Computational Complexity of *Model Checking* (M.C.)

- Since M.C. has 2 inputs – the model, \mathcal{M} , and the formula, φ – we give two complexity measures.

Logic	Complexity w.r.t. $ \varphi $	Complexity w.r.t. $ \mathcal{M} $
LTL	PSpace-Complete	P (linear)
CTL	P-Complete	P (linear)
CTL*	PSpace-Complete	P (linear)

- 35/35