CoMPUTATION TREE LogGIic (CTL)

Slides by Alessandro Artale
http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

=0 "l!

o LTL implicitly quantifies universally over paths.

(KM ,s) = ¢ iff for every path t starting at s (XM ,7t) = ¢

» Properties that assert the existence of a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

» The Computation Tree Logic, CTL, solves these
problems!
* CTL explicitly introduces path quantifiers!

¢ CTL is the natural temporal logic interpreted over
Branching Time Structures.

—n ll!

» Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
o CTL Vs. LTL.

s CTL™

=0 !ll!

» CTL is evaluated over branching-time structures
(Trees).

o CTL explicitly introduces path quantifiers:
All Paths: A
Exists a Path: E.

s Every temporal operator —[J(G), O (F), O(X), u (U)-
preceded by a path quantifier (A or E).

s Universal modalities: AF,AG,AX, AU

The temporal formula is true in all the paths starting in
the current state.

» Existential modalities: EF, EG,EX EU
The temporal formula is true in some path starting in
the current state.

—n !l!

» Computation Tree Logic: Intuitions. Countable set X of atomic propositions: p,q, ... the set FORM

s CTL: Syntax and Semantics. of formulas is:

s CTL in Computer Science. oy — plT|L[-9leAy[eVy]
o CTL and Model Checking: Examples.

s CTLVs. LTL. AXo | AGe [AFg | pAUY)
s CTL™

EX¢ | EGy | EFg | pEUy)
Intuition:

E there Exists a path
A in All paths
F sometime in the Future

» We interpret our CTL temporal formulas over Kripke
Models linearized as trees (e.g. AFdone). Let = be a set of atomic propositions. We interpret our CTL
; temporal formulas over Kripke Models:

XM = (S,I,R,Z,L)

The semantics of a temporal formula is provided by the
satisfaction relation:

s Universal modalities (AF,AG,AX, AU): the temporal =: (XM xS x FORM) — {true,false}
formula is true in all the paths starting in the current
state.

» Existential modalities (EF,EG,EX EU): the temporal
formula is true in some path starting in the current state.

[
3

Temporal operators have the following semantics where

We start by defining when an atomic proposition is true at a n=(si;si11,---) i @ generic path outgoing from state siinx M .

state/time “s;” KM ,s; = AX@ iff V= (si,8i41,--.) KM, sip1 E@
Kof, s =p iff peLls) (for p € %) KM ,s; = EX@ iff I =(si,8i41,-..) KM, siv1 E@
KM ,si = AGo iff Vr=(si,8it1,...) Vi>iKXM,sj=¢
The semantics for the classical operators is as expected: KM ,s5; = EGo iff 3= (si,8001,...) Vj>iKM,s; =
KM , si = ¢ iff K90, s ¢ KM ,s; = AFgp iff Vo= (si,8it1,...) Fj>0LKM,s;=¢
KM, siEQAy iff KM, siF@and X9, s [F g x5 =EFg iff Fn=(sisi01,...) FjSiKM s E@
KM, siE=oVy iff KM,s;F@or KM, s =y KM s = (QAUY) iff V= (si,si41,...) 3j>iKM,sj =y and
KM, siE@=1y iff if XM, s;=o@then KM ,s; =y Vi<k<j:M,siEo
KM, s;i =T KM ,s; = EUY) iff I = (s;,8141,...) Fj>i. KM ,s; = and

;Misi%J_ Vi<k<j:KM, s =

CTL is given by the standard boolean logic enhanced with

13 I ” ” [13 ” . H H . . . ,
temporal operators. > “Globally” (or “always”). AGg is true in s, iff @ is true in all s,

with ¢/ > ¢
> “Necessarily Next”. AXg is true in s, iff @ is true in every > “Possibly henceforth”. EGa is true in s; iff ¢ is possibly true
successor state s, henceforth
> “Possibly Next”. EXg is true in s, iff ¢ is true in one successor > “Necessarily Until”. (pAUv) is true in s, iff necessarily ¢
state s, holds until y holds.
> “Necessarily in the future” (or “Inevitably”). AFg is true in s, iff > “Possibly Until”. (¢EUy) is true in s, iff possibly ¢ holds until
@ is inevitably true in some s, with /' > ¢ 1 holds.

> “Possibly in the future” (or “Possibly”). EFg is true in s; iff ¢
may be true in some s, with ¢/ > ¢

finally p globally p next p P until g
A[pUq]
E[pUq]

» Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
o CTLVs. LTL.

s CTL™.

[
3

All CTL operators can be expressed via: EX, EG,EU
» AXgp=-EX—¢@
» AFp=-EG—¢
s EFg= (TEUgp)
o AGy=-EF-¢ =—(TEU—g)
s (pAUY) = -EG—y A =(-¢EU(—@ A 1))

. l!l!

Safety:

“something bad will not happen”

Typical examples:
AG—(reactor_temp > 1000)
AG—(one_way N AXother_way)
AG—((x = 0) NAXAXAX(y = z/x))
and so on.....

Usually: AG—....

q,“ 35

Liveness:
“something good will happen”

Typical examples:
AFrich
AF(x > 5)
AG(start = AFterminate)
and so on.....

Usually: AF...

. lll!

» Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

s CTL in Computer Science.

» CTL and Model Checking: Examples.
o CTLVs. LTL.

s CTL™.

[
3
[
3

Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:
“something is successful/allocated infinitely often”

Typical example:
AG(AFenabled)

Usually: AGAF...

. lll!

The CTL Model Checking Problem is formulated as:
KM = ¢

Check if a1 ,s¢ = ¢, for every initial state, s, of the Kripke
structure xar .

KM = AG—(C; AC,) ?

N = noncritical, T =trying, C = critical

KM IZ AG(Tl = AFCl) ?

KM = AG—(C; AC,) ?

YES: There is no reachable state in which (C; AC,) holds!
(Same as the [_]-(C; AG,) in LTL.)

N = noncritical, T =trying, C = critical

KM |: AG(T1 = AFCl) ?

YES: every path starting from each state where T; holds
passes through a state where C; holds.

‘Same as ‘Ti = ﬁC” in LTLI

XM = AGAFC, ? XM = AGAFC, ?

NO: e.g., in the initial state, there is the blue cyclic path in
which C; never holds! (Same as D<>C1 in LTL)

N = noncritical, T =trying, C = critical User1 User2 N = noncritical, T =trying, C = critical User1 User2

YES: from each state where N, holds there is a path leading
to a state where T; holds. (No corresponding LTL formulas)

» Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

s CTL in Computer Science.

o CTL and Model Checking: Examples.
o CTL Vs. LTL.

s CTL™

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.

> Many CTL formulas cannot be expressed in LTL
(e.g., those containing paths quantified existentially)
E.g., AG(N, = EFT})

> Many LTL formulas cannot be expressed in CTL
E.g., [1T = [1{>C, (Strong Fairness in LTL)
i.e, formulas that select a range of paths with a property
(Op= g Vs. AG(p = AFg))

> Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)

E.g., [J-(CIAG), &c, [I(n = $a), [0

» Computation Tree Logic: Intuitions.

o CTL: Syntax and Semantics.

o CTL in Computer Science.

o CTL and Model Checking: Examples.
o CTLVs. LTL.

s CTL™

[
3

o CTL™is a logic that combines the expressive power of
LTL and CTL.

» Temporal operators can be applied without any
constraints.

* AXgVXXo).
Along all paths, ¢ is true in the next state or the next two
steps.

* E(GFo).
There is a path along which g is infinitely often true.

. !!ll!

We start by defining when an atomic proposition is true at a

state “s

KM ,so=p iff peL(sy) (for p € X)

The semantics for State Formulas is the following where

nt = (s0,51,...) is a generic path outgoing from state s:

KM , 5o = @ iff KM, s~ @

KM, s0 =AY iff KM, s0=@and XM, so =y
KM, s0 =eVy iff KM, soE=@or KM, so =y

KM ,so =Ea iff Jmw= (s0,s1,...)suchthat x ,n|=a

KM ,s0 =Ao iff V= (so,51,...)then XM =«

Countable set X of atomic propositions: p,q,... we
distinguish between Stares Formulas (evaluated on states):

oY — plT|L|-@|leAy|eVy]
Aa | Ea

and Path Formulas (evaluated on paths):
op — @
—o|anp|aVp]
Xa | Ga | Fa | (aUp)

The set of CTL* formulas FORM is the set of state formulas.

=0 ! ll!

The semantics for Path Formulas is the following where
nt = (s0,51,...) iS a generic path outgoing from state s, and =’
denotes the suffix path (s;,si41,...):

KM, tE=@ iff XM ,s0F=0

KM , 7 = o iff XM, wlo

KM, nE=aAp iff XM, nlEaand XM, n =B
KM, n=aVp iff XM, a=o0or XM, n=p
xM ,n=Fo iff 3i>O0suchthat xv 7' =«
KM, =Ga iff Vi>O0then x4 7' =«
XM, nE=Xo iff xM w1l E=a

XM, =oUB iff Ji>O0suchthat kv ,n' = and
Vj.(0< j<i)then £ 7/ =«

The following Table shows the Computational Complexity of
> @in CTL = ¢in CTL" (e.g., AG(N, = EFT))) checking Satisbiability
> @in LTL = Agin CTL" (e.g., A(GFT, = GFC())
> LTLU CTL ¢ CTL* (e.g., E(GFp = GFgq))

CTL* subsumes both CTL and LTL

Logic Complexity
LTL PSpace-Complete
CTL* CTL ExpTime-Complete

. CTL* 2ExpTime-Complete

The following Table shows the Computational Complexity of
Model Checking (M.C.)

» Since M.C. has 2 inputs — the model, 47, and the
formula, ¢ — we give two complexity measures.

Logic Complexity w.r.t. |¢| Complexity w.r.t. | 2/ |

LTL PSpace-Complete P (linear)
CTL P-Complete P (linear)
CTL™ PSpace-Complete P (linear)

[
3

