
COMPUTATION TREE LOGIC (CTL)

Slides by Alessandro Artale
http://www.inf.unibz.it/∼artale/

Some material (text, figures) displayed in these slides is courtesy of:

M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

– p. 1/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 2/35

Computation Tree logic Vs. LTL

LTL implicitly quantifies universally over paths.

〈K M ,s〉 |= ! iff for every path " starting at s 〈K M ,"〉 |= !

Properties that assert the existence of a path cannot be
expressed. In particular, properties which mix existential
and universal path quantifiers cannot be expressed.

The Computation Tree Logic, CTL, solves these
problems!

• CTL explicitly introduces path quantifiers!

• CTL is the natural temporal logic interpreted over
Branching Time Structures.

– p. 3/35

CTL at a glance

CTL is evaluated over branching-time structures
(Trees).

CTL explicitly introduces path quantifiers:

All Paths: A

Exists a Path: E.

Every temporal operator – (G),♦(F), !(X), U (U)–
preceded by a path quantifier (A or E).

Universal modalities: AF,AG,AX,AU
The temporal formula is true in all the paths starting in
the current state.

Existential modalities: EF,EG,EX,EU
The temporal formula is true in some path starting in
the current state.

– p. 4/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 5/35

CTL: Syntax

Countable set # of atomic propositions: p,q, . . . the set FORM
of formulas is:

$,% → p |& |⊥ | ¬$ | $∧% | $∨% |

AX$ | AG$ | AF$ | $AU%)

EX$ | EG$ | EF$ | $EU%)
Intuition:

E there Exists a path

A in All paths

F sometime in the Future

G Globally in the future – p. 6/35

CTL: Semantics

We interpret our CTL temporal formulas over Kripke
Models linearized as trees (e.g. AFdone).

done!done

done

done

done done done

done

!done

!done

!done

!done

Universal modalities (AF,AG,AX,AU): the temporal
formula is true in all the paths starting in the current
state.

Existential modalities (EF,EG,EX,EU): the temporal
formula is true in some path starting in the current state.

– p. 7/35

CTL: Semantics (Cont.)

Let # be a set of atomic propositions. We interpret our CTL
temporal formulas over Kripke Models:

K M = 〈S, I,R,#,L〉

The semantics of a temporal formula is provided by the
satisfaction relation:

|= : (K M ×S×FORM) → {true, false}

– p. 8/35

CTL Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a
state/time “si”

K M , si |= p iff p ∈ L(si) (for p ∈ #)

The semantics for the classical operators is as expected:

K M , si |= ¬$ iff K M , si ,|= $

K M , si |= $∧% iff K M , si |= $ and K M , si |= %

K M , si |= $∨% iff K M , si |= $ or K M , si |= %

K M , si |= $⇒ % iff if K M , si |= $ then K M , si |= %

K M , si |= &

K M , si ,|= ⊥
– p. 9/35

CTL Semantics: The Temporal Aspect

Temporal operators have the following semantics where

"=(si,si+1, . . .) is a generic path outgoing from state siinK M .

K M ,si |= AX$ iff ∀"= (si,si+1, . . .) K M ,si+1 |= $

K M ,si |= EX$ iff ∃"= (si,si+1, . . .) K M ,si+1 |= $

K M ,si |= AG$ iff ∀"= (si,si+1, . . .) ∀ j ≥ i.K M ,s j |= $

K M ,si |= EG$ iff ∃"= (si,si+1, . . .) ∀ j ≥ i.K M ,s j |= $

K M ,si |= AF$ iff ∀"= (si,si+1, . . .) ∃ j ≥ i.K M ,s j |= $

K M ,si |= EF$ iff ∃"= (si,si+1, . . .) ∃ j ≥ i.K M ,s j |= $

K M ,si |= ($AU%) iff ∀"= (si,si+1, . . .) ∃ j ≥ i.K M ,s j |= % and

∀i≤ k < j :M,sk |= $

K M ,si |= $EU%) iff ∃"= (si,si+1, . . .) ∃ j ≥ i.K M ,s j |= % and

∀i≤ k < j : K M ,sk |= $

– p. 10/35

CTL Semantics: Intuitions

CTL is given by the standard boolean logic enhanced with
temporal operators.

! “Necessarily Next”. AX$ is true in st iff $ is true in every
successor state st+1

! “Possibly Next”. EX$ is true in st iff $ is true in one successor
state st+1

! “Necessarily in the future” (or “Inevitably”). AF$ is true in st iff
$ is inevitably true in some st ′ with t

′ ≥ t

! “Possibly in the future” (or “Possibly”). EF$ is true in st iff $
may be true in some st ′ with t

′ ≥ t

– p. 11/35

CTL Semantics: Intuitions (Cont.)

! “Globally” (or “always”). AG$ is true in st iff $ is true in all st ′

with t ′ ≥ t

! “Possibly henceforth”. EG$ is true in st iff $ is possibly true
henceforth

! “Necessarily Until”. ($AU%) is true in st iff necessarily $
holds until % holds.

! “Possibly Until”. ($EU%) is true in st iff possibly $ holds until
% holds.

– p. 12/35

CTL Semantics: Intuitions (Cont.)

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[]AGP

– p. 13/35

A Complete Set of CTL Operators

All CTL operators can be expressed via: EX,EG,EU

AX$≡ ¬EX¬$

AF$≡ ¬EG¬$

EF$≡ (&EU$)

AG$≡ ¬EF¬$≡ ¬(&EU¬$)

($AU%) ≡ ¬EG¬%∧¬(¬%EU(¬$∧¬%))

– p. 14/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 15/35

Safety Properties

Safety:

“something bad will not happen”

Typical examples:

AG¬(reactor_temp> 1000)

AG¬(one_way∧AXother_way)

AG¬((x= 0)∧AXAXAX(y= z/x))

and so on.....

Usually: AG¬....

– p. 16/35

Liveness Properties

Liveness:

“something good will happen”

Typical examples:

AFrich

AF(x> 5)

AG(start ⇒ AFterminate)

and so on.....

Usually: AF . . .

– p. 17/35

Fairness Properties

Often only really useful when scheduling processes,
responding to messages, etc.

Fairness:

“something is successful/allocated infinitely often”

Typical example:

AG(AFenabled)

Usually: AGAF . . .

– p. 18/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 19/35

The CTL Model Checking Problem

The CTL Model Checking Problem is formulated as:

K M |= !

Check if K M ,s0 |= !, for every initial state, s0, of the Kripke

structure K M .

– p. 20/35

Example 1: Mutual Exclusion (Safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG¬(C1∧C2) ?

– p. 21/35

Example 1: Mutual Exclusion (Safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG¬(C1∧C2) ?

YES: There is no reachable state in which (C1∧C2) holds!
(Same as the ¬(C1∧C2) in LTL.)

– p. 21/35

Example 2: Liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG(T1 ⇒ AFC1) ?

– p. 22/35

Example 2: Liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG(T1 ⇒ AFC1) ?

YES: every path starting from each state where T1 holds
passes through a state where C1 holds.

(Same as (T1 ⇒♦C1) in LTL)
– p. 22/35

Example 3: Fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AGAFC1 ?

– p. 23/35

Example 3: Fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AGAFC1 ?

NO: e.g., in the initial state, there is the blue cyclic path in

which C1 never holds! (Same as ♦C1 in LTL)

– p. 23/35

Example 4: Non-Blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG(N1 ⇒ EFT1) ?

– p. 24/35

Example 4: Non-Blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= AG(N1 ⇒ EFT1) ?

YES: from each state where N1 holds there is a path leading
to a state where T1 holds. (No corresponding LTL formulas)

– p. 24/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 25/35

LTL Vs. CTL: Expressiveness

! Many CTL formulas cannot be expressed in LTL
(e.g., those containing paths quantified existentially)
E.g., AG(N1 ⇒ EFT1)

! Many LTL formulas cannot be expressed in CTL

E.g., ♦T1 ⇒ ♦C1 (Strong Fairness in LTL)
i.e, formulas that select a range of paths with a property

(♦p⇒♦q Vs. AG(p⇒ AFq))

! Some formluas can be expressed both in LTL and in CTL
(typically LTL formulas with operators of nesting depth 1)

E.g., ¬(C1∧C2),♦C1, (T1 ⇒♦C1), ♦C1

– p. 26/35

LTL Vs. CTL: Expressiveness (Cont.)

CTL and LTL have incomparable expressive power.

The choice between LTL and CTL depends on the
application and the personal preferences.

CTLLTL

–p. 27/35

Summary

Computation Tree Logic: Intuitions.

CTL: Syntax and Semantics.

CTL in Computer Science.

CTL and Model Checking: Examples.

CTL Vs. LTL.

CTL*.

– p. 28/35

The Computation Tree Logic CTL*

CTL* is a logic that combines the expressive power of
LTL and CTL.

Temporal operators can be applied without any
constraints.

• A(X$∨XX$).
Along all paths, $ is true in the next state or the next two
steps.

• E(GF$).
There is a path along which $ is infinitely often true.

– p. 29/35

CTL*: Syntax

Countable set # of atomic propositions: p,q, . . . we
distinguish between States Formulas (evaluated on states):

$,% → p |& |⊥ | ¬$ | $∧% | $∨% |

A& | E&

and Path Formulas (evaluated on paths):

&,' → $ |

¬& | &∧' | &∨' |

X& |G& | F& | (&U')

The set of CTL* formulas FORM is the set of state formulas.

– p. 30/35

CTL* Semantics: State Formulas

We start by defining when an atomic proposition is true at a
state “s0”

K M , s0 |= p iff p ∈ L(s0) (for p ∈ #)

The semantics for State Formulas is the following where
"= (s0,s1, . . .) is a generic path outgoing from state s0:

K M , s0 |= ¬$ iff K M , s0 ,|= $

K M , s0 |= $∧% iff K M , s0 |= $ and K M , s0 |= %

K M , s0 |= $∨% iff K M , s0 |= $ or K M , s0 |= %

K M , s0 |= E& iff ∃"= (s0,s1, . . .)such that K M ," |= &

K M , s0 |= A& iff ∀"= (s0,s1, . . .) then K M ," |= &

– p. 31/35

CTL* Semantics: Path Formulas

The semantics for Path Formulas is the following where

"= (s0,s1, . . .) is a generic path outgoing from state s0 and "
i

denotes the suffix path (si,si+1, . . .):

K M , " |= $ iff K M , s0 |= $

K M , " |= ¬& iff K M , " ,|= &

K M , " |= &∧' iff K M , " |= & and K M , " |= '

K M , " |= &∨' iff K M , " |= & or K M , " |= '

K M , " |= F& iff ∃i≥ 0such that K M ,"i |= &

K M , " |=G& iff ∀i≥ 0 then K M ,"i |= &

K M , " |= X& iff K M ,"1 |= &

K M , " |= &U' iff ∃i≥ 0such that K M ,"i |= ' and
∀ j.(0≤ j ≤ i) then K M ," j |= &

– p. 32/35

CTLs Vs LTL Vs CTL: Expressiveness

CTL* subsumes both CTL and LTL

! $ in CTL =⇒ $ in CTL* (e.g., AG(N1 ⇒ EFT1))
! $ in LTL =⇒ A$ in CTL* (e.g., A(GFT1 ⇒GFC1))
! LTL ∪ CTL ⊂ CTL* (e.g., E(GFp⇒GFq))

CTLLTL

CTL*

– p. 33/35

CTL* Vs LTL Vs CTL: Complexity

The following Table shows the Computational Complexity of
checking Satisbiability

Logic Complexity

LTL PSpace-Complete

CTL ExpTime-Complete

CTL* 2ExpTime-Complete

– p. 34/35

CTL* Vs LTL Vs CTL: Complexity (Cont.)

The following Table shows the Computational Complexity of
Model Checking (M.C.)

• Since M.C. has 2 inputs – the model, M , and the
formula, $ – we give two complexity measures.

Logic Complexity w.r.t. | $ | Complexity w.r.t. |M |

LTL PSpace-Complete P (linear)

CTL P-Complete P (linear)

CTL* PSpace-Complete P (linear)

– p. 35/35

