
LINEAR TEMPORAL LOGIC (LTL)

Slides by Alessandro Artale
http://www.inf.unibz.it/∼artale/

Some material (text, figures) displayed in these slides is courtesy of:

M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

– p. 1/??

Summary of Lecture III

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 2/??

An Introduction to Temporal Logics

In classical logic, formulae are evaluated within a single
fixed world.

For example, a proposition such as “it is Monday” must be
either true or false.

Propositions are then combined using constructs such as
‘∧’, ‘¬’, etc.

But, most (not just computational) systems are dynamic.

In temporal logics, evaluation takes place within a set of
worlds. Thus, “it is Monday” may be satisfied in some
worlds, but not in others.

– p. 3/??

An Introduction to Temporal Logics (Cont.)

The set of worlds correspond to moments in time.

How we navigate between these worlds depends on our
particular view of time.

The particular model of time is captured by a temporal
accessibility relation between worlds.

Essentially, temporal logic extends classical propositional
logic with a set of temporal operators that navigate between
worlds using this accessibility relation.

– p. 4/??

Typical Models of Time

– p. 5/??

Summary

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 6/??

Linear Temporal Logic (LTL): Intuitions

Consider a simple temporal logic (LTL) where the
accessibility relation characterises a discrete, linear model
isomorphic to the Natural Numbers.

Typical temporal operators used are

!! ! is true in the next moment in time

! ! is true in all future moments

♦! ! is true in some future moment

!U " ! is true until " is true

Examples:

((¬passport ∨¬ticket) ⇒ !¬board_ f light)

– p. 7/??

Computational Example

(requested ⇒ ♦received)

(received ⇒ !processed)

(processed ⇒ ♦ done)

From the above we should be able to infer that it is not the
case that the system continually re-sends a request, but

never sees it completed (¬done); i.e. the statement

requested ∧ ¬done

should be inconsistent.

– p. 8/??

Summary

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 9/??

LTL: Syntax

Countable set # of atomic propositions: p,q, . . . the set FORM
of formulas is:
!," → p | (atomic proposition)

' | (true)

⊥ | (false)

¬! | (complement)

!∧" | (conjunction)

!∨" | (disjunction)
!! | (next time)

! | (always)

♦! | (sometime)

!U " (until)

– p. 10/??

Temporal Semantics

We interpret our temporal formulae in a discrete, linear
model of time. Formally, this structure is represented by

M = 〈N, I 〉

where

• I : N +→ 2#

maps each Natural number (representing a moment in
time) to a set of propositions.

The semantics of a temporal formula is provided by the
satisfaction relation:

|= : (M ×N×FORM) → {true, false}

– p. 11/??

Semantics: The Propositional Aspect

We start by defining when an atomic proposition is true at a
time point “i”

〈M , i〉 |= p iff p ∈ I (i) (for p ∈ #)

The semantics for the classical operators is as expected:

〈M , i〉 |= ¬! iff 〈M , i〉 .|= !

〈M , i〉 |= !∧" iff 〈M , i〉 |= ! and 〈M , i〉 |= "

〈M , i〉 |= !∨" iff 〈M , i〉 |= ! or 〈M , i〉 |= "

〈M , i〉 |= !⇒ " iff if 〈M , i〉 |= ! then 〈M , i〉 |= "

M , i |= '

M , i .|= ⊥
– p. 12/??

Temporal Operators: ‘next’

〈M , i〉 |= !! iff 〈M , i+1〉 |= !

This operator provides a constraint on the next moment in
time.

Examples:

(sad ∧ ¬rich) ⇒ !sad

((x= 0) ∧ add3) ⇒ !(x= 3)

– p. 13/??

Temporal Operators: ‘sometime’

〈M , i〉 |=♦! iff there exists j. (j ≥ i) ∧ 〈M , j〉 |= !

N.B. while we can be sure that ! will be true either now or in
the future, we can not be sure exactly when it will be true.

Examples:

(¬resigned ∧ sad) ⇒ ♦famous

sad ⇒ ♦happy

send ⇒ ♦receive

– p. 14/??

Temporal Operators: ‘always’

〈M , i〉 |= ! iff for all j. if (j ≥ i) then 〈M , j〉 |= !

This can represent invariant properties.

Examples:

lottery-win ⇒ rich

– p. 15/??

Temporal Operators: ‘until’

〈M , i〉 |= !U" iff there exists j. (j ≥ i) ∧ 〈M , j〉 |= " ∧

for all k. (i≤ k < j) ⇒ 〈M , k〉 |= !

Examples:

start_lecture ⇒ talkU end_lecture

born ⇒ aliveU dead

request ⇒ replyU acknowledgement

– p. 16/??

Satisfiability and Validity

A structure M = 〈N, I 〉 is a model of $, if

〈M , i〉 |= $, for some i ∈ N.

Similarly as in classical logic, an LTL formula $ can be
satisfiable, unsatisfiable or valid. A formula $ is:

Satisfiable, if there is model for $.

Unsatisfiable, if $ is not satisfiable.

Valid (i.e., a Tautology):

|= $ iff ∀M ,∀i ∈ N. 〈M , i〉 |= $.

– p. 17/??

Entailment and Equivalence

Similarly as in classical logic we can define the notions of
entailment and equivalence between two LTL formulas

Entailment.

$ |= " iff ∀M ,∀i ∈ N.〈M , i〉 |= $⇒ 〈M , i〉 |= "

Equivalence.

$≡ " iff ∀M ,∀i ∈ N.〈M , i〉 |= $⇔ 〈M , i〉 |= "

– p. 18/??

Equivalences in LTL

The temporal operators and♦ are duals

¬ !≡♦¬!

♦ (and then) can be rewritten in terms of U

♦!≡'U !

All the temporal operators can be rewritten using the “Until”
and “Next” operators

– p. 19/??

Equivalences in LTL (Cont.)

♦ distributes over ∨ while distributes over ∧

♦(!∨") ≡♦!∨♦"

(!∧") ≡ !∧ "

The following equivalences are useful for generating
formulas in Negated Normal Form.

¬ !!≡ !¬!

¬(!U ") ≡ (¬"U (¬!∧¬"))∨ ¬"

– p. 20/??

LTL Vs. FOL

Linear Temporal Logic can be thought of as

a specific decidable (PSPACE-complete) fragment
of classical first-order logic

We just map each proposition to a unary predicate in FOL.
In general, the following satisfiability preserving mapping

(!) holds:

p ! p(t)
!p ! p(t+1)

♦p ! ∃t ′. (t ′ ≥ t) ∧ p(t ′)

p ! ∀t ′. (t ′ ≥ t) ⇒ p(t ′)

– p. 21/??

Summary

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 22/??

Temporal Logic in Computer Science

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
reactive systems.

Much of this popularity has been achieved as a number of
useful concepts can be formally, and concisely, specified
using temporal logics, e.g.

• safety properties

• liveness properties

• fairness properties

– p. 23/??

Safety Properties

Safety:

“something bad will not happen”

Typical examples:

¬(reactor_temp> 1000)

¬((x= 0)∧ ! ! !(y= z/x))

and so on.....

Usually: ¬....

– p. 24/??

Liveness Properties

Liveness:

“something good will happen”

Typical examples:

♦rich

♦(x> 5)

(start ⇒♦terminate)

(Trying⇒♦Critical)

and so on.....

Usually: ♦....
– p. 25/??

Fairness Properties

Often only really useful when scheduling processes,
responding to messages, etc.

Strong Fairness:

“if something is attempted/requested infinitely
often, then it will be successful/allocated infinitely
often”

Typical example:

♦ready ⇒ ♦run

– p. 26/??

Summary

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 27/??

Kripke Models and Linear Structures

Consider the following Kripke structure:

done!done

Its paths/computations can be seen as a set of linear
structures (computation tree):

done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....
done

done

done done done

done

!done

!done

!done

!done

– p. 28/??

Path-Semantics for LTL

LTL formulae are evaluated over the set N of Natural
Numbers.

Paths in Kripke structures are infinite and linear
sequences of states. Thus, they are isomorphic to the
Natural Numbers:
%= s0 → s1 → · · ·→ si → si+1 → · · ·

We want to interpret LTL formulas over Kripke
structures.

Given a Kripke structure, K M = (S, I,R,AP,L), a path %
in K M , a state s ∈ S, and an LTL formula $, we define:

1. 〈K M ,%〉 |= $, and then

2. 〈K M ,s〉 |= $

Based on the LTL semantics over the Natural Numbers.

– p. 29/??

Path-Semantics for LTL (Cont.)

We first extract an LTL model, M % = (%, I%), from the

Kripke structure K M . M % = (%, I%) is such that:
• % is a path in K M

• I% is the restriction of L to states in %:

∀s ∈ % and ∀p ∈ AP, p ∈ I%(s) iff p ∈ L(s)

Given a Kripke structure, K M = (S, I,R,AP,L), a path %
in K M , a state s ∈ S, and an LTL formula $:

1. 〈K M ,%〉 |= $ iff 〈M %,s0〉 |= $

with s0 initial state of %

2. 〈K M ,s〉 |= $ iff 〈K M ,%〉 |= $

for all paths % starting at s.

– p. 30/??

LTL Model Checking Definition

Given a Kripke structure, K M = (S, I,R,AP,L), the LTL model
checking problem K M |= $:

Check if 〈K M ,s0〉 |= $, for every s0 ∈ I initial state of the

Kripke structure K M

– p. 31/??

Summary

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 32/??

Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ¬(C1∧C2) ?

– p. 33/??

Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ¬(C1∧C2) ?

YES: There is no reachable state in which (C1∧C2) holds!
– p. 33/??

Example 2: mutual exclusion (liveness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |=♦C1 ?

– p. 34/??

Example 2: mutual exclusion (liveness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |=♦C1 ?

NO: the blue cyclic path is a counterexample!

– p. 34/??

Example 3: mutual exclusion (liveness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= (T1 ⇒♦C1) ?

– p. 35/??

Example 3: mutual exclusion (liveness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= (T1 ⇒♦C1) ?

YES: in every path if T1 holds afterwards C1 holds!

– p. 35/??

Example 4: mutual exclusion (fairness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ♦C1 ?

– p. 36/??

Example 4: mutual exclusion (fairness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ♦C1 ?

NO: the blue cyclic path is a counterexample!

– p. 36/??

Example 4: mutual exclusion (strong fairness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ♦T1 ⇒ ♦C1 ?

– p. 37/??

Example 4: mutual exclusion (strong fairness)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

K M |= ♦T1 ⇒ ♦C1 ?

YES: every path which visits T1 infinitely often also visits C1
infinitely often!

– p. 37/??

LTL Alternative Notation

Alternative notations are used for temporal operators.

♦ ! F sometime in the Future

! G Globally in the future
!

! X neXtime

– p. 38/??

Summary of Lecture III

Introducing Temporal Logics.

Intuitions beyond Linear Temporal Logic.

LTL: Syntax and Semantics.

LTL in Computer Science.

LTL Interpreted over Kripke Models.

LTL and Model Checking: Intuitions.

– p. 39/??

