LINEAR TEMPORAL LoGIC (LTL)

Slides by Alessandro Artale
http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

—n. l’l

In classical logic, formulae are evaluated within a single
fixed world.

For example, a proposition such as “it is Monday” must be
either true or false.

Propositions are then combined using constructs such as
‘N, =, etc.

But, most (not just computational) systems are dynamic.
In temporal logics, evaluation takes place within a set of

worlds. Thus, “it is Monday” may be satisfied in some
worlds, but not in others.

—n ll l

» Introducing Temporal Logics.

» Intuitions beyond Linear Temporal Logic.
o LTL: Syntax and Semantics.

o LTL in Computer Science.

» LTL Interpreted over Kripke Models.

» LTL and Model Checking: Intuitions.

=n. !ll l

The set of worlds correspond to moments in time.

How we navigate between these worlds depends on our
particular view of time.

The particular model of time is captured by a temporal
accessibility relation between worlds.

Essentially, temporal logic extends classical propositional
logic with a set of temporal operators that navigate between
worlds using this accessibility relation.

—n !ll

® ® bt ® s Introducing Temporal Logics.

start

» Intuitions beyond Linear Temporal Logic.
o LTL: Syntax and Semantics.

o LTL in Computer Science.
» LTL Interpreted over Kripke Models.
» LTL and Model Checking: Intuitions.

=0 !l' l

D(requested = <>received)

Consider a simple temporal logic (LTL) where the
accessibility relation characterises a discrete, linear model
isomorphic to the Natural Numbers.

[I(received = (O processed)
Typical temporal operators used are

[I(processed = <> [_ldone)

Oeg @ is true in the next moment in time

Lo @ is true in all future moments From the above we should be able to infer that it is not the

<>cp @ is true in some future moment case that the system continually re-sends a request, but

O UY @ is true until y is true never sees it completed ([_]—done); i.e. the statement
Examples: [_lrequested N |]—~done

[_|((—passport v —ticket) = (O-board_flight) should be inconsistent.

» Introducing Temporal Logics.

» Intuitions beyond Linear Temporal Logic.
» LTL: Syntax and Semantics.

o LTL in Computer Science.

o LTL Interpreted over Kripke Models.

o LTL and Model Checking: Intuitions.

_ -n. !’l

We interpret our temporal formulae in a discrete, linear
model of time. Formally, this structure is represented by

M = (N, I)

where

e [:N—2?%
maps each Natural number (representing a moment in
time) to a set of propositions.

The semantics of a temporal formula is provided by the
satisfaction relation:

E: (M x Nx FORM) — {true,false}

_ - ll’l

Countable set X of atomic propositions: p,q, ... the set FORM

of formulas is:
P — pl
T
L]
- |
PAY |
PV |
Og]
[|
Qo]

¢ UY

(atomic proposition)
(true)

(false)
(complement)
(conjunction)
(disjunction)
(next time)
(always)
(sometime)
(until)

We start by defining when an atomic proposition is true at a

time point “i

(a0, i) = p iff

pe (i) (for p € X)

The semantics for the classical operators is as expected:

(o, i) =~ iff
(M i) FoAy if
(o0, i) EQVy iff
(o,)@=y iff
ML iET

)

(a0, i) = @

(9, 1) =gand (M, i) =y
(o, 1) FEor (M, i) =y

if (M i) = @then (M, i) =y

Mii%l

(i) =O¢ iff (M,i+1) =g

This operator provides a constraint on the next moment in
time.

® ®
&

s
[]
®
®

oLty ©®
Examples:

(sad \ —rich) = Osad
(x=0) Aadd3) = O((x=3)

—n. llll

(M ,i) = [l iff forall j.if (j>1i)then (M, j)Ee

This can represent invariant properties.

- it it t

=@
=@

O ¢ ¢ ¢ ¢
¢
Examples:

lottery-win = [rich

[
3

(ar,i) =g iff there exists j. (j>i) A (M, j) = ¢

N.B. while we can be sure that ¢ will be true either now or in
the future, we can not be sure exactly when it will be true.

9 L
A

i
e -0
Examples:

(—resigned N sad) = Ofamous

sad = <>happy
send = <>receive

—n. l!’l

(M, i) Eouy iff thereexists j. (j=>i) A (M, j)EYP A
forallk. (i <k < j)= (M, k) =

— = ————————— =P~ P
! ’ ! : :

oy 0 0 0 v
®
Examples:

start_lecture = talk U end_lecture
born = alive U dead
request => reply U acknowledgement

—Ay 77

A structure ¢ = (N, 1) is a model of ¢, if
(M i) = ¢, for somei e N.

Similarly as in classical logic, an LTL formula ¢ can be
satisfiable, unsatisfiable or valid. A formula ¢ is:

» Satisfiable, if there is model for ¢.
» Unsatisfiable, if ¢ is not satisfiable.

o Valid (i.e., a Tautology):
= ¢ iff Var Vi e N. (a0, i) = ¢.

. llll

The temporal operators [] and <> are duals

o=

<> (and then [_]) can be rewritten in terms of «

<>(pET‘UCP

All the temporal operators can be rewritten using the “Until”
and “Next” operators

[
3

Similarly as in classical logic we can define the notions of
entailment and equivalence between two LTL formulas

» Entailment.

dEYiff VM VieN(M, i) Eo= (M ,i) =y
» Equivalence.

d=yiff v VieN(M i) =o<= (M, i) =y

. ll'l

<> distributes over v while [] distributes over A
Qlovy) = Qv O
Herw) = Lo Ly

The following equivalences are useful for generating
formulas in Negated Normal Form.

-Ogp=0O-¢

“(@uy) = (- u (—eA—yp) Vv L1y

-n !ll l

Linear Temporal Logic can be thought of as

a specific decidable (PSPACE-complete) fragment
of classical first-order logic

We just map each proposition to a unary predicate in FOL.
In general, the following satisfiability preserving mapping

(~) holds:

p ~ plt)

Op ~ p@+1)

Op ~ F.(=1)Ap(t)
(p ~ VY. >1)= p(t)

=n. !“l

Temporal logic was originally developed in order to
represent tense in natural language.

Within Computer Science, it has achieved a significant role
in the formal specification and verification of concurrent
reactive systems.

Much of this popularity has been achieved as a number of
useful concepts can be formally, and concisely, specified
using temporal logics, e.g.

* safety properties
¢ liveness properties
* fairness properties

-n !l Il

» Introducing Temporal Logics.

» Intuitions beyond Linear Temporal Logic.
o LTL: Syntax and Semantics.

o LTL in Computer Science.

» LTL Interpreted over Kripke Models.

» LTL and Model Checking: Intuitions.

=0 !!l' l

Safety:

“something bad will not happen”

Typical examples:
[_I-(reactor_temp > 1000)
[=((x=0)A OO Oy =1z/x))

and soon.....

Usually: []-....

[
3

Liveness: Often only really useful when scheduling processes,

“something good will happen” responding to messages, etc.

Strong Fairness:

Typical examples:
yp P “if something is attempted/requested infinitely

<>" ich often, then it will be successful/allocated infinitely
<>(x > 5) often”
[((start = terminate) Typical example:
D(Trying = <>Critical) D<>ready = D<>run
and so on.....
Usually: ...

Consider the following Kripke structure:
» Introducing Temporal Logics.
» Intuitions beyond Linear Temporal Logic. @
» LTL: Syntax and Semantics. Its paths/computations can be seen as a set of linear

» LTL in Computer Science. structures (computation tree):

» LTL Interpreted over Kripke Models.
» LTL and Model Checking: Intuitions.

e

[
3

o LTL formulae are evaluated over the set N of Natural
Numbers.

» Paths in Kripke structures are infinite and linear
sequences of states. Thus, they are isomorphic to the
Natural Numbers:

=S80 — 5 —>"-—>Sl'—>sl'+1 — e

» We want to interpret LTL formulas over Kripke
structures.

s Given a Kripke structure, x = (S,I,R,AP,L), a path «t
in xM , a state s € S, and an LTL formula ¢, we define:
1. (XM ,m) = ¢, and then

Based on the LTL semantics over the Natural Numbers.

_ —n. !l’ l

Given a Kripke structure, x = (S,1,R,AP,L), the LTL model
checking problem ka7 |= ¢:

Check if (x4 ,s0) = ¢, for every s € I initial state of the
Kripke structure xa

[
3
[
3

» We first extract an LTL model, #,, = (=, I,;), from the
Kripke structure x4 . ¢, = (=, I,;) is such that:

* mis apathin x M
* I, is the restriction of L to states in x:

Vs e and Vp € AP, p € I(s) iff p € L(s)

» Given a Kripke structure, x ¢ = (S,I,R,AP,L), a path
in KM , a state s € S, and an LTL formula ¢:
1. (KM) = ¢ iff (M, 50) =0
with sy initial state of nt

2. (KM ,s) = ¢ iff (K9 ,7) = ¢
for all paths & starting at s.

_ -n. !lll l

» Introducing Temporal Logics.

» Intuitions beyond Linear Temporal Logic.
s LTL: Syntax and Semantics.

s LTL in Computer Science.

o LTL Interpreted over Kripke Models.

» LTL and Model Checking: Intuitions.

KM = []-(CINGy) ?
YES: There is no reachable state in which (C; AC,) holds!

S

= noncritical, T =trying, C = critical

User1 User2

xm =C) ? xm = Cy 7

NO: the blue cyclic path is a counterexample!

xo = (1= O ? xof = (1= O0)) 2
YES: in every path if 7} holds afterwards C; holds!

S

= noncritical, T =trying, C = critical

User1 User2

NO: the blue cyclic path is a counterexample!

xor =[O = (100 ?

xor = [JOT = (100 ?

YES: every path which visits 7; infinitely often also visits C;
infinitely often!

Alternative notations are used for temporal operators.

{»> ~» F sometime in the Future
] ~ G Globally in the future
O ~ X neXtime

[
3

» Introducing Temporal Logics.

» Intuitions beyond Linear Temporal Logic.
s LTL: Syntax and Semantics.

s LTL in Computer Science.

» LTL Interpreted over Kripke Models.

» LTL and Model Checking: Intuitions.

[
3

