TRANSITION SYSTEMS

Slides by Alessandro Artale
http://www.inf.unibz.it/~artale/

Some material (text, figures) displayed in these slides is courtesy of:
M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

—n.l!l

We describe here Concurrent Reactive systems.

» Reactive Systems: Systems that interact with their
environment and usually do not terminate (e.qg.
communication protocols, hardware circuits).

» Concurrent Systems consist of a set of components that
execute together.
» We distinguish two types of Concurrent Systems:

1. Asynchronous or Interleaved Systems. Only one
component makes a step at a time;

2. Synchronous Systems. All components make a step at
the same time.

—n l!l

Types of Systems.

L)

Modeling Systems as Kripke Models.

L)

Languages for Describing Kripke Models.

e

» Properties of Systems.

=n. !l!l

» We need to construct a Formal Specification of the
system which abstract from irrelevant details.

 State: Snapshot of the system that captures the
values of the variables at a particular point in time.

* System Transition: How the state of the system
evolves as the result of some action.

* Computation: Infinite sequence of states along the
different transitions.

[
3

Types of Systems. » Kripke Structures are transition diagrams that represent
the dynamic behavior of a reactive system.

e

» Modeling Systems as Kripke Models.
» Kripke Structures consist of a set of states, a set of

_ transitions between states, and a set of properties
» Properties of Systems. labeling each state.

» A path in a Kripke structure represents a computation of
the system.

» Languages for Describing Kripke Models.

0.5 -n. !l!'

> Formally, a Kripke model (S,7,R. AP, L) consists of o We model two concurrent asynchronous processes
@P sharing a resource ensuring they do not access it at the
- a set of states S; \ same time.
* a set of initial states 1 C S; q » Each process has critical sections in its code and only
* a set of transitions R C S x S; one process can be in its critical section at a time.
- a f’e; Olf at?mlctp rop93|t|on23 A‘;}P; ‘\ C o We want to find a protocol for mutual exclusion which,
a labeling function Z - § — 2. P for example, guarantee the following properties:
> A path in a Kripke model M from a state s, is an infinite Safety: Only one process is in its critical section at a
sequence of states time.

Liveness: Whenever any process requests to enter its
critical section it will eventually be permitted to do so.

such that (s;,s;41) € R, for all i > 0. Non-Blocking: A process can always request to enter

iti critical iection.

T =S50,51,52,.--

Each process can be in its non-critical state (N), or trying to
enter its critical state (T), or in its critical state (C). The
variable turn considers the first process that went into its
trying state.

N = noncritical, T =trying, C = critical User1 User2

o Complex Kripke Models are tipically obtained by
composition of smaller ones

s Components can be combined via

* synchronous composition
* asynchronous composition.

> Components evolve in parallel.
> At each time instant, every component performs a

transition.
G0 G
synchronous :7:;

\ composition

> Typical example: sequential hardware circuits.

3

> Interleaving of evolution of components.
> At each time instant, one component is selected to
perform a transition.

asynchronous

:__>
- @ composition
=

> Typical example: communication protocols.

» Types of Systems.

» Modeling Systems as Kripke Models.

» Languages for Describing Kripke Models.
» Properties of Systems.

—n. ”!l

The correspondence between a description language and
the Kripke Model is the following:

» States: all possible assignments for system variables;
o Initial States: Initial values for system variables;
» Transitions: Instructions;

» Atomic Propositions: Propositions associated to the
values of the system variables;

» Labeling: Set of atomic propositions true at a state.

[
3
[
3

Tipically a Kripke model is not given explicitly, rather it is
usually presented in a structured language
(e.g., NuSMV, SDL, PROMELA, StateCharts, VHDL, ...)
Each component is presented by specifying:

» A set of system variables

» Initial values for state variables

» Instructions

-n. l!l!l

o The NuSMV (New Symbolic Model Verifier)
model-checking system is an Open Source product
(nusmv.irst.itc.it).

» An SMV program consists of:
* Type declarations of the system variables;
* Assignments that define the valid initial states
(e.g., init(b0) := 0).
* Assignments that define the transition relation
(e.9., next (b0) := 1!b0).

MODULE main

VAR
b0 : boolean;
bl : boolean;

reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0; ° e
next(b0) := case

reset

reset
esac;

init(bl)
next (bl)

0;
case

reset: 0;

1 : ((!b0 & bl)|(b0 & !bl));
esac;
out := b0 + 2xbl;

» Nothing Bad Ever Happens.
* Deadlock: two processes waiting for input from each
other, the system is unable to perform a transition.

* No reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the
same time

» ltis expressed by a temporal formula saying that
“it’s never the case that p”.

Types of Systems.
Modeling Systems as Kripke Models.
Languages for Describing Kripke Models.

L)

L)

e

» Properties of Systems.

—n. lll!l

» Something Desirable Will Eventually Happen.

* Whenever a subroutine takes control, it will always
return it (sooner or later).

» ltis expressed by a temporal formula saying that
“at each state it will be the case that p”.

» Can be refuted by infinite behaviour (represented as a

loop)
‘ii.gw. h Ngfir\?&\qjqzk\

» Types of Systems.

» Modeling Systems as Kripke Models.

» Languages for Describing Kripke Models.
» Properties of Systems.

