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Concurrent Reactive Systems

We describe here Concurrent Reactive systems.

Reactive Systems: Systems that interact with their
environment and usually do not terminate (e.g.
communication protocols, hardware circuits).

Concurrent Systems consist of a set of components that
execute together.

We distinguish two types of Concurrent Systems:

1. Asynchronous or Interleaved Systems. Only one
component makes a step at a time;

2. Synchronous Systems. All components make a step at
the same time.
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Modeling Systems

We need to construct a Formal Specification of the
system which abstract from irrelevant details.

• State: Snapshot of the system that captures the
values of the variables at a particular point in time.

• System Transition: How the state of the system
evolves as the result of some action.

• Computation: Infinite sequence of states along the
different transitions.
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Modeling Systems with Kripke Structures

Kripke Structures are transition diagrams that represent
the dynamic behavior of a reactive system.

Kripke Structures consist of a set of states, a set of
transitions between states, and a set of properties
labeling each state.

A path in a Kripke structure represents a computation of
the system.
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Kripke model: definition

! Formally, a Kripke model 〈S, I,R,AP,L〉 consists of

• a set of states S;
• a set of initial states I ⊆ S;
• a set of transitions R⊆ S×S;
• a set of atomic propositions AP;
• a labeling function L : S &→ 2AP. p
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! A path in a Kripke model M from a state s0 is an infinite
sequence of states

!= s0,s1,s2, . . .

such that (si,si+1) ∈ R, for all i≥ 0.
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Example: Kripke model for mutual exclusion

We model two concurrent asynchronous processes
sharing a resource ensuring they do not access it at the
same time.

Each process has critical sections in its code and only
one process can be in its critical section at a time.

We want to find a protocol for mutual exclusion which,
for example, guarantee the following properties:

Safety: Only one process is in its critical section at a
time.

Liveness: Whenever any process requests to enter its
critical section it will eventually be permitted to do so.

Non-Blocking: A process can always request to enter
its critical section.

– p. 8/21



Example: a Kripke model for mutual exclusion

Each process can be in its non-critical state (N), or trying to
enter its critical state (T), or in its critical state (C). The
variable turn considers the first process that went into its
trying state.
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turn=2
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turn=1

turn=2

T1, C2
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N = noncritical,  T = trying,  C = critical User 1 User 2
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Composing Kripke Models

Complex Kripke Models are tipically obtained by
composition of smaller ones

Components can be combined via

• synchronous composition

• asynchronous composition.
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Synchronous Composition

! Components evolve in parallel.
! At each time instant, every component performs a
transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0

y = a

x = 1x = 0

x = 1

y = a

y = b y = b

! Typical example: sequential hardware circuits.
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Asynchronous Composition

! Interleaving of evolution of components.
! At each time instant, one component is selected to
perform a transition.

x = 1x = 0

y = b y = b

x = 0

y = a

x = 1

y = a

y = by = a

x = 1x = 0
asynchronous

composition

! Typical example: communication protocols.

– p. 12/21



Summary

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 13/21

Description languages for Kripke Model

Tipically a Kripke model is not given explicitly, rather it is
usually presented in a structured language
(e.g., NuSMV, SDL, PROMELA, StateCharts, VHDL, ...)
Each component is presented by specifying:

A set of system variables

Initial values for state variables

Instructions

– p. 14/21

Description languages for Kripke Model

The correspondence between a description language and
the Kripke Model is the following:

States: all possible assignments for system variables;

Initial States: Initial values for system variables;

Transitions: Instructions;

Atomic Propositions: Propositions associated to the
values of the system variables;

Labeling: Set of atomic propositions true at a state.
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The NuSMV language

The NuSMV (New Symbolic Model Verifier)
model-checking system is an Open Source product
(nusmv.irst.itc.it).

An SMV program consists of:

• Type declarations of the system variables;

• Assignments that define the valid initial states
(e.g., init(b0) := 0).

• Assignments that define the transition relation
(e.g., next(b0) := !b0).
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NuSMV: The modulo 4 counter with reset

MODULE main
VAR

b0 : boolean;
b1 : boolean;
reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := case

reset = 1: 0;
reset = 0: !b0;

esac;

init(b1) := 0;
next(b1) := case

reset: 0;
1 : ((!b0 & b1)|(b0 & !b1));

esac;
out := b0 + 2*b1;

2

0 1
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Safety Properties

Nothing Bad Ever Happens.

• Deadlock: two processes waiting for input from each
other, the system is unable to perform a transition.

• No reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the
same time

It is expressed by a temporal formula saying that
“it’s never the case that p”.

p
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Liveness Properties

Something Desirable Will Eventually Happen.

• Whenever a subroutine takes control, it will always
return it (sooner or later).

It is expressed by a temporal formula saying that
“at each state it will be the case that p”.

Can be refuted by infinite behaviour (represented as a
loop)
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