
TRANSITION SYSTEMS

Slides by Alessandro Artale
http://www.inf.unibz.it/∼artale/

Some material (text, figures) displayed in these slides is courtesy of:

M. Benerecetti, A. Cimatti, M. Fisher, F. Giunchiglia, M. Pistore, M. Roveri, R.Sebastiani.

– p. 1/21

Summary of Lecture II

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 2/21

Concurrent Reactive Systems

We describe here Concurrent Reactive systems.

Reactive Systems: Systems that interact with their
environment and usually do not terminate (e.g.
communication protocols, hardware circuits).

Concurrent Systems consist of a set of components that
execute together.

We distinguish two types of Concurrent Systems:

1. Asynchronous or Interleaved Systems. Only one
component makes a step at a time;

2. Synchronous Systems. All components make a step at
the same time.

– p. 3/21

Modeling Systems

We need to construct a Formal Specification of the
system which abstract from irrelevant details.

• State: Snapshot of the system that captures the
values of the variables at a particular point in time.

• System Transition: How the state of the system
evolves as the result of some action.

• Computation: Infinite sequence of states along the
different transitions.

– p. 4/21

Summary

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 5/21

Modeling Systems with Kripke Structures

Kripke Structures are transition diagrams that represent
the dynamic behavior of a reactive system.

Kripke Structures consist of a set of states, a set of
transitions between states, and a set of properties
labeling each state.

A path in a Kripke structure represents a computation of
the system.

– p. 6/21

Kripke model: definition

! Formally, a Kripke model 〈S, I,R,AP,L〉 consists of

• a set of states S;
• a set of initial states I ⊆ S;
• a set of transitions R⊆ S×S;
• a set of atomic propositions AP;
• a labeling function L : S &→ 2AP. p

q

1

2

3

4

p

! A path in a Kripke model M from a state s0 is an infinite
sequence of states

!= s0,s1,s2, . . .

such that (si,si+1) ∈ R, for all i≥ 0.

– p. 7/21

Example: Kripke model for mutual exclusion

We model two concurrent asynchronous processes
sharing a resource ensuring they do not access it at the
same time.

Each process has critical sections in its code and only
one process can be in its critical section at a time.

We want to find a protocol for mutual exclusion which,
for example, guarantee the following properties:

Safety: Only one process is in its critical section at a
time.

Liveness: Whenever any process requests to enter its
critical section it will eventually be permitted to do so.

Non-Blocking: A process can always request to enter
its critical section.

– p. 8/21

Example: a Kripke model for mutual exclusion

Each process can be in its non-critical state (N), or trying to
enter its critical state (T), or in its critical state (C). The
variable turn considers the first process that went into its
trying state.

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

– p. 9/21

Composing Kripke Models

Complex Kripke Models are tipically obtained by
composition of smaller ones

Components can be combined via

• synchronous composition

• asynchronous composition.

– p. 10/21

Synchronous Composition

! Components evolve in parallel.
! At each time instant, every component performs a
transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0

y = a

x = 1x = 0

x = 1

y = a

y = b y = b

! Typical example: sequential hardware circuits.

– p. 11/21

Asynchronous Composition

! Interleaving of evolution of components.
! At each time instant, one component is selected to
perform a transition.

x = 1x = 0

y = b y = b

x = 0

y = a

x = 1

y = a

y = by = a

x = 1x = 0
asynchronous

composition

! Typical example: communication protocols.

– p. 12/21

Summary

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 13/21

Description languages for Kripke Model

Tipically a Kripke model is not given explicitly, rather it is
usually presented in a structured language
(e.g., NuSMV, SDL, PROMELA, StateCharts, VHDL, ...)
Each component is presented by specifying:

A set of system variables

Initial values for state variables

Instructions

– p. 14/21

Description languages for Kripke Model

The correspondence between a description language and
the Kripke Model is the following:

States: all possible assignments for system variables;

Initial States: Initial values for system variables;

Transitions: Instructions;

Atomic Propositions: Propositions associated to the
values of the system variables;

Labeling: Set of atomic propositions true at a state.

– p. 15/21

The NuSMV language

The NuSMV (New Symbolic Model Verifier)
model-checking system is an Open Source product
(nusmv.irst.itc.it).

An SMV program consists of:

• Type declarations of the system variables;

• Assignments that define the valid initial states
(e.g., init(b0) := 0).

• Assignments that define the transition relation
(e.g., next(b0) := !b0).

– p. 16/21

NuSMV: The modulo 4 counter with reset

MODULE main
VAR

b0 : boolean;
b1 : boolean;
reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := case

reset = 1: 0;
reset = 0: !b0;

esac;

init(b1) := 0;
next(b1) := case

reset: 0;
1 : ((!b0 & b1)|(b0 & !b1));

esac;
out := b0 + 2*b1;

2

0 1

3

– p. 17/21

Summary

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 18/21

Safety Properties

Nothing Bad Ever Happens.

• Deadlock: two processes waiting for input from each
other, the system is unable to perform a transition.

• No reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the
same time

It is expressed by a temporal formula saying that
“it’s never the case that p”.

p

– p. 19/21

Liveness Properties

Something Desirable Will Eventually Happen.

• Whenever a subroutine takes control, it will always
return it (sooner or later).

It is expressed by a temporal formula saying that
“at each state it will be the case that p”.

Can be refuted by infinite behaviour (represented as a
loop)

p

p

p

p

p

p

p

p

– p. 20/21

Summary of Lecture II

Types of Systems.

Modeling Systems as Kripke Models.

Languages for Describing Kripke Models.

Properties of Systems.

– p. 21/21

