
Introduction to Model Checking

These slides are based on those of

Tevfik Bultan for CS 267

University of California, Santa Barbara

http://www.cs.ucsb.edu/~bultan/

http://www.cs.ucsb.edu/~bultan/courses/267/

Temporal Logics for Reactive Systems

 [Pnueli FOCS 77, TCS 81]

Transformational systems

 get input;

 compute something;

 return result;

Reactive systems

 while (true) {

 receive some input,

 send some output

 }

•! Transformational view follows

from the initial use of computers

as advanced calculators: A

component receives some input,

does some calculation and then

returns a result.

•! Nowadays, the reactive system

view seems more natural:

components which continuously

interact with each other and their

environment without terminating

Transformational vs. Reactive Systems

Transformational systems

 get input;

 {pre-condition}

 compute something;

 {post-condition}

 return result;

Reactive systems

 while (true) {

 receive some input,

 send some output

 }

•! Earlier work in verification uses

the transformational view:

–! halting problem

–! Hoare logic

–! pre and post-conditions

–! partial vs. total correctness

•! For reactive systems:

–! termination is not the main
issue

–! pre and post-conditions are

not enough

Temporal Logics

Temporal Logics

•! Invariant p (G p, AG p, p)

•! Eventually p (F p, AF p, p)

•! Next p : (X p, AX p, p)

•! p Until q : (p U q, A(p U q))

.

.

.

.

.

.

AF(p), EG(p) F(p)

p

p p

p

G(p)

LTL view CTL view

p

p p p

p

p

p

Branching vs. Linear Time

.

.

.

.

.

.

.

.

.

Transition system:

Automated Verification of Finite State Systems
 [Clarke and Emerson 81], [Queille and Sifakis 82]

Transition Systems

•! S : Set of states (finite)

•! I ! S : Set of initial states

•! R ! S " S : Transition relation

Model checking problem: Given a

temporal logic property, does the

transition system satisfy the

property?

–! Complexity: linear in the size
of the transition system

Verification vs. Falsification

Verification:

show: initial states ! truth set of p

Falsification:

find: a state # initial states $ truth

set of ¬p

generate a counter-example
starting from that state

Temporal Properties % Fixpoints
[Emerson and Clarke 80]

Symbolic Model Checking
[McMillan et al. LICS 90]

•! Represent sets of states and the transition relation as

Boolean logic formulas

•! Fixpoint computation becomes formula manipulation

–! pre and post-condition computations: Existential variable

elimination

–! conjunction (intersection), disjunction (union) and

negation (set difference), and equivalence check

•! Use an efficient data structure

–! Binary Decision Diagrams (BDDs)

SMV [McMillan 93]

•! BDD-based symbolic model checker

•! Finite state

•! Temporal logic: CTL

•! Focus: hardware verification

–! Later applied to software specifications, protocols, etc.

•! SMV has its own input specification language

–! concurrency: synchronous, asynchronous

–! shared variables

–! boolean and enumerated variables

–! bounded integer variables (binary encoding)

•! SMV is not efficient for integers, can be fixed

LTL Properties % Büchi automata
[Vardi and Wolper LICS 86]

•! Büchi automata: Finite state
automata that accept infinite
strings

•! A Büchi automaton accepts a
string when the corresponding
run visits an accepting state
infinitely often

•! The size of the property
automaton can be exponential in
the size of the LTL formula

G p
p ¬p

true

F p p ¬p

true

G (F p)
true p

true

SPIN [Holzmann 91, TSE 97]

•! Explicit state, finite state

•! Temporal logic: LTL

•! Input language: PROMELA

–! Asynchronous processes

–! Shared variables

–! Message passing through
(bounded) communication
channels

–! Variables: boolean, char,
integer (bounded), arrays
(fixed size)

•! Property automaton from the

negated LTL property

•! Product of the property

automaton and the transition

system (on-the-fly)

•! Show that there is no accepting

cycle in the product automaton

•! Nested depth first search to look
for accepting cycles

•! If there is a cycle, it corresponds

to a counterexample behavior

that demonstrates the bug

Model Checking Research

•! These key ideas and tools inspired a lot of research
[Clarke, Grumberg and Peled, 99]

–! efficient symbolic representations

–! partial order reductions

–! abstraction

–! compositional/modular verification

–! model checking infinite state systems (pushdown

automata)

–! model checking real time systems

–! model checking hybrid systems

–! model checking programs

–! ...

Model Checking Impact

•! Model checking research had significant impact in other

areas. Some examples:
•! Software Engineering:

–! Chaki et al. "Modular Verification of Software Components in C" ICSE 03,
ACM SIGSOFT distinguished paper

–! Betin Can at al. "Application of Design for Verification with Concurrency

Controllers to Air Traffic Control Software" ASE 05 best paper

•! Systems:

–! Yang et al. “Using Model Checking to Find Serious File System Errors,

OSDI 04 best paper.

–! Killian et al. “Life, Death, and the Critical Transition: Finding Liveness Bugs

in Systems Code” NSDI 2007 best paper

•! Also conferences in Security and Programming Languages have plenty of
model checking papers nowadays!

Other issues

•! Abstraction

•! Bounded model checking

•! Dealing with infinite-state transition system

•! Automated synthesis

Abstract Interpretation [Cousot and Cousot POPL 77]

•! Abstract interpretation provides a general framework for

defining abstractions

•! The size of the state space of an abstracted system is

smaller than the original system, which makes static

analysis of the abstract state space feasible

•! Different abstract domains can be combined using the

abstract interpretation framework

•! Abstract interpretation framework also provides

conservative approximation techniques such as widening
for computing approximations of fixpoints

Predicate Abstraction [Graf and Saidi CAV 97]

•! An automated abstraction technique that reduces the state

space of a program by removing some variables from the

program and just keeping information about a set of
predicates about them

•! Given a program and a set of predicates, predicate

abstraction abstracts the program so that only the

information about the given predicates are preserved

•! The abstracted program adds nondeterminism since in

some cases it may not be possible to figure out what the

next value of a predicate will be based on the predicates in

the given set

•! One needs an automated theorem prover to compute the

abstraction

Counter-example Guided Abstraction Refinement
[Clarke et al. CAV 00][Ball and Rajamani SPIN 00]

The basic idea in counter-example guided abstraction

refinement is the following:

•! First look for an error in the abstract program (if there are

no errors, we can terminate since we know that the original

program is correct)

•! If there is an error in the abstract program, generate a

counter-example path on the abstract program

•! Check if the generated counter-example path is feasible

using a theorem prover.

•! If the generated path is infeasible add the predicate from

the branch condition where an infeasible choice is made to

the predicate set and generate a new abstract program.

Bounded Model Checking [Biere et al. TACAS 99]

•! Represent sets of states and the transition relation as

Boolean logic formulas

•! Instead of computing the fixpoints, unroll the transition

relation up to certain fixed bound and search for violations

of the property within that bound

•! Transform this search to a Boolean satisfiability problem

and solve it using a SAT solver

