Introduction to Model Checking

Temporal Logics for Reactive Systems

[Pnueli FOCS 77, TCS 81]

Transformational systems
get input;
compute something;

return result;

Transformational view follows
from the initial use of computers
as advanced calculators: A
component receives some input,
does some calculation and then

These slides are based on those of
Tevfik Bultan for CS 267

University of California, Santa Barbara
http://www.cs.ucsb.edu/~bultan/
http://www.cs.ucsb.edu/~bultan/courses/267/

Transformational vs. Reactive Systems

Transformational systems + Earlier work in verification uses
the transformational view:

— halting problem

— Hoare logic

— pre and post-conditions

— partial vs. total correctness

get input;
{pre-condition}
compute something;
{post-condition}

return result;

Reactive systems + For reactive systems:
while (true) { — termination is not the main
receive some input, issue
send some output — pre and post-conditions are
not enough

returns a result.

+ Nowadays, the reactive system
view seems more natural:
while (true) { components which continuously
receive some input, interact with each other and their
environment without terminating

Reactive systems

send some output

Temporal Logics

Temporal Logics

+ Invariantp (G p, AG p, Op)
. Eventually p (F p, AF p,Op)
* Nextp : (Xp, AX p,op)

* pUntilg:(pUq,A(pUq))

Branching vs. Linear Time LTL view CTL view
i : G(p) F(p) AF(p), EG(p)
Transition system: (/,5\) ‘77\’ Q

ANA

o4 i i e
A I
c DR



Automated Verification of Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

Transition Systems Verification vs. Falsification

« S Set of states (finite)

+ | C S: Set of initial states Verification:

+ RC S x S: Transition relation show: initial states C truth set of p

Falsification:

Model checking problem: Given a find: a state € initial states N truth
temporal logic property, does the set of -p
transition system satisfy the generate a counter-example
property? starting from that state

— Complexity: linear in the size
of the transition system

Symbolic Model Checking

[McMillan et al. LICS 90]

* Represent sets of states and the transition relation as
Boolean logic formulas

* Fixpoint computation becomes formula manipulation

— pre and post-condition computations: Existential variable
elimination

— conjunction (intersection), disjunction (union) and
negation (set difference), and equivalence check

« Use an efficient data structure
— Binary Decision Diagrams (BDDs)

Temporal Properties = Fixpoints

[Emerson and Clarke 80]

EF(-p) = states thatcanreach -p = -p U Pre(-p) U Pre(Pre(-p)) U ...

initial states that satisfy EF(-p)
= initial states that violate AG(p)

EG(-p) = states that can avoid reaching p = -p N Pre(-p) N Pre(Pre(-p)) N ...

initial states that satisfy EG(-p)

= initial states that violate AF(p)

SMV [McMillan 93]

+ BDD-based symbolic model checker
+ Finite state
» Temporal logic: CTL
* Focus: hardware verification

— Later applied to software specifications, protocols, etc.
+ SMV has its own input specification language

— concurrency: synchronous, asynchronous

— shared variables

— boolean and enumerated variables

— bounded integer variables (binary encoding)

» SMV is not efficient for integers, can be fixed



LTL Properties = Blichi automata
[Vardi and Wolper LICS 86]

Buichi automata: Finite state
automata that accept infinite
strings

A Blchi automaton accepts a
string when the corresponding
run visits an accepting state
infinitely often

The size of the property
automaton can be exponential in
the size of the LTL formula

Model Checking Research

Gp

Fp

G (Fp)

true
Q@ -p .’

true

» Qo

true

true

+ These key ideas and tools inspired a lot of research
[Clarke, Grumberg and Peled, 99]

partial order reductions
abstraction

automata)

efficient symbolic representations

compositional/modular verification
model checking infinite state systems (pushdown

model checking real time systems
model checking hybrid systems
model checking programs

SPIN [Holzmann 91, TSE 97]

+ Explicit state, finite state * Property automaton from the
+ Temporal logic: LTL negated LTL property
¢ Input language: PROMELA * Product of the property

— Asynchronous processes automaton and the transition

— Shared variables system (on-the-fly)

— Message passing through » Show that there is no accepting
(bounded) communication cycle in the product automaton
chalnnels * Nested depth first search to look

— Variables: boolean, char, for accepting cycles
integer (bounded), arrays

+ If there is a cycle, it corresponds
to a counterexample behavior
that demonstrates the bug

(fixed size)

Model Checking Impact

* Model checking research had significant impact in other
areas. Some examples:
» Software Engineering:
— Chaki et al. "Modular Verification of Software Components in C" ICSE 03,
ACM SIGSOFT distinguished paper
— Betin Can at al. "Application of Design for Verification with Concurrency
Controllers to Air Traffic Control Software" ASE 05 best paper
» Systems:
— Yang et al. “Using Model Checking to Find Serious File System Errors,
OSDI 04 best paper.
— Killian et al. “Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code” NSDI 2007 best paper
» Also conferences in Security and Programming Languages have plenty of
model checking papers nowadays!



Other issues

Abstraction

Bounded model checking

Dealing with infinite-state transition system
Automated synthesis

Predicate Abstraction [Graf and Saidi CAV 97]

An automated abstraction technique that reduces the state
space of a program by removing some variables from the
program and just keeping information about a set of
predicates about them

Given a program and a set of predicates, predicate
abstraction abstracts the program so that only the
information about the given predicates are preserved

The abstracted program adds nondeterminism since in
some cases it may not be possible to figure out what the
next value of a predicate will be based on the predicates in
the given set

One needs an automated theorem prover to compute the
abstraction

Abstract Interpretation [cousot and Cousot POPL 77]

Abstract interpretation provides a general framework for
defining abstractions

The size of the state space of an abstracted system is
smaller than the original system, which makes static
analysis of the abstract state space feasible

Different abstract domains can be combined using the
abstract interpretation framework

Abstract interpretation framework also provides
conservative approximation techniques such as widening
for computing approximations of fixpoints

Counter-example Guided Abstraction Refinement
[Clarke et al. CAV 00][Ball and Rajamani SPIN 00]

The basic idea in counter-example guided abstraction

refinement is the following:

First look for an error in the abstract program (if there are
no errors, we can terminate since we know that the original
program is correct)

If there is an error in the abstract program, generate a
counter-example path on the abstract program

Check if the generated counter-example path is feasible
using a theorem prover.

If the generated path is infeasible add the predicate from
the branch condition where an infeasible choice is made to
the predicate set and generate a new abstract program.



Bounded Model Checking [Biere et al. TACAS 99]

* Represent sets of states and the transition relation as
Boolean logic formulas

 Instead of computing the fixpoints, unroll the transition
relation up to certain fixed bound and search for violations
of the property within that bound

+ Transform this search to a Boolean satisfiability problem
and solve it using a SAT solver



