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Abstract. Oneof the surprising developmentsin the area of program verification
is how ideas introduced originaly by logicians in the 1950s ended up yielding
by 2003 an industrial-standard property-specification language called PSL. This
development was enabled by the equally unlikely transformation of the mathe-
matical machinery of automata on infinite words, introduced in the early 1960s
for second-order arithmetics, into effective algorithms for model-checking tools.
This paper attempts to trace the tangled threads of this development.

1 Thread I: Classical Logic of Time

1.1 Reasoning about Sequential Circuits

The field of hardware verification seems to have been started in a little known 1957
paper by Alonzo Church, 1903—-1995, in which he described the use of logic to specify
sequential circuits[24]. A sequentia circuit isaswitching circuit whose output depends
not only upon its input, but also on what its input has been in the past. A sequentia
circuit is a particular type of finite-state machine, which became a subject of study in
mathematical logic and computer science in the 1950s.

Formally, a sequentid circuit C = (I,0, R, f,g,ro) consists of a finite set I of
Boolean input signals, afinite set O of Boolean output signals, afinite set R of Boolean
sequential elements, a transition function f : 27 x 2% — 2% an output function g :
2R — 20 and aninitial statery € 2. (We refer to elements of 7 U O U R as circuit
elements, and assumethat 7, O, and R aredigoint.) Intuitively, a state of the circuitisa
Boolean assignment to the sequential elements. Theinitial stateisry. Inastater € 2%,
the Boolean assignment to the output signalsis g(r). Whenthecircuitisin stater € 27
and it reads an input assignment i € 27, it changesits state to £ (i, r).

A trace over aset V of Boolean variablesis an infinite word over the alphabet 2V,
i.e,, an element of (2)~. A trace of the sequential circuit C isatraceover TUO U R
that satisfies some conditions. Specifically, asequence r = (ig, ro, 0¢), (i1,r1,01), .. -
wherei; € 27, 0; € 29, and r; € 2%, isatraceof C'if rj11 = f(ij,r;) ando; =
g(r;), for j > 0. Thus, in modern terminology, Church was following the linear-time
approach [81] (see discussion in Section 2.1). The set of traces of C' is denoted by
traces(C).
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Church observed that we can associate with an infinite word w = ag, a1, ... over
an alphabet 2V, a relational structure M,, = (IN, <, V), with the naturas IV as the
domain, ordered by <, and extended by the set V' of unary predicates, where j € p, for
p € V, precisely when p holds (i.e., isassigned 1) in a;. We refer to such structures as
word structures. When we refer to the vocabulary of such astructure, werefer explicitly
only to V, taking < for granted.

We can now specify traces using first-order logic (FO) sentences constructed from
atomic formulas of the formz = y, x < y, and p(x) forp € V. = TU RU 0.2 For
example, the FO sentence

(Vz)(3y)(z <y Ap(y))

saysthat p holdsinfinitely often in the trace. In afollow-up paper in 1963 [25], Church
considered also specifying traces using monadic second-order logic (MSO), wherein
addition to first-order quantifiers, which range over the elements of IV, we alow aso
monadic second-order quantifiers, ranging over subsets of IV, and atomic formulas of
theform Q(z), where @ isamonadic predicate variable. (Thislogicisalso called S1S,
the “second-order theory of one successor function”.) For example, the M SO sentence,

3P) (V) (Vy) ((P(x) Ay =z +1) — (=P (y)))A
(=P(@)) ANy =z + 1) = P(y)))A
(x =0— P(x)) A (P(z) = q(2))),

where x = 0 isan abbrevaition for (—(3z)(z < z)) andy = « + 1 is an abbreviation
for (y > z A=(32)(z < z Az < y)), says that ¢ holds at every even point on the
trace. MSO wasintroducedin [15, 17,43, 120].) In effect, Church was proposing to use
classical logic (FO or MSO) as alogic of time, by focusing on word structures. The set
of models of an FO or MSO sentence ¢ is denoted by models(i).

Church posed two problemsrelated to sequential circuits[24]:

— TheDECcIsION problem: Given circuit C' and a sentence o, doesp holdin all traces
of C?That is, doestraces(C') C models(¢) hold?

— The SYNTHESIS problem: Given sets I and O of input and output signals, and a
sentence ¢ over the vocabulary I U O, construct, if possible, a sequential circuit C
with input signals I and output signals O such that ¢ holdsin all traces of C. That
is, construct C' such that traces(C') C models(¢) holds.

In modernterminology, Church’sDECISION problemisprecisely the MODEL-CHECKING
problem in the linear-time approach (see Section 2.2). This problem did not receive
much attention after [24, 25], until the introduction of model checking in the early
1980s. In contrast, the Sy NTHESI S problem has remai ned a subject of ongoing research;
see[18, 75, 77,105, 119]. Onereason that the DECISION problem did not remain a sub-
ject of study, isthe easy observation in [25] that the DECISION problem can be reduced
to the vALIDITY problem in the underlying logic (FO or MSO). Given a sequential cir-
cuit C, we can easily generate an FO sentence «¢ that holdsin precisely al structures

! We overload notation here and treat p as both a Boolean variable and a predicate.
2 We overload notation here and treat p as both a circuit element and a predicate symbol.



associated with traces of C'. Intuitively, the sentence a. simply hasto encodethetransi-
tion and output functions of C', which are Boolean functions. Then ¢ holdsin all traces
of C precisely when ac — ¢ holdsin al word structures (of the appropriate vocabu-
lary). Thus, to solve the DECISION problem we need to solve the VALIDITY problem
over word structures. As we see next, this problem was solved in 1962.

1.2 Reasoning about Words

Church’s DECISION problem was essentially solved in 1962 by Julius Richard Biichi,
19241984, who showed that the VALIDITY problem over word structuresis decidable
[16]. Actually, Biichi showed the decidability of the dual problem, which is the SAT-
ISFIABILITY problem for MSO over word structures. Biichi’s approach consisted of
extending the automata-theoretic approach, which was introduced a few years earlier
[15,43,120] for finite word structures, to (infinite) word structures. To that end, Biichi
extended automata theory to automata on infinite words.

A nondeterministic Buchi automaton on words (NBW) A = (X, S, Sy, p, F') con-
sists of a finite input alphabet Y7, a finite state set S, an initia state set 5o C S, a
trangition relation p C S x X x S, and an accepting state set /' C S. An NBW runs
over an infinite input word w = ag,a1,... € X“. A run of A on w is an infinite se-
quencer = so, s1, . . . Of statesin S such that sy € Sy, and (s;, a;, s;+1) € p,fori > 0.
Therun r isaccepting if F' isvisited by r infinitely often; that is, s; € F for infinitely
many ¢'s. The word w is accepted by A if A has an accepting run on w. The language
of A, denoted L(A), isthe set of words accepted by A.

Example 1. We describe graphically an NBW that accepts all words over the al phabet
{0,1} that contain infinitely many occurrences of 1. The arrow on the left designates
theinitial state, and the circle on the right designates an accepting state.

The class of languages accepted by NBWs forms the class of w-regular languages,
which are defined in terms of regular expressions augmented with the w-power operator
(e* denotes an infinitary iteration of e) [16].

The paradigmatic idea of the automata-theoretic approach is that we can compile
high-level logical specificationsinto an equivalent low-level finite-state formalism.



Theorem 1. [16] Given an MSO sentence ¢ over a vocabulary V', one can construct
an NBW A, with alphabet 2" such that a word w in (2V)“ is accepted by A, iff ¢
holds in the associated word structure M,,.

The theorem says that models(y) = L(A,). Thus, the class of languages defined by
MSO sentences is precisely the class of w-regular languages. This result was inspired
by an analogous earlier theorem for M SO over finite words [15, 43, 120], which showed
that M SO over finite words defines precisely the class of regular languages.

To decide whether sentence ¢ is satisfiable, that is, whether models(yp) # 0, we
need to check that L(A,) # 0. This turns out to be an easy problem. Let A =
(X, 8, S0, p, F') be an NBW. Construct a directed graph G4 = (S, E4), with S as
the set of nodes, and E4 = {(s,t) : (s,a,t) € pforsomea € X'}. The following
lemmaisimplicit in [16] and more explicit in [121].

Lemmal. L(A) # () iff therearestates sp € S” andt € F suchthatin G 4 thereisa
path from s, to ¢ and a path from ¢ to itself.

We thus obtain an algorithm for the SATISFIABILITY problem of MSO over word
structures: given an M SO sentence ¢, construct the NBW A, and check whether L(A) #
(. Since the DECISION problem can be reduced to the SATISFIABILITY problem, this
also solves the DECISION problem.

Neither Buchi nor Church analyzed the complexity of the DECISION problem.
This had to wait until 1974. Define the function exp(k,n) inductively as follows:
exp(0,n) = n and exp(k + 1,n) = 2¢*P(%:n) We say that a problem is nonele-
mentary if it can not be solved by an algorithm whose running time is bounded by
exp(k,n) for somefixed k > 0; that is, the running time cannot be bounded by a tower
of exponentias of a fixed height. It is not too difficult to observe that the construc-
tion of the automaton A, in [16] is nonelementary. It was shown in [87,113] that the
SATISFIABILITY problem for MSO is nonelementary. In fact, the problem is already
nonelementary for FO over finite words [113].

2 Thread Il: Temporal Logic

2.1 From Aristotleto Kamp

The history of time in logic goes back to ancient times.® Aristotle pondered how to
interpret sentences such as “ Tomorrow there will be a sea fight,” or “Tomorrow there
will not be a seafight” Medieval philosophers also pondered the issue of time.* By the
Renaissance period, philosophical interest in the logic of time seems to have waned.

3 For adetailed history of temporal logic from ancient times to the modern period, see [91].

4 For example, William of Ockham, 12881348, wrote (rather obscurely for the modern reader):
“Wherefore the difference between present tense propositions and past and future tense propo-
sitionsisthat the predicate in apresent tense proposition stands in the same way as the subject,
unless something added to it stops this; but in a past tense and a future tense proposition it
varies, for the predicate does not merely stand for those things concerning which it is truly
predicated in the past and future tense propositions, because in order for such a proposition to
betrue, it isnot sufficient that that thing of which the predicate istruly predicated (whether by



There were some stirrings of interest in the 19th century, by Boole and Peirce. Peirce
wrote:

“Time has usualy been considered by logicians to be what is called ‘extra
logical’ matter. | have never shared this opinion. But | have thought that logic
had not yet reached the state of development at which the introduction of tem-
poral modifications of its forms would not result in great confusion; and | am
much of that way of thinking yet.”

There were also some stirrings of interest in the first half of the 20th century, but
the birth of modern temporal logic is ungquestionably credited to Arthur Norman Prior,
1914-1969. Prior was a philosopher, who was interested in theological and ethical is-
sues. His own religious path was somewhat convoluted; he was born a Methodist, con-
verted to Presbytarianism, became an atheist, and ended up an agnostic. In 1949, he
published a book titled “Logic and The Basis of Ethics’. He was particularly interested
in the conflict between the assumption of free will (“the futureisto some extent, even if
it isonly avery small extent, something we can make for ourselves’), foredestination
(“of what will be, it has now been the case that it will be"), and foreknowledge (“thereis
adeity who infallibly knows the entire future”). He was also interested in modal logic
[102]. This confluence of interestsled Prior to the development of temporal logic. ® His
wife, Mary Prior, recalled after his death:

“1 remember hiswaking me one night [in 1953], coming and sitting on my bed,
..., and saying he thought one could make a formalised tense logic.”

Prior lectured on his new work when he was the John Locke L ecturer at the Univer-
sity of Oxford in 19556, and published his book “ Time and Modality” in 1957 [100].6
In this book, he presented atemporal logic that is propositional logic extended with two
temporal connectives, F' and P, corresponding to “sometimein the future” and “ some-
timeinthe past”. A crucial feature of thislogicisthat it hasanimplicit notion of “now”,
which is treated as an indexical, that is, it depends on the context of utterance for its
meaning. Both future and past are defined with respect to thisimplicit “now”.

It isinteresting to notethat the linear vs. branching time dichotomy, which has been
asubject of some controversy in the computer science literature since 1980 (see [126]),
has been present from the very beginning of temporal-logic development. In Prior's
early work on temporal logic, he assumed that time was linear. In 1958, he received a
letter from Saul Kripke,” who wrote

averb in the present tense or in the future tense) is that which the subject denotes, although it
is required that the very same predicate is truly predicated of that which the subject denotes,
by means of what is asserted by such a proposition.”

5 An earlier term was tense logic; the term temporal logic was introduced in [90]. The technical
distinction between the two terms seems fuzzy.

5 Dueto the arcane infix notation of the time, the book may not be too accessible to modern read-
ers, who may have difficulties parsing formulas such as CK MpMgAM KpMqM K qMp.

" Kripkewas ahigh-school student, not quite 18, in Omaha, Nebraska. Kripke' sinterest in modal
logic was inspired by a paper by Prior on this subject [103]. Prior turned out to be the referee
of Kripke'sfirst paper [74].



“In an indetermined system, we perhaps should not regard time as alinear se-
ries, asyou have done. Given the present moment, there are several possibilities
for what the next moment may be like — and for each possible next moment,
there are several possibilities for the moment after that. Thusthe situation takes
the form, not of alinear sequence, but of a‘tree’”

Prior immediately saw the merit of Kripke's suggestion: “the determinist sees time as
aline, and the indeterminist sees times as a system of forking paths” He went on to
develop two theories of branching time, which he called “ Ockhamist” and “Peircean”.
(Prior did not use path quantifiers; those were introduced later, in the 1980s. See Sec-
tion 3.2.)

While the introduction of branching time seems quite reasonable in the context of
trying to formalize free will, it is far from being simple philosophically. Prior argued
that the nature of the course of time is branching, while the nature of a course of events
islinear [101]. In contrast, it was argued in [90] that the nature of timeis linear, but the
nature of the course of eventsis branching: “We have ‘ branching in time,” not ‘ branch-
ing of time’ "8

During the 1960s, the development of temporal logic continued through both the
linear-time approach and the branching-time approach. There was little connection,
however, between research on temporal logic and research on classical logics, as de-
scribed in Section 1. That changed in 1968, when Johan Anthony Willem (Hans) Kamp
tied together the two threadsin his doctoral dissertation.

Theorem 2. [70] Linear temporal logic with past and binary temporal connectives
(“ strict until” and “ strict since” ) has precisely the expressive power of FO over the
ordered naturals (with monadic vocabularies).

It should be noted that Kamp's Theorem is actually more general and asserts expressive
equivalence of FO and temporal logic over all “Dedekind-closed orders’. Theintroduc-
tion of binary temporal connectives by Kamp was hecessary for reaching the expressive
power of FO; unary linear temporal logic, which has only unary temporal connectives,
is weaker than FO [51]. The theorem refers to FO formulas with one free variable,
which are satisfied at an element of a structure, analogoudly to temporal logic formulas,
which are satisfied at a point of time.

It should be noted that one direction of Kamp's Theorem, the tranglation from tem-
poral logic to FO, is quite straightforward; the hard direction is the translation from FO
to temporal logic. Both directions are algorithmically effective; trandating from tempo-
ra logic to FO involves alinear blowup, but trandation in the other direction involves
anonelementary blowup.

If we focuson FO sentences rather than FO formulas, then they define sets of traces
(a sentence ¢ defines models()). A characterization of of the expressiveness of FO
sentences over the naturals, in terms of their ability to define sets of traces, was obtained
in 1979.

8 Oneisreminded of St. Augustin, who said in his Confessions: “What, then, istime? If no one
asks me, | know; but if | wish to explain it to some who should ask me, | do not know.”



Theorem 3. [118] FO sentences over naturals have the expressive power of x-free w-
regular expressions.

Recall that M SO defines the class of w-regular languages. It was already shown in [44]
that FO over the natural sisweaker expressively than M SO over the naturals. Theorem 3
was inspired by an analogous theorem in [86] for finite words.

2.2 TheTemporal Logic of Programs

There were some early observations that temporal logic can be applied to programs.
Prior stated: “There are practical gainsto be had from this study too, for example, inthe
representation of time-delay in computer circuits’ [101]. Also, a discussion of the ap-
plication of temporal logic to processes, which are defined as “programmed sequences
of states, deterministic or stochastic” appeared in [90].

The “big bang” for the application of temporal logic to program correctness oc-
curred with Amir Pnueli’s 1977 paper [93]. In this paper, Pnueli, inspired by [90],
advocated using future linear temporal logic (LTL) as alogic for the specification of
non-terminating programs.

LTL is a temporal logic with two temporal connectives, “next” and “until”.® In
LTL, formulas are constructed from a set Prop of atomic propositions using the usual
Boolean connectives as well as the unary temporal connective X (“next”), and the bi-
nary temporal connective U (“until™). Additional unary temporal connectives I (“even-
tually”), and G (“always’) can be defined in terms of U. Note that all temporal connec-
tives refer to the future here, in contrast to Kamp's “ strict since” operator, which refers
to the past. Thus, LTL is a future temporal logic. For extensions with past temporal
connectives, see [83, 84, 123].

LTL isinterpreted over traces over the set Prop of atomic propositions. For atrace
7 and apoint i € IN, the notation 7,7 |= ¢ indicates that the formula ¢ holds at the
point ¢ of the trace 7. Thus, the point 4 is the implicit “now” with respect to which the
formulaisinterpreted. We have that

— 1,1 = pif pholdsat 7(i),

-TiEXpifri+1E ¢ ad

— 1,1 = U if for somej > i, wehaver, j = ¢ andforal k,i < k < j, wehave
T,k = .

The temporal connectives F' and GG can be defined in terms of the temporal connective
U; Fy isdefined as true Uy, and Gy is defined as - F'—p. We say that + satisfies a
formula ¢, denoted 7 |= ¢, iff 7,0 &= ¢. We denote by models(y) the set of traces
satisfying .

Asan example, the LTL formula G (request — F' grant), which refersto the atomic
propositions request and grant, is true in atrace precisely when every state in the trace
in which request holds is followed by some state in the (non-strict) future in which

% Unlike Kamp's “strict until” (“p strict until ¢” requires ¢ to hold in the strict future), Pnueli’s
“until” is not strict (“p until ¢” can be satisfied by ¢ holding now), which is why the “next”
connective is required.



grant holds. Also, the LTL formula G(request — (request U grant)) is true in atrace
precisely if, whenever request holdsin a state of the trace, it holds until a state in which
grant holdsis reached.

The focus on satisfaction at O, called initial semantics, is motivated by the desire to
specify computations at their starting point. It enables an aternative version of Kamp's
Theorem, which does not require past tempora connectives, but focuses on initial se-
mantics.

Theorem 4. [56] LTL has precisely the expressive power of FO over the ordered natu-
rals (with monadic vocabularies) with respect to initial semantics.

As we saw earlier, FO has the expressive power of star-free w-regular expressions
over thenaturals. Thus, LTL hasthe expressive power of star-freew-regular expressions
(see[99]), and is strictly weaker than MSO. An interesting outcome of the above theo-
remisthat it lead to the following assertion regarding LTL [88]: “The corollary dueto
Meyer — | have to get in my controversial remark — is that that [Theorem 4] makes it
theoretically uninteresting.” Devel opments since 1980 have proven this assertion to be
overly pessimistic on the merits of LTL.

Pnueli also discussed the analog of Church’s DECISION problem: given a finite-
state program P and an LTL formula ¢, decide if ¢ holdsin al traces of P. Just like
Church, Pnueli observed that this problem can be solved by reduction to MSO. Rather
than focus on sequential circuits, Pnueli focused on programs, modeled as (labeled)
transition systems [71]. A transition system M = (W, Wy, R, V') consists of a set W
of states that the system can bein, aset Wy, C W of initia states, atransition relation
R C W? that indicates the allowable state transitions of the system, and an assignment
V : W — 2P7P of truth values to the atomic propositions in each state of the system.
(A transition system is essentialy aKripke structure [10].) A pathin M that starts at «
is a possible infinite behavior of the system starting at u, i.e., it is an infinite sequence
ug, u7 ... Of statesin W such that up = w, and (u;,u;+1) € R foral i > 0. The
sequence V' (ugp), V(u1) ... isatrace of M that starts at w. It is the sequence of truth
assignments visited by the path. The language of M, denoted L(M), consists of al
traces of M that start at a state in W,,. Note that L(M) is alanguage of infinite words
over the alphabet 2°7°P, The language L (M) can be viewed as an abstract description
of the system M, describing all possibletraces. We say that M satisfiesan LTL formula
w if al tracesin L(M) satisfy o, that is, if L(M) C models(y). When W isfinite, we
have afinite-state system, and can apply algorithmic techniques.

What about the complexity of LTL reasoning? Recall from Section 1 that satisfi-
ability of FO over trace structures is nonelementary. In contrast, it was shown in [60,
61,108-110,132,133] that LTL SATISFIABILITY iselementary; in fact, it is PSPACE-
complete. It was also shown that the DeCISION problem for LTL with respect to finite
transition systems is PSPACE-complete [108-110]. The basic technique for proving
these elementary upper bounds is the tableau technique, which was adapted from dy-
namic logics [98] (see Section 3.1). Thus, even though FO and LTL are expressively
equivalent, they have dramatically different computational properties, as LTL reason-
ing isin PSPACE, while FO reasoning is nonelementary.

The second “hig bang” in the application of temporal logic to program correctness
was the introduction of model checking by Edmund Melson Clarke and Ernest Allen



Emerson [28] and by Jean-Pierre Queille and Joseph Sifakis [104]. The two papers
used two different branching-time logics. Clarke and Emerson used CTL (inspired by
the branching-timelogic UB of [9]), which extends LTL with existential and universal
path quantifiers E' and A. Queille and Sifakis used alogic introduced by Leslie Lamport
[81], which extends propositional logic with the temporal connectives POT' (which
corresponds to the CTL operator EF) and INEV (which corresponds to the CTL
operator AF'). The focus in both papers was on model checking, which is essentially
what Church called the DECISION problem: does a given finite-state program, viewed
asafinitetransition system, satisfy its giventemporal specification. In particular, Clarke
and Emerson showed that model checking transition systems of size m with respect to
formulas of size n can be donein time polynomial in m and n. Thiswas refined later to
O(mn) (evenin the presence of fairness constraints, which restrict attention to certain
infinite pathsin the underlying transition system) [29, 30]. We drop theterm “ DECISION
problem” from now on, and replace it with the term “ M ODEL - CHECKING problem” .10

It should be noted that the linear complexity of model checking refersto the size of
the transition system, rather than the size of the program that gave rise to that system.
For sequentia circuits, transition-system size is essentially exponential in the size of
the description of the circuit (say, in some Hardware Description Language). This is
referred to as the “ state-explosion problem” [31]. In spite of the state-explosion prob-
lem, in the first few years after the publication of the first model-checking papersin
1981-2, Clarke and his students demonstrated that model checkingis a highly success-
ful technique for automated program verification [ 13, 33]. By the late 1980s, automated
verification had become a recognized research area. Also by the late 1980s, symbolic
model checking was developed [19, 20], and the SMV tool, developed at CMU by Ken-
neth Laughlin McMillan [85], was starting to have an industrial impact. See [27] for
more details.

Thedetailed complexity analysisin [29] inspired asimilar detailed analysisof linear
time model checking. It was shown in [82] that model checking transition systems of
size m with respect to LTL formulas of sizen can be donein time m2°(™). (Thisagain
was shown using atabl eau-based technique.) While the bound here is exponentia in n,
the argument was that n istypically rather small, and therefore an exponential bound is
acceptable.

2.3 Back to Automata

Since LTL can be trandated to FO, and FO can be trandated to NBW, it is clear that
LTL can be trandated to NBW. Going through FO, however, would incur, in general, a
nonelementary blowup. In 1983, Pierre Wol per, Aravinda Prasad Sistla, and | showed
that this nonelementary blowup can be avoided.

Theorem 5. [130,134] Given an LTL formula ¢ of size n, one can construct an NBW
A, of size 20" such that a trace o satisfies ¢ if and only if o is accepted by A.,.

10 The model-checking problem is anal ogous to database query evaluation, where we check the
truth of alogical formula, representing a query, with respect to a database, viewed as afinite
relational structure. Interestingly, the study of the complexity of database query evaluation
started about the same time as that of model checking [122].
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It now follows that we can obtain a PSPACE algorithm for LTL SATISFIABILITY:
given an LTL formula ¢, we construct A, and check that A, # 0 using the graph-
theoretic approach described earlier. We can avoid using exponential space, by con-
structing the automaton on the fly [130, 134].

What about model checking? We know that atransition system M satisfiesan LTL
formulap if L(M) C models(p). It was then observed in [129] that the following are
equivaent:

— M satisfies
~ L(M) € models()

~L(M) € L(A,)

— LOM) N (P77 — L(A,)) =0
~ L(M)NL(A,) =0

— LM xA.,)=10

Thus, rather than complementing A, using an exponential complementation construc-
tion [16, 76, 112], we complement the LTL property using logical negation. It is easy to
see that we can now get the same bound asin [82]: model checking programs of size m
with respect to LTL formulas of size n can be done in time m2°(™), Thus, the optimal
boundsfor LTL satisfiability and model checking can be obtained without resorting to
ad-hoc tabl eau-based techniques; the key is the exponential transation of LTL to NBW.

One may wonder whether this theory is practical. Reduction to practice took over a
decade of further research, which saw the devel opment of

an optimized search algorithm for explicit-state model checking [36, 37],
asymbolic, BDD-based™! algorithm for NBW nonemptiness[19, 20, 49],
symbolic algorithmsfor LTL to NBW trandation [19, 20, 32], and
an optimized explicit algorithm for LTL to NBW trandation [58].

By 1995, there were two model-checking tools that implemented LTL model checking
via the automata-theoretic approach: Spin [68] is an explicit-state LTL model checker,
and Cadence’'s SMV is a symbolic LTL model checker.'? See [127] for a description
of algorithmic developments since the mid 1990s. Additional tools today are VIS[12],
NuSMV [26], and SPOT [38].

It should be noted that Robert Kurshan devel oped the automata-theoretic approach
independently, also going back to the 1980s[1, 2, 78]. In his approach (as also in [106,
134]), one uses automata to represent both the system and its specification [79].12 The
first implementation of COSPAN, a model-checking tool that is based on this approach
[62], also goes back to the 1980s; see [80].

1 To be precise, one should use the acronym ROBDD, for Reduced Ordered Binary Decision
Diagrams [14].

12 Cadence's SMV isalso aCTL model checker. See
www. cadence. com webf or ms/ cbl sof t war e/ i ndex. aspx.

13 The connection to automata is somewhat difficult to discern in the early papers[1, 2].
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2.4 Enhancing Expressiveness

Can the development of LTL model checking [82,129] be viewed as a satisfactory
solution to Church’s DECISION problem? Almost, but not quite, since, as we observed
earlier, LTL isnot as expressive as M SO, which meansthat LTL is expressively weaker
than NBW. Why do we need the expressive power of NBWSs? First, note that once
we add fairness to transitions systems (sse [29, 30]), they can be viewed as variants of
NBWSs. Second, there are good reasons to expect the specification language to be as
expressive as the underlying model of programs [94]. Thus, achieving the expressive
power of NBWs, which we refer to as w-regularity, is a desirable goal. This motivated
efforts since the early 1980sto extend LTL.

The first attempt along this line was made by Wolper [132, 133], who defined ETL
(for Extended Temporal Logic), which is LTL extended with grammar operators. He
showed that ETL is more expressive than LTL, while its SATISFIABILITY problem can
still be solved in exponential time (and even PSPACE [108-110]). Then, Sistla, Wol per
and | showed how to extend LTL with automata connectives, reaching w-regularity,
without losing the PSPACE upper bound for the SATISFIABILITY problem [130, 134].
Actually, three syntactical variations, denoted ETL ¢, ETL;, and ETL, were shown to
be expressively equivalent and have these properties [130, 134].

Two other ways to achieve w-regularity were discovered in the 1980s. Thefirst isto
enhance LTL with monadic second-order quantifiers asin MSO, which yields a logic,
QPTL, with a nonelementary SATISFIABILITY problem [111,112]. The second is to
enhance LTL with least and greatest fixpoints [6, 124], which yields a logic, uLTL,
that achieves w-regularity, and has a PSPACE upper bound on its SATISFIABILITY and
MODEL-CHECKING problems[124]. For example, the (not too readable) formula

wP)(uQ)(P A X(pVQ)),

where v and 1. denote greatest and |east fixpoint operators, respectively, is equivalent to
the LTL formula G F'p, which saysthat p holdsinfinitely often.

3 Thread I11: Dynamic and Branching-Time Logics

3.1 Dynamic Logics

In 1976, ayear before Pnueli proposed using LTL to specify programs, Vaughan Ronald
Pratt proposed using dynamic logic, an extension of modal logic, to specify programs
[96].1* In modal logic Oy meansthat ¢ holdsin all worldsthat are possible with respect
to the current world [10]. Thus, Oy can be taken to mean that (» holds after an execution
of a program step, taking the transition relation of the program to be the possibility
relation of a Kripke structure. Pratt proposed the addition of dynamic modalities [e]¢,
where e is a program, which asserts that ¢ holdsin all states reachable by an execution
of the program e. Dynamic logic can then be viewed as an extension of Hoare logic,
since ¢ — [e]¢ corresponds to the Hoare triple {¢}e{¢} (see [3]). See [64] for an
extensive coverage of dynamic logic.

14 See discussion of precursor and related developments, such as[21, 34, 50, 107], in [64].



12

In 1977, apropositional version of Pratt’sdynamiclogic, called PDL, was proposed,
inwhich programsare regular expressions over atomic programs[52, 53]. It was shown
therethat the SATISFIABILITY problemfor PDL isin NEXPTIME and EXPTIME-hard.
Pratt then proved an EXPTIME upper bound, adapting tableau technigques from modal
logic [97,98]. (We saw earlier that Wolper then adapted these techniquesto linear-time
logic.)

Pratt’s dynamic logic was designed for terminating programs, while Pnueli was in-
terested in nonterminating programs. This motivated various extensions of dynamic
logic to nonterminating programs [67,115, 114, 116]. Nevertheless, these logics are
much less natural for the specification of ongoing behavior than temporal logic. They
inspired, however, the introduction of the (modal) p-calculus by Dexter Kozen [72,
73]. The p-calculus is an extension of modal logic with least and greatest fixpoints. It
subsumes expressively essentially all dynamic and temporal logics[11]. Kozen's paper
was inspired by previous papers that showed the usefulness of fixpointsin characteriz-
ing correctness properties of programs [45,92] (see aso [99]). In turn, the p-calculus
inspired the introduction of pLTL, mentioned earlier. The p-calculus aso played an
important role in the development of symbolic model checking [19, 20, 49].

3.2 Branching-TimeLogics

Dynamic logic provided a branching-time approach to reasoning about programs, in
contrast to Pnueli’s linear-time approach. Lamport was the first to study the dichotomy
between linear and branching timein the context of program correctness[81]. Thiswas
followed by the introduction of the branching-timelogic UB, which extendsunary LTL
(LTL without the temporal connective “until” ) with the existential and universal path
quantifiers, £ and A [9]. Path quantifiers enable us to quantify over different future
behavior of the system. By adapting Pratt’s tableau-based method for PDL to UB, it
was shown that its SATISFIABILITY problemisin EXPTIME [9]. Clarke and Emerson
then added the temporal conncetive“ until” to UB and obtained CTL [28]. (They did not
focus on the SATISFIABILITY problem for CTL, but, as we saw earlier, on its MODEL -
CHECKING problem; the SATISFIABILITY problem was shown later to be solvable in
EXPTIME[47].) Finally, it wasshownthat LTL and CTL haveincomparableexpressive
power, leading to the introduction of the branching-timelogic CTL*, which unifiesLTL
and CTL [46,48].

The key feature of branching-time logics in the 1980s was the introduction of ex-
plicit path quantifiersin [9]. This was an idea that was not discovered by Prior and his
followersin the 1960s and 1970s. Most likely, Prior would have found CTL* satisfac-
tory for his philosophical applications and would have seen no need to introduce the
“Ockhamist” and “Peircean” approaches.

3.3 Combining Dynamic and Temporal Logics

By the early 1980s it became clear that temporal logics and dynamic logics provide
two distinct perspectivesfor specifying programs: thefirst is state based, while the sec-
ond is action based. Various efforts have been made to combine the two approaches.
These include the introduction of Process Logic [63] (branching time), Yet Another
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Process Logic [128] (branching time), Regular Process Logic [66] (linear time), Dy-
namic LTL [59] (linear time), and RCTL [8] (branching time), which ultimately evolved
into Sugar [7]. RCTL/Sugar is unique among these logics in that it did not attempt to
borrow the action-based part of dynamic logic. It is a state-based branching-time logic
with no notion of actions. Rather, what it borrowed from dynamic logic was the use of
regular-expression-based dynamic modalities. Unlike dynamic logic, which uses reg-
ular expressions over program statements, RCTL/Sugar uses regular expressions over
state predicates, analogoudly to the automata of ETL [130, 134], which run over se-
quences of formulas.

4 Thread IV: From LTL to For Spec and PSL

In the late 1990s and early 2000s, model checking was having an increasing industrial
impact. That led to the development of two industrial temporal logics based on LTL:
For Spec, developed by Intel, and PSL, devel oped by an industrial standards committee.

41 FromLTL to ForSpec

Intel’s involvement with model checking started in 1990, when Kurshan, spending a
sabbatical year in Israel, conducted a successful feasibility study at the Intel Design
Center (IDC) in Haifa, using COSPAN, which at that point was a prototype tool; see
[80].1n 1992, IDC started apilot project using SMV. By 1995, model checking was used
by several design projects at Intel, using an internally developed model checker based
on SMV. Intel users have found CTL to be lacking in expressive power and the Design
Technology group at Intel developed its own specification language, FSL. The FSL
languagewasalinear-timelogic, and it was model checked using the automata-theoretic
approach, but its design was rather ad-hoc, and its expressive power was unclear; see
[54].

In 1997, Intel’s Design Technology group at IDC embarked on the development
of a second-generation model-checking technology. The goal was to develop a model-
checking engine from scratch, as well as a new specification language. A BDD-based
model checker was released in 1999 [55], and a SAT-based model checker was released
in 2000 [35].

| got involvedin the design of the second-generation specification languagein 1997.
That language, ForSpec, was released in 2000 [5]. The first issue to be decided was
whether the language should belinear or branching. Thisled to an in-depth examination
of thisissue [126], and the decision was to pursue a linear-time language. An obvious
candidate was LTL; we saw that by the mid 1990s there were both explicit-state and
symbolic model checkersfor LTL, so there was no question of feasibility. | had numer-
ous conversations with Limor Fix, Michael Hadash, Yonit Kesten, and M oshe Sananes
on thisissue. The conclusion was that LTL is not expressive enough for industrial us-
age. In particular, many properties that are expressible in FSL are not expressible in
LTL. Thus, it turned out that the theoretical considerationsregarding the expressiveness
of LTL, i.e, itslack of w-regularity, had practical significance. | offered two extensions
of LTL; aswe saw earlier both ETL and L TL achieve w-regularity and have the same
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complexity as LTL. Neither of these proposals was accepted, due to the perceived dif-
ficulty of usage of such logics by Intel validation engineers, who typically have only
basic familiarity with automata theory and logic.

These conversations continued in 1998, now with Avner Landver. Avner al so argued
that Intel validation engineerswould not be receptive to the automata-based formalism
of ETL. Being familiar with RCTL/Sugar and its dynamic modalities[7, 8], he asked me
about regular expressions, and my answer was that regular expressions are equivalent
to automata [69], so the automata of ETL ¢, which extends LTL with automata on finite
words, can be replaced by regular expressions over state predicates. This lead to the
development of RELTL, whichis LTL augmented by the dynamic regular modalities of
dynamic logic (interpreted linearly, asin ETL). Instead of the dynamic-logic notation
[e], ForSpec usesthe more readable (to engineers) (e triggers ¢), wheree isaregular
expression over state predicates(e.g., (pVq)*, (pAq)), and ¢ isaformula. Semantically,
7,1 |= (e triggers o) if, fordl j > 4, if T[4, j] (that is, the finiteword 7 (i), ..., 7(j))
“matches’ e (in the intuitive formal sense), then 7,5 | ; see [22]. Using the w-
regularity of ETL ¢, it is now easy to show that RELTL also achieves w-regularity [5].

Whilethe addition of dynamic modalitiesto LTL issufficient to achievew-regularity,
we decided to also offer direct support to two specification modes often used by ver-
ification engineers at Intel: clocks and resets. Both clocks and resets are features that
are needed to address the fact that modern semiconductor designs consist of interacting
parallel modules. While clocks and resets have a smple underlying intuition, defining
their semantics formally is quite nontrivial. ForSpec is essentially RELTL, augmented
with features corresponding to clocks and resets, as we now explain.

Today’s semiconductor designs are still dominated by synchronouscircuits. In syn-
chronouscircuits, clock signals synchronizethe sequential logic, providing the designer
with a simple operational model. While the asynchronous approach holds the promise
of greater speed (see[23]), designing asynchronous circuits is significantly harder than
designing synchronous circuits. Current design methodology attempts to strike a com-
promise between the two approaches by using multiple clocks. This results in archi-
tectures that are globally asynchronous but locally synchronous. The temporal-logic
literature mostly ignores the issue of explicitly supporting clocks. ForSpec supports
multiple clocks via the notion of current clock. Specifically, ForSpec has a construct

change_on ¢ ¢, which states that the temporal formula ¢ is to be evaluated with re-

spect to the clock ¢; that is, the formula ¢ isto be evaluated in the trace defined by the
high phases of the clock c. The key feature of clocksin ForSpecisthat each subformula
may advance according to a different clock [5].

Another feature of modern designs' consisting of interacting parallel modulesisthe
fact that a process running on one modul e can be reset by asignal coming from another
module. As noted in [117], reset control has long been a critical aspect of embedded
control design. ForSpec directly supports reset signals. The formula accept.on a ¢
states that the property ¢ should be checked only until the arrival of the reset signal a,
at which point the check is considered to have succeeded. In contrast, reject.on r ¢
states that the property ¢ should be checked only until the arrival of thereset signal r, at
which point the check is considered to have failed. The key feature of resetsin ForSpec
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isthat each subformulamay bereset (positively or negatively) by adifferent reset signal;
for alonger discussion see[5].

ForSpec is an industrial property-specification language that supports hardware-
oriented constructs as well as uniform semantics for formal and dynamic validation,
while at the same time it has awell understood expressiveness (w-regularity) and com-
putational complexity (SATISFIABILITY and MODEL-CHECKING problems have the
same complexity for ForSpec as for LTL) [5]. The design effort strove to find an ac-
ceptable compromise, with trade-offs clarified by theory, between conflicting demands,
such as expressiveness, usability, and implementability. Clocks and resets, both im-
portant to hardware designers, have a clear intuitive semantics, but formalizing this
semantics is nontrivial. The rigorous semantics, however, not only enabled mechani-
cal verification of various theorems about the language, but also served as a reference
document for the implementors. The implementation of model checking for ForSpec
followed the automata-theoretic approach, using alternating automata as advocated in
[125] (see[57]).

4.2 From For Specto PSL

In 2000, the Electronic Design Automation Association instituted a standardization
body called Accellera.’® Accellera’s mission is to drive worldwide development and
use of standards required by systems, semiconductor and design tools companies. Ac-
cellera decided that the development of a standard specification language is a require-
ment for formal verification to become an industrial reality (see [80]). Since the focus
was on specifying properties of designs rather than designs themselves, the chosen term
was “ property specification language” (PSL). The PSL standard committee solicited in-
dustrial contributions and received four language contributions: CBV, from Motorola,
ForSpec, from Intel, Temporal e, from Verisity [89], and Sugar, from IBM.

The committee’s discussions were quite fierce.’® Ultimately, it became clear that
while technical considerations play an important role, industrial committees’ decisions
are ultimately made for business considerations. In that contention, IBM had the upper
hand, and Accellera chose Sugar as the base language for PSL in 2003. At the same
time, the technical merits of ForSpec were accepted and PSL adopted all the main
features of ForSpec. In essence, PSL (the current version 1.1) is LTL, extended with
dynamic modalities (referred to asthe regular layer), clocks, and resets (called aborts).
PSL did inherit the syntax of Sugar, and doesinclude a branching-time extension as an
acknowledgment to Sugar.’

There was some evolution of PSL with respect to ForSpec. After some debate on
the proper way to define resets [4], ForSpec's approach was essentially accepted after
some reformulation [41]. ForSpec’sfundamental approach to clocks, whichis semantic,
was accepted, but modified in some important details [42]. In addition to the dynamic
modalities, borrowed from dynamic logic, PSL also has weak dynamic modalities[40],

% Seehttp://wwv. accel | era. org/ .

® Seehtt p: / / www. eda- st ds. org/ vfv/.

7 See[39] and language referencemanual atht t p: / / www. eda. or g/ vf v/ docs/ PSL-v1. 1. pdf
and
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which are reminiscent of “looping” modalities in dynamic logic [67,65]. Today PSL
1.1 is an IEEE Standard 1850-2005, and continues to be refined by the IEEE P1850
PSL Working Group.®

Practical use of ForSpec and PSL has shown that the regular layer (that is, the dy-
namic modalities), is highly popular with verification engineers. Another standardized
property specification language, called SVA (for SystemVerilog Assertions), isbased, in
essence, on that regular layer [131].

5 Contemplation

The evolution of ideas, from Church and Prior to PSL, seems to be an amazing devel-
opment. It reminds me of the medieval period, when building a cathedral spanned more
than a mason’s lifetime. Many masons spend their whole lives working on a cathedral,
never seeing it to completion. We are fortunate to see the completion of this particu-
lar “cathedral”. Just like the medieval masons, our contributions are often smaller than
we'd like to consider them, but even small contributions can have a major impact. Un-
likethe medieval cathedrals, the scientific cathedral has no architect; the constructionis
driven by a complex process, whose outcome is unpredictable. Much that has been dis-
covered isforgotten and has to be rediscovered. It is hard to fathom what our particular
“cathedral” will look like in 50 years.
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