Hoare Logic

Hoare Logic is used to reason about the correctness of programs. In the
end, it reduces a program and its specification to a set of verifications
conditions.

Slides by Wishnu Prasetya
URL : www.cs.uu.nl/~wishnu
Course URL : www.cs.uu.nl/docs/vakken/pc

Hoare triples

Overview

= Hoare triples
= Basic statements
2 Composition rules for seq and if
2 Assignment
2 Weakest pre-condition
= Loops
2 Invariants
2 Variants

How do we prove our claims ?

= |n Hoare logic we use inference rules.

= Usually of this form:

premise-1 , premise-2 , ...

conclusion

= A proof is essentially just a series of invocations of
inference rules, that produces our claim from known
facts and assumptions.

Needed notions

State

Inference rule:
{P} S {Q} , Q=R

In the sequel we will consider a program P with two
variables: x:int , y:int.

The state of P is determined by the value of x,y. Use record
to denote a state:

{ x=0 , y=9 } /I denote state where x=0 and y=9

This notion of state is abstract! Actual state of P may
consists of the value of CPU registers, stacks etc.

> denotes the space of all possible states of P.

{P} S {R}

is this sound?

\
What does a specification mean ?
Programs We'll explain this in
Predicates >_ term of abstract
States models.

_/
Expression

Viewing predicate as set

An expression can be seen as a function = — val

x+1 {x=0,y=9} yields 1
x+1 {x=9,y=9} yields 10
etc

A (state) predicate is an expression that returns a boolean:

x>0 {x=0,y=9} yields false
x>0 {x=9,y=9} yields true
etc

So, a (state) predicate P is a function £ — bool. It induces
a set:

Xp = { S | S|= P} Il the set of all states satisfying P

P and its induced set is ‘isomorphic’ :

P(s) = s&xp

Ehm ... so for convenience lets just overload “P” to also
denote y,. Which one is meant, depends on the context.

Eqg. when we say “P is an empty predicate”.

Implication

P=Q /I P= Q is valid
This means: Vs.s|=P = s|=Q

In terms of set this is equivalentto: xp C g

And to confuse you ©, the often used jargon:

o P is stronger than Q

o Qs weaker than P

0 Observe that in term of sets, stronger means smaller!

Hoare triples

Now we have enough to define abstractly what a

specification means: s Prs’ stands for (Pr,s)> s’

(P} Pr{Q} =
(Vs. s|=P = (Vs.sPrs’=s"|=Q))

Since our model cannot express non-termination, we
assume that Pr terminates.

The interpretation of Hoare triple where termination is
assumed is called “partial correctness” interpretation.

Otherwise it is called total correctness.

Non-termination

i ?
What does this mean* s Pr s’ stands for (Pr,s)=> s’

{s’|sPr s’} = &, forsome state s

Can be used to model: “Pr does not terminate when
executed on s”.

However, in discussion about models, we usually assume
that our programs terminate.

Expressing non-termination leads to some additional
complications — not really where we want to focus now.

10

Now we can explain ...

{P} s {Q}

{P} S {R}

Post-condition weakening Rule:

{P} S {Q} ,Q=R

{P} S {R}

And the dual

{P} s {Q}

S

And the dual

{P}rs{Q}

S

{P} s {Q}

Pre-condition strengthening Rule:

P=P ,{P} S {Q}

{P}ysS{Q}

And the dual

{P} s {Q}

S

{P} s {Q}

13

| Joining specifications

= Conjunction:

{Pi} S {Q} ., {P;}S{Q}

{PiAP;} S {QAQ,}

= Disjunction:

{Pi} S {Q} . {P;}S{Q}

{P1VP} S {QVQ,}

Reasoning about basic statements

Rule for SEQ composition

{P} s {Q}
{Q} s, {R}

16

Rule for SEQ composition

{P} S {Q}

S,

Rule for SEQ composition

{P} s {Q}
{Q} s, {R}

{P} S8, {R}

Rule for SEQ composition

{P} S {Q}
{Q} s, {R}

S, s,

~

{P} 858, {R}

{P}ysS, {Q} , {Q} S {R}

{P} 88 {R}

16

Rule for SEQ composition

{P} s {Q}
{Q} s, {R}

17

Rule for SEQ composition

{P} S {Q}

S,

Rule for SEQ composition

{P} s {Q}
{Q} s, {R}

{P} S8, {R}

Rule for SEQ composition

{P} 858, {R}

{P}ysS, {Q} , {Q} S {R}

{P} 88 {R}

17

Rule for IF

18

Rule for IF

Rule for IF

{Phg} S, {Q}

S,

Rule for IF

{PNAg} S {Q}
s,

S,
{PA-g} S, {Q}

18

Rule for IF

{Phg} S, {Q}

S,

s,
{Ph-g} s, {Q}

{PAg} S {Q} , {PA-g} S, {Q}

{ P }if gthen S, else S, { Q }

18

Rule for IF

{PAg} s, {Q)})
s, {P} ifgthenS, elseS, { Q}

S,
{PA-g} S, {Q}

Rule for Assignment

Let see
m {P} x=e{Q}

= Find a pre-condition W, such that, for any begin state s, and
end state t:

s|l=W = t=Q @———@

Then we can equivalently prove P = W

Assignment, examples

u x:=10 { x=y }

. X:=x+a { x=y }

= So, W can be obtained by Q[e/x]

20

How does a proof proceed now ?

22

Assignment

= Theorem:

Q holds after x:=e iff Q[e/x] holds before the
assignment.

= Express this indirectly by:

{P}x=e {Q} = P = Qle/x]
= Corollary:
{Qe/x]} x=e {Q} always valid.

How does a proof proceed now ?

n { xzy } tmp:=x ;x=y;y=tmp { x=y }

21

22

How does a proof proceed now ?

n{ xzy } tmp:=x ;x:=y;y=tmp { x=y }

= Rule for SEQ requires you to come up with intermediate
assertions:

{ x=y } tmp:=x{ ? };x=y{ ? };y=tmp { x=y }
= What to fill ?7?

0 Use the “Q[e/x]” suggested by the ASG theorem.
2 Work in reverse direction.
2 “Weakest pre-condition”

22

Weakest pre-condition

= LetW = wp(S,Q)
s S s’ stands for (S,s)>
= Two properties of W s

0 Reachability: from any s|=W, ifs S s’ then s’ |=Q

0 Maximality: s S s’and s’ |=Q implies s|=W

24

Weakest Pre-condition (wp)

= “wp” is a meta function:

wp : Stmt X Pred — Pred

= wp(S,Q) gives the weakest (largest) pre-cond such that
executing S in any state in any state in this pre-cond results
in states in Q.

o Partial correctness - termination assumed
0 Total correctness = termination demanded

23

Defining wp

= |n terms of our abstract model:

wp(S,Q) = { s |foralls’.sS s’ impliess’ |=Q }

= Abstract characterization:

{P}S{Q} = P= wp(S,Q)

= Nice, but this is not a constructive definition (does not tell us
how to actually construct “W”)

25

Some examples

= All these pre-conditions are the weakest:

= { y=10 } x:=10 { y=x}
={Q} skip { Q}
= { Qe/x] } X:= {Q}

wp of SEQ

wp ((S1:82).Q) = wp(S;, (Wp(S,,Q)))

27

Some examples

= All these pre-conditions are the weakest:

= { y=10 } x:=10 { y=x}
={Q} skip { Q}
= { Qle/x] } X:=e {Q}
wp skip Q = Q
wp (xi=e) Q = Qle/x]
wp of SEQ

wp(S; , (Wp(S2,.Q)))

26

27

wp of IF

27

wp((if g then S,else S,),Q) =
g A wp(S;,Q) V-g A wp (S,,Q)

28

wp of IF

wp((if g then S, else S,),Q) =
g Awp(S;,Q) V-g A wp(S,Q)

=wp S,

wp of IF

28

wp((if g then S,else S,),Q) =
g Awp(S:,Q) V-g A wp (S,.Q)

Other formulation :

28

wp of IF How does a proof proceed now ?

wp((if g then S, else S,),Q) =
g Awp(S,,Q) V-g A wp (S,Q)

Other formulation : =wp S,

(9 = wp(S,,Q)
A
(~g=wp (S,,Q))

Proof: homework ©

28

How does a proof proceed now ? How does a proof proceed now ?
n { xzy } tmp:=x ;x=y;y=tmp { x=y } n { xzy } tmp:=x ;x=y;y=tmp { x=y }
2 Calculate:

W = wp((tmp:=x; x:=y; y:=tmp) , xzy)

29

29

29

How does a proof proceed now ?

n{ xzy } tmp:=x ;x:=y;y=tmp { x=y }
o+ Calculate:

W = wp((tmp:=x;x:=y;y:=tmp), x=y)

How does a proof proceed now ?

n { xzy } tmp:=x ;x=y;y=tmp { x=y }

» Calculate:
W = wp((tmp:=x; x:=y; y:=tmp), xzy)
» Then prove: x=y = W

= \We calculate the intermediate assertions, rather than
figuring them out by hand!

29

29

How does a proof proceed now ?

n { x=y } tmp:=x ;x=y;y=tmp { x=y }

o+ Calculate:
W = wp((tmp:=x;x:=y;y:=tmp), x=y)
= Then prove: x=y = W

29

Proof via wp

Wp calculation is fully syntax driven. (But no while yet!)
2 No human intelligence needed.
2 Can be automated.

Works, as long as we can calculate “wp” - not always
possible.

Recall this abstract def:
{P}S {Q} = P=wpSQ)

It follows: if P = W not valid, then so does the original
spec.

30

Proof via wp Example

= Wop calculation is fully syntax driven. (But no while yet!)
2 No human intelligence needed.
2 Can be automated.

bool find(a,n,x) {

inti=0;

= Works, as long as we can calculate “wp” - not always bool found = false ;
possible.
= Recall this abstract def: while (=found A\ i<n) {

W
{P}s{Q} = P=> found := a[i]=x;
i++

It follows: if P =W not valid, then so does the original

}
Spec. return found ;
}
Example Example
bool find(a,n,x) { bool find(a,n,x) {

inti=0;
bool found = false ;

while (=found A i<n) {

found := a[i]=x;
i++

inti=0;
bool found = false ;

while (=found A i<n) {

found := a[i]=x;

- found = (3Ik: O<k<i: a[k]=x)

found = (3k: O0<k<n: a[k]=x)

retﬁ% found - retﬁ% found - found = (Ik: O=k<n: a[k]=x)

31

Example

bool find(a,n,x) {

inti=0;
bool found = false ;

while (=found A i<n) {

found := a[i]=x; -

o found = (I: Osksi : ‘a[K]=x)

found = (3k : O=k<n :} a[k]=x)

return found :

31

Example

bool find(a,n,x) {

inti=0;
bool found = false ;

while (=found A\ i<n) {
found = (3Ik: O<k<i: a[k]=x)

“found := afi]=x ;
i++

/found = (3k: O0=k<i: a[k]=x)

retﬁrn found found = (3k: O0<k<n: a[k]=x)

31

Example

bool find(a,n,x) {

inti=0;
bool found = false ;

while (=found A i<n) {
found := a[il=x;

i++

- found = (3k : O=<k<i: a[k]=x)

retﬁrn found : found = (Ik: O<k<n: a[k]=x)

31

Example

found := afi]=x;

i:=i+1

o = x o

32

Example

found := a[il=x;

ir=i+1

oo = 0 o

32

Example

found := a[il=x;
found = (3k: Osk<i+1) alk]=x)
N—
o = o o

wp (x:=e) Q = Q[e/x]

32

Example

found := a[il=x;

found = (3k : Ok<i+1) alk]=x)
N—
o = v 0

32

Example

found := a[il=x;

i:=i+1

found) = (3k : Osk<i+1 : a[k]=x)

o = o |

wp (x:=e) Q = Q[e/X]

32

Example ‘ Example

.
\/
found := a[i]=x; found := a[i]=x; U

(a[i]=x)) = (3k : O=k<i+1: a[k]=x) (alil=x) = (Ik: O<k<i+1 : a[k]=x)

=i+ =i+
found) = (3k : Ok<i+1 : a[k]=x) found) = (3k : Ok<i+1 : a[k]=x)

wp (x:=e) Q = Q[e/x] wp (x:=e) Q = Q[e/x]

32 32

Example
0=<i

{ ~found A L A) Reasoning about loops
\

(@li]=x) = (3k : Ok<i+1 : a[k]=x)

i-=i+1

found) = (3k : Osk<i+1 : a[k]=x)

o = o |

wp (x:=e) Q = Q[e/x]

32

33

How to prove this ?

= {P} while gdo S { Q}

= Calculate wp first ?
o We don’t have to

2 But wp has nice property = wp completely captures the
statement:

{P} T{Q} = P=wTQ

How to prove this ?

= {P} while gdoS { Q}

= Plan-B: try to come up with an inference rule:

condition about g
condition about S

{ P} while gdoS { Q}

= The rule only need to be “sufficient”.

34

36

wp of aloop

= Recall :

0 wp(S,Q) = { s |foralls’.sSs impliess|=Q }

a{P}S{Q} = P= wp(SQ)

= But none of these definitions are actually useful to construct
the weakest pre-condition.

= |n the case of a loop, a constructive definition is not obvious.

- pending.

Idea

37

Idea

= {P} while gdo S { Q}

37

Idea

= {P} while gdo S { Q}

= Try to come up with a predicate | that holds after each
iteration :

iter, : ;S {1}
iter, : ;S {1}
i.t-e.rn: ;S {1}

exit :

37

Idea

= {P} whie gdoS { Q}

37

Idea

= {P} while gdoS { Q}

= Try to come up with a predicate | that holds after each

iteration :
iter, : S {1}
iter, : S {1}
i.t.e.rn: ;S {1}
exit :

37

Idea

= {P} while gdo S { Q}

= Try to come up with a predicate | that holds after each
iteration :

iter, : ;S {1}
iter,, : ;S {1}
i.t.érn: ;S {1}
exit :

= | A =g holds as the loop exit!

Idea

= {P} while gdo S { Q}

= Try to come up with a predicate | that holds after each
iteration :

iter, : ;S {1}
iter,, : ;S {1}
i.t-e.rn: ;S

exit :

So, to get postcond Q,

sufficient to prove:

- i '
= | A =g holds as the loop exit! IN-g = Q

/ Still need to capture this. ‘

37

37

Idea

“{P} while gdoS { Q}

= Try to come up with a predicate | that holds after each

iteration :
iter, : ;S
iter, : ;S
iter,, ;S
exit :

So, to get postcond Q,
sufficient to prove:

= i '
= | A =g holds as the loop exit! IN-g = Q

m
=
=,
5}

«Q
Q.
(¢)]

= | js to holds after each iteration

S {1}

iter ;, 4

37

38

|

=
=3
o)

@
o
w

= | js to holds after each iteration

S {1} S {1}
\ J\ J
Y T
iter . iter 4
Idea
= while g do S

= | js to holds after each iteration

Sufficienttoprove: { INg} S { I}

A
(\
S {1} S {1}
\ A\ J
| |
iter iter ;.4

Except for the first iteration !

38

m
=
2.
o)

(@]
[N
w

A
e)
Si{l} S {1}
| —————)
Y Y
iter . iter i,
Idea
= { P} while gdo S
= For the first iteration :
S {1}
\ J
|
Iter,

Idea Idea

= { P} while gdo S = { P} while gdo S
= For the first iteration : = For the first iteration :
Recall the condition: { INg } S {1}
A
(|
{1} S {I} {1} S {1}
\ J \ J
| |
Ilter, Iter,
Idea Idea
= {P} hile g do S = { P} while gdo S
= For the first iteration : = For the first iteration :
Recall the condition: { INg } S { |} Recall the condition: { INg } S { I}
A A .
(\ ! (! \
{P} {1} S {1} {P} {1} S {1}
\) \ J
| |
We know this from Iter, We know this from Iter,

the given pre-cond the given pre-cond

Idea

= { P} while gdo S

= For the first iteration :

Additionally we need : P = |
Recall the condition: { INg } S {1}

{ -
(| |
{ P} {1} S {1}
\ J
|
We know this from Iter,

the given pre-cond

Examples

= Prove:

{ i=0 } while i<n do i++ { i=n }

= Prove:
{ =0\ s=0 }
while i<n do { s=s +a[i] ;i++}

{ s = SUM(q[0..n)) }

41

To Summarize

= Capture this in an inference rule:

I
AN

P=
{9 y S {1}
I N-g = Q

{ P} while gdo S {Q}

= This rule is only good for partial correctness though.
= | satisfying the second premise above is called invariant.

40

Note

= Recall :

wp ((while g do S),Q) =

{ s |forall s’. s (whilegd

S) s’implies s’ |=
Q }

= Theoretically, we can still construct this set if the state space
is finite. The construction is exactly as the def. above says.

= You need a way to tell when the loop does not terminate:
2 Maintain a history H of states after each iteration.

o Non-termination if the state t after i-th iteration is in H
from the previous iteration.

= Though then you can just as well ‘execute’ the program to

verify it (testing), for which-you don't need Hoare logic.

42

Tackling while termination: invariant and variant

To prove
{P} while B do S end {Q}

find iawesart==ead well-founded veserifeaetien=4 such
that:

O iaat bolds loitiall: P =

O veemieemememcd: {J A B} S {J}
o ETETTE ST L JA—B = Q

—;‘
o variant function is bounded:
JAB=0=vf

o variant function decreases:
{J A B A vf=VF} S {vf<VF}

Capturing the termination conditions

= At the start of every iteration m =0 :
1og=m=0
2 If you have aninvariant: A g = m=0

= Each iteration decreases m :

{INg} C=m;S { m<C}

45

Proving termination

“{P} while gdoS { Q}

= |dea: come up with an integer expression m, satisfying :

1 At the start of every iteration m =0

¢ Each iteration decreases m

= These imply that the loop will terminates.

To Summarize

44

46

To Summarize To Summarize

] P=I u P=I
{gNhl} s {1} {gNhl} s {1}
I N-g = Q I N-g = Q
{INg} C=m;S { m<C} {INg} C=m;S { m<C}
INg= m=0 INg= m=0
{P} while gdo S {Q} {P} while gdo S {Q}

= Since we also have this pre-cond strengthening rule:

P=1,{1} whilegdoS {Q}

{ P} while gdoS{Q}

46 46

History

= Hoare logic, due to CAR Hoare 1969.

: : : = Robert Floyd, 1967 - for Flow Chart. “Unstructured” program.
A Blt HlStOfY and Other Thmgs = Weakest preconditon > Edsger Dijkstra, 1975.

= Early 90s: the rise of theorem provers. Hoare logic is mechanized. e.g.
“A Mechanized Hoare Logic of State Transitions” by Gordon.

= Renewed interests in Hoare Logic for automated verification: Leino et
al, 1999, “Checking Java programs via guarded commands”
Tool: ESC/Java.

= Byte code verification. Unstructured - going back to Floyd. Ehm... what
did Dijkstra said again about GOTO??

48
49

History

= Hoare: “An axiomatic basis for computer
programming”, 1969.

= 1980 : winner of Turing Award
= Other achievement:

2 CSP (Communicating Sequential Processes)

2 Implementor ALGOL 60
0 Quicksort
0 2000 : sir Charles ©

Charles Antony Richard Hoare, born 1934 in Sri Lank

ALGOL-60

50

History

Q

Q

Q

Q

Q

Q

Edsger Wybe Dijkstra, 1930 in Rotterdam.
Prof. in TU Eindhoven, later in Texas, Austin.
1972 : winner Turing Award

Achievement

Shortest path algorithm
Self-stabilization

Semaphore

Structured Programming, with Hoare.
“A Case against the GO TO Statement”
Program derivation

Died in 2002, Nuenen.

= ALGOL-60: "ALGOrithmic Languag?e . .
$1958-1968) by very many people IFIP(International Federation
or Information Processing) , including John Backus, Peter Naur,

Alan Perlis, Friedrich L. Bauer, John McCarthy, Niklaus Wirth,

C. A. R. Hoare, Edsger W. Dijkstra
= Join effort by Academia and Industry
= Join effort by Europe and USA
= ALGOL-60 the most influential imperative language ever
= First language with syntax formally defined (BNF)
= First language with structured control structures
o Ifthen else
o While (several forms)
o But still goto
= First language with ... (see next)
= Did not include I/O considered too hardware dependent
= ALGOL-60 revised several times in early 60’s, as understanding
of programming languages improved
= ALGOL-68 a major revision

o by 1968 concerns on data abstraction become prominent, and
ALGOL-68 addressed them

o Considered too Big and Complex by many of the people that worked
?n th)e original ALGOL-60 (C. A. R. Hoare’ Turing Lecture, cf. ADA
ater

Edsger W. Dijkstra
(cf. shortest path,
semaphore)

ALGOL-60

51

bYo)

C. A. R. Hoare
(cf. axiomatic semantics,
quicksort, CSP

First language with syntax formally defined (BNF)

;after such a success with syntax, there was a great hope to being able to
‘'ormally define semantics in an similarly easy and accessible way: this
goal failed so far)

First language with structured control structures
o Ifthen else

o While (several forms)

o But still goto

First language with procedure activations based on the STACK
(cf. recursion)

First language with well defended parameters passing
mechanisms

o Call by value

o Call by name (sort of call by reference)

o Call by value result (later versions)

0 Call by reference (later versions)

First language with explicit typing of variables

First language with blocks (static scope)

Data structure primitives: integers, reals, booleans, arrays of any
dimension; (no records at first),

Later version had also references and records (originally
introduced in COBOL), and user defined types

Edsger W. Dijkstra
(cf. shortest path,
semaphore)

Yo

C. A. R. Hoare
(cf. axiomatic semantics,
quicksort, CSP

Unstructured programs

Unstructured programs

= “Structured” program: the control flow follows the program’s
syntax.

= Unstructured program:
if y=0 then goto exit;

X :=xly;

exit: S,

54

Unstructured programs

= “Structured” program: the control flow follows the program’s
syntax.

54

Unstructured programs

= “Structured” program: the control flow follows the program'’s
syntax.

= Unstructured program:

= The “standard” Hoare logic rule for sequential composition
breaks out!

54

Unstructured programs

= “Structured” program: the control flow follows the program’s
syntax.

= Unstructured program:

if y=0 then goto exit;
X :=xly;
exit: S,

= The “standard” Hoare logic rule for sequential composition
breaks out!

= Same problem with exception, and “return” in the middle.

54

‘ Adjusting Hoare Logic for Unstructured Programs

Program S: | represented by a graph of guarded assignments; here acyclic. |

x>0 > y:i=y/x

55

Adjusting Hoare Logic for Unstructured Programs

Program S:

x>0 > y:=y/x

55

‘ Adjusting Hoare Logic for Unstructured Programs

Program S : | represented by a graph of guarded assignments; he(@

x>0 > y:i=y/x

55

Adjusting Hoare Logic for Unstructured Programs

Program S:

x>0 > y:i=y/x

1. Node represents “control location”

2. Edge is an assignment that moves
the control of S, from one location to
another.

3. An assignment can only execute if
its guard is true.

55

Adjusting Hoare Logic for Unstructured Programs

Prove {P}S {Q}

x>0 > y:i=y/x

1. Decorate nodes with assertions.
2. Prove for each edge, the
corresponding Hoare triple.

56

Adjusting Hoare Logic for Unstructured Programs

Prove {P}S {Q}

x>0 > y:=y/x

56

Adjusting Hoare Logic for Unstructured Programs

Prove {P}S {Q}

x>0 > y:i=y/x

1. Decorate nodes with assertions.
2. Prove for each edge, the
corresponding Hoare triple.

56

Adjusting Hoare Logic for Unstructured Programs

Prove {P}S {Q}

E x>0 > y:i=y/Xx

1. Decorate nodes with assertions.
2. Prove for each edge, the
corresponding Hoare triple.

Handling exception and return-in-the-middle

= Map the program to a graph of control
structure, then simply apply the logic for
unstructured program.

= Example:
try { if g then throw; S }

handle T ; "9

= Example:

if g then return; g
S ;
return ; -9

57

Adjusting Hoare Logic for Unstructured Programs

Prove {P}S {Q}

E x>0 9l y:=y/x

{ PAx>0} yi=y/x { A2 }

1. Decorate nodes with assertions.
2. Prove for each edge, the
corresponding Hoare triple.

Beyond pre/post conditions

= Class invariant

= When specifying the order of certain actions within a
program is important:

2 E.g. CSP

= When sequences of observable states through out the
execution have to satisfy certain property:

2 E.g. Temporal logic

= When the environment cannot be fully trusted:
2 E.g. Logic of belief

58

