Operational semantics of programs

Giuseppe De Giacomo

Program semantics

Programs are syntactic objects.

How do we assign a formal semantics to them?

Any idea of what the semantics should talk about?

Programs

We will consider a very simple programming language:

a atomic action
skip empty action
d1; 02 sequence

if ¢ then 1 else 5, if-then-else

while ¢ do § while-loop

As atomic action we will typically consider assignments:
T =v

As test any boolean condition on the current state of the memory.

Notice that our consideration extend to full-fledged programming lan-
guage (as Java).

Evaluation semantics

Idea: describe the overall result of the evaluation of the program.

Given a program é and a memory state s compute the memory state s’ obtained
by executing ¢ in s.

More formally: Define the relation:
(6,5) — s
where ¢ is a program, s is the memory state in which the program is evaluated, and

s’ is the memory state obtained by the evaluation.

Such a relation can be defined inductively in a standard way using the so called
evaluation (structural) rules

Evaluation rules for our programming constructs

(a,8) — '

Act : if s = Pre(a) and s’ = Post(a, s)
true
X . (z:=v,8) —s)
special case: assignment ——M—*~ if ' = sz =]
Evaluation semantics: references frue
The general approach we follows is is the structural operational semantics approach[Plotkin81, Ship - (skip, 8) — s
Nielson&Nielson99]. P T e
Sen : (01;02,8) — '
eq :
This whole-computation semantics is often call: evaluation semantics or natural se- (01,8) ——= " A (62,8") — ¢
mantics or computation semantic.
i (if ¢ then §,else 62,s) —— &' its = o (if ¢ then 5, else 62,5) —— s’ ifs = 6
(01,8) — &' (02,8) — '
while - (while ¢ do §,5) —— s T (while ¢ do §,s) —— & its = o
true (6,8) — s" A (while ¢ do §,s") — &'
5 6
Examples
Structural rules Compute s in the following cases, assuming that in the memory state
The structural rules have the following schema: Sowe have x = 10 and y = O:

CONSEQUENT |
———— if SIDE-CONDITION

ANTECEDENT o (z:=x+1,z:=x%2,8) —sf
which is to be interpreted logically as:

V(ANTECEDENT A SIDE-CONDITION D CONSEQUENT)

o (z:=z+1;
where V@ stands for the universal closure of all free variables occurring in @, and, if 1 th L I —1-
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables. if (+ <10) thenz := O else z := 1;
r:=x—+1,
Sp) — sf

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

o (y:=0;while (y <4)do {z :=x*2;y:=y+1},5) — sy

Transition semantics (cont.)

More formally:
e Define the relation, named T'rans and denoted by “——"):
Transition semantics (6,8) — (8,8

Idea: describe the result of executing a single step of the program. where § is a program, s is the memory state in which the program is executed,
and s’ is the memory state obtained by executing a single step of 6 and ¢’ is

what remains to be executed of ¢ after such a single step.
e Given a program § and a memory state s compute the memory state s’ and

the program §’ that remains to be executed obtained by executing a single

N o Define a predicate. named Final and denoted by “ v
step of § in s.

v
e Assert when a program & can be considered successfully terminated in a (0,5)

memory state s. where ¢ is a program that can be considered (successfully) terminated in the

memory state s.

Such a relation and predicate can be defined inductively in a standard way, using the
so called transition (structural) rules

9 10

Transition rules for our programming constructs

(a,8) —(c,8")

Act : if s = Pre(a) and s’ = Post(a, s)
true
special case: assignment M if s = s[z =]
. . true
Transition semantics: references
,k,' .S .8

The general approach we follows is is the structural operational semantics approach[Plotkin81, Skip _(okipis) ——(ers)

Nielson&Nielson99]. frue
Seq: (01,02, 5) —(87; 02, 8") (51;_524, s) — (3%, 8) it (61, 5)

L (61,8) — (41,8 (82,8) ——(85,5")

This single-step semantics is often call: transition semantics or computation seman-

tics. ” (if ¢ then sy else 62, s) —— (3}, s) sl o (if ¢ then 6, else 65, s) —— (05, s) ifs = o
vt S = S hl
| (61,8) —— (87, 8") (62,8) ——(85,8")

hile : (while ¢ do 6, 5) ——(&'; while ¢ do 4, s) s = o
whate © S
(6,8) — (&', 8")

¢ is the empty program.

Termination rules for our programming constructs

. (DM
€ IS
true
3 (81; 62, s)V
Seq : -
(61, 8)Y A (62;8)V
i)V i 5)V
i (if ¢ then 51 else 62, s) its =6 (if ¢ then 51 else 62, s) its = 6
(61,5)Y (82,5)V
) (while ¢ do 6,5)Y (while ¢ do 6,s)Y
while : ——— ifsE=-9¢ —————— ifskE=¢
true (6,8)Y
13
Examples

Compute &, s’ in the following cases, assuming that in the memory
state So we have x = 10 and y = O:

o (x:=x+1,z:=x%2,59) —(8,5)

e (if (x < 10) then {z := 0;y := 50} else {z := 1;y := 100};
r:=x+1,
So) —— (9", ")

e (while (y <4)do {z:=zx2;y :=y+ 1}, Sg) —(&,5")

Structural rules

The structural rules have the following schema:

CONSEQUENT |
—————— if SIDE-CONDITION
ANTECEDENT
which is to be interpreted logically as:
V(ANTECEDENT A SIDE-CONDITION D CONSEQUENT)

where V@ stands for the universal closure of all free variables occurring in @, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

The structural rules define inductively a relation, namely: the smallest relation sat-
isfying the rules.

14

Evaluation vs. transition semantics
How do we characterize a whole computation using single steps?

First we define the relation, named Trans*, denoted by ——* by the
following rules:

(6,5)—"(5, %)

true

O step :

(51 o
n step : ©.5) ", (for some &', s')
(6,8) — (8", s") A (8,8")—="(8",5")

Notice that such relation is the reflexive-transitive closure of (single step) ——.

Then it can be shown that:

(3,s0) —— 55 =

(8,50)——"(87,57) A (8f,57)Y for some ¢

16

Examples
Compute sy, using the definition based on ——*, in the following

cases, assuming that in the memory state Sg we have + = 10 and
y =0:

o (z:=x+1lz:=x%2,5) —s;

o (x =241,
if (zx < 10) then {z := 0;y := 50} else {z := 1;y := 100};
ri=x4+ 1,
So) — s

e (y:=0;while (y < 4)do {z :=xzx2;y :=y+1},50) — sy

17

Constructs for concurrency

if ¢ then §; else 45, synchronized conditional
while ¢ do 9, synchronized loop
(61 | 62), concurrent execution

The constructs if ¢ then ¢; else J> and while ¢ do ¢ are the synchronized: testing
the condition ¢ does not involve a transition per se, the evaluation of the condition
and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent
programming.

Concurrency

The transition semantics extends immediately to constructs for concur-
rency: The evaluation semantics can still be defined but only in terms
of the transition semantics (as above).

We model concurrent processes by interleaving: A concurrent ex-
ecution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other pro-
cesses will continue and eventually unblock it.

18

Transition and termination rules for concurrency

(91 |] 82, 8) —— (87 || 82, 8") (81 [82, 8) —— (81 || 85, 8")
(61,8) — (8},) (62,8) — (84, 8)

transition :

(61]| 82,)Y
(61,8)V A (82,8)V

termination :

20

