
Rappresenteazione di diagrammi
UML in DLLiteA attraverso il software

QToolkit

Dott. Claudio Corona

http://www.dis.uniroma1.it/quonto/?q=node/26

Prerequisiti

• UML (corso di Progettazione del Software)

• DLLiteA (slide del corso)

• Union of Conjunctive Queries (slide del corso)

• Epistemic Queries* (slide del corso)

* Per la sintassi concreta delle query epistemiche (SparSQL) si rimanda a questo articolo

http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/queryanswering-dllite-2up.pdf
http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/queryanswering-dllite-2up.pdf
http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/epistemic-queries-DL06slides-2up.pdf
http://ceur-ws.org/Vol-426/swap2008_submission_52.pdf

Obiettivo dell’esercitazione

• Parte A: Individuare il diagramma delle classi UML;
tradurre il diagramma delle classi in DLLiteA e scriverlo
in sintassi funzionale su QToolkit. Dopo aver avviato il
sistema con l’ontologia definita, sfruttare i servizi di
ragionamento per verificare se ci sono classi vuote,
classi equivalenti, ecc.

• Parte B: Generare una istanziazione parziale del
diagramma (una ABox) e verificare la consistenza
dell'istanziazione stessa.

• Parte C: A partire dalla specifica degli use case,
costruire delle query congiuntive o epistemiche da
porre al sistema.

Parte A: specifica

L’applicazione da progettare riguarda una parte del sistema
di gestione di un asilo per il corrente anno di iscrizione.
Ogni classe è caratterizzata da un nome (una stringa), dai
bambini ad essa assegnati e dalle maestre che vi insegnano.
In una classe insegna esattamente una maestra. Ogni
bambino ha un nome e un’età (compresa tra 0 e 5 anni) ed
è assegnato ad esattamente una classe. Ogni maestra ha un
nome ed una anzianità di servizio (un intero). Alcune classi
sono classi di scolarizzazione e ad esse vengono assegnati
almeno 1 bambino non-scolarizzati. Dei bambini non-
scolarizzati interessa sapere se portano ancora il pannolino
(un booleano). Come per le classi normali, anche in una
classe di scolarizzazione insegna esattamente una maestra.

Parte A: specifica(2)

Il coordinatore didattico è interessato ad
effettuare diversi controlli sulle classi, in
particolare:
– dato un insieme di classi s, restituire il

sottoinsieme formato dalle classi problematiche di
s: dove una classe è problematica se è una classe
di scolarizzazione tale che tutti i bambini assegnati
ad essa sono non-scolarizzati;

– data una classe c, restituire l’età media dei
bambini ad essa assegnati.

Parte A: diagramma delle classi UML

1

1..1

1

,<=5

Parte A: passaggio da UML a sintassi
funzionale DLLiteA

Vedere file in input al QToolkit
[Esercitazione\TBox.tbox] + [Esercitazione\EBox.cbox]

Nota: in DLLiteA valgono le seguenti restrizioni sulla
TBox:
1.Se Q ⊑ P o Q ⊑ P‾ è in T, allora (funct P) e (funct
P‾) non sono in T
2.Se U1 ⊑ U2 è in T, allora (funct U2) non è in T

Nel diagramma UML le relazioni “insegna” e
“assegnato” sono funzionali (cardinalità max
= 1) e sono specializzate da “insegnaScol” e
“assegnatoScol”, rispettivamente. In questo
esercizio si sceglie di mantenere le 2 isa tra
ruoli e di implementare le 2 funzionalità
come vincoli epistemici

Parte B: istanziazione del diagramma
delle classi (= ABox)

Vedere file in input al QToolkit
[Esercitazione\ABox.abox]

Parte C: use-case

1. dato un insieme di classi s, restituire il
sottoinsieme formato dalle classi
problematiche di s: dove una classe è
problematica se è una classe di
scolarizzazione tale che tutti i bambini
assegnati ad essa sono non-scolarizzati

Vedere file in input al Qtoolkit
[Esercitazione\ UseCase_prog1.txt]

Parte C: use-case (2)

2. data una classe c, restituire l’età media dei
bambini ad essa assegnati

Vedere file in input al Qtoolkit
[Esercitazione\ UseCase_prog2.txt]

Vincoli di covering
• Per concludere, vediamo come sia possibile implementare un vincolo di covering (derivante

ad esempio da una generalizzazione completa) attraverso un vincolo epistemico

• Vorremmo imporre sull’ontologia il seguente vincolo: ogni persona è un maschio o una femmina.
Non potendo imporre questo vincolo in una TBox DLLite, ci si “accontenta” di imporre il seguente
vincolo epistemico: ogni persona nota deve essere un maschio noto o una femmina nota

VERIFY not exists (SELECT persons.x

FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ‘Person’}) persons

EXCEPT (

SELECT males.x

FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ‘Male’}) males

UNION

SELECT females:x

FROM SparqlTable(SELECT ?x

WHERE {?x rdf:type ‘Female’]) females

)

)

diventaPerson ⊑ Male ∪ Female K Person ⊑ K Male ∪ K Female

Vincoli di covering (2)

• Si noti che le query rosse, che sono union of conjunctive
queries espresse in SPARQL, hanno il compito di estrarre la
conoscenza dall’ontologia (tale conoscenza viene restituita
sottoforma di risposte certe);

• Visto che sulla conoscenza estratta si ha informazione
completa (≈ una tupla è o non è nelle risposte certe), è
possibile interrogare tale conoscenza come se fosse un
database: questo è il ruolo svolto dalla parte della query
SparSQL in nero, ovvero la query SQL

• Riassumendo: le query in rosso (UCQ) interrogano
l’ontologia, estraendone conoscenza che viene
manipolata/interrogata attraverso la query SQL (parte in
nero)

