Rappresenteazione di diagrammi
UML in DLLite, attraverso il software
QToolkit

http://www.dis.uniroma1.it/quonto/?q=node/26

Prerequisiti

 UML (corso di Progettazione del Software)
* DLLite, (slide del corso)

* Union of Conjunctive Queries (slide del corso)
e Epistemic Queries* (slide del corso)

* Per la sintassi concreta delle query epistemiche (SparSQL) si rimanda a guesto articolo

http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/queryanswering-dllite-2up.pdf
http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/queryanswering-dllite-2up.pdf
http://www.dis.uniroma1.it/~degiacom/didattica/metodiformali/materiale/4-query-answering-dls/epistemic-queries-DL06slides-2up.pdf
http://ceur-ws.org/Vol-426/swap2008_submission_52.pdf

Obiettivo dell’esercitazione

* Parte A: Individuare il diagramma delle classi UML;
tradurre il diagramma delle classi in DLLite, e scriverlo
in sintassi funzionale su QToolkit. Dopo aver avviato il
sistema con l'ontologia definita, sfruttare i servizi di
ragionamento per verificare se ci sono classi vuote,
classi equivalenti, ecc.

* Parte B: Generare una istanziazione parziale del
diagramma (una ABox) e verificare la consistenza
dell'istanziazione stessa.

* Parte C: A partire dalla specifica degli use case,
costruire delle query congiuntive o epistemiche da
porre al sistema.

Parte A: specifica

'applicazione da progettare riguarda una parte del sistema
di gestione di un asilo per il corrente anno di iscrizione.
Ogni classe e caratterizzata da un nome (una stringa), dai
bambini ad essa assegnati e dalle maestre che vi insegnano.
In una classe insegna esattamente una maestra. Ogni
bambino ha un nome e un’eta (compresa tra 0 e 5 anni) ed
e assegnato ad esattamente una classe. Ogni maestra ha un
nome ed una anzianita di servizio (un intero). Alcune classi
sono classi di scolarizzazione e ad esse vengono assegnati
almeno 1 bambino non-scolarizzati. Dei bambini non-
scolarizzati interessa sapere se portano ancora il pannolino
(un booleano). Come per le classi normali, anche in una
classe di scolarizzazione insegna esattamente una maestra.

Parte A: specifica(2)

Il coordinatore didattico e interessato ad
effettuare diversi controlli sulle classi, in
particolare:

— dato un insieme di classi s, restituire il
sottoinsieme formato dalle classi problematiche di
s: dove una classe e problematica se e una classe
di scolarizzazione tale che tutti i bambini assegnati
ad essa sono non-scolarizzati;

— data una classe c, restituire I'eta media dei
bambini ad essa assegnati.

Parte A: diagramma delle classi UML

Diagramma UML delle classi

Maestra Classe Bambino
Insegna assegnato _
- nome: string 1.1 + 0..*|- nome: String [1..1 + 0.7 |- nome: String
- anzianita: Integer = 0 | ﬁ - eta: Intero == 0,<=5

|
| |
|
t | : A
(subset} | (subsst]
I |
| |
: ClasseDiScol | BambinoNonScol
Insegnascol 0.* assegnatoScol
11 1 *|- pannolino: Boolean

Parte A: passaggio da UML a sintassi
funzionale DLLite,

Vedere file in input al QToolkit

[Esercitazione\TBox.tbox] + [Esercitazione\EBox.cbox]

Nota: in DLLite, valgono le seguenti restrizioni sulla

TBox:

1.5eQEPoQEP einT,allora (funct P) e (funct‘
P7) nonsonoinT

2SeUl1EU2¢inT, allora (functU2) noneinT

Nel diagramma UML le relazioni “insegna” e
“assegnato” sono funzionali (cardinalita max
=1) e sono specializzate da “insegnaScol” e
“assegnatoScol”, rispettivamente. In questo
esercizio si sceglie di mantenere le 2 isa tra
ruoli e di implementare le 2 funzionalita
come vincoli epistemici

Parte B: istanziazione del diagramma
delle classi (= ABox)

Vedere file in input al QToolkit

[Esercitazione\ABox.abox]

Parte C: use-case

1. dato un insieme di classi s, restituire il
sottoinsieme formato dalle classi
problematiche di s: dove una classe e
problematica se e una classe di
scolarizzazione tale che tutti i bambini
assegnati ad essa sono non-scolarizzati

Vedere file in input al Qtoolkit

[Esercitazione\ UseCase_progl.txt]

Parte C: use-case (2)

2. data una classe c, restituire I'eta media dei
bambini ad essa assegnati

Vedere file in input al Qtoolkit

[Esercitazione\ UseCase_prog2.txt]

Vincoli di covering

* Per concludere, vediamo come sia possibile implementare un vincolo di covering (derivante
ad esempio da una generalizzazione completa) attraverso un vincolo epistemico

* Vorremmo imporre sull’'ontologia il seguente vincolo: ogni persona € un maschio o una femmina.
Non potendo imporre questo vincolo in una TBox DLLite, ci si “accontenta” di imporre il seguente
vincolo epistemico: ognhi persona notae~deve essere un maschio notg o una femminarota

Person = Male U Female Person C lﬁ\/lale U R/Female ﬁ

VERIFY not exists (SELECT persons.x
FROM SpargqlTable(SELECT ?x
WHERE {?x rdf:type ‘Person’}) persons
EXCEPT (
SELECT males.x
FROM SparqlTable(SELECT ?x
WHERE {?x rdf:type ‘Male’}) males
UNION
SELECT females:x
FROM SparqlTable(SELECT ?x
WHERE {?x rdf:type ‘Female’]) females

Vincoli di covering (2)

Si noti che le query rosse, che sono union of conjunctive
gueries espresse in SPARQL, hanno il compito di estrarre la
conoscenza dall’'ontologia (tale conoscenza viene restituita
sottoforma di risposte certe);

Visto che sulla conoscenza estratta si ha informazione
completa (= una tupla € o non e nelle risposte certe), e
possibile interrogare tale conoscenza come se fosse un
database: questo e il ruolo svolto dalla parte della query
SparSQL in nero, ovvero la query SQL

Riassumendo: le query in rosso (UCQ) interrogano
I'ontologia, estraendone conoscenza che viene
manipolata/interrogata attraverso la query SQL (parte in
nero)

