Query answering in description logics:

DL-Lite,

Outline

© Introduction

© Querying data through ontologies

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
SAPIENZA Universita di Roma

Outline

@ Introduction

Query answering in description logics: DL-Lit

© DL-Lite4: an ontology language for accessing data
@ Conclusions

© References

Query answering in description logics: DL-Lit (1/55)

Ontologies and data

@ The best current DL reasoning systems can deal with moderately
large ABoxes. ~» 10 individuals (and this is a big achievement of
the last years)!

@ But data of interests in typical information systems are much larger
~+ 10% — 10? individuals

@ The best technology to deal with large amounts of data are
relational databases.

Question: J

How can we use ontologies together with large amounts of data?

(2/55) Query answering in description logics: DL-Lit (3/55)

Challenges when integrating data into ontologies Questions addressed in this part of the tutorial

Deal with well-known tradeoff between expressive power of the ontology
language and complexity of dealing with (i.e., performing inference over)
ontologies in that language. © Which is the “right” query language?

Requirements come from the specific setting: @ Which is the “right” ontology language?
@ We have to fully take into account the ontology.
~» inference © How can we bridge the semantic mismatch between the ontology

@ We have to deal very large amounts of data. and the data sources?

~» relational databases
©Q How can tools for ontology-based data access and integration

o We want flexibility in querying the data. i ;
fully take into account all these issues?

~» expressive query language

@ We want to keep the data in the sources, and not move it around.
~» map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-Lit (4/55) Query answering in description logics: DL-Lit (5/55)

Outline Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

© Querying data through ontologies © Just classes and properties of the ontology ~+ instance checking
e Ontology languages are tailored for capturing intensional
relationships.
e They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of JOIN, namely chaining.

@ Full SQL (or equivalently, first-order logic)

e Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-Lit (6/55) Query answering in description logics: DL-Lit: (7/55)

Conjunctive queries (CQs)
A conjunctive query (CQ) is a first-order query of the form

where each R;(Z,¥) is an atom using (some of) the free variables Z, the
existentially quantified variables ¥/, and possibly constants.

We will also use the simpler Datalog notation:

Q(f) — Rl(f7 :lj)a s 7Rk(f7 :J)

Note:
@ CQs contain no disjunction, no negation, no universal
quantification.
o Correspond to SQL/relational algebra select-project-join (SPJ)
queries — the most frequently asked queries.
o They can also be written as SPARQL queries.

Query answering in description logics: DL-Lit (8/55)

Conjunctive queries and SQL — Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p,n), age(p,a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name
FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

H.dean = ND.p AND H.dean = AD.p AND

W.coll = H.coll AND AF.a = AD.a

Expressed as a CQ:

q(nf, af ,nd) < worksFor(f1, c1), isHeadOf(d1, c2),
name(f2, nf), name(d2, nd), age(f3, af), age(ds3, ad),
fl =12, f1 =f3, di =d2, dl =d3, c1 =c2, of = ad

Query answering in description logics: DL-Lit (10/55)

Example of conjunctive query

Professor T Faculty 1.1 e 1.
AssocProf [Professor e nlever
Dean [Professor isAdvisedB :vorksFor
AssocProf T —Dean fsAdvise x .
Faculty C dage Professor College
Hage— E Integer ~ name: String
JworksFor T Faculty T3
JworksFor™ L College {disjoint} isHeadOf
Faculty C dworksFor A
College L JworksFor™ Ll SEHR L [1.1

q(nf,af,nd) — 3f,c,d, ad.
worksFor(f, ¢) A isHeadOf(d, ¢) A name(f, nf) A name(d, nd) A
age(f7 (Lf) N age(da ad) Aaf = ad

Query answering in description logics: DL-Lit (9/55)

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

o traditional database assumption

o knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-Lit: (11/55)

Query answering under the database assumption

o Data are completely specified (CWA), and typically large.
@ Schema/intensional information used in the design phase.

@ At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

@ Queries allow for complex navigation paths in the data (cf. SQL).

~» Query answering amounts to query evaluation, which is
computationally easy.

Query answering in description logics: DL-Lit: (12/55)

Query answering under the database assumption — Example

Faculty worksFor » College

Professor

For each class/property we have a (complete) table in the database.
Faculty = { john, mary, nick }
Professor = { john, nick }
College = { collA, collB}
worksFor = { (john,collA), (mary,collB) }

Query: q(x) < 3Fe. Professor(x), College(c), worksFor(z, ¢)
Answer: { john }

Query answering in description logics: DL-Lit (14/55)

Query answering under the database assumption (cont'd)

Reasoning

Schema /
Ontology

o)

Logical
Schema

5
Data
Source

Query answering in description logics: DL-Lit (13/55)

Query answering under the KR assumption

@ An ontology imposes constraints on the data.

@ Actual data may be incomplete or inconsistent w.r.t. such
constraints.

@ The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

~» Query answering amounts to logical inference, which is
computationally more costly.

Note:

@ Size of the data is not considered critical (comparable to the size of the
intensional information).

@ Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.

Query answering in description logics: DL-Lit (15/55)

Query answering under the KR assumption (cont'd) Query answering under the KR assumption — Example

Faculty worksFor » College

<
Professor
Result
—

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor O { john, nick }

College O { collh, collB }

worksFor O { (john,collA), (mary,collB) }

Reasoning

Schema /
Ontology

Query: ¢(z) < Faculty(z)

5
Data
Source

Query answering in description logics: DL-Lit

Answer: { john, nick, mary }

(16/55) Query answering in description logics: DL-Lit (17/55)

Query answering under the KR assumption — Example 2 QA under the KR assumption — Andrea’s Example

FullProf = AssocProf LU FullProf

Faculty O { andrea, nick, mary, john }

officeMate »

< hasFather

1.% Each person has a father, who is a person. Faculty
Person Professor O { andrea, nick, mary }
DB: Person D { john, nick, toni } ~ AssocProf D { nick }
———— hasFather O { (john,nick), (nick,toni) } isAdvisedBy FullProf 2 { mary }
v| isAdvisedBy D { (john,andrea), (johnmary) }
. Professor officeMate D { (mary,andrea), (andrea,nick) }
Queries: q1(z,y) < hasFather(x,y)
q2(x) < Jy. hasFather(z, y) yAN john
q3(z) < Jy1,y2, y3. hasFather(z, y1), hasFather(y1, y2), hasFather(ys, y3) (disjoint, complete} ‘SAC‘VW WﬁedBy
44 (Jf, yS) - Elyl’ y2- hasFather(x, yl)’ haSFather(yl’ y2>7 haSFather(yQ’ y3) AssocProf FuI]IProf andrea:Professor <—officeMate mary:FullProf
Answers: to gi: { (john,nick), (nick,toni) } fcoMate
I

to go: { john, nick, toni }
to ¢3: { john, nick, toni }

toqs {}

paul :AssocProf

Query answering in description logics: DL-Lit (18/55) Query answering in description logics: DL-Lit: (19/55)

QA under the KR assumption — Andrea’s Example (cont'd)

officeMate »

Faculty

Professor

isAdvisedBy
v

{disjoint, complete}

AssocProf

Full

Prof

To determine this answer, we need to resort to reasoning by cases.

john

isAdvisedBy isAdvisedBy

officeMate

andrea:Professor «——— mary:FullProf

officeMate

paul :AssocProf

q() — Ty, z.
isAdvisedBy(john, y), FullProf(y),
officeMate(y, z), AssocProf(z)

Answer: yes!

Query answering in description logics: DL-Lit

Certain answers to a query

Let O = (7, .A) be an ontology, 7 an interpretation for O, and

q(¥) — 3y. conj(Z,9) a CQ.

Def.: The answer to q(Z) over Z, denoted ¢

. is the set of tuples ¢ of constants of A such that the formula

3y. conj (¢, Y) evaluates to true in 7.

(20/55)

We are interested in finding those answers that hold in all models of an

ontology.

Def.: The certain answers to ¢(%) over O = (7, A), denoted

cert(q, O)

. are the tuples ¢ of constants of A such that ¢ € ¢Z, for every

model Z of O.

Query answering in description logics: DL-Lit

(22/55)

Query answering when accessing data through ontologies

We have to face the difficulties of both DB and KB assumptions:

@ The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

@ The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

@ We want to take into account at runtime the constraints
expressed in the ontology.

o We want to answer complex database-like queries.

@ We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.

Query answering in description logics: DL-Lit (21/55)

Inference in query answering

! Logical inference

\
|
|
|
|
|
|
|

A — — cert(q,(T,A))

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of ¢ and 7.

~» Query answering by query rewriting.

Query answering in description logics: DL-Lit: (23/55)

Query rewriting

Perfect
rewriting
under OWA

Query
evaluation

(under CWA)

Query answering can always be thought as done in two phases:
@ Perfect rewriting: produce from ¢ and the TBox 7 a new query
rq7 (called the perfect rewriting of ¢ w.r.t. 7).

@ Query evaluation: evaluate 7, 7 over the ABox ./ seen as a
complete database (and without considering the TBox 7).
~> Produces cert(q, (7, .A)).

Note: The “always” holds if we pose no restriction on the language in which to
express the rewriting 74, 7.

Query answering in description logics: DL-Lit: (24/55)

Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:
@ When we can rewrite into FOL/SQL.
~» Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LOGSPACE).

@ When we can rewrite into an NLOGSPACE-hard language.
~> Query evaluation requires (at least) linear recursion.

@ When we can rewrite into a PTIME-hard language.
~> Query evaluation requires full recursion (e.g., Datalog).

@ When we can rewrite into a CONP-hard language.
~> Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-Lit (26/55)

Query rewriting (cont'd)

Reasoning

v

Rewritten
Query

Reasoning

Schema /
Ontology

Logical
Schema

Data
Source

Query answering in description logics: DL-Lit (25/55)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.
Studied extensively for (unions of) CQs and various ontology languages:

H Combined complexity | Data complexity ‘

Plain databases NP-complete in LoaSpace @
OWL 2 (and less) || 2EXPTiME-complete | cONP-hard (D

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(?) This is what we need to scale with the data.

Questions
@ Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LOGSPACE)?
o If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-Lit: (27/55)

Outline

© DL-Lite4: an ontology language for accessing data

Query answering in description logics: DL-Lit: (28/55)

DL-Lite 4 ontologies

TBox assertions:

@ Class inclusion assertions: B C (C, with:

B — A 3Q
c — C | C

o Property inclusion assertions: (@ C R, with:

Q — P | P
R — Q| -Q
o Functionality assertions: (funct Q)

@ Proviso: functional properties cannot be specialized.

ABox assertions: A(e), Plcy,co), with ¢1, co constants

Note: DL-Lite 4 distinguishes also between object and data properties
(ignored here).

Query answering in description logics: DL-Lit (30/55)

The DL-Lite family

o A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

o Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.

In fact, query answering can be delegated to a relational DB engine.

The DLs of the DL-Lite family are essentially the maximally

expressive ontology languages enjoying these nice computational

properties.

o We present DL-Lite 4, an expressive member of the DL-Lite family.

DL-Lite o provides robust foundations for Ontology-Based Data Access.)
Query answering in description logics: DL-Lit (29/55)

Semantics of the DL-Lite 4 assertions

Assertion ‘ Syntax ‘ Example ‘ Semantics
class incl. BLC C | Father C 3child BT cc*
o-prop. incl. QCR father C anc QT C R?
v.dom. incl. ECF | p(age) C xsd:int E* C F*
d-prop. incl. U CV | offPhone C phone vt cv?

o-prop. funct.|(funct Q)| (funct father) |Vo,0,0".(0,0") € QF A

(0,0") € Qf — o =0"

d-prop. funct.|(funct U) (funct ssn) Yo,v,v".(0,v) € UL A
(0,0") € UT — v =1
mem. asser. A(e) Father(bob) et
mem. asser. | P(c1,c2)| child(bob, ann) (cf,c3) e Pt
mem. asser. | U(c,d) |phone(bob, ’2345”) (cf,val(d)) € U

Query answering in description logics: DL-Lit: (31/55)

Capturing basic ontology constructs in DL-Lite 4

ISA between classes

Al T Ay

Disjointness between classes

Ay E =4

Domain and range of properties

dP C Ay dP~ C Ay

Mandatory participation (min card = 1)

A, C3IP Ay, CIP~

Functionality of relations (max card = 1)

(funct P) (funct P7)

ISA between properties Q1 C Q2
Disjointness between properties Q1 C Q-
Query answering in description logics: DL-Lit (32/55)

Observations on DL-Lite 4

o Captures all the basic constructs of UML Class Diagrams and of

the ER Model . ..

@ ... except covering constraints in generalizations.

@ Is one of the three candidate OWL 2 Profiles.

o Extends (the DL fragment of) the ontology language RDFS.

@ Is completely symmetric w.r.t. direct and inverse properties.

@ Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not

also infinite models.

Query answering in description logics: DL-Lit (34/55)

Example

1.4 (_Faculty .
name: String
| agetinteger |
worksFor
isAdvisedBy M
v 1.
Professor College
name: String
1.
1.1
{disjoint} isHeadOf
A
AssocProf Dean 1.1

Note: DL-Lite 4 cannot capture completeness of a
hierarchy. This would require disjunction (i.e., OR).

Professor
AssocProf
Dean
AssocProf

Faculty
Jdage™

M IrT I

M

Faculty
Professor
Professor
—Dean

Jage
xsd:int

(funct age)

JworksFor
JworksFor™
Faculty
College

disHeadOf
disHeadOf ™
Dean
College
isHeadOf

Query answering in description logics: DL-Lit

Query answering in DL-Lite 4

I Ir e

CH T Irim

Faculty
College
JworksFor

JworksFor™

Dean
College
disHeadOf

disHeadOf ™

worksFor

(funct isHeadOf)
(funct isHeadOf ™)

Based on query reformulation: given an (U)CQ and an ontology:

@ Compute its perfect rewriting, which turns out to be a UCQ.

© Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

o expand positive inclusions & simplify redundant atoms, or

(33/55)

o unify atoms in the CQ to obtain a more specific CQ to be further

expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology

satisfiability, but not in query answering.

Query answering in description logics: DL-Lit

(35/55)

Query answering in DL-Lite 4 — Example

TBox: Professor C JworksFor
dworksFor™ C College

Query: q(z) <« worksFor(x,y), College(y)

Perfect Reformulation: q(x) < worksFor(xz,y), College(y)

) «— worksFor(z, y), worksFor(_,)
) < worksFor(z,)
)

x :
X
x) « Professor ()

q(s
q(
q(x
q(
ABox: worksFor(john, collA) Professor(john)
worksFor(mary, col1B) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john,nick, mary}.

Query answering in description logics: DL-Lit (36/55)
Example
TBox:
MALE C PERSON FEMALE C PERSON

MALE C -FEMALE

PERSON C JhasFather PERSON C JhasMother
JhasFather C MALE JhasMother C FEMALE

rewritten query:

q’(x) < PERSON(x) V
input query: FEMALE(x) vV
q(x) + PERSON(x) MALE(x) V
hasFather(y,x) V
hasMother(y,x)

Riccardo Rosati - OWL profiles and 2
DL-Lite

Query answering in description logics: DL-Lit (38/55)

Query answering in DL-Lite

query Q query Q’
(UCQ) (SQL) answers to Q’
s Queny DBMS |
expander

-

Riccardo Rosati - OWL profiles and 1
DL-Lite

Query answering in description logics: DL-Lit

Example

rewritten query: ABox:

q’(x) + PERSON(x) V MALE(Bob)
FEMALE(x) V MALE(Paul)
MALE(x) V FEMALE(Ann)
hasFather(y,x) V hasFather(Paul,Ann)
hasMother(y,x) hasMother(Mary,Paul)

answers to query:
{ Bob, Paul, Ann, Mary }

Riccardo Rosati - OWL profiles and 3
DL-Lite

Query answering in description logics: DL-Lit

(37/55)

(39/55)

Answering queries: chasing the ABox

MALE(Bob) MALE(Paul) FEMALE(Ann) hasFather(Paul,Ann) hasMother(Mary,Paul)

(O))

CHASE of the ABox
HERSON(BOb) with respect to the TBox
1(4) (6) = addmg to the ABox all
instance assertions that
hasFather(Bob,x1) hasMother(Bob,x2) are logical consequences
l(s) Jm of the TBox
MALE(x1) FEMALE(x2) the chqse represents the
canonical model of the
lm lm whole KB
PERSON(x1) PERSON(x2) problem: the chase of the
l(“) © l(“) © ABox is in general
,,,,, infinite
Riccardo Rosati - OWL profiles and 4

DL-Lite

Query answering in description logics: DL-Lit

Query rewriting algorithm for DL-Lite

The rewriting algorithm iteratively applies two rewriting
rules:

~atom-rewrite: takes an atom of the conjunctive query
and rewrites it applying a TBox inclusion

 the inclusion is used as a rewriting rule (right-to-left)

*reduce: takes two unifiable atoms of the conjunctive
query and merges (unifies) them

Riccardo Rosati - OWL profiles and 6
DL-Lite

Query answering in description logics: DL-Lit:

(40/55)

(42/55)

Query rewriting algorithm for DL-Lite

q(x) <~ PERSON(x)

q(x) < MALE(x) q(x) FEMALE(x)

q(x) < hasFather(y,x) q(x) < hasMother(y,x)

how to avoid the infinite chase of the ABox?

CHASE of the query:

* inclusions are applied “from right to left”

 this chase always terminates

 this chase is computed independently of the ABox

Riccardo Rosati - OWL profiles and 5
DL-Lite

Query answering in description logics: DL-Lit:

Query rewriting algorithm for DL-Lite

Algorithm PerfectRef (q; 7)
Input: conjunctive query q, DL-Lite TBox T~
Output: union of conjunctive queries PR
PR = {q};
repeat
PRO :=PR;
for each q € PRO do
(a) for each gin q do
for each positive inclusion I in 7" do
if I is applicable to g then PR := PR U{q[g/gr(g,])]};
(b) for each g1, g2 inq do
if gl and g2 unify then PR := PR U{f (reduce(q,g1,22))}
until PRO = PR;
return PR

Riccardo Rosati - OWL profiles and 7
DL-Lite

Query answering in description logics: DL-Lit

(41/55)

(43/55)

KB Query Answering

e TBOX: |
Expansion: ® q(x) :- R(xy)

® q(x) - R(xy), R(y,2) ® q(x):- R(x,_)

— SOMER ISAA (I,n)
0 969 - Rexy). R(x) . qb0 - AB)
— SOMER"ISAB

q(x) := R(x,y),A(y)

— AISASOMER

BISAA ® q(x) - B(x)
* 909 = Rixy). B(y) All queries empty except
: for the last!
e ABOX: * QUERY: e q(x) - R(xy), R(.Y) or the last
— q(%) - R(xy), R(y,2) Certain Answer: {c}
— B(9)
Query answering in description logics: DL-Lit: (44/55) Query answering in description logics: DL-Lit (45/55)
Complexity of reasoning in DL-Lite 4 Beyond DL-Lite 4: results on data complexity
Ontology satisfiability and all classical DL reasoning tasks are: - " o Prop Data complexity
o Efficiently tractable in the size of TBox (i.e., PTIME). " | incl. || of query answering
.. . . . QA 0 DL-Lite 4 N VE in LOGSPACE
o Very efficiently tractable in the size of the ABox (i.e., LOGSPACE). 1 ATIPA) - L NT.OGSPAGEhard
In fact, reasoning can be done by constructing suitable FOL/SQL 2 A ATVP.A — — NLOGSPACE-hard
: : _ ST 3 A AldP.A N - NLOGSPACE-hard
queries and evaluating them over the ABox (FOL-rewritability). TTATIP AT, I V. = T hard
5 Al AN A A|VP.A — — PTIME-hard
Query answering for CQs and UCQs is: 6 ATA A, A|[IP.A v — PTIME-hard
. . 7 | A|FP.A|FP A A|3P - - PTIME-hard
o PTIME in the size of TBox. g EIAE S A[3P [3P 7 7 PTivE-hard
@ LOGSPACE in the size of the ABox. 9 AT-A A — — coNP-hard
L. . 10 A Al AU A:; — — NP-hard
o Exponential in the size of the query (NP-complete). 1 ATVPA | A - — — ngP-hg:d
Bad? ...not really, this is exactly as in relational DBs.
Notes:

B @ * wi u PN T . ies.
Can we go beyond DL-Lite 4? with the “proviso” of not specializing functional properties

. . . . @ NLOGSPACE and PTIME hardness holds already for instance checking.
No! By adding essentially any additional constructor we lose these nice

. . @ For cONP-hardness in line 10, a TBox with a single assertion
computational properties.

Ar C Ar U Ap suffices! ~ No hope of including covering constraints.

Query answering in description logics: DL-Lit (46/55) Query answering in description logics: DL-Lit: (47/55)

Example of query

q(z,y, z) < GraduateStudent(z), University(y), Department(z),
hasUndergraduateDegreeFrom(z, y), isMemberOf(z, 2),
subOrganizationOf(z,t), subOrganizationOf(t, y)

isMemberOf

X z

GraduateStudent p-@ University Department
hasUGDegreeFrom
subOrganizationOf subOrganizationOf
t
SELECT 7X 7Y 7Z WHERE
7X rdf:type ’GraduateStudent’ . 7Y rdf:type ’University’
?Z rdf:type ’Department’
7X :hasUndergraduateDegreeFrom 7Y . 7X :isMember0f 7Z
?Z subOrganizationOf ?T . 7T subOrganizationOf 7Y
Query answering in description logics: DL-Lit: (48/55)
Conclusions

@ Ontology-based data access and integration is a challenging
problem with great practical relevance.

@ In this setting, the size of the data is the relevant parameter that
must guide technological choices.

o Currently, scalability w.r.t. the size of the data can be achieved
only by relying on commercial technologies for managing the data,
i.e., relational DBMS systems and federation tools.

@ In order to tailor semantic technologies so as to provide a good
compromise between expressivity and efficiency, requires a thorough
understanding of the semantic and computational properties of the
adopted formalisms.

@ We have now gained such an understanding, that allows us to
develop very good solutions for ontology-based data access and
integration.

@ One of the three OWL 2 profiles, namely “"OWL 2 QL", is directly
based on this understanding.

Query answering in description logics: DL-Lit (50/55)

Outline

@ Conclusions

Query answering in description logics: DL-Lit (49/55)

QOutline

© References

Query answering in description logics: DL-Lit: (51/55)

References |

[1]

2]

D. Berardi, D. Calvanese, and G. De Giacomo.
Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70-118, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.

Linking data to ontologies: The description logic DL-Lite 4.

In Proc. of the 2nd Int. Workshop on OWL: Experiences and Directions
(OWLED 2006), volume 216 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-216/, 2006.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tailoring OWL for data intensive ontologies.

In Proc. of the 1st Int. Workshop on OWL: Experiences and Directions
(OWLED 2005), volume 188 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-188/, 2005.

Query answering in description logics: DL-Lit (52/55)

References ||

[8]

[10]

D. Calvanese and M. Rodriguez.
An extension of DIG 2.0 for handling bulk data.

In Proc. of the 3rd Int. Workshop on OWL: Experiences and Directions
(OWLED 2007), volume 258 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-258/, 2007.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.

Linking data to ontologies.
J. on Data Semantics, X:133-173, 2008.

A. Poggi, M. Rodriguez, and M. Ruzzi.

Ontology-based database access with DIG-Mastro and the OBDA Plugin for
Protégé.

In K. Clark and P. F. Patel-Schneider, editors, Proc. of the OWL: Experiences
and Directions 2008 (OWLED 2008 DC) Workshop, 2008.

Query answering in description logics: DL-Lit (54/55)

References |l

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies.

In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages
602-607, 2005.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Data complexity of query answering in description logics.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 260-270, 2006.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Tractable reasoning and efficient query answering in description logics: The
DL-Lite family.
J. of Automated Reasoning, 39(3):385-429, 2007.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Path-based identification constraints in description logics.

In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2008), pages 231-241, 2008.

Query answering in description logics: DL-Lit

References 1V

[11] M. Rodriguez-Muro, L. Lubyte, and D. Calvanese.
Realizing ontology based data access: A plug-in for Protégé.

In Proc. of the 24th Int. Conf. on Data Engineering Workshops (ICDE 2008),
pages 286-289, 2008.

Query answering in description logics: DL-Lit

(53/55)

(55/55)

