Query answering in description logics:
DL-Litey

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
SAPIENZA Universita di Roma

Outline

@ Introduction

© Querying data through ontologies

© DL-Lites: an ontology language for accessing data
@ Conclusions

© References

Query answering in description logics: DL-Lit (1/55)



Outline

@ Introduction

Query answering in description logics: DL-Lit (2/55)

Ontologies and data

@ The best current DL reasoning systems can deal with moderately
large ABoxes. ~» 10 individuals (and this is a big achievement of
the last years)!

@ But data of interests in typical information systems are much larger
~+ 105 — 10? individuals

@ The best technology to deal with large amounts of data are
relational databases.

How can we use ontologies together with large amounts of data?

Question: J

Query answering in description logics: DL-Lit (3/55)



Challenges when integrating data into ontologies

Deal with well-known tradeoff between expressive power of the ontology

language and complexity of dealing with (i.e., performing inference over)
ontologies in that language.

Requirements come from the specific setting:

@ We have to fully take into account the ontology.
~» inference

@ We have to deal very large amounts of data.
~» relational databases

@ We want flexibility in querying the data.
~» expressive query language

@ We want to keep the data in the sources, and not move it around.
~> map data sourses to the ontology (cf. Data Integration)

Query answering in description logics: DL-Lit (4/55)

Questions addressed in this part of the tutorial

@ Which is the “right” query language?
@ Which is the “right” ontology language?

© How can we bridge the semantic mismatch between the ontology
and the data sources?

@ How can tools for ontology-based data access and integration
fully take into account all these issues?

Query answering in description logics: DL-Lit (5/55)



Outline

© Querying data through ontologies

Query answering in description logics: DL-Lit (6/55)

Ontology languages vs. query languages

Which query language to use?

Two extreme cases:

@ Just classes and properties of the ontology ~» instance checking

e Ontology languages are tailored for capturing intensional
relationships.

e They are quite poor as query languages:
Cannot refer to same object via multiple navigation paths in the
ontology, i.e., allow only for a limited form of JOIN, namely chaining.

@ Full SQL (or equivalently, first-order logic)

e Problem: in the presence of incomplete information, query answering
becomes undecidable (FOL validity).

Query answering in description logics: DL-Lit (7/55)



Conjunctive queries (CQs)

A conjunctive query (CQ) is a first-order query of the form

where each R;(Z, %) is an atom using (some of) the free variables &, the

existentially quantified variables 7/, and possibly constants.

We will also use the simpler Datalog notation:

Note:

@ CQs contain no disjunction, no negation, no universal

q(f) — Rl(f7 g)? .. °7Rk(f7 g)

quantification.

@ Correspond to SQL /relational algebra select-project-join (SPJ)
queries — the most frequently asked queries.

@ They can also be written as SPARQL queries.

Query answering in description logics: DL-Lit

Example of conjunctive query

Professor
AssocProf
Dean
AssocProf

Faculty
dage™
dworksFor
dworksFor™
Faculty
College

a(nf,af ,nd) — 3f,¢.d, ad.

S ATTIFTIrT e A A e e e

Faculty
Professor
Professor
—Dean

Jdage

Integer
Faculty
College

JworksFor
JworksFor™

isAdvisedBy
v

1.

(8/55)

A

Faculty *
A = 1.
—— 1 name: String
age: Integer
worksFor <]-
v
1.*
Professor College
name: String
Lﬁ 1.1
I {disjoint} isHeadOf —

AssocProf

Dean

1.1

worksFor(f, c) A isHeadOf(d, ¢) A name(f, nf) A name(d, nd) A
age(f, af) N age(d, ad) A af = ad

Query answering in description logics: DL-Lit

(9/55)



Conjunctive queries and SQL — Example

Relational alphabet:
worksFor(fac, coll), isHeadOf(dean, coll), name(p,n), age(p,a)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Expressed in SQL:

SELECT NF.name, AF.age, ND.name

FROM worksFor W, isHeadOf H, name NF, name ND, age AF, age AD
WHERE W.fac = NF.p AND W.fac = AF.p AND

ND.p AND H.dean = AD.p AND

H.coll AND AF.a AD.a

H.dean
W.coll

Expressed as a CQ:

q(nf,af,nd) «— worksFor(fI,c1), isHeadOf(d1, c2),
name(f2, nf), name(d2,nd), age(f3, af), age(d3, ad),
fl =12, fl =f3, dl =d2, dl =d3, c1 =c2, af = ad

Query answering in description logics: DL-Lit (10/55)

Query answering under different assumptions

There are fundamentally different assumptions when addressing query
answering in different settings:

@ traditional database assumption

@ knowledge representation assumption

Note: for the moment we assume to deal with an ordinary ABox, which
however may be very large and thus is stored in a database.

Query answering in description logics: DL-Lit (11/55)



Query answering under the database assumption

@ Data are completely specified (CWA), and typically large.
@ Schema/intensional information used in the design phase.

@ At runtime, the data is assumed to satisfy the schema, and
therefore the schema is not used.

@ Queries allow for complex navigation paths in the data (cf. SQL),

~» Query answering amounts to query evaluation, which is
computationally easy.

Query answering in description logics: DL-Lit (12/55)

Query answering under the database assumption (cont'd)

Schema /
Ontology

Data
Source

Query answering in description logics: DL-Lit (13/55)



Query answering under the database assumption — Example

Faculty worksFor » College
Professor
T —

For each class/property we have a (complete) table in the database.
Faculty = { john, mary, nick }
Professor = { john, nick }
College = { collA, collB }
worksFor = { (john,collA), (mary,collB) }

Query: g(x) <« dec. Professor(x), College(c), worksFor(z, ¢)
Answer: { john }

Query answering in description logics: DL-Lit (14/55)

Query answering under the KR assumption

@ An ontology imposes constraints on the data.

@ Actual data may be incomplete or inconsistent w.r.t. such
constraints.

@ The system has to take into account the constraints during query
answering, and overcome incompleteness or inconsistency.

~» Query answering amounts to logical inference, which is
computationally more costly.

Note:

@ Size of the data is not considered critical (comparable to the size of the
intensional information).

@ Queries are typically simple, i.e., atomic (a class name), and query
answering amounts to instance checking.

Query answering in description logics: DL-Lit (15/55)



Query answering under the KR assumption (cont'd)

Reasoning

Schema /
Ontology

>
Data
Source

Query answering in description logics: DL-Lit (16/55)

Query answering under the KR assumption — Example

Faculty worksFor » College
T
Professor
—

The tables in the database may be incompletely specified, or even
missing for some classes/properties.
DB: Professor O { john, nick }

College O { collA, collB }

worksFor O { (john,collA), (mary,collB) }

Query: q(z) <« Faculty(x)

Answer: { john, nick, mary }

Query answering in description logics: DL-Lit (17/55)



Query answering under the KR assumption — Example 2

< hasFather
|1." Each person has a father, who is a person.
Person

DB: Person O { john, nick, toni }
— hasFather O { (john,nick), (nick,toni) }

Queries: q1(x,y) < hasFather(z,y)
q2(x) < Jy. hasFather(z, y)
qs(x) < Jy1, Y2, ys3. hasFather(x, y1), hasFather(y1, y2), hasFather(ys, y3)
q4(x,y3) < Jy1,yo. hasFather(z, y1), hasFather(y1, y2), hasFather(y2, y3)
Answers:  to gi: { (john,nick), (nick,toni) }
to g2: { john, nick, toni }
to ¢3: { john, nick, toni }
toqa: { }

Query answering in description logics: DL-Lit (18/55)

QA under the KR assumption — Andrea’s Example

officeMate » FullProf = AssocProf LI FullProf
Faculty Faculty O { andrea, nick, mary, john }
Professor O { andrea, nick, mary }
AssocProf O { nick }
isAdvisedBy FullProf 2 { mary }
v| isAdvisedBy D { (john,andrea), (john mary) }
Professor officeMate O { (mary,andrea), (andrea,nick) }
john
{disjoint, complete} iSAdVW WﬁedBy
I | andrea-Professor-<—EEEEEEEL mary:FullProf
AssocProf FullProf ) :
e TE—— officeMate

paul :AssocProf

Query answering in description logics: DL-Lit (19/55)



QA under the KR assumption — Andrea’s Example (cont'd)

officeMate » john

isAdviAsW Wed By
Faculty
officeMate

andrea:Professor — mary:FullProf

isAdvisedBy officeMate
v

Professor paul :AssocProf

q() — .Hy,z.
(disjoin, complete)| isAdvisedBy(john, y), FullProf(y),

| officeMate(y, z), AssocProf(z)
AssocProf FullProf

Answer: yes!

To determine this answer, we need to resort to reasoning by cases.

Query answering in description logics: DL-Lit (20/55)

Query answering when accessing data through ontologies

We have to face the difficulties of both DB and KB assumptions:

@ The actual data is stored in external information sources (i.e.,
databases), and thus its size is typically very large.

@ The ontology introduces incompleteness of information, and we
have to do logical inference, rather than query evaluation.

@ We want to take into account at runtime the constraints
expressed in the ontology.

@ We want to answer complex database-like queries.

@ We may have to deal with multiple information sources, and thus
face also the problems that are typical of data integration.

Query answering in description logics: DL-Lit (21/55)



Certain answers to a query

Let O = (7, A) be an ontology, 7 an interpretation for O, and
q(Z) « Jy. conj(Z,7) a CQ.
Def.: The answer to q(Z) over Z, denoted ¢*

. is the set of tuples ¢ of constants of A such that the formula
Jy. conj (¢, i) evaluates to true in 7.

We are interested in finding those answers that hold in all models of an
ontology.

Def.: The certain answers to ¢(¥) over O = (7, A), denoted
cert(q, O)

... are the tuples ¢ of constants of 4 such that & € ¢%, for every
model Z of O.

Query answering in description logics: DL-Lit (22/55)

Inference in query answering

—— e — =

\
|
|
|
|
|
|
|

— — cert(q,(7,.A))

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of ¢ and 7.

~» Query answering by query rewriting.

Query answering in description logics: DL-Lit (23/55)



Query rewriting

—_— — e — =

p
qg ™ Perfect
. rewriting
|
T — ™ (under OWA)

Query
evaluation cert(q, (7, A))

| (under CWA) |

Query answering can always be thought as done in two phases:

@ Perfect rewriting: produce from ¢ and the TBox 7 a new query
rq7 (called the perfect rewriting of ¢ w.r.t. 7).

@ Query evaluation: evaluate r, 7 over the ABox A seen as a
complete database (and without considering the TBox 7).
~» Produces cert(q, (T, .A)).

Note: The “always” holds if we pose no restriction on the language in which to
express the rewriting 7, 7.

Query answering in description logics: DL-Lit (24/55)

Query rewriting (cont'd)

Reasoning

Reasoning

i
psiniiied -

4>
Ontology Query Result

v
Query

Logical
Schema

Data
Source

Query answering in description logics: DL-Lit (25/55)



Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite CQs:

@ When we can rewrite into FOL/SQL.
~» Query evaluation can be done in SQL, i.e., via an RDBMS
(Note: FOL is in LOGSPACE).

@ When we can rewrite into an NLOGSPACE-hard language.
~> Query evaluation requires (at least) linear recursion.

@ When we can rewrite into a P'T1ME-hard language.
~> Query evaluation requires full recursion (e.g., Datalog).

@ When we can rewrite into a CONP-hard language.
~> Query evaluation requires (at least) power of Disjunctive
Datalog.

Query answering in description logics: DL-Lit (26/55)

Complexity of query answering in DLs

Problem of rewriting is related to complexity of query answering.

Studied extensively for (unions of) CQs and various ontology languages:

Combined complexity | Data complexity

Plain databases NP-complete in LoGSPACE (@)
OWL 2 (and less) || 2ExpTiME-complete | cONP-hard (1)

(1) Already for a TBox with a single disjunction (see Andrea’s example).
(2) This is what we need to scale with the data.

Questions

@ Can we find interesting families of DLs for which the query
answering problem can be solved efficiently (i.e., in LOGSPACE)?

o If yes, can we leverage relational database technology for query
answering?

Query answering in description logics: DL-Lit (27/55)



Outline

© DL-Lite4: an ontology language for accessing data

Query answering in description logics: DL-Lit (28/55)

The DL-Lite family

@ A family of DLs optimized according to the tradeoff between
expressive power and complexity of query answering, with
emphasis on data.

@ Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):
e The same complexity as relational databases.
e In fact, query answering can be delegated to a relational DB engine.
o The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

@ We present , an expressive member of the DL-Lite family.

provides robust foundations for Ontology-Based Data Access.

Query answering in description logics: DL-Lit (29/55)



DL-Lite 4 ontologies

TBox assertions:

@ Class inclusion assertions: B C (', with:

B — A 3JQ
cC — C | C

@ Property inclusion assertions: () C R, with:

Q — P | P
R — Q| —Q

e Functionality assertions:  (funct Q)
@ Proviso: functional properties cannot be specialized.
ABox assertions:  A(c),  Plci.co), with ¢1, co constants

Note: DL-Lite 4 distinguishes also between object and data properties
(ignored here).

Query answering in description logics: DL-Lit (30/55)

Semantics of the DL-Lite 4 assertions

Assertion Syntax Example Semantics
class incl. BCC Father C dchild BT c c*
o-prop. incl. QCR father C anc Qf C R?
v.dom. incl. ECF | p(age) C xsd:int Ef C F*
d-prop. incl. ULCV | offPhone C phone vt cvt

o-prop. funct.|(funct Q)| (funct father) |Vo,0,0".(0,0") € QF A
(0, O//) c QI N 0/ _ 0//
d-prop. funct.|(funct U) (funct ssn) Yo,v,v".(0,v) € UF A

(0,v") € UT — v =1

mem. asser. Ale) Father(bob) ct e AT
mem. asser. | P(ci,c2)| child(bob,ann) (cf,c3) € P*
mem. asser. | Uf(c,d) |phone(bob, ?23457) (c*, val(d)) e U

Query answering in description logics: DL-Lit (31/55)



Capturing basic ontology constructs in DL-Lite 4

ISA between classes

Al C Ay

Disjointness between classes

A € —A

Domain and range of properties

dP C A, dP~ C A,

Mandatory participation (min card = 1)

Ay CdP A, C dP~

Functionality of relations (max card = 1)

(funct P) (funct P7)

ISA between properties Q1 C Q2
Disjointness between properties Q1 C Q-
Query answering in description logics: DL-Lit (32/55)
Example
Professor C Faculty
AssocProf [ Professor
Dean [C Professor
11 Faculty 1 AssocProf C —Dean
o’ name: String .
age: Integer
=~ worksFor <} Facult_y C Elage'
isAdvisedBy v Jage” L[ xsd:int
v 1+ (funct age)
Professor College
name: String JworksFor E Facu |ty
1. l'l dworksFor™ L College
1.1
o Faculty C dworksFor
{disjoint} f 1 —
| | f’HeadOf College C  dworksFor™
AssocProf Dean 11 .
MR disHeadOf LC Dean
disHeadOf~™ [C  College
Dean C disHeadOf
College C disHeadOf™
isHeadOf [C  worksFor

Note: DL-Lite 4 cannot capture completeness of a

(funct is_HeadOf)

hierarchy. This would require disjunction (i.e., OR). (funct isHeadOf ")

Query answering in description logics: DL-Lit (33/55)



Observations on DL-Lite 4

@ Captures all the basic constructs of UML Class Diagrams and of
the ER Model ...

@ ... except covering constraints in generalizations.

@ Is one of the three candidate OWL 2 Profiles.

@ Extends (the DL fragment of) the ontology language RDFS.
@ |s completely symmetric w.r.t. direct and inverse properties.

@ Does not enjoy the finite model property, i.e., reasoning and
query answering differ depending on whether we consider or not
also infinite models.

Query answering in description logics: DL-Lit (34/55)

Query answering in DL-Lite 4

Based on query reformulation: given an (U)CQ and an ontology:
@ Compute its perfect rewriting, which turns out to be a UCQ.

@ Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

@ expand positive inclusions & simplify redundant atoms, or

@ unify atoms in the CQ to obtain a more specific CQ to be further
expanded.

Each result of the above steps is added to the queries to be processed.

Note: negative inclusions and functionalities play a role in ontology
satisfiability, but not in query answering.

Query answering in description logics: DL-Lit (35/55)



Query answering in DL-Lite 4 — Example

TBox: Professor C dworksFor
JworksFor™ C College

Query: q(z) < worksFor(x,y), College(y)

Perfect Reformulation: q(x) < worksFor(x, y), College(y)
q(x) <« worksFor(z, y), worksFor(_, y)
q(x) <« worksFor(z, )
q(x) < Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.

Query answering in description logics: DL-Lit (36/55)

Query answering in DL-Lite

query Q query Q’
(UCQ) (SQL) answers to Q’
Query DBMS | ———

5

Riccardo Rosati - OWL profiles and 1
DL-Lite

expander

Query answering in description logics: DL-Lit (37/55)



Example

TBox:

MALE C PERSON FEMALE C PERSON
MALE C —FEMALE

PERSON C  dhasFather PERSON C dJhasMother
JhasFather C MALE JhasMother C FEMALE

rewritten query:
q’(x) - PERSON(x) V

input query: FEMALE(x) V
q(x) < PERSON(x) MALE(x) V
hasFather(y,x) V
hasMother(y,x)
Riccardo Rosati - OWL profiles and 2
DL-Lite

Query answering in description logics: DL-Lit

Example

rewritten query: ABox:

q’(x) <~ PERSON(x) V MALE(Bob)
FEMALE(x) V MALE(Paul)
MALE(x) V FEMALE(Ann)
hasFather(y,x) V hasFather(Paul,Ann)
hasMother(y,x) hasMother(Mary,Paul)

answers to query:
{ Bob, Paul, Ann, Mary }

Riccardo Rosati - OWL profiles and 3

DL-Lite

Query answering in description logics: DL-Lit

(38/55)

(39/55)



Answering queries: chasing the ABox

MALE(Bob) MALE(Paul) FEMALE(Ann) hasFather(Paul,Ann) hasMother(Mary,Paul)

1
Dy CHASE of the ABox
PERSON(Bob) with respect to the TBox
) 6) = adding to the ABox all
’ instance assertions that
hasFather(Bob,x1)  hasMother(Bob,x2) are 10gical consequences
®) @ of the TBox
M AL‘E(XD FEM ALE(X2) the chase represents the
canonical model of the
) @ whole KB
PERSON(x1) PERSON(x2) problem: the chase of the
IR | N ABox is in general
.................... inﬁnite
Riccardo Rosati - OWL profiles and 4
DL-Lite
Query answering in description logics: DL-Lit (40/55)

Query rewriting algorithm for DL-Lite

q(x) <~ PERSON(x)

q(x) <+ MALE(x) q(x) <+~ FEMALE(x)

q(x) < hasFather(y,x) q(x) < hasMother(y,x)

how to avoid the infinite chase of the ABox?

CHASE of the query:

 inclusions are applied “from right to left”

* this chase always terminates

* this chase is computed independently of the ABox

Riccardo Rosati - OWL profiles and 5
DL-Lite

Query answering in description logics: DL-Lit (41/55)



Query rewriting algorithm for DL-Lite

The rewriting algorithm iteratively applies two rewriting
rules:

~atom-rewrite: takes an atom of the conjunctive query
and rewrites it applying a TBox inclusion

* the inclusion is used as a rewriting rule (right-to-left)

‘reduce: takes two unifiable atoms of the conjunctive
query and merges (unifies) them

Riccardo Rosati - OWL profiles and 6
DL-Lite

Query answering in description logics: DL-Lit (42/55)

Query rewriting algorithm for DL-Lite

Algorithm PerfectRef (q; 7)
Input: conjunctive query q, DL-Lite TBox T
Output: union of conjunctive queries PR
PR = {q};
repeat
PRO :=PR;
for each q € PRO do
(a) for each g in q do
for each positive inclusion I in 7 do
if I is applicable to g then PR := PR U{q[g/gr(g,])]};
(b) for each g1, g2 inq do
if gl and g2 unify then PR := PR U{f (reduce(q,g1,g2))}
until PRO = PR;
return PR

Riccardo Rosati - OWL profiles and 7
DL-Lite

Query answering in description logics: DL-Lit (43/55)



e TBOX:
— A ISA SOME R
— SOME R ISAA
— SOME R"ISA B

— BISAA

e ABOX:

— B(c)

KB

O—"

e QUERY:

— q(x) - R(xy), R(y,2)

Query answering in description logics: DL-Lit

Query Answering
Expansion: ® q(x) - R(xy)
® q(x) - R(xy), R(y:2) ® q(x):- R(x,)
® q(x) :- R(xy),R(y,_) ® q(x) -A(x)
® q(x) - R(x,y),A(y) e q(x) :- B(x)

q(x) :- R(xy), B(y)

q(x) :- R(xy), RCLy)

All queries empty except
for the last!

Certain Answer: {c}

Query answering in description logics: DL-Lit

(44/55)

(45/55)



Complexity of reasoning in DL-Lite 4

Ontology satisfiability and all classical DL reasoning tasks are:
o Efficiently tractable in the size of TBox (i.e., PTIME).
o Very efficiently tractable in the size of the ABox (i.e., LOGSPACE).

In fact, reasoning can be done by constructing suitable FOL/SQL
queries and evaluating them over the ABox (FOL-rewritability).

Query answering for CQs and UCQs is:
@ PTIME in the size of TBox.
@ LOGSPACE in the size of the ABox.

e Exponential in the size of the query (NP-complete).
Bad? ... not really, this is exactly as in relational DBs.

Can we go beyond DL-Lite 47

No! By adding essentially any additional constructor we lose these nice
computational properties.

Query answering in description logics: DL-Lit (46/55)

Beyond DL-Lite 4: results on data complexity

hs ths funct. I?rop. Data complexi‘_cy

incl. of query answering

0 DL-Lite 4 N N& in LOGSPACE

1 A|dP.A A — — NLoOGSPACE-hard

2 A A|VP.A — — NLOGSPACE-hard

3 A A|3JP.A Vv — NLOGSPACE-hard

4 | A|JdP.A| A1 A; A — — PT1iME-hard

5 Al AT A, A|VP.A — — PTIME-hard

6 Al AT A, A|dP.A N — PT1ME-hard

7 | A|JP.A|JP A A| 3P — — PT1ME-hard

8 A| 3P| 3P A| 3P| 3P v/ v/ PT1ME-hard

9 Al -A A — — coNP-hard

10 A Al A UA, — — coNP-hard

11 A|VP.A A — — coNP-hard

Notes:

@ * with the “proviso” of not specializing functional properties.
@ NLoOGSPACE and PTIME hardness holds already for instance checking.

@ For CONP-hardness in line 10, a TBox with a single assertion
Ar E Ar U Ar suffices! ~ No hope of including covering constraints.

Query answering in description logics: DL-Lit (47/55)



Example of query

q(x,y, z) < GraduateStudent(x), University(y), Department(z),
hasUndergraduateDegreeFrom(z, y), isMemberOf(z, z),
subOrganizationOf(z,t), subOrganizationOf(¢, y)

isMemberOf

X y4

GraduateStudent p-@ University Department
hasUGDegreeFrom
subOrganizationOf subOrganizationOf
t
SELECT 7X 7Y 7Z WHERE
7X rdf:type ’GraduateStudent’ . 7Y rdf:type ’University’
77 rdf:type ’Department’
7X :hasUndergraduateDegreeFrom 7Y . 7X :isMember(Qf 7Z
?Z subOrganizationOf T . 7T subOrganizationOf 7Y
Query answering in description logics: DL-Lit (48/55)
Outline

@ Conclusions

Query answering in description logics: DL-Lit (49/55)



Conclusions

@ Ontology-based data access and integration is a challenging
problem with great practical relevance.

@ In this setting, the size of the data is the relevant parameter that
must guide technological choices.

@ Currently, scalability w.r.t. the size of the data can be achieved
only by relying on commercial technologies for managing the data,
i.e., relational DBMS systems and federation tools.

@ In order to tailor semantic technologies so as to provide a good
compromise between expressivity and efficiency, requires a thorough
understanding of the semantic and computational properties of the
adopted formalisms.

@ We have now gained such an understanding, that allows us to
develop very good solutions for ontology-based data access and
Integration.

@ One of the three OWL 2 profiles, namely “OWL 2 QL", is directly
based on this understanding.

Query answering in description logics: DL-Lit (50/55)

Outline

© References

Query answering in description logics: DL-Lit (51/55)



References |

[1]

[2]

[3]

D. Berardi, D. Calvanese, and G. De Giacomo.
Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70-118, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.

Linking data to ontologies: The description logic DL-Lite 4.

In Proc. of the 2nd Int. Workshop on OWL: Experiences and Directions
(OWLED 2006), volume 216 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-216/, 2006.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tailoring OWL for data intensive ontologies.

In Proc. of the 1st Int. Workshop on OWL: Experiences and Directions
(OWLED 2005), volume 188 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-188/, 2005.

Query answering in description logics: DL-Lit (52/55)

References |l

[4]

[5]

[6]

[7]

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
DL-Lite: Tractable description logics for ontologies.

In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages
602-607, 2005.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Data complexity of query answering in description logics.

In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pages 260-270, 2006.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.

Tractable reasoning and efficient query answering in description logics: The
DL-Lite family.
J. of Automated Reasoning, 39(3):385-429, 2007.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Path-based identification constraints in description logics.

In Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2008), pages 231-241, 2008.

Query answering in description logics: DL-Lit (53/55)



References ||

[8]

[9]

[10]

D. Calvanese and M. Rodriguez.
An extension of DIG 2.0 for handling bulk data.

In Proc. of the 3rd Int. Workshop on OWL: Experiences and Directions
(OWLED 2007), volume 258 of CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-258/, 2007.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.

Linking data to ontologies.
J. on Data Semantics, X:133-173, 2008.

A. Poggi, M. Rodriguez, and M. Ruzzi.

Ontology-based database access with DIG-Mastro and the OBDA Plugin for
Protégé.

In K. Clark and P. F. Patel-Schneider, editors, Proc. of the OWL: Experiences
and Directions 2008 (OWLED 2008 DC) Workshop, 2008.

Query answering in description logics: DL-Lit (54/55)

References |V

[11]

M. Rodriguez-Muro, L. Lubyte, and D. Calvanese.
Realizing ontology based data access: A plug-in for Protégé.

In Proc. of the 24th Int. Conf. on Data Engineering Workshops (ICDE 2008),
pages 286—289, 2008.

Query answering in description logics: DL-Lit (55/55)



