
Description Logics for Conceptual Data Modeling in UML

Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma

Description Logics

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 1

What are Description Logics?

In modeling an application domain we typically need to represent a situation in

terms of

• objects

• classes

• relations (or associations)

and to reason about the representation

Description Logics are logics specifically designed to represent and reason on

• objects

• classes – called concepts in DLs

• (binary) relations – called roles in DLs

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 2

Origins of Description Logics

Knowledge Representation is a subfield of Artificial Intelligence

Early days KR formalisms (late ’70s, early ’80s):

• Semantic Networks: graph-based formalism, used to represent the

meaning of sentences

• Frame Systems: frames used to represent prototypical situations,

antecedents of object-oriented formalisms

Problems: no clear semantics, reasoning not well understood

Description Logics (a.k.a. Concept Languages, Terminological Languages)

developed starting in the mid ’80s, with the aim of providing semantics and

inference techniques to knowledge representation systems

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 3

Current applications of DLs

DLs have evolved from being used “just” in KR

Found applications in:

• Databases:

– schema design, schema evolution

– query optimization

– integration of heterogeneous data sources, data warehousing

• Conceptual modeling

• Foundation for the semantic web

• · · ·

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 4

Ingredients of a DL

A Description Logic is characterized by:

1. A description language: how to form concepts and roles

Human ! Male ! (∃child) ! ∀child.(Doctor $ Lawyer)

2. A mechanism to specify knowledge about concepts and roles (i.e., a TBox)

ggK = { Father ≡ Human ! Male ! (∃child),

HappyFather & Father ! ∀child.(Doctor $ Lawyer) }

3. A mechanism to specify properties of objects (i.e., an ABox)

A = { HappyFather(JOHN), child(JOHN, MARY) }

4. A set of inference services: how to reason on a given knowledge base

K |= HappyFather & ∃child.(Doctor $ Lawyer)

K ∪ A |= (Doctor $ Lawyer)(MARY)

Note: we will consider ABoxes only later, when needed; hence, for now, we

consider a knowledge base to be simply a TBox

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 5

Architecture of a DL system

Expressed in a

Description Logic

Terminological
knowledge (TBox)

Knowledge about
objects (ABox)

Father ≡ Human " Male " (∃child)

HappyFather $ Father "

∀child.(Doctor & Lawyer)

HappyFather(JOHN)

child(JOHN,MARY)

Knowledge Base

Inference Engine

Applications

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 6

Description language

A description language is characterized by a set of constructs for building

complex concepts and roles starting from atomic ones:

• concepts represent classes: interpreted as sets of objects

• roles represent relations: interpreted as binary relations on objects

Semantics: in terms of interpretations I = (∆I, ·I), where

• ∆I is the interpretation domain

• ·I is the interpretation function, which maps

– each atomic concept A to a subset AI of ∆I

– each atomic role P to a subset P I of ∆I × ∆I

The interpretation function is extended to complex concepts and roles

according to their syntactic structure

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 7

Syntax and semantics of AL

AL is the basic language in the family of AL languages

Construct Syntax Example Semantics

atomic concept A Doctor AI ⊆ ∆I

atomic role P child P I ⊆ ∆I × ∆I

atomic negation ¬A ¬Doctor ∆I \ AI

conjunction C ! D Hum ! Male CI ∩ DI

(unqual.) exist. res. ∃R ∃child { a | ∃b. (a, b) ∈ RI }

value restriction ∀R.C ∀child.Male {a | ∀b. (a, b) ∈ RI ⊃ b ∈ CI}

(C, D denote arbitrary concepts and R an arbitrary role)

Note: AL is not propositionally closed (no full negation)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 8

The AL family

Typically, additional constructs w.r.t. those of AL are needed:

Construct AL· Syntax Semantics

disjunction U C $ D CI ∪ DI

qual. exist. res. E ∃R.C { a | ∃b. (a, b) ∈ RI ∧ b ∈ CI }

(full) negation C ¬C ∆I \ CI

number N (≥ k R) { a | #{b | (a, b) ∈ RI} ≥ k }

restrictions (≤ k R) { a | #{b | (a, b) ∈ RI} ≤ k }

qual. number Q (≥ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≥ k }

restrictions (≤ k R.C) { a | #{b | (a, b) ∈ RI ∧ b ∈ CI} ≤ k }

inverse role I P − { (a, b) | (b, a) ∈ P I }

We also use: ⊥ for A ! ¬A (hence ⊥I = ∅)

2 for A $ ¬A (hence 2I = ∆I)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 9

The AL family – Examples

• Disjunction

∀child.(Doctor $ Lawyer)

• Qualified existential restriction

∃child.Doctor

• Full negation

¬(Doctor $ Lawyer)

• Number restrictions

(≥ 2 child) ! (≤ 1 sibling)

• Qualified number restrictions

(≥ 2 child.Doctor) ! (≤ 1 sibling.Male)

• Inverse role

∀child−.Doctor

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 10

Reasoning on concept expressions

An interpretation I is a model of a concept C if CI 3= ∅

Basic reasoning tasks:

1. Concept satisfiability: does C admit a model?

2. Concept subsumption: does CI ⊆ DI hold for all interpretations I?
(written C & D)

Subsumption used to build the

concept hierarchy:
WomanMan

Human

Father

HappyFather

(1) and (2) are mutually reducible if DL is propositionally closed

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 11

Reasoning on concept expressions – Technique

Techniques are based on tableaux algorithms: for satisfiability of C0

1. Aims at building a tree representing a model ofC0

• nodes represent objects of∆I, labeled with subconcepts of C0

• edges represent role successorship between objects

2. Concepts are first put in negation normal form (negation is pushed inside)

3. Tree initialized with single root node, labeled with {C0}

4. Rules (one for each construct) add new nodes or concepts to the label

• deterministic rules: for !, ∀P .C, ∃P .C, (≥ k P)

• non-deterministic rules: for $, (≤ k P)

5. Stops when:

• no more rule can be applied, or

• a clash (obvious contradiction) is detected

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 12

Reasoning on concept expressions – Technique (Cont’d)

Properties of tableaux algorithms (must be proved for the various cases):

1. Termination: since quantifier depth decreases going down the tree

2. Soundness: if there is a way of terminating without a clash, then C0 is

satisfiable

• construct from the tree a model of C0

3. Completeness: if C0 is satisfiable, there is a way of applying the rules so

that the algorithm terminates without a clash

• if I is a model of T , then there is a rule s.t. I is also a model of the tree

obtained by applying the rule to T

Tableaux algorithms provide optimal decision procedures for concept

satisfiability (and subsumption), but not for Knowledge Base reasoning (see

later).

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 13

Reasoning on concept expressions – Technique (Cont’d)

For gentle introduction on how tableaux forALC work without Knowledge

base please refer to Enrico Franconi’s slides (please read “propositional DL”

simply as DLs)

http://www.inf.unibz.it/˜franconi/dl/course/slides/

prop-DL/propositional-dl.pdf

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 14

Reasoning on concept expressions – Complexity

Complexity of concept satisfiability

PTIME AL, ALN

NP-complete ALU , ALUN

coNP-complete ALE

PSPACE-complete ALC, ALCN , ALCI, ALCQI

Observations:

• two sources of complexity

– union (U) of type NP

– existential quantification (E) of type coNP

When they are combined, the complexity jumps to PSPACE

• number restrictions (N) do not add to the complexity

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 15

Structural properties vs. asserted properties

We have seen how to build complex concept expressions, which allow to

denote classes with a complex structure

However, in order to represent complex domains one needs the ability to

assert properties of classes and relationships between them (e.g., as done in

UML class diagrams)

The assertion of properties is done in DLs by means of knowledge bases

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 16

DL knowledge bases

A DL knowledge base consists of a set of inclusion assertions on concepts:

C & D

• when C is an atomic concept, the assertion is called primitive

• C ≡ D is an abbreviation for C & D, D & C

Example:

K = { Father ≡ Human ! Male ! (∃child),

HappyFather & Father ! ∀child.(Doctor $ Lawyer) }

Semantics: An interpretation I is a model of a knowledge base K if

CI ⊆ DI for every assertion C & D in K

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 17

Reasoning on DL knowledge bases

Basic reasoning tasks:

1. Knowledge base satisfiability

Given K, does it admit a model?

2. Concept satisfiability w.r.t. a KB — denoted K 3|= C ≡ ⊥

Given C and K, do they admit a common model?

3. Logical implication — denoted K |= C & D

Given C, D, and K, does CI ⊆ DI hold for all models I of K?

Again, logical implication allows for classifying the concepts in the KB w.r.t. the

knowledge expressed by the KB

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 18

Relationship among reasoning tasks

The reasoning tasks are mutually reducible to each other, provided the

description language is propositionally closed:

(1) to (3) K satisfiable iff not K |= 2 & ⊥ iff K 3|= 2 ≡ ⊥

(i.e., 2 satisfiable w.r.t. K)

(3) to (2) K |= C & D iff not K 3|= C ! ¬D ≡ ⊥

(i.e., C ! ¬D unsatisfiable w.r.t. K)

(2) to (1) K 3|= C ≡ ⊥ iff K ∪ { 2 & ∃Pnew ! ∀Pnew .C } satisfiable

(where Pnew is a new atomic role)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 19

Tableaux procedures for reasoning with DLs knowledge

bases

For details on tableaux based reasoning procedures forALC knowledge

bases, please refer to Franz Baader’s slides:

• http://lat.inf.tu-dresden.de/˜baader/Talks/dl1.pdf

• http://lat.inf.tu-dresden.de/˜baader/Talks/dl2.pdf

For resources on Description Logics, please refer to the Description Logics Site:

• http://dl.kr.org/

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 20

Relationship with First Order Logic

Most DLs are well-behaved fragments of First Order Logic

To translate ALC to FOL:

1. Introduce: a unary predicate A(x) for each atomic concept A

a binary predicate P (x, y) for each atomic role P

2. Translate complex concepts as follows, using translation functions tx, for

any variable x:

tx(A) = A(x)

tx(C ! D) = tx(C) ∧ tx(D)

tx(C $ D) = tx(C) ∨ tx(D)

tx(∃P .C) = ∃y.P (x, y) ∧ ty(C) with y a new variable

tx(∀P .C) = ∀y.P (x, y) ⊃ ty(C) with y a new variable

3. Translate a knowledge base K =
⋃

i{ Ci & Di } as a FOL theory

ΓK =
⋃

i{ ∀x. tx(Ci) ⊃ tx(Di) }

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 21

Relationship with First Order Logic (Cont’d)

Reasoning services:

C is consistent iff its translation tx(C) is satisfiable

C & D iff tx(C) ⊃ tx(D) is valid

C is consistent w.r.t. K iff ΓK ∪ { ∃x. tx(C) } is satisfiable

K |= C & D iff ΓK |= ∀x. (tx(C) ⊃ tx(D))

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 22

Relationship with First Order Logic – Exercise

Translate the following ALC concepts into FOL formulas:

1. Father ! ∀child.(Doctor $ Manager)

2. ∃manages.(Company ! ∃employs.Doctor)

3. Father ! ∀child.(Doctor $ ∃manages.(Company ! ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃w. (employs(y, w) ∧ Doctor(w))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨

∃w. (manages(y, w)∧(Company(w)∧∃z. (employs(w, z)∧Doctor(z))))))

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 23

DLs as fragments of First Order Logic

The above translation shows us that DLs are a fragment of First Order Logic

In particular, we can translate complex concepts using just two translation

functions tx and ty (thus reusing the same variables):

tx(A) = A(x) ty(A) = A(y)

tx(C ! D) = tx(C) ∧ tx(D) ty(C ! D) = ty(C) ∧ ty(D)

tx(C $ D) = tx(C) ∨ tx(D) ty(C $ D) = ty(C) ∨ ty(D)

tx(∃P .C) = ∃y.P (x, y) ∧ ty(C) ty(∃P .C) = ∃x.P (y, x) ∧ tx(C)

tx(∀P .C) = ∀y.P (x, y) ⊃ ty(C) ty(∀P .C) = ∀x.P (y, x) ⊃ tx(C)

! ALC is a fragment of L2, i.e., FOL with 2 variables, known to be decidable

(NEXPTIME-complete)

Note: FOL with 2 variables is more expressive than ALC (tradeoff expressive

power vs. complexity of reasoning)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 24

DLs as fragments of First Order Logic – Exercise

Translate the following ALC concepts into L2 formulas (i.e., into FOL formulas

that use only variables x and y):

1. Father ! ∀child.(Doctor $ Manager)

2. ∃manages.(Company ! ∃employs.Doctor)

3. Father ! ∀child.(Doctor $ ∃manages.(Company ! ∃employs.Doctor))

Solution:

1. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨ Manager(y)))

2. ∃y. (manages(x, y) ∧ (Company(y) ∧ ∃x. (employs(y, x) ∧ Doctor(x))))

3. Father(x) ∧ ∀y. (child(x, y) ⊃ (Doctor(y) ∨

∃x. (manages(y, x) ∧ (Company(x) ∧ ∃y. (employs(x, y) ∧ Doctor(y))))))

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 25

DLs as fragments of First Order Logic (Cont’d)

Translation can be extended to other constructs:

• For inverse roles, swap the variables in the role predicate, i.e.,

tx(∃P −.C) = ∃y.P (y, x) ∧ ty(C) with y a new variable

tx(∀P −.C) = ∀y.P (y, x) ⊃ ty(C) with y a new variable

! ALCI is still a fragment of L2

• For number restrictions, two variables do not suffice;

but, ALCQI is a fragment of C2 (i.e, L2+counting quantifiers)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 26

Relationship with Modal and Dynamic Logics

In understanding the computational properties of DLs a correspondence with

Modal logics and in particular with Propositional Dynamic Logics (PDLs) has

been proved essential

PDLs are logics specifically designed for reasoning about programs

PDLs have been widely studied in computer science, especially from the point

of view of computational properties:

• tree model property

• small model property

• automata based reasoning techniques

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 27

Relationship with Modal Logics

ALC is a syntactic variant of Km (i.e., multi-modal K):

C ! D ⇔ C ∧ D ∃P .C ⇔ "P C

C $ D ⇔ C ∨ D ∀P .C ⇔ #P C

¬C ⇔ ¬C

• no correspondence for inverse roles

• no correspondence for number restrictions

! Concept consistency, subsumption inALC ⇔ satisfiability, validity in Km

To encode inclusion assertions, axioms are used

! Logical implication in DLs corresponds to “global logical implication” in

Modal Logics

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 28

Relationship with Propositional Dynamic Logics

ALC and ALCI can be encoded in Propositional Dynamic Logics (PDLs)

C ! D ⇔ C ∧ D ∃R.C ⇔ 〈R〉C

C $ D ⇔ C ∨ D ∀R.C ⇔ [R]C

¬C ⇔ ¬C

Universal modality (or better “master modality”) can be expressed in PDLs

using reflexive-transitive closure:

• for ALC / PDL: u = (P1 ∪ · · · ∪ Pm)∗

• for ALCI / conversePDL: u = (P1 ∪ · · · ∪ Pm ∪ P −
1 ∪ · · · ∪ P −

m)∗

Universal modality allows for internalizing assertions:

C & D ⇔ [u](C ⊃ D)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 29

Relationship with Propositional Dynamic Logics (Cont’d)

! Concept satisfiability w.r.t. a KB (resp., logical implication) reduce to PDL

(un)satisfiability:

⋃

i{ Ci & Di } 3|= C ≡ ⊥ ⇔ C ∧
∧

i[u](Ci ⊃ Di) satisfiable
⋃

i{ Ci & Di } |= C & D ⇔ C ∧ ¬D ∧
∧

i[u](Ci ⊃ Di) unsatisfiable

Correspondence also extended to other constructs, e.g., number restrictions:

• polynomial encoding when numbers are represented in unary

• technique more involved when numbers are represented in binary

Note: there are DLs with non first-order constructs, such as various forms of

fixpoint constructs. Such DLs still have a correspondence with variants of PDLs

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 30

Consequences of correspondence with PDLs

• PDL, conversePDL, DPDL, converseDPDL are EXPTIME-complete

! Logical implication in ALCQI is in EXPTIME

• PDLs enjoy the tree-model property: every satisfiable formula admits a

model that has the structure of a (in general infinite) tree of linearly

bounded width

! A satisfiable ALCQI knowledge base has a tree model

• PDLs admit optimal reasoning algorithms based on (two-way alternating)

automata on infinite trees

! Automata-based algorithms are optimal forALCQI logical implication

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 31

DL reasoning systems

Systems are available for reasoning on DL knowledge bases:

• FaCT/Fact++ [University of Manchester]

• Pellet [University of Maryland, Clark&Parsia]

• Racer/RacerPro [University of Hamburg, Racer Systems]

Some remarks on these systems:

• the state-of-the-art DL reasoning systems are based on tableaux techniques and

not on automata techniques

+ easier to implement

− not computationally optimal (NEXPTIME, 2NEXPTIME)

• the systems are highly optimized

• despite the high computational complexity, the performance is surprisingly good in

real world applications:

– knowledge bases with thousands of concepts and hundreds of axioms

– outperform specialized modal logics reasoners

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 32

Identification constraints

Identification constraints (aka keys) are well-studied in

• relational databases

• conceptual data models (Entity-Relationship model, UML class diagrams)

Examples of keys:

• a student is identified by its id,

i.e., no two students have the same id

• a company is identified by its telephone number,

i.e., given a telephone number there is a unique company which owns it

(although a company may own more than one telephone number)

• a person is identified by its name and surname,

i.e., no two persons have the same name and surname

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 33

Keys in ALCQI

Limited forms of keys can be expressed in ALCQI using number restrictions

Examples:

• a student is identified by its id

StudentId & ∀hasId−.Student ! (≤ 1 hasId−)

and has a unique id, i.e., the student identifies the id

Student & ∀hasId.StudentId ! (= 1 hasId)

• a company is identified by its telephone number

2 & (≤ 1 telephone−.Company)

In ALCQI only unary keys can be expressed

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 34

Keys in ALCQI id

ALCQI id KBs extend ALCQI KBs by key assertions:

(id C R1, . . . , Rh)

A key assertion acts as a constraint, rather than denoting a set of objects

Semantics of a key assertion:

no two instances of C agree on the participation to R1, . . . , Rh

. . .

a bC C

o1

Rh RhR1R1

oh

=⇒ a = b

Example: a person is identified by its name and surname

(id Person name, surname)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 35

Reasoning in ALCQI id

Important observations:

• ALCQI knowledge bases have the tree-model property

• On tree-models, non-unary keys are trivially satisfied

Theorem: let K be a set of inclusion assertions, and

F be a set of non-unary key assertions

K ∪ F satisfiable iff K satisfiable

Since logical implication of inclusion assertions and concept satisfiability w.r.t.

a KB can be reduced to KB satisfiability, we also have:

C satisfiable w.r.t. K ∪ F iff C satisfiable w.r.t. K

K ∪ F |= C & D iff K |= C & D

! Key assertions do not interact with reasoning on inclusion assertions

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 36

Logical implication of keys inALCQI id

To check K ∪ F |= (id C R1, . . . Rh), reduce it to unsatisfiability of

K ∪ F ∪ A, where A is an ABox violating the key assertion:

. . .

a bC C

o1

Rh RhR1R1

oh

To check satisfiability of K ∪ F ∪ A, it is sufficient to check the key assertions

in F on the objects of the ABox:

1. guess a saturation As of A, i.e., a way of completing the knowledge about

objects in A regarding concepts and roles in F (As is polynomial)

2. check that As satisfies F (polynomial)

3. check that K ∪ A ∪ As is satisfiable (exponential)

! Logical implication in ALCQI id is EXPTIME-complete

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 37

Reasoning on DL knowledge bases – Lower bounds

We have seen that reasoning on DL knowledge bases can be done in

EXPTIME (e.g., by exploiting automata based techniques)

Are such techniques optimal for DL reasoning?

What is the intrinsic complexity of reasoning on DL knowledge bases?

Theorem: Logical implication in ALC (and hence concept satisfiability w.r.t. an

ALC KB) is EXPTIME-hard

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 38

Reasoning on DL knowledge bases – Lower bounds (Cont’d)

The lower bound for logical implication in DLs can be strengthened

Theorem: concept satisfiability w.r.t. an AL KB and logical implication in AL

are EXPTIME-hard

Proof: by reducing concept satisfiability w.r.t. an ALC KB in various steps to

concept satisfiability w.r.t. an AL KB:

1. Reduce to satisfiability of an atomic concept w.r.t. a KB with primitive

inclusion assertions only

2. Eliminate nesting of constructs in right hand side by introducing new

assertions

3. Encode away qualified existential quantification

4. Encode away disjunction

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 39

1. Simplify assertions and concept

Reduce to satisfiability of an atomic concept w.r.t. a KB K with primitive

inclusion assertions only:

C satisfiable w.r.t.
⋃

i{ Ci & Di}

iff

AT ! C satisfiable w.r.t. { AT & !i(¬Ci $ Di) ! !P ∀P .AT }

iff

AC satisfiable w.r.t.







AT & !i(¬Ci $ Di) ! !P ∀P .AT ,

AC & AT ! C







with AT and AC new atomic concepts

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 40

2. Eliminate nesting of constructs in right hand side

Proceed as follows:

1. Push negation inside

2. Replace assertions as follows:

A & C1 ! C2 ⇒ A & C1, A & C2

A & C1 $ C2 ⇒ A & A1 $ A2, A1 & C1, A2 & C2

A & ∀P .C ⇒ A & ∀P .A1, A1 & C

A & ∃P .C ⇒ A & ∃P .A1, A1 & C

with A1, A2 new atomic concepts for each replacement

Let K′ be obtained from K by (1) and (2) above. We have

AC satisfiable w.r.t. K iff AC satisfiable w.r.t. K′

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 41

3. Encode away qualified existential quantification

Proceed as follows:

1. For each ∃P .A appearing in K, introduce a new atomic role PA

2. Replace assertions as follows:

A & ∃P .A′ ⇒ A & ∃PA′ ! ∀PA′ .A′

A & ∀P .A′ ⇒ A & ∀P .A′ ! !PAi
∀PAi

.A′

Let K′′ be obtained from K′ by (1) and (2) above. We have

AC satisfiable w.r.t. K′ iff AC satisfiable w.r.t. K′′

! Concept satisfiability w.r.t. a (primitive) ALU KB is EXPTIME-hard

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 42

4. Encode away disjunction

Replace assertions as follows:

A1 & A2 $ A3 ⇒ ¬A2 ! ¬A3 & ¬A1

The two assertions are logically equivalent

! Concept satisfiability w.r.t. an AL KB is EXPTIME-hard

Concept satisfiability w.r.t. an AL KB can be reduced to logical implication in

AL:

C satisfiable w.r.t. K iff not K |= C & ⊥

! Logical implication in AL is EXPTIME-hard

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 43

Summary on Description Logics

• Description Logics are logics for class-based modeling:

– can be seen as a fragment of FOL with nice computational properties

– tight relationship with Modal Logics and Propositional Dynamic Logics

• For reasoning over concept expressions, tableaux algorithms are optimal

• For most (decidable) DLs, reasoning over KBs is EXPTIME-complete:

– tight upper bounds by automata based techniques

– implemented systems exploit tableaux techniques, are suboptimal, but

perform well in practice

• Techniques can be extended to deal also with key constraints

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 44

EXPTIME-Hardness

of Reasoning on UML Class Diagrams

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 45

We are now ready to answer our initial questions

1. Can we develop sound, complete, and terminating reasoning procedures

for reasoning on UML Class Diagrams?

To answer this question we polynomially encode UML Class Diagrams in

DLs

! reasoning on UML Class Diagrams can be done in EXPTIME

2. How hard is it to reason on UML Class Diagrams in general?

To answer this question we polynomially reduce reasoning in

EXPTIME-complete DLs to reasoning on UML class diagrams

! reasoning on UML Class Diagrams is in fact EXPTIME-hard

We start with point (2)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 46

Reasoning tasks on UML class diagrams

1. Consistency of the whole class diagram

2. Class consistency

3. Class subsumption

4. Class equivalence

5. · · ·

Obviously:

• Consistency of the class diagram can be reduced to class consistency

• Class equivalence can be reduced to class subsumption

We show that also class consistency and class subsumption are mutually

reducible

This allows us to concentrate on class consistency only

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 47

Reducing class subsumption to class consistency

To check whether a class C1 subsumes a class C2 in a class diagram D:

1. Add to D the following part, with O, C, and C1 new classes

C1 C2

O

C1

C

{disjoint}

2. Check whether C is inconsistent in the resulting diagram

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 48

Reducing class consistency to class subsumption

To check whether a class C is inconsistent in a class diagram D:

1. Add to D the following part, with O, C1, C1, and C∅ new classes

{disjoint}

O

C1 C1

C∅

C

2. Check whether C∅ subsumes C in the resulting diagram

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 49

Lower bound for reasoning on UML class diagrams

EXPTIME lower bound established by encoding satisfiability of a concept w.r.t.

an ALC KBs into consistency of a class in an UML class diagram

We exploit the reductions in the hardness proof of reasoning over AL KBs:

• By step (1) it suffices to consider satisfiability of an atomic concept w.r.t. an

ALC knowledge base with primitive inclusion assertions only, i.e., of the

form

A & C

• By step (2) it suffices to consider concepts on the right hand side that

contain only a single construct, i.e., assertions of the form

A & B A & ¬B A & B1 $ B2 A & ∀P .B A & ∃P .B

Note: by step (3) it would suffice to encode A & ∃P instead of A & ∃P .B

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 50

UML class diagram corresponding to anALC KB - Optional

Given an ALC knowledge base K of the simplified form above, we construct

an UML class diagram DK:

• we introduce in DK a class O, intended to represent the whole domain

• for each atomic concept A in K, we introduce in DK a class A

A

O

• for each atomic role P in K, we introduce in DK a binary association P

with related association class

O

P

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 51

Encoding of ALC assertions - Optional

A & B

A

B

A & ¬B

A

O

B

{disjoint}

A & B1 $ B2

B1 B2A

{complete}

B

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 52

Encoding of ALC assertions (Cont’d) - Optional

P

O

A B

PAB

1..∗

A & ∃P .B

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 53

Encoding of ALC assertions (Cont’d) - Optional

B

P

A

O

A

{disjoint}

PA PA

{complete}

A & ∀P .B

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 54

Correctness of the encoding - Optional

The encoding of an ALC knowledge base (of the simplified form) into an UML

class diagram is correct, in the sense that it preserves concept satisfiability

Theorem:

An atomic concept A is satisfiable w.r.t. an ALC knowledge base K

if and only if

the class A is consistent in the UML class diagram DK encoding K

Proof idea: by showing a correspondence between the models ofK and the

models of (the FOL formalization of) DK

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 55

Lower bound for reasoning on UML class diagrams

The UML class diagram DK constructed from an ALC knowledge base K is of

polynomial size in K

From

• EXPTIME-hardness of concept satisfiability w.r.t. anALC knowledge base

• the fact that the encoding in polynomial

we obtain:

Reasoning on UML class diagrams is EXPTIME-hard

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 56

Reasoning on UML Class Diagrams

using Description Logics

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 57

Reasoning on UML class diagrams using DLs

We can use DLs to polynomially encode UML class diagrams: this gives us

EXPTIME upper bound on reasoning with UML class diagrams.

More precisely from such encoding we get

• DLs admit decidable inference

! decision procedure for reasoning in UML

• (most) DLs are decidable in EXPTIME

! EXPTIME method for reasoning in UML (provided the encoding in

polynomial)

• exploit DL-based reasoning systems for reasoning in UML

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 58

Encoding of UML class diagrams in DLs

We encode an UML class diagram D into an ALCQI id knowledge base KD:

• classes are represented by concepts

• attributes and association roles are represented by roles

• each part of the diagram is encoded by suitable inclusion assertions

• the properties of association classes are encoded trough suitable key

assertions

! Consistency of a class in D is reduced to consistency of the corresponding

concept w.r.t. KD

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 59

Encoding of classes and attributes

• An UML class C is represented by an atomic concept C

• Each attribute a of type T for C is represented by an atomic role aC

– To encode the typing of a for C:

∃aC & C ∃a−
C & T

We use aC as name of the role to take into account that that the attribute a is

local to the class C. Sometimes, for simplicity, we directly use a instead of aC.

– To encode the multiplicity [i..j] of a:

C & (≥ i aC) ! (≤ j aC)

∗ when j is ∗, we omit the second conjunct

∗ when the multiplicity is [0..∗] we omit the whole assertion

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 60

∗ when the multiplicity is missing (i.e., [1..1]), the assertion becomes:

C & ∃aC ! (≤ 1 aC)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 61

Encoding of classes and attributes – Example

Phone

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Integer

class name

attributes

operations

• To encode the class Phone, we introduce a concept Phone

• Encoding of the attributes: number and brand

∃number & Phone

∃number− & String

Phone & ∃number

∃brand & Phone

∃brand− & String

Phone & ∃brand ! (≤ 1 brand)

• Encoding of the operations: lastDialed() and callLength(String)

see later

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 62

Encoding of associations

The encoding depends on:

• the presence/absence of an association class

• the arity of the association

without with
association class association class

binary via ALCQI role via reification

non-binary via reification via reification

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 63

Encoding of binary associations without association class

C2
min1..max1

A
C1

min2..max2

• A is represented by an ALCQI role A, with:

∃A & C1 ∃A− & C2

• To encode the multiplicities of A:

– each instance of C1 is connected through A to at least min1 and at

most max 1 instances of C2:

C1 & (≥ min1 A) ! (≤ max1 A)

– each instance of C2 is connected through A− to at least min2 and at

most max 2 instances of C1:

C2 & (≥ min2 A−) ! (≤ max2 A−)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 64

Binary associations without association class – Example

PhoneBill
reference

1..1 1..∗ PhoneCall

∃reference & PhoneBill

∃reference− & PhoneCall

PhoneBill & ∃reference

PhoneCall & ∃reference− ! (≤ 1 reference−)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 65

Encoding of associations via reification

A

C1 Cn
r1 rn

C2

. . .
r2

C1 Cn

r1

. . .C2

r2
rn

A

• Association A is represented by a concept A

• Each instance of the concept represents a tuple of the relation

• n (binary) roles rA,1, . . . , rA,n are used to connect the object representing

a tuple to the objects representing the components of the tuple

• To ensure that the instances of A correctly represent tuples:

∃rA,i & A ∃r−
A,i & Ci i = 1, . . . , n

A & ∃rA,1 ! · · · ! ∃rA,n ! (≤ 1 rA,1) ! · · · ! (≤ 1 rA,n)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 66

Encoding of associations via reification

We have not ruled out the existence of two instances of A representing the

same tuple of association A:

C1

A

A

CnC2

r2

. . .

r2

r1 rn

rnr1

To rule out such a situation we could add

a key assertion:

(id A r1, . . . , rn)

Note: in a tree-model the above situation cannot occur

! Since in reasoning on an ALCQI KB we can restrict the attention to

tree-models, we can ignore the key assertions

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 67

Multiplicities of binary associations with association class

C2
min1..max1

r2

C1
min2..max2

r1

A

To encode the multiplicities of A we need qualified number restrictions:

• each instance of C1 is connected through A to at least min1 and at most

max 1 instances of C2:

C1 & (≥ min1 r
−
A,1) ! (≤ max1 r

−
A,1)

• each instance of C2 is connected through A− to at least min2 and at most

max 2 instances of C1:

C2 & (≥ min2 r
−
A,2) ! (≤ max2 r

−
A.2)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 68

Associations with association class – Example

place: String

Origin

PhoneCall 0..∗

call

1..1 Phone
from

∃call & Origin ∃call− & PhoneCall

∃from & Origin ∃from− & Phone

Origin & ∃call ! (≤ 1 call) ! ∃from ! (≤ 1 from)

PhoneCall & (≥ 1 call−) ! (≤ 1 call−)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 69

Encoding of ISA and generalization

C1

C

C1 & C

C2

C

C1 . . . Ck

C1 & C
...

Ck & C

• When the generalization is disjoint

Ci & ¬Cj for 1 ≤ i < j ≤ k

• When the generalization is complete

C & C1 $ · · · $ Ck

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 70

ISA and generalization – Example

ETACSphone GSMphone UMTSphone

CellPhone

{disjoint, complete}

ETACSphone & CellPhone ETACSphone & ¬GSMPhone

GSMSphone & CellPhone ETACSphone & ¬UMTSPhone

UMTSSphone & CellPhone GSMphone & ¬UMTSPhone

CellPhone & ETACSphone $ GSMphone $ UMTSPhone

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 71

Encoding of UML in DLs – Exercise 1

Translate the above UML class diagram into an ALCQI knowledge base

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 72

Encoding of UML in DLs – Solution of Exercise 1

Encoding of classes and attributes

∃codeScene $ Scene

∃codeScene
− $ String

Scene $ ∃codeScene " (≤ 1 codeScene)

∃descriptionScene $ Scene

∃descriptionScene
− $ Text

Scene $ ∃descriptionScene " (≤ 1 descriptionScene)

∃theater $ Internal

∃theater− $ String

Internal $ ∃theater " (≤ 1 theater)

∃nightScene $ External

∃nightScene− $ Boolean

External $ ∃nightScene " (≤ 1 nightScene)

∃nameLocation $ Location

∃nameLocation
− $ String

Location $ ∃nameLocation " (≤ 1 nameLocation)

∃addressLocation $ Location

∃addressLocation
− $ String

Location $ ∃addressLocation " (≤ 1 addressLocation)

∃descriptionLocation $ Location

∃descriptionLocation
− $ Text

Location $ ∃descriptionLocation " (≤ 1 descriptionLocation)

. . .

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 73

Encoding of UML in DLs – Solution of Exercise 1 (Cont’d)

Encoding of hierarchies

Internal & Scene

External & Scene

Scene & Internal $ External

Internal & ¬External

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 74

Encoding of UML in DLs – Solution of Exercise 1 (Cont’d)

Encoding of associations

∃stp for scn & Scene

∃stp for scn− & Setup

Scene & ∃stp for scn

Setup & ∃stp for scn− ! (≤ 1 stp for scn−)

∃tk of stp & Setup

∃tk of stp− & Take

Setup & ∃tk of stp

Take & ∃tk of stp− ! (≤ 1 tk of stp−)

∃located & External

∃located− & Location

External & (≥ 1 located) ! (≤ 1 located)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 75

Encoding of UML in DLs – Exercise 2

How does the translation change w.r.t. the one for Exercise 1?

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 76

Encoding of UML in DLs – Solution of Exercise 2

The change is in the encoding of the association located, which now must be

reified into a concept Located, i.e.,

replace
∃located & External

∃located− & Location

External & (≥ 1 located) ! (≤ 1 located)

with
∃ri & Located i = 1, 2

∃r1
− & External

∃r2
− & Location

Located & ∃r1 ! (≤ 1 r1) ! ∃r2 ! (≤ 1 r2)

External & ∃r1
− ! (≤ 1 r1

−)

∃nbr days & Located

∃nbr days− & Integer

Located & ∃nbr days ! (≤ 1 nbr days)

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 77

Encoding of UML in DLs – Excercise 3

1..1 1..*

place: String

call

0..*

call

0..* 0..*

from

1..1

from

reference
PhoneBill PhoneCall Phone

MobileCall CellPhone FixedPhone

MobileOrigin

Origin

{disjoint, complete}

∃call $ Origin

∃call− $ PhoneCall

∃from $ Origin

∃from− $ Phone

Origin $ ∃call " (≤ 1 call) " ∃from " (≤ 1 from)

MobileOrigin $ Origin

MobileOrigin $ ∀call.MobileCall " ∀from.CellPhone

MobileCall $ PhoneCall

CellPhone $ Phone

FixedPhone $ Phone " ¬CellPhone

Phone $ CellPhone & FixedPhone

. . .

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 78

Encoding of operations

Operation f(P1, . . . , Pm) : R for class C corresponds to an (m+2)-ary

relation that is functional on the last component

• Operation f() : R without parameters directly represented by an atomic

role Pf(), with:

∃Pf() & C ∃P−
f() & R C & (≤ 1 Pf())

• Operation f(P1, . . . , Pm) : R with one or more parameters can be cannot

expressed in ALCQI id through reification:

– relation is reified by using a concept Af(P1,...,Pm)

– each instance of the concept represents a tuple of the relation

– (binary) roles r0, . . . , rm+1 connect the object representing a tuple to

the objects representing the components of the tuple

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 79

Reification of operations

To represent operation f(P1, . . . , Pm) : R for class C:

. . .

r1
C

P1

rm

Pm

R

rm+1r0

Af(P1,...,Pm) Af(P1,...,Pm) & ∃r0 ! · · · ! ∃rm+1 !

(≤ 1 r0) ! · · · ! (≤ 1 rm+1)

(1)

∃ri & Af(P1,...,Pm) ∃r−
i & Pi i = 1, . . . , m (2)

∃ro & Af(P1,...,Pm) ∃r−
i & C

∃rm+1 & Af(P1,...,Pm) ∃r−
m+1 & R

(3)

(1) ensures that the instances of Af(P1,...,Pm) represent tuples

(2) ensures that the parameters of the operation have the correct types

(3) ensures that, when the operation is applied to an instance of C, then the

result is an instance of R

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 80

Reification of operations (Cont’d)

Again, we have not ruled out two instances of Af(P1,...,Pm) representing two

applications of the operation with identical parameters but different result:

. . .

Af(P1,...,Pm)

r0

r1

C P1 Pm

R

R
r1

r0

Af(P1,...,Pm)

rm

rm

rm+1

rm+1

To rule out such a situation we could add

a key assertion:

(id Af(P1,...,Pm) r0, r1, . . . , rm)

Again, by the tree-model property ofALCQI, we can ignore the key assertion

for reasoning

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 81

Encoding of operations – Example

Phone

number[1..*]: String

brand: String

lastDialed(): String

callLength(String): Integer

class name

attributes

operations

Encoding of the operations: lastDialed() and callLength(String)

∃PlastDialed() & Phone

∃P−
lastDialed() & String

Phone & (≤ 1 PlastDialed())

PcallLength(String) & ∃r0 ! (≤ 1 r0) ! ∃r1 ! (≤ 1 r1) ! ∃r2 ! (≤ 1 r2)

∃ri & PcallLength(String) i = 0, 1, 2

∃rc−
0 & Phone

∃rc−
1 & String

∃rc−
2 & Integer

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 82

Correctness of the encoding

The encoding of an UML class diagram into an ALCQI knowledge base is

correct, in the sense that it preserves the reasoning services over UML class

diagrams

Theorem:

A class C is consistent in an UML class diagram D

if and only if

the concept C is satisfiable in the ALCQI knowledge base KD encoding D

Proof idea: by showing a correspondence between the models of (the FOL

formalization of) D and the models of KD

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 83

Complexity of reasoning on UML class diagrams

All reasoning tasks on UML class diagrams can be reduced to reasoning tasks

on ALCQI knowledge bases

From

• EXPTIME-completeness of reasoning on ALCQI knowledge bases

• the fact that the encoding in polynomial

we obtain:

Reasoning on UML class diagrams can be done in EXPTIME

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 84

Conclusions

• We have formalized UML class diagrams in logics, which gives us the

ability to reason on them so as to detect and deduce relevant properties

• We have provided an encoding in the DL ALCQI thus showing that:

1. Reasoning on UML class diagrams is decidable, and in fact

EXPTIME-complete, and thus can be automatized

2. We can perform such automated reasoning using state-of-the-art DL

reasoning systems

The above results lay the foundation for advanced CASE tools with integrated

automated reasoning support

G. De Giacomo Description Logics for Conceptual Data Modeling in UML 85

