Let's start with an exercise ...

Requirements: We are interested in building a software application to
manage filmed scenes for realizing a movie, by following the so-called
“Hollywood Approach”.
Formalization of UML Class Diagrams Every scene is identified by a code (a string) and it is described by a text in
natural language.
in First Order Logic Every scene is filmed from different positions (at least one), each of this is
called a setup. Every setup is characterized by a code (a string) and a text in
natural language where the photographic parameters are noted (e.g., aperture,
exposure, focal length, filters, etc.). Note that a setup is related to a single
scene.
For every setup, several takes may be filmed (at least one). Every take is
Laurea ?Aa;’gi?:tzrzlg?;"ﬁ:;::n:iri?‘l’rﬂgrmatica characterized by a (positive) natural number, a real number representing the
number of meters of film that have been used for shooting the take, and the
code (a string) of the reel where the film is stored. Note that a take is
2008/09 associated to a single setup.
Scenes are divided into internals that are filmed in a theater, and externals
that are filmed in a location and can either be “day scene” or “night scene”.
Locations are characterized by a code (a string) and the address of the
location, and a text describing them in natural language.
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Write a precise specification of this domain using any formalism you like.

Solution 1: ... use conceptual modeling diagrams (UML)!!! Solution 1: ... use conceptual modeling diagrams
(discussion)

Take
b Intecer
imed_meters : Real H .
Lo izt Good points:
- » Easy to generate (it's the standard in software design)
oot sto » Easy to understand for humans
» Well disciplined, well-established methodologies available
1
1 1 Setup Bad points:
cle ;. Stri . . . .
stp_tor_sen Eﬁ;ogra;ﬂ?c pors - Tex » No precise semantics (people that use it wave hands about it)
> Verification (or better validation) done informally by humans
{complete, disjoint } . . . .
» Machine incomprehensible (because of lack of formal semantics)
» Automated reasoning out of question
el Bxerna 0. 1 et » Limited expressiveness
heater : String hight_scene | Boolean addregs:Stgring
located Eescrigion Text




Solution 2: ... use logic!!! Solution 2: ... use logic (discussion)

ﬁwghabct Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp_for_scn(x, y), ck-of stp(x, y), located(x, y), - - .. GOOd points:
xioms:
v » Precise semantics
VX, y. Zodescene(x, y) D gcene(x) A _f,rmng(y)
VX, y. iption(x, A e .
X, y. description(x, y) D Scene(x) ext(y) > Formal verlflcatlon
Vx, y. Cadesemp(x, y) D Setup(x) A String(y) Vx, y. stp_for_scn(x, y) D Setup(x) A Scene(y) . .
Vx, y. photographic_pars(x, y) D Setup(x) A Text(y) Vx, y. tk-of stp(x, y) D Take(x) A Setup(y) » Machine comprehens|b|e
Vx, y. located(x, y) D External(x) A Location(y)
Vx, y. nbr(x, y) D Take(x) A Integer(y) . . .
w,i. ﬁlmedjwters(x,y) D Take(x) x Real(y) Vx. Setup(x) D 1 < t{y | stp-for-scn(x, y)} < 1 > Vlrtually unlimited expressiveness
Vx, y. reel(x, y) D Take(x) A String(y) Vy. Scene(y) D 1 < #{x | stp-forscn(x, y)} .
Vx. Take(x) D 1 < #{y | tk-ofstp(x, y)} < 1 Bad points:
Vx, y. theater(x, y) D Internal(x) A String(y) Vx. Setup(y)( ? 1< n{x{| t‘k,of,stp((x, y))}}
Vx. External(x) D 1 < #{y | located(x, y)} < 1 e
Vx, y. night.scene(x, y) O External(x) A Boolean(y) » Difficult to generate
Vx. Internal(x) D Scene(x) .
Vx, y. name(x, y) D Location(x) A String(y) Vx. External(x) D Scene(x) » D|ff|cu|t to understand for huma ns
Vx, y. address(x, y) D Location(x) A String(y) Vx. Internal(x) D — External(x)
Vx, y. description(x, y) D Location(x) A Text(y) Vx. Scene(x) D Internal(x) V External(x) > TOO unstructured (mak|ng reasoning dlfflcult) no We”—established
)

. seenel) 2 (1 < By | codescanelx, 1)} < 1) methodologies available

v

Automated reasoning may be impossible

Solution 3: ... mix them!!! Solution 3: ... mix them!!! (cont.)

Note these two approaches look as being orthogonal! But they can in
fact be integrated!!!

Basic idea: . . . . .
Important point: by using conceptual modeling diagrams one gets logical

» Assign formal semantics to constructs of the conceptual design . o
theories of a specific form.

diagrams
» Use conceptual design diagrams as usual, taking advantage of > One gets limited (or better, well-disciplined) expressiveness
methodologies developed for them in Software Engineering » One can exploit the particular form of the corresponding logical
theory to simplify reasoning, hopefully getting:

» Read diagrams as logical theories when needed, i.e., for formal
understanding, verification, automated reasoning, etc.

Added values:

» inherit from conceptual modeling diagrams: ease-to-use for humans

» decidability
> reasoning procedures that match intrinsic computational complexity

» inherit from logic: formal semantics and reasoning tasks, which are
needed for formal verification and machine manipulation



In this part of the course ...

We will illustrate what we get from integrating logic with conceptual
modeling diagrams.
We will use ...
» as conceptual modeling diagrams:
» UML Class Diagrams
» as logic:
» First-Order Logic to formally capture semantics and reasoning
» Description Logic to understand the computational properties of
reasoning.

UML Class Diagrams

In this course we deal with one of the most prominent components of
UML: UML Class Diagrams.

A UML Class Diagram is used to represent explicitly the information on a
domain of interest (typically the application domain of a software).

Note: This is exactly the goal of all conceptual modeling formalism, such
as the Entity-Relationship Schemas (standard in Database design) or
Ontologies (now in vogue due to the Semantic Web — see later) .

Unified Modeling Language (UML)
UML stands for Unified Modeling Language. It was developed in 1994 by
unifying and integrating the most prominent object-oriented modeling
approaches of that age:
» Booch
» Rumbaugh: Object Modeling Technique (OMT)
> Jacobson: Object-Oriented Software Engineering (OOSE)

History:
» 1995, version 0.8, Booch, Rumbaugh; 1996, version 0.9, Booch,
Rumbaugh, Jacobson; version 1.0 BRJ + Digital, IBM, HP, ...
» Best known version: 1.2-1.5 (1999-2004)
» Current version: 2.0 (2005)
» 1999/today: de facto standard object-oriented modeling language

References:

» Grady Booch, James Rumbaugh, lvar Jacobson, “The unified
modeling language user guide”, Addison Wesley, 1999 (second
edition, 2005)

» http://www.omg.org — UML

» http://www.uml.org

UML Class Diagrams (cont.1)

The UML class diagram models the domain of interest in terms of:

» objects grouped into classes
> (simple) properties of classes (“attributes”, “operations”)
> relationships (associations) between classes

» sub-classing i.e., ISA/Generalization relationships



Example of an UML Class Diagram Another Example of an UML Class Diagram

Employee
Take
Works-for
br : Int )
nr;ed_iiﬁ;s : Real PaySlipNumber:Integer
2ol St Salary:Integer
4 s

tk_of_stp

1

Project

Manager

1 1..% Setup

oo : String
stp_far_scn Ehcrtograghic pars : Text

ProjectCode:String I

{complete, disioirt} {disjoint,complete } 1.7

Location
Internal External 0.* LI oo — Manages
heater : String hight_scene . Boolean ane .rlng. Ar a ger TOPMal'lagGr
foddress @ String
locst=d piescription : Text 1.1
]

UML Class Diagrams (cont.2) UML Class Diagrams and ER Schemas

UML class diagrams are heavily influenced by Entity-Relationship

In fact UML class diagrams are used in various phase of a software Schemas.
design: Example of UML vs. ER:
1. during the so-called analysis, where an abstract precise view of the
domain of interest needs to be developed — the so-call “conceptual Employee .
. " orks-for aySlipNumber(Integer)
perspective e .
2. during software development to maintain an abstract view of the
software.to”be developed — the so-called “implementation Project
perspective ! | ProjectCode:Si
{disjoint,complete} 1.0
In this course we focus on 1! Manages

ProjectCode(String)
O




UML Class Diagrams and ER Schemas (cont.) Classes in UML

A class in UML models a set of objects (its “instances”) that share
certain common properties: attributes, operations, etc.

Each class is characterized by:
Differences concern mostly the features needed for the implementation
perspective such as: public, protected, and private qualifiers for
operations and attributes.

> a name (which must be unique in the whole class diagram)

> a set of (local) properties, namely attributes and operations (see

later).
But also cardinality constrains on participation to non-binary relationship
relationships — better defined in ER (see later). Example:
Note: what we learn in this course on UML Class Diagrams holds for ER ”fa:’r‘]e | Iil
Schema as welllll ) U=t s
Book propeties
itle : String of the class
pages : Integer | ----------| (attributes)
Classes in UML: instances Classes in UML: semantics

The objects that belong to a class are called instances of the class. They
form a so-called instantiation (or extension) of the class.

Example:

Here are some possible instantiations for our class Book.

A class represent set of objects ... but which set? We don't actually
know.

So, how can we assign such a semantics to a class?

{booky, booky, books, . ...} Use a FOL unary predicate!!!

{book,, bookg, book, .. .}
Example:

ich i i iation? 1 i ~timelll — . .
Which is the actual instantiation? We will know it only at run-time!!! For our class Book, we introduce a predicate Book(x).

we are now at design time!



Attributes

An attribute models a local property of a class.
It is characterized by:

> a name (which is unique only in the class it belongs to)
» and a type (a collection of possible values)

» and possibly a multiplicity

Example:

[ Book
hame L fitle: String | ______| ftype
of the attribute bages : Integer of the attribute

Attributes (cont.2)

More generally attributes may have an explicit multiplicity, i.e., a minimal
and maximal number of values.

Example:

implicit
muttiplicity
of the attribute: {1.1}

eywords | String{1..10

explicit
muttiplicity of
the attribute: {1.10}

When multiplicity is implicit then it is assumed to be 1...1.

Attributes (cont.1)

Attributes without explicit multiplicity are:
» mandatory (must have at least a value)

> single-valued (must have at most a value)

That is, they are functions from the instances of the class to the values
of the type they have.

Example:

book; has as value for the attribute name the String: “The little digital
video book” .

Attributes: formalization

Since attributes may have a multiplicity different from 1...1 they are
better formalized as binary predicates, with suitable assertions
representing types and multiplicity:

Given an attribute a of a class C with type T and multiplicity /...  we
capture it in FOL as a binary predicate ac(x, y) with the following
assertions:

» Assertion for the attribute type
Vx,y. a(x,y) D C(x) A T(y)
» Assertion for the multiplicity
Vx. C(x) D (i < #{y [ alx,y)} <))

Note: this is a shorthand for a FOL formula expressing cardinality of
the possible values for y.



Attributes: formalization (cont.) In our example ...

Example:
Book ilmed_meters | Real
itle : String =l Sl
pages : Integer
keywords : String{1..10} 1.2
tk_of_stp
1
Vx, y. title(x,y) D Book(x) A String(y) ; . =
Vx. Book(x) D (1 < #{y | name(x,y)} <1) odke : String
stp_for_scn Ehotograghic pars - Text
Vx,y. pages(x,y) D Book(x) A Integer(y) P
Vx. Book(x) D (1 < #{y | pages(x,y)} < 1)
Vx,y. keywords(x,y) D Book(x) A String(y) e e - } Location
Vx. BOO/((X) D) (1 < ﬁ{y ‘ keywords(x,y)} < 10) heater : Stting ight_scene : Boolean a:;";;:trg%ing
ozsied pzscription : Text
In our example ... Associations
Relationships between classes are modeled in UML Class Diagrams as
ﬁ\p.habe( Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp-for_scn(x, y), ck-of -stp(x, y), located(x, y), . . .. Associations.

Vx, y. cod , s String| .. . . . .
oY cedescnels 1) S o) . T An association in UML is a relation between the instances of two or more
VX, y. codegepp(x; y) D Setup(x) A String(y) Vx, y. stp-for_scn(x, y) D Setup(x) A Scene(y) classes.
Vx, y. photographic_pars(x, y) D Setup(x) A Text(y) Vx, y. thoof stp(x, y) D Take(x) N Setup(y)
Vx, y. located(x, y) D External(x) A Location(y)
S ) ) V. Setup(x) 5 1 < #{y | stpofor_sen(x, y)} < 1 Association model properties of classes that are non-local, in the sense
. ) j Vy. S < _f , .
oy el ) 2 Tokel A Strina() T popme) D1 5 M | e that they involve other classes.
/X, y. r(x nternal(x) / rin, . S < _of _: s . . .
Vi, y. theater(x, y) O Internal(x) A String(y) . ) 3 3 3 M e 1 An association between two classes is a property of both classes.
Vx, y. night_scene(x, y) D External(x) A Boolean(y)
Vx. Internal(x) O Scene(x)
VX, y. (x, y) D Location(x) A String(y) Vx. External(x) D Scene(x) .
vi, i ZZZZS;X, y) D °fé’c;‘i',’o§<x) A gr",igy(y) Vx. Internal(x) D —External(x) Example.
Vx, y. description(x, y) D Location(x) A Text(y) Vx. Scene(x) D Internal(x) \V External(x)

Vx. Scene(x) D (1 < #{y | codegeene(x, y)} < 1) Book written_by Author




Associations: formalization

Cc2
c1 - cn
A
We can represent an n-ary association A among classes (i, ..., C, as

n-ary predicate A in FOL.
We assert that the components of the predicate must belong to correct
classes:

VX1, ooy Xne A(Xy oo Xn) D Gi(xa) A v A Co(xa)

Example:

Vx1, xp. written_by(x1, x2) D Book(x1) A Author(x>)

Associations: formalization (cont.)

min2..max2 mini1..max1
C1 A C2

Multiplicities of binary associations are easily expressible in FOL:

Vx1. Gi(x1) D (ming < #{x2 | A(x1,x2)} < maxy)
Vxa. Go(x2) D (miny < #{x1 | A(x1, x2)} < maxy)

Example:

Vx. Book(x) D (1 < #{y | written_by(x,y)})

Associations: multiplicity

On binary associations we can place multiplicity constrains as we did for
attributes:
Example:

ook 0. pvrittenshy e’ Author

Note: UML multiplicities for associations are look-across and are not easy to
use in an intuitive way for n-ary associations, so typically they are not used at
all.

In contrast, in ER Schemas, multiplicities are not look-across and are easy to
use, and widely used.

In our example ...

Take
b Intecer
iimed_meters | Real
eel : String

1.2
th_of_stp

1

1 1.* Setup

ode : String
stp_for_sch Ehotograghic pars : Text

{ocomplete, disjoint }

Location
\nternal External 0.* 1 [— S
heater : String hight_scene : Boalean | ladcress : String
locatecd

Eascrigion : Text




In our example ... ISA/Generalization

The ISA relationship is of particular importance in conceptual modeling:
a class C ISA a class C' if every instance of C is also an instance of C’.

2\52:72?( Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stpfor_scn(x, y), ck-of _stp(x, y), located(x, y), . . .. In UML the ISA relationship is modeled through the notion of
generalization.
Example:
Vx, y. stp-for_scn(x, y) D Setup(x) A Scene(y)
xt(y) Vx, y. tkoof stp(x, y) D Take(x) A Setup(y)
Vx, y. located(x, y) D External(x) A Location(y) Person
Vx. Setup(x) D 1 < #{y | stp-forsen(x, y)} < 1 . H
Vy. Scene(y) D 1 < #{x | stp-for-scn(x, y)} AE=N Strmg
Vx. Take(x) D 1 < t{y | tk-ofstp(x, y)} < 1
Vx. Setup(y) D 1 < #{x | tk_of stp(x, y)}
Vx. External(x) D 1 < #{y | located(x, y)} < 1
/x, y. night_scene(x, y) D External(x) A Boolean(y)
Vx. Internal(x) D Scene(x)
Vx. External(x) D Scene(x)
Vx. Internal(x) D —External(x)
Vx. S¢ x) D I /(x) vV Exi I(x .
cene(x) Internal(x) ternal(x) name is
1) s 5
inherited by
Author b ---ooo oo Author
kinel_of_writer : Text
Generalization (cont.1) Generalization (cont.2)
A generalization involves a superclass (base class) and one or more The ability of having more subclasses in the same generalization, allows
subclasses: every instance of each subclass is also an instance of the for placing suitable constraints on the classes involved in the
superclass. generalization:
Example: Example:
Perzon Person

{disjoirt }

Chilcd Aclult Chilcd Aclutt




Generalization (cont.3)

The most notable and used constraints are disjointness and completeness:

» disjointness asserts that different subclasses cannot have common
instances (i.e., an object cannot be at the same time instance of two
disjoint subclasses).

» completeness (aka “covering") asserts that every instances of the
superclass is also an instance of at least one of the subclasses.

Example:

Perzon

Fay

{dizjoint complete

Childl

Teenager Acult

Generalization: formalization (cont.)

Example:

Person

{disjoint complete }

Child Teenager Adutt

Vx.
Vx.
Vx.

Vx.

Vx.

Vx.

V.

X

Child(x) D Person(x)
Teenager(x) O Person(x)
Adult(x) D Person(x)

Child(x) D — Teenager(x)

. Child(x) D —Adult(x)
. Teenager(x) D —Adult(x)

Person(x) D (Child(x) \/ Teenager(x) V' Adult(x))

Generalization: formalization

{disjoint,complete}

ISA:

Vx. Gi(x) D C(x),

Disjointness:

fori=1,...,n

Vx. Ci(x) D =(i(x), for i # j

Completeness:

Vx. C(x) D Vi, Gi(x)

In our example ...

iimed_meters | Real
eel : String

th_of_stp

1

Setup

ode : String
Ehotograghic pars . Text

stp_for_scn
{ocomplete, disjoint }
Internal External Location
 Stri ight : Boolean ame : String
——— e lacldress : String
located

Eascrigion : Text



In our example ...

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp_for_scn(x, y), ck-of _stp(x, y), located(x, y), . . ..

Axioms:

Vx, y. com_gmlp(\'. y) D Set

y. photographic_pars(x, y)

X

. nbr(x, y) D Take(x) A

Take(x) 7

Vx, y. theater(x, y) D Internal(x) A String(y)

Vx, y. name(x
. address(x, y
. description(

Vx. Scene(x) D (1 < #{y

Association classes

Example:

Book 0.

) Take(x)
\ String(y)

Location(x) N Strir

y. codegeane (X, ¥) D Scene(x) A String(y)
. description(x, y) D Scene(x) A Text(y)

up(x) A String(y)
D Setup(x) N Text(y)

Integ

Vx. External(x) =
/x, y. night-scene(x, y) O External(x) A Boolean(y)

Vx. Internal(x) O Scene(x)

) Location(x) A String(y) Vx. External(x) D Scene(x)

(v) Vx. Internal(x) O —External(x)

y) D Location(x) A Text(y) Vx. Scene(x) D Internal(x) \/ External(x)

codegeene(x, ¥)} < 1)

(cont.1)

y. stp_for_scn
y. tk_of _stp(x
Vx, y. located(x, y)

stp_for_scn(x
stp_for_scn(x, y)
tk_of _stp(x, y)} <
th_of _stp(x

located(x, y)} <

"Real(y) Vx. Setup(x) D

1

Authaor

written_ky

Heszcription_of contribution : Text

Association classes

Sometimes we may want to assert properties of associations. In UML to

do so we resort to Association Classes.

That is, we associate to an association a class whose instances are in

bijection with the tuples of the association.

Then we use the association class exactly as a UML class (modeling local

and non-local properties).

Association classes (cont.2)

Example:

Einok

Author

I written_by

1.

with

0.1

Contract

Fescrip_iion of _contribution : Text




Association classes: formalization Association classes: formalization (cont.1)

Cn

]

The process of putting in correspondence objects of a class (the FOL Assertions needed for stating bijection between association class and
association class) with tuples in an association is formally described as association:
reification. .
That is: Vx,y. ri(x,y) D A(x) A G(y), fori=1,....n
» we introduce a unary predicate A for the association class A Vx. A(x) D Jy. ri(x, ), fori=1,...,n
» we introduce n new binary predicates ry, ..., r,, one for each of the
components of the association Vx, v,y i y) A ri(x,y ) Dy =y, fori=1,...,n
» we introduce suitable assertions so that objects in the extension of )
unary-predicate A are in bijection with tuples in n-ary association A. Yy Y X X N (GG yi) A (X yi)) D ox =X
Association classes: formalization (cont.2) Exercise
Example:
Vx,y. ma(x,y) D written_by(x) A Book(y) PhoneBil 1--r‘eferencle--* PhoneCall ga” ‘ ff;’:‘ Phone

Vx, y. rwa(x, y) D written_by(x) A Author(y)

Origin T
place: String
Vx. written_by(x) D Jy. rwa(x,y) l} {covering, disjoint}
Vx. written_by(x) D Jy. ra(x, y)
Vx, v,y ma(x,y) Arwa(x,y) Dy =y’
VX, y, ¥ wa(x, y) A rwe(x,y') Dy =y

MobileOrigin

MobileCall | cal ‘ from | Gellphone FixedPhone
0. 0.%

Vx, x5 y1, yo. twi(x, y1) A rwa (X, y1) A rwa(x, y2) A (X, y2) D ox = X

Write the diagram in FOL.



Exercise: solution

Vx, y. place(x, y) D Origin(x) A String(x)
Vx. Origin(x) D 1 < #{y | place(x, y)} < 1

Vx, y. call(x, y)A D Origin(x) A PhoneCall(y)
Vx, y. from(x, y) D Origin(x) A Phone(y)

Vx. Origin(x) D 3y. call(x, y)

Vx. Origin(x) O 3y. from(x, y)

Vx, y, v call(x,y) A call(x,y') Dy =y’

Vx,y, y'. from(x, y) A fmm(x,y’) Sy=y
Vx, X', y1, ya. call(x, y1) A call(x”, y1) A fi
Vx. PhoneCall(x) D 1 < #{z | call(z,x)} <1

. MobileOrigin(x) O Origin(x)
WVx, y. MobileOrigin(x) A call(x, y) D MobileCall(y)
Vx, y. MobileOrigin(x) A from(x, y) D CellPhone(y)

Vx, y. reference(x, y) D PhoneBill(x) A PhoneCall(y)
Vx. PhoneBill(x) D 1 < f{y | reference(x, y)}
Vy. PhoneCall(y) D 1 < #{x | reference(x, y)} <1

Vx. MobileCall(x) D PhoneCall(x)

Wx. CellPhone(x) D Phone(x)

Vx. FixedPhone(x) D Phone(x)

Vx. CellPhone(x) D — FixedPhone(x)

Vx. Phone(x) D CellPhone(x) \/ FixedPhone(x)

Other constraints

UML allows for other forms of constraints, such as specifying class
identifiers, functional dependencies for associations, across ISA typing,

etc.
Example:

In our "Phone Calls” example, we may want to add the following
constraints:

MobileCalls must have as Origin a CellPhone
CellPhones can be the Origin of MobilePhone only

We can express these in FOL:

Vx, y. MobileCall(x.) A Origin(z) A call(z,xc) A from(z, x,) D CellPhone(
Vx, y. CellPhone(x,) A Origin(z) A call(z, x.) A from(z, x,) D MobileCall(

Actually we can even express them by suitably modifying the diagram by
adding ad-hoc classes (loosing readability) — see later.

rom(x, y») A from(x

Xp)
Xc)

Exercise: another solution

Vx y. place(x, y) D Origin(x) A String(x)
. Origin(x) D 1 < #{y | place(x,y)} <1

><

Vx, y. call(x, y)A D Origin(x) A PhoneCall(y)
Vx, y. from(x, y) D Origin(x) A Phone(y)
Vx. Origin(x) D 3y. call(x, y)

Vx. Origin(x) D 3y. from(x, y)

Vx,y,y' . call(x, y) A call(x,y') Dy =y’
Vx,y,y'. from(x, y) A from(x,y') Dy =y
Vx, x", y1, yo. call(x, y1) A call(x”, y1) A fr (x y2) A from(x’, y3) D x = x
Vx. PhoneCail(x) D 1 < #{z | call(z, x)} <

’
’

. MobileOrigin(x) O Origin(x)
Vx, y. callmo(x, y) D call(x, y)
VX, y. frommo(x, y) D from(x, y)
Vx, y. callmo(x, y) D MobileOrigin(x) A MobileCall(y)
Vx, y. frommo(x, y) D MobileOrigin(x) A CellPhone(y)
V. MobileOrigin(x) D Jy. callmo(x, y)
Vx. MobileOrigin(x) D Jy. frommo(x, y)

/

Vx, v,y callmo(x, y) A callmo(x,y') Dy =y these are redundant
v /

X

’ . RIS
sy frommo(x, ¥) A frommo(x, y') Dy =y
vx, X', y1s y2- callmo(x, y1) A callmo(x’, y1) A frommo(x, y2) A frommo(x”, y2) D x = x
Vx, y. reference(x, y) D PhoneBill(x) A PhoneCall(y)

Vx. PhoneBill(x) D 1 < #{y | reference(x, y)}

Yy. PhoneCall(x) D 1 < #{x | reference(x, y)} < 1

Vx. MobileCall(x) D PhoneCall(x)

Vx. CellPhone(x) D Phone(x)

Vx. FixedPhone(x) D Phone(x)

Vx. CellPhone(x) D —FixedPhone(x)
Vx. Phone(x) DO CellPhone(x) V FixedPhone(x)

Other constraints (cont.)

» More generally, one can write full FOL assertions as constraints by
using the UML Object Constraint Language (OCL).

> However excessive use of OCL constraints is considered an indication
of bad design, since it moves the semantics from the diagram to the
OCL constraints, and this may compromise the understandability of
the diagram.

» From a formal point of view the use of OCL constraints makes
reasoning on a class diagram undecidable.

In this course, we do not deal with general OCL constraints.



Class Operations Class Operations: formalization

Apart from attributes, classes may include operations.

An operation of a class is a function from the objects of the class to which the

operation is associated and possibly additional parameters, to objects or values. Formally, such an operation corresponds to an (1 + m + 1)-ary predicate

An operation definition for a class C has the form fp,.....Pm, in Which the first argument represents the object of invocation, the
next m arguments represent the additional parameters, and the last argument
represents the result.

Observe that the name of the predicate depends on the whole signature, i.e., it

f(Pi,...,Pm):R

where f is the name of the operation, Pi,..., Pn are the types of the m
parameters, and R is the type of the result. includes the types of the parameters.
Example: The predicate fp, ... p, has to satisfy the following FOL assertions:
Person VX, P1y -y Pmy e TRy F’,n(X7P17 <oy Pm, I’) D /\7;1 Pi(Pi)
hame : String X, P1y ey Py o e fop o (X P1y ooy Py F) A fop P (X, PLy ooy Py ) D P =1
mpoelcurrent_year ; Integer) : Integer

VX, PLy e ey Pmybe C(X) A fpy,. P (X, P1y - oy Pmy 1) D R(r)
Observe that only the signature (i.e., the name of the function and the number

and the types of parameters, where the object of invocation is an implicit

parameter) and the return type of the function is represented in UML, not the

actual definition.

Class Operations: formalization Class Operations: discussion

» UML allows for the overloading of operations, which takes place

Perzon between two or more functions having the same name but different
hame : String signatures.
Egelcurrent_year | Integer) : Integer > Overriding takes place when two operations have the same

signature, but behave in different ways. In UML class diagrams for
the conceptual perspective, where the bodies of operations are not
specified, overriding may only show up as a restriction on the type of

VX7 p,r- age’"tege’(x’ P, I') o Integer(p) the reSU|t-

VX, p, 1, 1. ageinteger(X, P, 1) A ageinteger (x, p,1') D r=1r' » The above formalization of operations correctly captures both
Vx, p, r. Person(x) A ageinteger (X, p, ) O Integer(r) overloading and overriding.



Some common assumptions ...

» Sometimes, in UML class diagrams, it is assumed that all classes not
in the same hierarchy are a priori disjoint.

» Here we do not force this assumption; instead we allow two classes
to have common instances.

» When needed, disjointness can be enforced by means of explicit
disjointness constraints.

» Similarly, we do not assume that objects in a hierarchy must belong
to a single most specific class.

» Hence, two classes in a hierarchy may have common instances, even
when they do not have a common subclass.

» Again, when needed, suitable covering and disjointness assertions
that express the most specific class assumption can be added to a
class diagram.

Enhancing current CASE tools

The fact that UML class diagrams can be re-expressed in FOL allows for
building CASE tools that go far beyond the kind of support reported
above.

The designer can use the FOL formalization to formally check relevant
properties of class diagrams so as to assess the quality of the diagram
according to objective quality criteria.

Current CASE tools: no reasoning

The design of UML class diagrams modeling complex real world domains
is facilitated by automated CASE tools.

Currently, CASE tools support the designer with:
» user friendly graphical environment
» forms of syntax checking

» management of repositories of diagrams, generated code, etc.

But they offer no form of automated reasoning on the diagram.

Forms of reasoning: class consistency

A class is consistent, if the class diagram admits an instantiation in which
the class has a non-empty set of instances.

Intuitively, the class can be populated without violating the conditions
imposed by the class diagram.

The inconsistency of a class may be due to a design error or due to
over-constraining.

An inconsistent class weakens understandability of the diagram. It is an
indication of an error.

Once detected, the designer may remove the inconsistency by relaxing
some conditions, or by deleting the class.



Forms of reasoning: class consistency — formalization

Let I be the set of FOL assertions corresponding to the UML Class
Diagram, and C(x) the predicate corresponding to a class C of the
diagram.

Then C is consistent iff

[ Vx. C(x) D false

i.e., there must exist a model of ' were the extension of C(x) is not the
empty set.

Note: FOL reasoning task: logical implication

Forms of reasoning: whole diagram consistency

A class diagram is consistent, if it admits an instantiation, i.e., if its
classes can be populated without violating any of the conditions imposed
by the diagram.

Note the empty extension for all classes is not considered an admissible
instantiation.

Then, the diagram is consistent if at least one of its classes admits a
nonempty extension.

When the diagram is not consistent, the definitions altogether are
contradictory, since they do not allow any class to be populated.

Example (by E. Franconi)

Person

i {disjaint}
[ |

Italian English

i{disimm,covenng}

Lazy LatinL over I Gentleman I Hoaligan
|| |
|| |

L &

I = Vx. LatinLover(x) D false

Forms of reasoning: whole diagram consistency —
formalization

Let ' be the set of FOL assertions corresponding to the UML Class
Diagram.
Then, the diagram is consistent iff

[ is satisfiable

i.e.,, [ admits at least a model (remember that FOL models cannot be
empty).

Note: FOL reasoning task: satisfiability — reducible to logical implication:

I = false.



Forms of reasoning: class subsumption

A class C; subsumes a class G, if the class diagram implies that C; is a
generalization of G,.
Note that this means that G, inherits all properties of C; (cf. ISA).

This suggests the possible omission of an explicit generalization.
Alternatively, if not all instances of the more specific class are supposed
to be instances of the more general class, then there is an error in the
diagram.

Note that class subsumption is also the basis for a classification of all the

classes in a diagram. Indeed a classification is obtained by checking
subsumption between all classes in the diagram.

Example

Persan

i {disjaint}
[ |

Italian English

i{d isjoint,cavering }

Lazy I LalinLoverI Gentlemanl Hooligan
| | || | ]

I ey S —

I = Vx. LatinLover(x) D false
I = Vx. ltalian(x) D Lazy(x)

|

Forms of reasoning: class subsumption — formalization

Let I' be the set of FOL assertions corresponding to the UML Class
Diagram, and Gi(x), G(x) the predicates corresponding to the class
Cy, G, of the diagram.

Then G subsumes G, (or G, is subsumed by G) iff

M = Vx. G(x) D G(x)

Note: FOL reasoning task: logical implication

Another Example (by E. Franconi)

ltalian

id

{disjoint,complete }
| |

Lazy Mafiosol LatinLoverI ItalianProf

1
{
L
|

(reasoning by cases)

I = Vx. ItalianProf (x) D LatinLover(x)



Forms of reasoning: class equivalence

Two classes are equivalent if they denote the same set of instances
whenever the conditions imposed by the class diagram are satisfied.
In other words the two classes subsume each other.

If two classes are equivalent then one of them is redundant.

Determining equivalence of two classes allows for their merging, thus
reducing the complexity of the diagram.

Forms of reasoning: refinements of properties

The properties of various classes and associations may interact to yield
stricter multiplicities or typing than those explicitly specified in the
diagram.

Detecting such cases allows the designer for refining the class diagram by

making such properties explicit, thus enhancing the readability of the
diagram.

Example

Example

Person

i {disjaint}

Italian

i{dis]mrrt,covenng}

English

——

LatinLover I

Hooligan

Lazy I
|

Gentleman I
|

|

PhoneBill

1.1

reference

—_ =

I = Vx. LatinLover(x) D false
I = Vx. Italian(x) D Lazy(x)
I = Vx. Lazy(x) = Italian(x)

1| phonecall | Call

from

0.%

1.1

Origin

{covering, disjoint}

place: String
MobileOrigin
MobileCall | €@l from | GellPhone
0.% 0.*

FixedPhone

Vxc. MobileCall(x.) D #{z | MobileOrigin(z) A call(z,xc)} <1



Forms of reasoning: implicit consequence

More generally ...
A property P is an (implicit) consequence of a class diagram if P holds
whenever all conditions imposed by the diagram are satisfied.

Determining implicit consequences is useful:

> to reduce the complexity of the diagram by removing those parts
that implicitly follow from other ones

> to make properties explicit, for enhancing readability.

Note that all the above reasoning tasks can be seen as special cases of
implicit consequences!!!

Exercise

PhoneBill L1 L] PhonecCall | Call : from | Phone
reference 0.% ! 1.1

Origin
place: String
{covering. disjoint}
MobileOrigin
MobileCall | cal from | Gellphone FixedPhone
0.% 0.%

Forms of reasoning: implicit consequence

Let I' be the set of FOL assertions corresponding to the UML Class
Diagram, and P (the formalization in FOL of) the property of interest
Then P is an implicit consequence iff

rEP

i.e., the property P holds in every model of T.

Note: FOL reasoning task: logical implication

from

Exercise
PhoneBil 1.1 L-* | Phonecall | cal
reference 0.* '
Origin
place: String
MobileOrigin
MobileCall | cal
0.%

1.1

Phone

T{covering. disjoint}

from | Gellphone

Which implicit consequences hold?

0.*

I ~| FixedPhone




Exercise: solution Exercise: solution

PhoneBill L1 L* | PhoneCall | all : from | Phone
reference 0.% ! 1.1

PhoneBill 1.1 L* | Pphonecall | cal ‘ from | phone Origin

reference 0.* ! 1.1 place: String
Origin {covering, disjoint}

place: String i .

{covering, disjoint} MobileOrigin
MobileOrigin MobileCall | €@l from | GellPhone || FixedPhone

0.% 0.%
MobileCall | €@l ‘ from | GeliPhone || FixedPhone
0.% 0.%

+ additional constraint
Vx, y. MobileCall(x.) A Origin(z) A call(z,xc) A from(z, xp) D

I = Vx. CellPhone(x) D false CellPhone(xp)
I = Vx. MobileOrigin(x) D false

I = Vx. Phone(x) D FixedPhone(x)

I |= Vx. Phone(x) = FixedPhone(x)

I = Vx. CellPhone(x) D false

I = Vx. MobileOrigin(x) D false

I = Vx. Phone(x) D FixedPhone(x)
I = Vx. Phone(x) = FixedPhone(x)
I = Vx. MobileCall(x) D false

Unrestricted vs. finite model reasoning Unrestricted vs. finite model reasoning (cont.)

Natural Number | 1.1 » If the domain is finite then:
Vx. NaturalNumber(x) > EvenNumber(x)
T el > if the domain is infinite we do not get the subsumption!
Even Number
1.1 Finite model reasoning: look only at models with finite domains (very

interesting for Databases).

The classes NaturalNumber and EvenNumber are in bijection.
this implies: “the classes NaturalNumber and EvenNumber contains the
same number of objects”

In UML Class Diagrams finite model reasoning is different form
unrestricted reasoning.



Main questions

The examples of reasoning we have seen could be easily carried out on
intuitive grounds.

More importantly, since they correspond to logical reasoning tasks on the
FOL theory corresponding to an UML Class Diagram they can be

formalized and formally verified.

Two main question remain open ...

Main questions (cont.)

» Can we develop sound, complete, and terminating reasoning

procedures for reasoning on UML Class Diagrams?

To answer this question we will look at Description Logics and show
that reasoning on UML Class Diagrams can be done in EXPTIME
(and actually carried out by current DLs-based systems such as
FACT++, PELLET or RACER-PRO).

How hard is it to reason on UML Class Diagrams in general?

We will show that reasoning on UML Class Diagrams is in fact
EXPTIME-hard!

This is somewhat surprising, since UML Class Diagrams are so
widely used and yet reasoning on them (and hence fully understand
the implication the may give rise to) is not easy at all in general.

Note that these results hold for Entity-Relationship Schemas as well!l!



