
Formalization of UML Class Diagrams
in First Order Logic

Giuseppe De Giacomo

Sapienza Università di Roma
Laurea Magistrale in Ingegneria Informatica

2008/09

Let’s start with an exercise ...
Requirements: We are interested in building a software application to

manage filmed scenes for realizing a movie, by following the so-called
“Hollywood Approach”.

Every scene is identified by a code (a string) and it is described by a text in
natural language.

Every scene is filmed from different positions (at least one), each of this is
called a setup. Every setup is characterized by a code (a string) and a text in
natural language where the photographic parameters are noted (e.g., aperture,
exposure, focal length, filters, etc.). Note that a setup is related to a single
scene.

For every setup, several takes may be filmed (at least one). Every take is
characterized by a (positive) natural number, a real number representing the
number of meters of film that have been used for shooting the take, and the
code (a string) of the reel where the film is stored. Note that a take is
associated to a single setup.

Scenes are divided into internals that are filmed in a theater, and externals
that are filmed in a location and can either be “day scene” or “night scene”.
Locations are characterized by a code (a string) and the address of the
location, and a text describing them in natural language.

Write a precise specification of this domain using any formalism you like.



Solution 1: ... use conceptual modeling diagrams (UML)!!!

Solution 1: ... use conceptual modeling diagrams
(discussion)

Good points:

! Easy to generate (it’s the standard in software design)

! Easy to understand for humans

! Well disciplined, well-established methodologies available

Bad points:

! No precise semantics (people that use it wave hands about it)

! Verification (or better validation) done informally by humans

! Machine incomprehensible (because of lack of formal semantics)

! Automated reasoning out of question

! Limited expressiveness



Solution 2: ... use logic!!!

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y), . . ..
Axioms:

∀x, y . codeScene (x, y) ⊃ Scene(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Scene(x) ∧ Text(y)

∀x, y . codeSetup (x, y) ⊃ Setup(x) ∧ String(y)

∀x, y . photographic pars(x, y) ⊃ Setup(x) ∧ Text(y)

∀x, y . nbr(x, y) ⊃ Take(x) ∧ Integer(y)
∀x, y . filmed meters(x, y) ⊃ Take(x) ∧ Real(y)
∀x, y . reel(x, y) ⊃ Take(x) ∧ String(y)

∀x, y . theater(x, y) ⊃ Internal(x) ∧ String(y)

∀x, y . night scene(x, y) ⊃ External(x) ∧ Boolean(y)

∀x, y . name(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . address(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Location(x) ∧ Text(y)

∀x. Scene(x) ⊃ (1 ≤ !{y | codeScene (x, y)} ≤ 1)
· · ·

∀x, y . stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)
∀x, y . tk of stp(x, y) ⊃ Take(x) ∧ Setup(y)
∀x, y . located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤ !{y | stp for scn(x, y)} ≤ 1
∀y . Scene(y) ⊃ 1 ≤ !{x | stp for scn(x, y)}
∀x. Take(x) ⊃ 1 ≤ !{y | tk of stp(x, y)} ≤ 1
∀x. Setup(y) ⊃ 1 ≤ !{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤ !{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)
∀x. External(x) ⊃ Scene(x)
∀x. Internal(x) ⊃ ¬External(x)
∀x. Scene(x) ⊃ Internal(x) ∨ External(x)

Solution 2: ... use logic (discussion)

Good points:

! Precise semantics

! Formal verification

! Machine comprehensible

! Virtually unlimited expressiveness

Bad points:

! Difficult to generate

! Difficult to understand for humans

! Too unstructured (making reasoning difficult), no well-established
methodologies available

! Automated reasoning may be impossible



Solution 3: ... mix them!!!

Note these two approaches look as being orthogonal! But they can in
fact be integrated!!!
Basic idea:

! Assign formal semantics to constructs of the conceptual design
diagrams

! Use conceptual design diagrams as usual, taking advantage of
methodologies developed for them in Software Engineering

! Read diagrams as logical theories when needed, i.e., for formal
understanding, verification, automated reasoning, etc.

Added values:

! inherit from conceptual modeling diagrams: ease-to-use for humans

! inherit from logic: formal semantics and reasoning tasks, which are
needed for formal verification and machine manipulation

Solution 3: ... mix them!!! (cont.)

Important point: by using conceptual modeling diagrams one gets logical
theories of a specific form.

! One gets limited (or better, well-disciplined) expressiveness
! One can exploit the particular form of the corresponding logical

theory to simplify reasoning, hopefully getting:
! decidability
! reasoning procedures that match intrinsic computational complexity



In this part of the course ...

We will illustrate what we get from integrating logic with conceptual
modeling diagrams.
We will use ...

! as conceptual modeling diagrams:
! UML Class Diagrams

! as logic:
! First-Order Logic to formally capture semantics and reasoning
! Description Logic to understand the computational properties of

reasoning.

Unified Modeling Language (UML)
UML stands for Unified Modeling Language. It was developed in 1994 by
unifying and integrating the most prominent object-oriented modeling
approaches of that age:

! Booch
! Rumbaugh: Object Modeling Technique (OMT)
! Jacobson: Object-Oriented Software Engineering (OOSE)

History:
! 1995, version 0.8, Booch, Rumbaugh; 1996, version 0.9, Booch,

Rumbaugh, Jacobson; version 1.0 BRJ + Digital, IBM, HP, . . .
! Best known version: 1.2–1.5 (1999–2004)
! Current version: 2.0 (2005)
! 1999/today: de facto standard object-oriented modeling language

References:
! Grady Booch, James Rumbaugh, Ivar Jacobson, “The unified

modeling language user guide”, Addison Wesley, 1999 (second
edition, 2005)

! http://www.omg.org → UML
! http://www.uml.org



UML Class Diagrams

In this course we deal with one of the most prominent components of
UML: UML Class Diagrams.

A UML Class Diagram is used to represent explicitly the information on a
domain of interest (typically the application domain of a software).

Note: This is exactly the goal of all conceptual modeling formalism, such
as the Entity-Relationship Schemas (standard in Database design) or
Ontologies (now in vogue due to the Semantic Web – see later) .

UML Class Diagrams (cont.1)

The UML class diagram models the domain of interest in terms of:

! objects grouped into classes

! (simple) properties of classes (“attributes”, “operations”)

! relationships (associations) between classes

! sub-classing i.e., ISA/Generalization relationships



Example of an UML Class Diagram

Another Example of an UML Class Diagram



UML Class Diagrams (cont.2)

In fact UML class diagrams are used in various phase of a software
design:

1. during the so-called analysis, where an abstract precise view of the
domain of interest needs to be developed – the so-call “conceptual
perspective”

2. during software development to maintain an abstract view of the
software to be developed – the so-called “implementation
perspective”

In this course we focus on 1!

UML Class Diagrams and ER Schemas

UML class diagrams are heavily influenced by Entity-Relationship
Schemas.
Example of UML vs. ER:



UML Class Diagrams and ER Schemas (cont.)

Differences concern mostly the features needed for the implementation
perspective such as: public, protected, and private qualifiers for
operations and attributes.

But also cardinality constrains on participation to non-binary relationship
relationships – better defined in ER (see later).

Note: what we learn in this course on UML Class Diagrams holds for ER
Schema as well!!!

Classes in UML

A class in UML models a set of objects (its “instances”) that share
certain common properties: attributes, operations, etc.

Each class is characterized by:

! a name (which must be unique in the whole class diagram)

! a set of (local) properties, namely attributes and operations (see
later).

Example:



Classes in UML: instances

The objects that belong to a class are called instances of the class. They
form a so-called instantiation (or extension) of the class.
Example:
Here are some possible instantiations for our class Book.

{book1, book2, book3, . . .}

{bookα, bookβ , bookγ , . . .}

Which is the actual instantiation? We will know it only at run-time!!! –
we are now at design time!

Classes in UML: semantics

A class represent set of objects ... but which set? We don’t actually
know.

So, how can we assign such a semantics to a class?

Use a FOL unary predicate!!!

Example:
For our class Book, we introduce a predicate Book(x).



Attributes

An attribute models a local property of a class.
It is characterized by:

! a name (which is unique only in the class it belongs to)

! and a type (a collection of possible values)

! and possibly a multiplicity

Example:

Attributes (cont.1)

Attributes without explicit multiplicity are:

! mandatory (must have at least a value)

! single-valued (must have at most a value)

That is, they are functions from the instances of the class to the values
of the type they have.

Example:
book1 has as value for the attribute name the String : “The little digital
video book”.



Attributes (cont.2)

More generally attributes may have an explicit multiplicity, i.e., a minimal
and maximal number of values.

Example:

When multiplicity is implicit then it is assumed to be 1 . . . 1.

Attributes: formalization

Since attributes may have a multiplicity different from 1 . . . 1 they are
better formalized as binary predicates, with suitable assertions
representing types and multiplicity:
Given an attribute a of a class C with type T and multiplicity i . . . j we
capture it in FOL as a binary predicate aC (x , y) with the following
assertions:

! Assertion for the attribute type

∀x , y . a(x , y) ⊃ C (x) ∧ T (y)

! Assertion for the multiplicity

∀x. C (x) ⊃ (i ≤ !{y | a(x , y)} ≤ j)

Note: this is a shorthand for a FOL formula expressing cardinality of
the possible values for y .



Attributes: formalization (cont.)

Example:

∀x , y . title(x , y) ⊃ Book(x) ∧ String(y)
∀x. Book(x) ⊃ (1 ≤ !{y | name(x , y)} ≤ 1)

∀x , y . pages(x , y) ⊃ Book(x) ∧ Integer(y)
∀x. Book(x) ⊃ (1 ≤ !{y | pages(x , y)} ≤ 1)

∀x , y . keywords(x , y) ⊃ Book(x) ∧ String(y)
∀x. Book(x) ⊃ (1 ≤ !{y | keywords(x , y)} ≤ 10)

In our example ...



In our example ...

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y), . . ..
Axioms:

∀x, y . codeScene (x, y) ⊃ Scene(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Scene(x) ∧ Text(y)

∀x, y . codeSetup (x, y) ⊃ Setup(x) ∧ String(y)

∀x, y . photographic pars(x, y) ⊃ Setup(x) ∧ Text(y)

∀x, y . nbr(x, y) ⊃ Take(x) ∧ Integer(y)
∀x, y . filmed meters(x, y) ⊃ Take(x) ∧ Real(y)
∀x, y . reel(x, y) ⊃ Take(x) ∧ String(y)

∀x, y . theater(x, y) ⊃ Internal(x) ∧ String(y)

∀x, y . night scene(x, y) ⊃ External(x) ∧ Boolean(y)

∀x, y . name(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . address(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Location(x) ∧ Text(y)

∀x. Scene(x) ⊃ (1 ≤ !{y | codeScene (x, y)} ≤ 1)
· · ·

∀x, y . stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)
∀x, y . tk of stp(x, y) ⊃ Take(x) ∧ Setup(y)
∀x, y . located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤ !{y | stp for scn(x, y)} ≤ 1
∀y . Scene(y) ⊃ 1 ≤ !{x | stp for scn(x, y)}
∀x. Take(x) ⊃ 1 ≤ !{y | tk of stp(x, y)} ≤ 1
∀x. Setup(y) ⊃ 1 ≤ !{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤ !{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)
∀x. External(x) ⊃ Scene(x)
∀x. Internal(x) ⊃ ¬External(x)
∀x. Scene(x) ⊃ Internal(x) ∨ External(x)

Associations

Relationships between classes are modeled in UML Class Diagrams as
Associations.

An association in UML is a relation between the instances of two or more
classes.

Association model properties of classes that are non-local, in the sense
that they involve other classes.
An association between two classes is a property of both classes.

Example:



Associations: formalization

CnC1

A

C2
...

We can represent an n-ary association A among classes C1, . . . ,Cn as
n-ary predicate A in FOL.
We assert that the components of the predicate must belong to correct
classes:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ . . . ∧ Cn(xn)

Example:

∀x1, x2. written by(x1, x2) ⊃ Book(x1) ∧ Author(x2)

Associations: multiplicity

On binary associations we can place multiplicity constrains as we did for
attributes:
Example:

Note: UML multiplicities for associations are look-across and are not easy to
use in an intuitive way for n-ary associations, so typically they are not used at
all.
In contrast, in ER Schemas, multiplicities are not look-across and are easy to
use, and widely used.



Associations: formalization (cont.)

C2C1

min2..max2 min1..max1

A

Multiplicities of binary associations are easily expressible in FOL:

∀x1. C1(x1) ⊃ (min1 ≤ !{x2 | A(x1, x2)} ≤ max1)
∀x2. C2(x2) ⊃ (min2 ≤ !{x1 | A(x1, x2)} ≤ max2)

Example:

∀x. Book(x) ⊃ (1 ≤ !{y | written by(x , y)})

In our example ...



In our example ...

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y), . . ..
Axioms:

∀x, y . codeScene (x, y) ⊃ Scene(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Scene(x) ∧ Text(y)

∀x, y . codeSetup (x, y) ⊃ Setup(x) ∧ String(y)

∀x, y . photographic pars(x, y) ⊃ Setup(x) ∧ Text(y)

∀x, y . nbr(x, y) ⊃ Take(x) ∧ Integer(y)
∀x, y . filmed meters(x, y) ⊃ Take(x) ∧ Real(y)
∀x, y . reel(x, y) ⊃ Take(x) ∧ String(y)

∀x, y . theater(x, y) ⊃ Internal(x) ∧ String(y)

∀x, y . night scene(x, y) ⊃ External(x) ∧ Boolean(y)

∀x, y . name(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . address(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Location(x) ∧ Text(y)

∀x. Scene(x) ⊃ (1 ≤ !{y | codeScene (x, y)} ≤ 1)
· · ·

∀x, y . stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)
∀x, y . tk of stp(x, y) ⊃ Take(x) ∧ Setup(y)
∀x, y . located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤ !{y | stp for scn(x, y)} ≤ 1
∀y . Scene(y) ⊃ 1 ≤ !{x | stp for scn(x, y)}
∀x. Take(x) ⊃ 1 ≤ !{y | tk of stp(x, y)} ≤ 1
∀x. Setup(y) ⊃ 1 ≤ !{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤ !{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)
∀x. External(x) ⊃ Scene(x)
∀x. Internal(x) ⊃ ¬External(x)
∀x. Scene(x) ⊃ Internal(x) ∨ External(x)

ISA/Generalization

The ISA relationship is of particular importance in conceptual modeling:
a class C ISA a class C ′ if every instance of C is also an instance of C ′.
In UML the ISA relationship is modeled through the notion of
generalization.
Example:



Generalization (cont.1)

A generalization involves a superclass (base class) and one or more
subclasses: every instance of each subclass is also an instance of the
superclass.
Example:

Generalization (cont.2)

The ability of having more subclasses in the same generalization, allows
for placing suitable constraints on the classes involved in the
generalization:
Example:



Generalization (cont.3)
The most notable and used constraints are disjointness and completeness:

! disjointness asserts that different subclasses cannot have common
instances (i.e., an object cannot be at the same time instance of two
disjoint subclasses).

! completeness (aka “covering”) asserts that every instances of the
superclass is also an instance of at least one of the subclasses.

Example:

Generalization: formalization

CnC1 C2 ...

A

{disjoint,complete}

ISA:
∀x. Ci (x) ⊃ C (x), for i = 1, . . . , n

Disjointness:

∀x. Ci (x) ⊃ ¬Cj(x), for i &= j

Completeness:

∀x. C (x) ⊃
∨n

i=1 Ci (x)



Generalization: formalization (cont.)

Example:

∀x. Child(x) ⊃ Person(x)
∀x. Teenager(x) ⊃ Person(x)
∀x. Adult(x) ⊃ Person(x)

∀x. Child(x) ⊃ ¬Teenager(x)
∀x. Child(x) ⊃ ¬Adult(x)
∀x. Teenager(x) ⊃ ¬Adult(x)

∀x. Person(x) ⊃ (Child(x) ∨ Teenager(x) ∨ Adult(x))

In our example ...



In our example ...

Alphabet: Scene(x), Setup(x), Take(x), Internal(x), External(x), Location(x), stp for scn(x, y), ck of stp(x, y), located(x, y), . . ..
Axioms:

∀x, y . codeScene (x, y) ⊃ Scene(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Scene(x) ∧ Text(y)

∀x, y . codeSetup (x, y) ⊃ Setup(x) ∧ String(y)

∀x, y . photographic pars(x, y) ⊃ Setup(x) ∧ Text(y)

∀x, y . nbr(x, y) ⊃ Take(x) ∧ Integer(y)
∀x, y . filmed meters(x, y) ⊃ Take(x) ∧ Real(y)
∀x, y . reel(x, y) ⊃ Take(x) ∧ String(y)

∀x, y . theater(x, y) ⊃ Internal(x) ∧ String(y)

∀x, y . night scene(x, y) ⊃ External(x) ∧ Boolean(y)

∀x, y . name(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . address(x, y) ⊃ Location(x) ∧ String(y)
∀x, y . description(x, y) ⊃ Location(x) ∧ Text(y)

∀x. Scene(x) ⊃ (1 ≤ !{y | codeScene (x, y)} ≤ 1)
· · ·

∀x, y . stp for scn(x, y) ⊃ Setup(x) ∧ Scene(y)
∀x, y . tk of stp(x, y) ⊃ Take(x) ∧ Setup(y)
∀x, y . located(x, y) ⊃ External(x) ∧ Location(y)

∀x. Setup(x) ⊃ 1 ≤ !{y | stp for scn(x, y)} ≤ 1
∀y . Scene(y) ⊃ 1 ≤ !{x | stp for scn(x, y)}
∀x. Take(x) ⊃ 1 ≤ !{y | tk of stp(x, y)} ≤ 1
∀x. Setup(y) ⊃ 1 ≤ !{x | tk of stp(x, y)}
∀x. External(x) ⊃ 1 ≤ !{y | located(x, y)} ≤ 1

∀x. Internal(x) ⊃ Scene(x)
∀x. External(x) ⊃ Scene(x)
∀x. Internal(x) ⊃ ¬External(x)
∀x. Scene(x) ⊃ Internal(x) ∨ External(x)

Association classes

Sometimes we may want to assert properties of associations. In UML to
do so we resort to Association Classes.

That is, we associate to an association a class whose instances are in
bijection with the tuples of the association.

Then we use the association class exactly as a UML class (modeling local
and non-local properties).



Association classes (cont.1)

Example:

Association classes (cont.2)

Example:



Association classes: formalization

CnC1

C2
...

A

The process of putting in correspondence objects of a class (the
association class) with tuples in an association is formally described as
reification.
That is:

! we introduce a unary predicate A for the association class A

! we introduce n new binary predicates r1, . . . , rn, one for each of the
components of the association

! we introduce suitable assertions so that objects in the extension of
unary-predicate A are in bijection with tuples in n-ary association A.

Association classes: formalization (cont.1)

CnC1

C2
...

A
rn

r2

r1

1..1 1..1

1..1

FOL Assertions needed for stating bijection between association class and
association:

∀x , y . ri (x , y) ⊃ A(x) ∧ Ci (y), for i = 1, . . . , n

∀x. A(x) ⊃ ∃y . ri (x , y), for i = 1, . . . , n

∀x , y , y ′. ri (x , y) ∧ ri (x , y ′) ⊃ y = y ′, for i = 1, . . . , n

∀y1, . . . , yn, x , x ′.
∧n

i=1(ri (x , yi ) ∧ ri (x ′, yi )) ⊃ x = x ′



Association classes: formalization (cont.2)

Example:

∀x , y . rw1(x , y) ⊃ written by(x) ∧ Book(y)
∀x , y . rw2(x , y) ⊃ written by(x) ∧ Author(y)

∀x. written by(x) ⊃ ∃y . rw1(x , y)
∀x. written by(x) ⊃ ∃y . rw2(x , y)
∀x , y , y ′. rw1(x , y) ∧ rw1(x , y ′) ⊃ y = y ′

∀x , y , y ′. rw2(x , y) ∧ rw2(x , y ′) ⊃ y = y ′

∀x , x ′, y1, y2. rw1(x , y1) ∧ rw1(x ′, y1) ∧ rw2(x , y2) ∧ rw2(x ′, y2) ⊃ x = x ′

Exercise

Write the diagram in FOL.



Exercise: solution

∀x, y . place(x, y) ⊃ Origin(x) ∧ String(x)
∀x. Origin(x) ⊃ 1 ≤ !{y | place(x, y)} ≤ 1

∀x, y . call(x, y)∧ ⊃ Origin(x) ∧ PhoneCall(y)
∀x, y . from(x, y) ⊃ Origin(x) ∧ Phone(y)
∀x. Origin(x) ⊃ ∃y . call(x, y)
∀x. Origin(x) ⊃ ∃y . from(x, y)
∀x, y, y′ . call(x, y) ∧ call(x, y′) ⊃ y = y′
∀x, y, y′ . from(x, y) ∧ from(x, y′) ⊃ y = y′
∀x, x′, y1, y2 . call(x, y1) ∧ call(x′, y1) ∧ from(x, y2) ∧ from(x′, y2) ⊃ x = x′
∀x. PhoneCall(x) ⊃ 1 ≤ !{z | call(z, x)} ≤ 1

∀x. MobileOrigin(x) ⊃ Origin(x)
∀x, y . MobileOrigin(x) ∧ call(x, y) ⊃ MobileCall(y)
∀x, y . MobileOrigin(x) ∧ from(x, y) ⊃ CellPhone(y)

∀x, y . reference(x, y) ⊃ PhoneBill(x) ∧ PhoneCall(y)
∀x. PhoneBill(x) ⊃ 1 ≤ !{y | reference(x, y)}
∀y . PhoneCall(y) ⊃ 1 ≤ !{x | reference(x, y)} ≤ 1

∀x. MobileCall(x) ⊃ PhoneCall(x)
∀x. CellPhone(x) ⊃ Phone(x)
∀x. FixedPhone(x) ⊃ Phone(x)
∀x. CellPhone(x) ⊃ ¬FixedPhone(x)
∀x. Phone(x) ⊃ CellPhone(x) ∨ FixedPhone(x)

Exercise: another solution

∀x, y . place(x, y) ⊃ Origin(x) ∧ String(x)
∀x. Origin(x) ⊃ 1 ≤ !{y | place(x, y)} ≤ 1

∀x, y . call(x, y)∧ ⊃ Origin(x) ∧ PhoneCall(y)
∀x, y . from(x, y) ⊃ Origin(x) ∧ Phone(y)
∀x. Origin(x) ⊃ ∃y . call(x, y)
∀x. Origin(x) ⊃ ∃y . from(x, y)
∀x, y, y′ . call(x, y) ∧ call(x, y′) ⊃ y = y′
∀x, y, y′ . from(x, y) ∧ from(x, y′) ⊃ y = y′
∀x, x′, y1, y2 . call(x, y1) ∧ call(x′, y1) ∧ from(x, y2) ∧ from(x′, y2) ⊃ x = x′
∀x. PhoneCall(x) ⊃ 1 ≤ !{z | call(z, x)} ≤ 1

∀x. MobileOrigin(x) ⊃ Origin(x)
∀x, y . callmo (x, y) ⊃ call(x, y)
∀x, y . frommo (x, y) ⊃ from(x, y)
∀x, y . callmo (x, y) ⊃ MobileOrigin(x) ∧ MobileCall(y)
∀x, y . frommo (x, y) ⊃ MobileOrigin(x) ∧ CellPhone(y)
∀x. MobileOrigin(x) ⊃ ∃y . callmo (x, y)
∀x. MobileOrigin(x) ⊃ ∃y . frommo (x, y)
∀x, y, y′ . callmo (x, y) ∧ callmo (x, y′) ⊃ y = y′ these are redundant
∀x, y, y′ . frommo (x, y) ∧ frommo (x, y′) ⊃ y = y′
∀x, x′, y1, y2 . callmo (x, y1) ∧ callmo (x′, y1) ∧ frommo (x, y2) ∧ frommo (x′, y2) ⊃ x = x′

∀x, y . reference(x, y) ⊃ PhoneBill(x) ∧ PhoneCall(y)
∀x. PhoneBill(x) ⊃ 1 ≤ !{y | reference(x, y)}
∀y . PhoneCall(x) ⊃ 1 ≤ !{x | reference(x, y)} ≤ 1

∀x. MobileCall(x) ⊃ PhoneCall(x)
∀x. CellPhone(x) ⊃ Phone(x)
∀x. FixedPhone(x) ⊃ Phone(x)
∀x. CellPhone(x) ⊃ ¬FixedPhone(x)
∀x. Phone(x) ⊃ CellPhone(x) ∨ FixedPhone(x)



Other constraints

UML allows for other forms of constraints, such as specifying class
identifiers, functional dependencies for associations, across ISA typing,
etc.
Example:
In our ”Phone Calls” example, we may want to add the following
constraints:

MobileCalls must have as Origin a CellPhone
CellPhones can be the Origin of MobilePhone only

We can express these in FOL:

∀x , y . MobileCall(xc) ∧ Origin(z) ∧ call(z , xc) ∧ from(z , xp) ⊃ CellPhone(xp)
∀x , y . CellPhone(xp) ∧ Origin(z) ∧ call(z , xc) ∧ from(z , xp) ⊃ MobileCall(xc)

Actually we can even express them by suitably modifying the diagram by
adding ad-hoc classes (loosing readability) – see later.

Other constraints (cont.)

! More generally, one can write full FOL assertions as constraints by
using the UML Object Constraint Language (OCL).

! However excessive use of OCL constraints is considered an indication
of bad design, since it moves the semantics from the diagram to the
OCL constraints, and this may compromise the understandability of
the diagram.

! From a formal point of view the use of OCL constraints makes
reasoning on a class diagram undecidable.

In this course, we do not deal with general OCL constraints.



Class Operations

Apart from attributes, classes may include operations.
An operation of a class is a function from the objects of the class to which the
operation is associated and possibly additional parameters, to objects or values.
An operation definition for a class C has the form

f (P1, . . . , Pm) : R

where f is the name of the operation, P1, . . . , Pm are the types of the m
parameters, and R is the type of the result.
Example:

Observe that only the signature (i.e., the name of the function and the number
and the types of parameters, where the object of invocation is an implicit
parameter) and the return type of the function is represented in UML, not the
actual definition.

Class Operations: formalization

Formally, such an operation corresponds to an (1 + m + 1)-ary predicate
fP1,...,Pm , in which the first argument represents the object of invocation, the
next m arguments represent the additional parameters, and the last argument
represents the result.
Observe that the name of the predicate depends on the whole signature, i.e., it
includes the types of the parameters.
The predicate fP1,...,Pm has to satisfy the following FOL assertions:

∀x , p1, . . . , pm, r . fP1,...,Pm (x , p1, . . . , pm, r) ⊃
Vm

i=1 Pi (pi )
∀x , p1, . . . , pm, r , r ′. fP1,...,Pm (x , p1, . . . , pm, r) ∧ fP1,...,Pm (x , p1, . . . , pm, r ′) ⊃ r = r ′

∀x , p1, . . . , pm, r . C(x) ∧ fP1,...,Pm (x , p1, . . . , pm, r) ⊃ R(r)



Class Operations: formalization

∀x , p, r . ageInteger (x , p, r) ⊃ Integer(p)
∀x , p, r , r ′. ageInteger (x , p, r) ∧ ageInteger (x , p, r ′) ⊃ r = r ′

∀x , p, r . Person(x) ∧ ageInteger (x , p, r) ⊃ Integer(r)

Class Operations: discussion

! UML allows for the overloading of operations, which takes place
between two or more functions having the same name but different
signatures.

! Overriding takes place when two operations have the same
signature, but behave in different ways. In UML class diagrams for
the conceptual perspective, where the bodies of operations are not
specified, overriding may only show up as a restriction on the type of
the result.

! The above formalization of operations correctly captures both
overloading and overriding.



Some common assumptions ...

! Sometimes, in UML class diagrams, it is assumed that all classes not
in the same hierarchy are a priori disjoint.

! Here we do not force this assumption; instead we allow two classes
to have common instances.

! When needed, disjointness can be enforced by means of explicit
disjointness constraints.

! Similarly, we do not assume that objects in a hierarchy must belong
to a single most specific class.

! Hence, two classes in a hierarchy may have common instances, even
when they do not have a common subclass.

! Again, when needed, suitable covering and disjointness assertions
that express the most specific class assumption can be added to a
class diagram.

Current CASE tools: no reasoning

The design of UML class diagrams modeling complex real world domains
is facilitated by automated CASE tools.

Currently, CASE tools support the designer with:

! user friendly graphical environment

! forms of syntax checking

! management of repositories of diagrams, generated code, etc.

But they offer no form of automated reasoning on the diagram.



Enhancing current CASE tools

The fact that UML class diagrams can be re-expressed in FOL allows for
building CASE tools that go far beyond the kind of support reported
above.

The designer can use the FOL formalization to formally check relevant
properties of class diagrams so as to assess the quality of the diagram
according to objective quality criteria.

Forms of reasoning: class consistency

A class is consistent, if the class diagram admits an instantiation in which
the class has a non-empty set of instances.
Intuitively, the class can be populated without violating the conditions
imposed by the class diagram.
The inconsistency of a class may be due to a design error or due to
over-constraining.
An inconsistent class weakens understandability of the diagram. It is an
indication of an error.
Once detected, the designer may remove the inconsistency by relaxing
some conditions, or by deleting the class.



Forms of reasoning: class consistency – formalization

Let Γ be the set of FOL assertions corresponding to the UML Class
Diagram, and C (x) the predicate corresponding to a class C of the
diagram.
Then C is consistent iff

Γ &|= ∀x. C (x) ⊃ false

i.e., there must exist a model of Γ were the extension of C (x) is not the
empty set.

Note: FOL reasoning task: logical implication

Example (by E. Franconi)

Γ |= ∀x . LatinLover(x) ⊃ false



Forms of reasoning: whole diagram consistency

A class diagram is consistent, if it admits an instantiation, i.e., if its
classes can be populated without violating any of the conditions imposed
by the diagram.
Note the empty extension for all classes is not considered an admissible
instantiation.
Then, the diagram is consistent if at least one of its classes admits a
nonempty extension.

When the diagram is not consistent, the definitions altogether are
contradictory, since they do not allow any class to be populated.

Forms of reasoning: whole diagram consistency –
formalization

Let Γ be the set of FOL assertions corresponding to the UML Class
Diagram.
Then, the diagram is consistent iff

Γ is satisfiable

i.e., Γ admits at least a model (remember that FOL models cannot be
empty).

Note: FOL reasoning task: satisfiability – reducible to logical implication:

Γ &|= false.



Forms of reasoning: class subsumption

A class C1 subsumes a class C2, if the class diagram implies that C1 is a
generalization of C2.
Note that this means that C2 inherits all properties of C1 (cf. ISA).

This suggests the possible omission of an explicit generalization.
Alternatively, if not all instances of the more specific class are supposed
to be instances of the more general class, then there is an error in the
diagram.

Note that class subsumption is also the basis for a classification of all the
classes in a diagram. Indeed a classification is obtained by checking
subsumption between all classes in the diagram.

Forms of reasoning: class subsumption – formalization

Let Γ be the set of FOL assertions corresponding to the UML Class
Diagram, and C1(x),C2(x) the predicates corresponding to the class
C1,C2 of the diagram.
Then C1 subsumes C2 (or C2 is subsumed by C1) iff

Γ |= ∀x. C2(x) ⊃ C1(x)

Note: FOL reasoning task: logical implication



Example

Γ |= ∀x. LatinLover(x) ⊃ false
Γ |= ∀x. Italian(x) ⊃ Lazy(x)

Another Example (by E. Franconi)

(reasoning by cases)

Γ |= ∀x. ItalianProf (x) ⊃ LatinLover(x)



Forms of reasoning: class equivalence

Two classes are equivalent if they denote the same set of instances
whenever the conditions imposed by the class diagram are satisfied.
In other words the two classes subsume each other.

If two classes are equivalent then one of them is redundant.

Determining equivalence of two classes allows for their merging, thus
reducing the complexity of the diagram.

Example

Γ |= ∀x. LatinLover(x) ⊃ false
Γ |= ∀x. Italian(x) ⊃ Lazy(x)
Γ |= ∀x. Lazy(x) ≡ Italian(x)



Forms of reasoning: refinements of properties

The properties of various classes and associations may interact to yield
stricter multiplicities or typing than those explicitly specified in the
diagram.

Detecting such cases allows the designer for refining the class diagram by
making such properties explicit, thus enhancing the readability of the
diagram.

Example

∀xc . MobileCall(xc) ⊃ !{z | MobileOrigin(z) ∧ call(z , xc)} ≤ 1



Forms of reasoning: implicit consequence

More generally ...
A property P is an (implicit) consequence of a class diagram if P holds
whenever all conditions imposed by the diagram are satisfied.

Determining implicit consequences is useful:

! to reduce the complexity of the diagram by removing those parts
that implicitly follow from other ones

! to make properties explicit, for enhancing readability.

Note that all the above reasoning tasks can be seen as special cases of
implicit consequences!!!

Forms of reasoning: implicit consequence

Let Γ be the set of FOL assertions corresponding to the UML Class
Diagram, and P (the formalization in FOL of) the property of interest
Then P is an implicit consequence iff

Γ |= P

i.e., the property P holds in every model of Γ.

Note: FOL reasoning task: logical implication



Exercise

Exercise

Which implicit consequences hold?



Exercise: solution

Γ |= ∀x. CellPhone(x) ⊃ false
Γ |= ∀x. MobileOrigin(x) ⊃ false
Γ |= ∀x. Phone(x) ⊃ FixedPhone(x)
Γ |= ∀x. Phone(x) ≡ FixedPhone(x)

Exercise: solution

+ additional constraint
∀x , y . MobileCall(xc) ∧ Origin(z) ∧ call(z , xc) ∧ from(z , xp) ⊃
CellPhone(xp)

Γ |= ∀x. CellPhone(x) ⊃ false
Γ |= ∀x. MobileOrigin(x) ⊃ false
Γ |= ∀x. Phone(x) ⊃ FixedPhone(x)
Γ |= ∀x. Phone(x) ≡ FixedPhone(x)
Γ |= ∀x. MobileCall(x) ⊃ false



Unrestricted vs. finite model reasoning

The classes NaturalNumber and EvenNumber are in bijection.
this implies: “the classes NaturalNumber and EvenNumber contains the
same number of objects”

Unrestricted vs. finite model reasoning (cont.)

! If the domain is finite then:

∀x. NaturalNumber(x) ⊃ EvenNumber(x)

! if the domain is infinite we do not get the subsumption!

Finite model reasoning: look only at models with finite domains (very
interesting for Databases).

In UML Class Diagrams finite model reasoning is different form
unrestricted reasoning.



Main questions

The examples of reasoning we have seen could be easily carried out on
intuitive grounds.

More importantly, since they correspond to logical reasoning tasks on the
FOL theory corresponding to an UML Class Diagram they can be
formalized and formally verified.

Two main question remain open ...

Main questions (cont.)

...

! Can we develop sound, complete, and terminating reasoning
procedures for reasoning on UML Class Diagrams?
To answer this question we will look at Description Logics and show
that reasoning on UML Class Diagrams can be done in EXPTIME
(and actually carried out by current DLs-based systems such as
FACT++, PELLET or RACER-PRO).

! How hard is it to reason on UML Class Diagrams in general?
We will show that reasoning on UML Class Diagrams is in fact
EXPTIME-hard!
This is somewhat surprising, since UML Class Diagrams are so
widely used and yet reasoning on them (and hence fully understand
the implication the may give rise to) is not easy at all in general.

Note that these results hold for Entity-Relationship Schemas as well!!!


