Metodi Formali per il Software e i Servizi
FOL & Conjunctive Queries

Giuseppe De Giacomo

Sapienza Universita di Roma
Laurea Magistrale in Ingegneria Informatica

2008/09
FOL syntax — Terms
We first introduce:
> Aset Vars = {xq,...,x,} of individual variables (i.e., variables that

denote single objects).

> A set of functions symbols, each of given arity > 0.
Functions of arity 0 are called constants.

Def.: The set of Terms is defined inductively as follows:

» Vars C Terms;

> If t1,...,tx € Terms and ¥ is a k-ary function symbol, then
fh(t, ..., tx) € Terms;

» Nothing else is in Terms.

First-order logic

» First-order logic (FOL) is the logic to speak about objects, which are
the domain of discourse or universe.

» FOL is concerned about properties of these objects and relations
over objects (resp., unary and n-ary predicates).

» FOL also has functions including constants that denote objects.

FOL syntax — Formulas

Def.: The set of Formulas is defined inductively as follows:

> If t1,...,tx € Terms and P¥ is a k-ary predicate, then
Pk(ty,...,tx) € Formulas (atomic formulas).

> If t1,t, € Terms, then t; = t, € Formulas.
> If ¢ € Formulas and ¢ € Formulas then

> —p € Formulas

@ A € Formulas
@ V1 € Formulas
@ — 1 € Formulas

vyvYyyYy

> If ¢ € Formulas and x € Vars then

> dx.p € Formulas
> Vx.p € Formulas

» Nothing else is in Formulas.

Note: a predicate of arity 0 is a proposition of propositional logic.

Interpretations

Given an alphabet of predicates P, P»,... and functions f;, f, ..., each
with an associated arity, a FOL interpretation is:

IT= (A% PEPE,. L6,

where:
» AT is the domain (a set of objects)
» if P;is a k-ary predicate, then P C AT x ... x AT (k times)
» if f; is a k-ary function, then fZ : AT x --- x AT — A7 (k times)
» if f; is a constant (i.e., a O-ary function), then fZ : () — A%
(i.e., f; denotes exactly one object of the domain)

Truth in an interpretation wrt an assignment

We define when a FOL formula ¢ is true in an interpretation Z wrt an
assignment «, written 7, o |= ¢

> T,a = P(ty,...,t) if (&(tr),...,4&(t)) € PT
T,aEti=t if &(t1) = &(ta)

T,aE-¢ ifZalEe

TaEeNYy ifZ,aEpandZ,aEY

T,aEeVy fLaEpo I ,akEy

T,aEe—v ifZ,akpimpliesZ,a =¢

Z,a | 3x.p if for some a € AT we have 7, a[x — a] | ¢

vV vV vV VvV vV VY

T,a = Vx.p if for every a € AT we have Z,a[x — a] &= ¢

Here, a[x — a] stands for the new assignment obtained from « as
follows:

afx — al(x)=a

afx — a)(y) = aly) fory #x

Assignment

Let Vars be a set of (individual) variables.

Def.: Given an interpretation Z, an assignment is a function

a: Vars —s AT

that assigns to each variable x € Vars an object a(x) € AZ.

It is convenient to extend the notion of assignment to terms. We can do
so by defining a function & : Terms — AZ inductively as follows:

> &(x) = a(x), if x € Vars
> OA[(f(tl, ey tk)) = f'—l'(é\é(tl)7 .. .,d(tk))

Note: for constants &(c) = cZ.

Open vs. closed formulas

Definitions
> A variable x in a formula ¢ is free if x does not occur in the scope
of any quantifier, otherwise it is bounded.
» An open formula is a formula that has some free variable.

» A closed formula, also called sentence, is a formula that has no free
variables.

For closed formulas (but not for open formulas) we can define what it
means to be true in an interpretation, written Z |= ¢, without mentioning
the assignment, since the assignment « does not play any role in
verifying Z, o = .

Instead, open formulas are strongly related to queries — cf. relational
databases.

FOL queries

Def.: A FOL query is an (open) FOL formula.

When ¢ is a FOL query with free variables (xi, ..., xk), then we
sometimes write it as ¢(x1, ..., xk), and say that ¢ has arity k.

Given an interpretation Z, we are interested in those assignments that
map the variables xq, ..., xx (and only those). We write an assignment «
stt. a(x;) =a;, for i =1,...,k, as (ay,..., ax).
Def.: Given an interpretation Z, the answer to a query
({)(Xl, cee 7Xk) is

(p(Xl,.. . ,Xk)z = {(31,...,3;() | Z, <al,...,ak> ': SD(le-'- ,Xk)}
Note: We will also use the notation npz, which keeps the free variables

implicit, and ¢(Z) making apparent that ¢ becomes a functions from
interpretations to set of tuples.

FOL formulas: logical tasks

Definitions
» Validity: @ is valid iff for all Z and o we have that Z, o = .

» Satisfiability: ¢ is satisfiable iff there exists an Z and « such that
Z,a = ¢, and unsatisfiable otherwise.

» Logical implication: ¢ logically implies 1, written ¢ = v iff for all Z
and o, if Z,a = p then T, a0 E 9.

» Logical equivalence: ¢ is logically equivalent to ¢, iff for all Z and
a, we have that Z,a = ¢ iff Z,a = ¢ (e, ¢ =¥ and ¢ =).

FOL boolean queries

Def.: A FOL boolean query is a FOL query without free
variables.

Hence, the answer to a boolean query ¢() is defined as follows:

207 ={01Z.0 F «0}

Such an answer is

» (), fIkEy
> 0, ifZ e
As an obvious convention we read () as “true” and () as “false”.

FOL queries — Logical tasks

» Validity: if ¢ is valid, then ©? = AT x ... x A for all Z, i.e., the
query always returns all the tuples of 7.

» Satisfiability: if ¢ is satisfiable, then ©” # () for some Z, i.e., the
query returns at least one tuple.

» Logical implication: if ¢ logically implies 9, then @? C 47 for all Z,
written ¢ C 1), i.e., the answer to ¢ is contained in that of ¥ in
every interpretation. This is called query containment.

> Logical equivalence: if ¢ is logically equivalent to ¢, then p? = o7
for all Z, written ¢ = 1), i.e., the answer to the two queries is the
same in every interpretation. This is called query equivalence and
corresponds to query containment in both directions.

Note: These definitions can be extended to the case where we have
axioms, i.e., constraints on the admissible interpretations.

Query evaluation

Let us consider:
> a finite alphabet, i.e., we have a finite number of predicates and
functions, and

> a finite interpretation Z, i.e., an interpretation (over the finite
alphabet) for which AZ is finite.

Then we can consider query evaluation as an algorithmic problem, and
study its computational properties.

Note: To study the computational complexity of the problem, we need to
define a corresponding decision problem.

Query evaluation algorithm

We define now an algorithm that computes the function Truth(Z, «,)
in such a way that Truth(Z, o, p) = true iff Z,a | .

We make use of an auxiliary function TermEval(Z, o, t) that, given an
interpretation 7 and an assignment «, evaluates a term t returning an
object 0 € AZ:

AT TermEval(Z,a,t) {
if (t is x € Vars)
return a(x);
if (t is f(t.1,...,t_k))
return fZ(TermEval(Z,a,t.1),...,TermEval(Z,a,t k));

Then, Truth(Z, «,) can be defined by structural recursion on .

Query evaluation problem

Definitions

» Query answering problem: given a finite interpretation Z and a FOL
query o(xi, ..., Xk), compute

of ={(a1,...,aK) | T,{a1,...,ak) = o(x1, ..., %)}

> Recognition problem (for query answering): given a finite
interpretation Z, a FOL query ¢(xi, ..., xk), and a tuple (a1,. .., ax),
with a; € AT, check whether (a1, ...,ax) € ¢Z, i.e., whether

I, <31,...,ak> |:<p(X1,...,Xk)

Note: The recognition problem for query answering is the decision
problem corresponding to the query answering problem.

Query evaluation algorithm (cont’d)

boolean Truth(Z,a,p) {

if (¢ is t.1=12)

return TermEval(Z,a,t.1) = TermEval(Z,a,t 2);
if (¢ is P(t1,...,t_k))

return PZ (TermEval (Z,a,t1),..., TermEval(Z,«,t_k));
if (¢ is =)

return —Truth(Z,a,);
if (p is Yo’

return Truth(Z,c,v) o Truth(Z,a,’);
if (¢ is Ixp) {

boolean b = false;

for all (a € AT)

b =b V Truth(Z,ax — a],¢);
return b;

}

if (¢ is Vx.p) {
boolean b = true;
for all (a € AT)

b =b A Truth(Z,a[x — a],9¥);

return b;

}

}

Query evaluation — Results

Theorem (Termination of Truth(Z, a, ¢))
The algorithm Truth terminates.

Proof. Immediate. O

Theorem (Correctness)

The algorithm Truth is sound and complete, i.e., T,a |= ¢ if and only if
Truth(Z, o,) = true.

Proof. Easy, since the algorithm is very close to the semantic definition
of Z,a = o. O

Query evaluation — Time complexity |

» Truth(...) for the quantified cases Ix.¢ and Vx.t involves looping
for all elements in AT and testing the resulting assignments.

» The total number of such testings is O(|Z]*"2").

Hence the claim holds. O

Query

evaluation — Time complexity |

Theorem (Time complexity of Truth(Z, a, ¢))
The time complexity of Truth(Z, c,) is (|| + |a| + o)), ie.,
polynomial in the size of T and exponential in the size of .

Proof.

>

fZ (of arity k) can be represented as k-dimensional array, hence
accessing the required element can be done in time linear in |Z].

TermEval(...) visits the term, so it generates a polynomial number
of recursive calls, hence is time polynomial in (|Z| + |a| + |]).

PZ (of arity k) can be represented as k-dimensional boolean array,
hence accessing the required element can be done in time linear in
1z

Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls.

Query evaluation — Space complexity |

Theorem (Space complexity of Truth(Z, a, ¢))

The space complexity of Truth(Z, «, @) is || - (|¢| - log |Z

), i.e.,

logarithmic in the size of T and polynomial in the size of .
Proof.

>

fZ(...) can be represented as k-dimensional array, hence accessing
the required element requires O(log |Z]);
TermEval(...) simply visits the term, so it generates a polynomial

number of recursive calls. Each activation record has a constant
size, and we need O(|p|) activation records;

PZ(...) can be represented as k-dimensional boolean array, hence
accessing the required element requires O(log |Z|);

Truth(...) for the boolean cases simply visits the formula, so
generates either one or two recursive calls, each requiring constant
size;

Truth(...) for the quantified cases 3x.p and Vx.1) involves looping
for all elements in AT and testing the resulting assignments;

Query evaluation — Space complexity |l Query evaluation — Complexity measures [Var82]

Definition (Combined complexity)

» The total number of activation records that need to be at the same The combined complexity is the complexity of {(Z,c,) |7, = ¢},
time on the stack is O(fVars) < O(|¢|). i.e., interpretation, tuple, and query are all considered part of the input.
Hence the claim holds. O

Definition (Data complexity)

The data complexity is the complexity of {(Z,«) | Z, o = ¢}, i.e., the
query ¢ is fixed (and hence not considered part of the input).

Note: the worst case form for the formula is

Vx1.3x0. -+ Vxp—1.3X0- P(X1, X2, + + + 3 Xn—15 Xn)-
Definition (Query complexity)
The query complexity is the complexity of {(a,) |Z ., =}, i.e., the
interpretation Z is fixed (and hence not considered part of the input).
Query evaluation — Combined, data, query complexity Conjunctive queries (CQs)

Theorem (Combined complexity of query evaluation)
The complexity of {(Z,a,¢) | I, o |= ¢} is:

> time: exponential 3y.conj(X,y)
> space: PSPACE-complete — see [Var82] for hardness

Def.: A conjunctive query (CQ) is a FOL query of the form

where conj(X,) is a conjunction (i.e., an “and”) of atoms and
Theorem (Data complexity of query evaluation) equalities, over the free variables X, the existentially quantified

The complexity of {(Z,a) |T ,o = ¢} is: variables ¥, and possibly constants.

» time: polynomial

» space: LOGSPACE Note:
. . » CQs contain no disjunction, no negation, no universal quantification,
Theorem (Query complexity of query evaluatlon) and no function symbols besides constants.
The complexity of {{a, @) [T, [= ¢} is: » Hence, they correspond to relational algebra select-project-join
> time: exponential (SPJ) queries.

» space: PSPACE-complete — see [Var82] for hardness » CQs are the most frequently asked queries.

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person, city), Manages(boss,employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city

Expressed as a CQ:

3b, e, p1, c1, p2, c2.Person(n, a) A Manages(b, e) A Lives(pl, c1) A Lives(p2, c2) A

n=pl AN n=e AN b=p2 N cl=c2

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss = L2.person AND Lil.city = L2.city

Conjunctive queries and SQL — Example

Relational alphabet:
Person(name, age), Lives(person,city), Manages(boss, employee)

Query: return name and age of all persons that live in the same city as
their boss.

Expressed in SQL:

SELECT P.name, P.age

FROM Person P, Manages M, Lives L1, Lives L2

WHERE P.name = Ll.person AND P.name = M.employee AND
M.boss = L2.person AND Ll.city = L2.city

Expressed as a CQ:

3b, e, p1, 1, p2, c2.Person(n, a) A Manages(b, e) A Lives(pl, c1) A Lives(p2, c2) A

n=pl AN n=e AN b=p2 N cl=c2
Or simpler: 3b, c.Person(n, a) A Manages(b, n) A Lives(n, c) A Lives(b, c)

Datalog notation for CQs Conjunctive queries — Example

A CQ g = Fy.conj(X,¥) can also be written using datalog notation as
» Consider an interpretation Z = (AZ, ET), where EZ is a binary
relation — note that such interpretation is a (directed) graph.

where conj’(X1, ¥1) is the list of atoms in conj(X, ¥) obtained by equating » The following CQ q returns all nodes that participate to a triangle in
the variables X, ¥ according to the equalities in conj(X, ¥). the graph:

q(x1) «— CO”J'/(YLYl)

dy,z.E(x,y) N E(y,z) N E(z,
As a result of such an equality elimination, we have that X; and y; can y,2:E(x.y) (v:2) (2,%)

contain constants and multiple occurrences of the same variable. » The query g in datalog notation becomes:

— E(x,y),E(y, z), E(z,
Def.: In the above query g, we call: () (y). Ely. 2). E(z.x)

> g(%) the head; > The query g in SQL is (we use Edge (f,s) for E(x,y):

> con"(f(' o) the body: SELECT E1.f
U Y FROM Edge E1, Edge E2, Edge E3
> the variables in)_(']_ the distinguished variables; WHERE El1.s = E2.f AND E2.s = E3.f AND E3.s = E1.f
» the variables in yj the non-distinguished variables.
Nondeterministic evaluation of CQs Nondeterministic CQ evaluation algorithm

Sir'lce a CQ contains only existential quantifications, we can evaluate it boolean Truth(Z,a,p) {

by: if (p is t1=12)
1. guessing a truth assignment for the non-distinguished variables; return TermEval (Z,a,t.1) = TermEval(Z,«a,t2);
2. evaluating the resulting formula (that has no quantifications). if (p is P(t1,...,t-k))

return PZ(TermEval(Z,a,t.1),...,TermEval(Z,a,t k));
if (p is Y AY)

boolean ConjTruth(Z,«,3y.conj(X,¥)) { return Truth(Z,a,y) A Truth(Z,a,9');

GUESS assignment «afy — 3] { }
return Truth(Z,«[y — 3], conj(X,¥));
} AT TermEval(Z,a,t) {
if (t is a variable x) return a(x);
where Truth(Z, «, ¢) is defined as for FOL queries, considering only the if (t is a comstant ¢) return cZ;

required cases. ¥

CQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of CQ evaluation)
{{Z,0,q) | Z,a |= q} is NP-complete — see below for hardness
> time: exponential
> space: polynomial
Theorem (Data complexity of CQ evaluation)
{(Z,a) |T ,a = q} is LocSpPACE
» time: polynomial
» space: logarithmic
Theorem (Query complexity of CQ evaluation)
{{a,q) | Z,a |= q} is NP-complete — see below for hardness

> time: exponential
» space: polynomial

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

We exploit 3-colorability to show NP-hardness of conjunctive query
evaluation.

3-colorability

A graph is k-colorable if it is possible to assign to each node one of k
colors in such a way that every two nodes connected by an edge have
different colors.

Def.: 3-colorability is the following decision problem
Given a graph G = (V, E), is it 3-colorable?

Theorem
3-colorability is NP-complete.

Reduction from 3-colorability to CQ evaluation

Let G = (V, E) be a graph. We define:
» An Interpretation: T = (AT, ET) where:
- AT = {r7 g, b}
> E7 = {(r,8), (&), (r,b), (b,r), (g, b), (b, &)}
» A conjunctive query: Let V = {x1,...,x,}, then consider the
boolean conjunctive query defined as:

gc = Ixi, ..., Xn- /\ E(xi, x;) N E(xj, xi)
(xi,x)EE

Theorem
G is 3-colorable iff T |= qg.

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Homomorphism

Let Z = (AT, PT,....cT,..)and T = (A7, P7,...,c7,...) be two
interpretations over the same alphabet (for simplicity, we consider only
constants as functions).

Def.: A homomorphism from 7 to J
is a mapping h: AT — A7 such that:
» h(ct) = 7
» h(P%(ay,...,ax)) = P7(h(a1),...,h(ak))

Note: An isomorphism is a homomorphism that is one-to-one and onto.

Theorem

FOL is unable to distinguish between interpretations that are isomorphic.

Proof. See any standard book on logic. [

NP-hardness of CQ evaluation

The previous reduction immediately gives us the hardness for combined
complexity.

Theorem
CQ evaluation is NP-hard in combined complexity.

Note: in the previous reduction, the interpretation does not depend on
the actual graph. Hence, the reduction provides also the lower-bound for
query complexity.

Theorem
CQ evaluation is NP-hard in query (and combined) complexity.

Recognition problem and boolean query evaluation

Consider the recognition problem associated to the evaluation of a query
q of arity k. Then

I,a = q(xa, ...y xk) iff TozE=qlc,. .. o)

where T, z is identical to Z but includes new constants ci, ..., ck that
. Loz
are interpreted as ¢; “° = a(x;).

That is, we can reduce the recognition problem to the evaluation of a
boolean query.

Canonical interpretation of a (boolean) CQ

Let g be a conjunctive query Jxi, ..., x,.conj

Def.: The canonical interpretation Z, associated with g

is the interpretation Z, = (A%e, PZa, ... c%a ...), where
» Aa={x;,...,x,} U{ c| c constant occurring in g},
i.e., all the variables and constants in g;
» cZa = ¢, for each constant c in g;
> (t1,...,tx) € PTa iff the atom P(ti,. .., tx) occurs in q.

Sometimes the procedure for obtaining the canonical interpretation is
called freezing of gq.

Canonical interpretation and (boolean) CQ evaluation

Theorem ([CM77])
For boolean CQs, I = q iff there exists a homomorphism from Z, to T.

Proof.

“=" Let Z |= q, let a be an assignment to the existential variables that
makes q true in Z, and let & be its extension to constants. Then & is a
homomorphism from Z, to 7.

“ "

«" Let h be a homomorphism from Z, to Z. Then restricting h to the
variables only we obtain an assignment to the existential variables that
makes q true in Z. O

Canonical interpretation of a (boolean) CQ — Example

Consider the boolean query g

a(c) — E(c.y). E(y.2), E(z.<)

Then, the canonical interpretation Zg is defined as
Iy = (A0, E%e, cT)

where
» Ale = {y,z,c}
> E% = {(c,y),(y,2):(2,0)}

» cli=c

Canonical interpretation and (boolean) CQ evaluation

The previous result can be rephrased as follows:

(The recognition problem associated to) query evaluation can be reduced
to finding a homomorphism.

Finding a homomorphism between two interpretations (aka relational
structures) is also known as solving a Constraint Satisfaction Problem
(CSP), a problem well-studied in Al — see also [KV98].

Query containment

Def.: Query containment
Given two FOL queries ¢ and v of the same arity, o is contained in),
denoted ¢ C 1), if for all interpretations Z and all assignments o we have
that

I,alE ¢ implies Z,a k=

(In logical terms: ¢ = 1).)

Note: Query containment is of special interest in query optimization.

Query containment for CQs

For CQs, query containment g;(X) C g»(X) can be reduced to query
evaluation.

1. Freeze the free variables, i.e., consider them as constants.
This is possible, since ¢1(X) C go(X) iff
» T,a = qi(X) implies Z, « |= q2(X), for all Z and «; or equivalently
> Toz = qi(C) implies Zy 2 = q2(€), for all Z,, 2z, where € are new
constants, and 7, z extends 7 to the new constants with

ctar = a(x).

2. Construct the canonical interpretation Zg,) of the CQ g1(c) on the
left hand side . ..

3. ...and evaluate on Z (¢ the CQ g2(C) on the right hand side,
i.e., check whether 7, (&) = g2(¢).

Query containment

Def.: Query containment

Given two FOL queries ¢ and v of the same arity, o is contained in v,
denoted ¢ C 1), if for all interpretations Z and all assignments o we have
that

I,akE ¢ implies Z,alE=v

(In logical terms: ¢ = 1.)

Note: Query containment is of special interest in query optimization.

Theorem
For FOL queries, query containment is undecidable.

Proof.: Reduction from FOL logical implication. [

Reducing containment of CQs to CQ evaluation

Theorem ([CM77])
For CQs, q1(X) C q2(X) iff Ty, (2) = 92(C), where C are new constants.

Proof.
“=" Assume that q:1(X) C g2(X).

> Since Zg, (¢ = q1(C) it follows that Zg, (&) = ¢2(C).
“<" Assume that 7,) = 92(C).

> By [CM77] on hom., for every 7 such that Z = qi(C) there exists a
homomorphism h from 7,z to 7.

> On the other hand, since 7,) = 92(€), again by [CM77] on hom., there
exists a homomorphism h' from 7,z to Z, ().

> The mapping ho h’ (obtained by composing h and h') is a homomorphism
from Z,,(¢) to Z. Hence, once again by [CM77] on hom., T |= g»(C).

So we can conclude that q1(¢) C g2(¢), and hence qi1(X) C q2(X). O

Query containment for CQs

For CQs, we also have that (boolean) query evaluation Z |= g can be
reduced to query containment.

Let Z = (AT, PT ... cT ...
We construct the (boolean) CQ g7 as follows:
» gz has no existential variables (hence no variables at all);
> the constants in gz are the elements of AT
» for each relation P interpreted in Z and for each fact
(a1,...,ak) € P%, gr contains one atom P(ay, ..., ax) (note that
each a; € AT is a constant in gz).

Theorem
For CQs, I \=q iff g7 C q.

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Since CQ evaluation is NP-complete even in query complexity, the above
result can be strengthened:

Theorem
Containment q1(X) C g2(X) of CQs is NP-complete, even when q; is
considered fixed.

Query containment for CQs — Complexity

From the previous results and NP-completenss of combined complexity of
CQ evaluation, we immediately get:

Theorem
Containment of CQs is NP-complete.

Union of conjunctive queries (UCQs)

Def.: A union of conjunctive queries (UCQ) is a FOL query of
the form
\/ Wi.conj;(%, 7)
i=1,...,n

where each conj;(X, ¥;) is a conjunction of atoms and equalities with free
variables X and y;, and possibly constants.

Note: Obviously, each conjunctive query is also a of union of conjunctive
queries.

Datalog notation for UCQs

A union of conjunctive queries
g = \/ Ficonj(z.7)
i=1,...,n
is written in datalog notation as
{ a(x) « conjy(%,y")

q(X) «— conjp(X.v') }

where each element of the set is the datalog expression corresponding to
the conjunctive query g; = 3y;.conj;(X, y;).

Note: in general, we omit the set brackets.

UCQ evaluation — Combined, data, and query complexity

Theorem (Combined complexity of UCQ evaluation)
{{Z,0,q) | Z,a = q} is NP-complete.
> time: exponential
> space: polynomial
Theorem (Data complexity of UCQ evaluation)
{{Z,q) |T,a = q} is LocSpacE-complete (query q fixed).
» time: polynomial
» space: logarithmic
Theorem (Query complexity of UCQ evaluation)
{{a,q) | Z, = q} is NP-complete (interpretation T fixed).

> time: exponential
> space: polynomial

Evaluation of UCQs

From the definition of FOL query we have that:

Lok \/ 3iconjj(%7)

i=1,...,n

if and only if

I, | 3Fyi.conji(X,¥i) for some i € {1,...,n}.
Hence to evaluate a UCQ g, we simply evaluate a number (linear in the
size of q) of conjunctive queries in isolation.

Hence, evaluating UCQs has the same complexity as evaluating CQs.

Query containment for UCQs

Theorem

For UCQs, {q1,...,qc} € {qi,...,q,} iff foreach g; there is a qj’- such
that q; C q;.

Proof.
“<" QObvious.
“=" |f the containment holds, then we have

» Now consider 7, (z). We have 7, ¢ = gi(¢), and hence
Iq;(?:‘)): {ql(g)v ERRE qk(‘?)}

» By the containment, we have that 7, ¢ |= {q{(¢)....,q,(c)}. le,
there exists a ¢;(c) such that 7,z = gj(¢).

» Hence, by [CM77] on containment of CQs, we have that q; C qu.
O

Query containment for UCQs — Complexity

From the previous result, we have that we can check
{g1,...,qc} € {qy,....q,} by at most k - n CQ containment checks.

We immediately get:

Theorem
Containment of UCQs is NP-complete.

References

[CM77] A. K. Chandra and P. M. Merlin.
Optimal implementation of conjunctive queries in relational data bases.

In Proc. of the 9th ACM Symp. on Theory of Computing (STOC'77), pages
77-90, 1977.

[KV98] P. G. Kolaitis and M. Y. Vardi.
Conjunctive-query containment and constraint satisfaction.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS’'98), pages 205-213, 1998.

[Var82] M. Y. Vardi.
The complexity of relational query languages.

In Proc. of the 14th ACM SIGACT Symp. on Theory of Computing
(STOC’82), pages 137-146, 1982.

