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Abstract

We report the analytical study of a constrained optimization problem which consists in
finding the minimal value of the largest entry of a vector d in R°, with constraints involving
the entries sum and the squared entries sum. The solution of the problem studied in this
paper provides the proof of a property needed to determine the admissible protocols of the
radiotherapy scheduling optimization problem presented in [1], that includes constraints lim-
iting the radiation damages to normal tissues. In particular, we find the minimal value of the
maximal dose fraction of the protocols producing the maximal tolerable damage to both early
and late responding tissues when there is not a prevalent normal tissue constraint. Then, we
extend the property to all the protocols producing the maximal damage to the late responding
tissue only.
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1 Introduction

We address a rather general optimization problem arisen from the radiotherapy scheduling
optimization reported in [1], which consists in determining the fractionated radiotherapy scheme
that maximizes the overall tumour damage, keeping the damages to normal tissues, as well as the
size of the daily dose fraction, within given admissible levels. In [1], some geometrical properties
of the admissible domain, dependent on normal tissue parameter values, are also highlighted, in
order to determine how the optimal solution changes when the normal tissue parameters change.
The geometric characterization of the domain is shown in Table 2 of [1], while the details of the
proof are reported in Appendix A of the same paper. In this report, we study an optimization
problem that proves a property of the points of the admissible domain, in case of absence of
a prevalent normal tissue constraint. In particular we determine the minimum value of the
maximal entry of a 5-dimensional vector d belonging to the intersection between the boundaries
of the normal tissue constrains. Then, we consider a second optimization problem and we extend
the previous result to all the points belonging to the boundary of the “late” constraint satisfying
also the “early” constraint. The study of the last problem proves Theorem 5.3 in [1]. Both the
optimization problems are formulated as non-linear programming problems.

2 Minimum value of the maximal entry of vectors with fixed
entries sum and fixed squared entries sum

In [1] the constraints on the admissible damage to normal tissues are given by

5 5
ge(d) =pe Y dp+ > df — ke <0, (2.1)
k=1 k=1
5 5
g(d)=p Y di+ Y di —k <0, (2.2)
k=1 k=1

where pe, p; are the radiosensitivity parameter ratios and k., k; are the maximal weekly damages
of the “early” and “late” responding tissues respectively. In [1] it is also proved that points
belonging to the intersections between the boundaries of normal tissue constrains, i.e. points
satisfying g.(d) = ¢g;(d) = 0, d > 0, are such that

5

ke — k ki — pike S?
S dy = L_g, Zdi:wz‘i, A, >0, k=1,....5,  (2.3)
1 Pe — Pl v

where k. — k; > 0, pck; — pike > 0 and v € [1,5] (see Table 2 of [1] in absence of a prevalent
constraint). Then, we formulate the constrained non-linear programming problem of finding the
minimum value of the maximal entry of vectors d having fixed entries sum and fixed squared
entries sum, according to (2.3). The admissible domain is the intersection between a hyperplane
and a hypersphere in the region d > 0 of R® and, because of their symmetry with respect to the
half-line {ds = d4y = d3 = d2 = d; > 0}, we can choose an ordering of the entries of d without
loss of generality. In particular, we choose the ordering ds > dy > ds > do > d; > 0, leading to
the following problem formulation.



Problem 2.1 Minimize the function:
J(d) = ds, (2.4)

on the admissible set:
5 5 5,2
D={deR| Y dp=S5, Zcﬂ:?, ds > dy > ds > dy > dy >0}, (2.5)
k=1 k=1

Firstly, we note that D is non-empty as v € [1,5] (see Appendix A in [1]). Secondly, Problem
2.1 certainly admits optimal solutions. Indeed, the admissible set (2.5) is compact and the cost
function (2.4) is continuous on it, so that the Weierstrass theorem [2] guarantees the existence of
optimal solutions. Moreover, it is evident that the Problem 2.1 is not convex so that we can only
use the optimal necessary conditions provided by the Kuhn Tucker Theorem [2]. The Lagrangian
function associated to the problem is

5 5 4
SQ
L(d7)‘OaA57>‘qul):>\0d5+>\s(E dk—S>+Aq<§ di-y) —771d1+§ et (A —digr) ,  (2.6)
k=1

k=1 k=1

where Ao, As,\; are scalar multipliers and 7 is the 5-dimensional vector of multipliers n, k =
1,...,5, related to the inequality constraints.
Let us now write the necessary and admissibility conditions

gde = N +20dk — e+ M1 =0,  k=1,....4, (2.7)
gdLS = XM+ As+20\ds5 —15=0, (2.8)
mdr = 0, (2.9)
Me(dp—1 —dp) = 0, k=2,...,5, (2.10)

ddp = 8, (2.11)

k=1
idi = SUZ (2.12)
k=1
mw > 0, k=1,...,5, (2.13)
X > 0, (2.14)

with Ao, As, Ag,n never simultaneously equal to zero.

The vectors d and the related multipliers Ao, As, Aq,n that satisfy the system (2.7)-(2.14)
are the extremals of Problem 2.1, that is all the possible candidates to the optimal solution. In
particular, vectors d satisfying Eqs.(2.7)-(2.14) with A\g = 0 are called ‘abnormal’ extremals, while
vectors d satisfing Eqgs.(2.7)-(2.14) with A\ # 0 are called ‘normal’ extremals.



oL
Taking into account Egs. (2.9)-(2.12), let us multiply each equation Y 0in (2.7)-(2.8) by
k

the corresponding di,, k =1,...,5 adding the obtained equations. We get the relation

SQ
Nods + s + 20,7 =0, (2.15)

directly linking the multipliers Ag, As, Aq, which turns out to be useful in the next sections where
we separately study the cases A\g = 0 and Ay # 0.

2.1 Existence and structure of abnormal extremals

By definition, the abnormal extremals satisfy the necessary and admissibility conditions with

Ao = 0. Then Eq. (2.15) becomes

Ay = —2)\q% (2.16)

so that, (as S/v > 0), only the following alternatives for the sign of A\ and \; are possible:

1) A=0,)=0,
2) A <0,);>0, (2.17)
3) As>0,),<0,

Let us verify if at least one of the three alternatives in (2.17) leads to solutions of the system
(2.7)-(2.13).

Case 1) of (2.17) does not provide extremals as A\g = A\; = A\; = 0 would imply 7, =0, V k
(see (2.7), (2.8)) and all the multipliers would be simultaneously equal to zero.

To study the last two cases of (2.17), it is convenient to exploit (2.16) rewriting (2.7), (2.8)
(with Ag = 0) in terms of A,

S
N = 77k+1+2)\q<dk—v>, k=1,....,4, (2.18)

s = 2Xg <d5—i> : (2.19)

Consider case 2) of (2.17), i.e. Ay > 0. If 5 > 0, from (2.10) and (2.19), it results ds = dy > S/v
and from (2.18), for k = 4, it is 4 > 15 > 0. Similarly, 14 > 0 implies 73 > 0 and so on until
1m > 0. Then, from (2.9),(2.10), we have d, =0, k = 1,...,5, that cannot be accepted as they
do not satisfy Egs. (2.11), (2.12). Conversely, if 75 = 0, Eq.(2.19) implies d5 = S/v. Because
of the ordering of the entries of d, it must be d < S/v, k = 1,...,4, and from (2.18) it is
M < Mke1, K =1,...,4. The latter condition can be verified if and only if all the multipliers n,
k=1,...,5, are equal to zero (as 5 = 0) so that, from (2.18), we have dy, = S/v, k=1,...,5,
while (2.11) imposes v = 5.

To analyze case 3) of (2.17) we follow a similar procedure. First consider 75 > 0 that gives
ds = dy < S/v (see Egs.(2.10),(2.19)) and consequently d, < S/v, k = 1,...,5, being d5 the
maximal entry. Then, from (2.18), we have nx > ng41, £ = 1,...,4, that implies di = 0,
k=1,...,5 (see (2.9),(2.10)). But, as already said, the vector d with all the entries equal to
zero cannot be an extremal because it does not satisfy constraints (2.11), (2.12). Second consider
ns = 0 which gives d5s = S/v from Eq.(2.19). As dy < ds = S/v, k =1,...,4,and \; <0
by hypothesis, from (2.18) we obtain 7 > nr11, & = 1,...,4. Taking into account n; > 0,
k=1,...,5, the following situations are possible:



a) mp =0, k=1,...,5 that implies d, = S/v, k=1,...

.5, (see Egs. (2.19), (2.18)) and, in
order to satisfy the constraint (2.11), the condition v =5

)

b)3k=1...,4|m >0 k=1,....kand g =0, k = k+1,...,5 Recalling Egs.
(2.9),(2.10) and Egs. (2.18),(2.19), it results dy = 0,k = 1,... ,k and dy, = S/v, k =
kE+ 1,...,5, respectively. Moreover, in order to satisfy the constraint (2.11), it must be
v=>5—k.

In conclusion, if and only if the parameter v is integer Problem 2.1 admits abnormal extremals
and in particular a unique extremal exists for each integer value of v in [1,5]. The abnormal
extremals are listed in Table 1.

| d |
0000 S)
000 5/2 8/2)
(0 0 S/3 5/3 S/3)
(0 S/4 S/4 S/4 S/4)
(S/5 S/5 S/5 S/5 S/5)

QU | W IN |~

Table 1: Abnormal extremals of Problem 2.1.

2.2 Existence and structure of normal extremals

In order to find the normal extremals, let us consider the necessary and admissibility conditions
(2.7)—(2.14) with A\g = 1 (we normalize the Lagrangian function with respect to A9 when Ao > 0).
First of all, Eq. (2.15) can be rewritten as

ds = — ()\8 + 2)\qi> S. (2.20)

Since ds must be positive (ds = 0 is excluded implying d, =0, V&), A\; and A, can only take the
following values:

1) As=0,)<0,
2) Ay <0,) <0,
3) A< 0,0 >0, (2.21)
4) A >0,)0<0,
Let us start from case 1) of (2.21) and rewrite Egs. (2.7), (2.8) as
Mk = Mkl +270dk, k=1,...,4, (2.22)
s = 14 2Xds. (2.23)

As Ay < 0 and dj, > 0, from Egs. (2.22), (2.23), it results ng41 > ni, k= 1,...,4, so that if
Nr > 0, it necessarily is ng+1 > 0, too. Then, the following situations are possible:



a) g, >0, k= 1,...,5, that, from Eqgs. (2.9), (2.10), implies dy, =0, k = 1,...,5, which is
a non-admissible vector as it does not satisfy (2.11) or (2.12);

b) my =0, k= 1,...,5, that implies d, = 0, k = 1,...,4, and d5s = —1/2)\; (see (2.22),
(2.23)). Then, in order to satisfy constraints (2.11) and (2.12), it must be d5 = S (because
it results Ay = —2/5) and v = 1;

c)Ik=1,...,4|m=0,k=1,...,k,andn >0, k=Fk+1,...,5. First of all, from
(2.10), it results dy = d_1, k = k+1,...,5, and then it results d, > 0, k = k,...,5,
because Eq.(2.22) for k = k, implies dj > 0 (n; = 0, Niy1 > 0 by definition and A, < 0).
Note that, if &k = 1 we have a vector d with all the components equal to each other and
positive, while if & > 1 we have d, = 0,k = 1,... ,k — 1, because Eq. (2.22) for k =
k — 1 implies d;,_; = 0 (n; = nz_; = 0 by definition) and consequently all the remaining
components are zero too, taking into account the ordering of the components of d. So, we
have a vector d with kK — 1 components equal to zero and 5 — k + 1 positive components
equal to each other. These vectors are actually extremals if and only if v =5 — k + 1 and
dy=S/v,k=k,...,5 (see constraints (2.11), (2.12)).

So, case 1) of (2.21) provides the extremals of the previous section.
Considering case 2) of (2.21), Eq. (2.7) implies ng+1 > nx, k = 1,...,4, leading to the
following situations:

a) ng >0, k= 1,...,5, that implies d = 0 (non-admissible);
b)m = 0,m > 0, k = 2,...,5, which, taking into account (2.10), implies dp = dp_1,
k= 2,...,5, all positive because d = 0 has to be excluded. As already seen, the vector d

with five components equal to each other satisfies the constraints (2.11), (2.12) if and only
ifdy,= S/v, k= 1,...,5, and provided that v = 5.

For the last two alternatives of (2.21), it is not possible to determine an a priori ordering for
the multipliers n,, £ = 1,...,5, because As - A\q < 0. Nevertheless, by exploiting the necessary
conditions (2.7), (2.8), explicitly rewritten as

n = 77k+1+/\s+2)\qdk; k‘Zl, 747 (224)
s = 14+ As+2X\d5, (2.25)

along with the complementary conditions (2.9), (2.10), it is possible to give some preliminary
properties useful to characterize the structure of the extremal pairs 7, d, as well as to exclude
some configurations of the vector 1. The properties are listed in the following:

i) if for an integer k = L...,4itis gy = 0 and 754, > 0, it follows n, > 0 for k=k+1,...,5
and then the last 5 — k + 1 entries of d are positive and equal to each other;

ii) if for an integer l?:_z 1,...,4 it is gy > 0 and 75, = 0, it follows g > 0 for k = 1,...,k
and then the first k entries of d are equal to zero;

iii) if for an integer k = 1,...,4 it is np = ng,; = 0, it follows dj = —X/(2)g) > 0 and, if

k=4, also ds = —(14+ Xs)/(2Xg) > 0.



Let us prove property i). Eq. (2.10) for k& = k 4 1 shows that Ngr1 > 0 gives dp, 1 = dg,
whereas Eq. (2.24) for k = k shows that the pair of conditions n; = 0 and ng,,; > 0 imply
As + 2Xgdj; < 0. Exploiting again Eq. (2.24), this time for k = k+ 1 (if k < 4), it is 95, > 0
because 75, > 0 and Ay +2\dg; <0 (dg,; = dj). Proceeding for k increasing over k, it is easy
to obtain 1, > 0, and consequently dj, = dj_q, for k = k+1,...,5. Then, as d5 is necessarily
positive, it follows that the last 5 — k entries of d are positive and equal each other.

Property ii) can be proved similarly. Indeed, exploiting Eqs. (2.10), (2.24) for k = k, we have
di, = dj_; (if k > 1) and A + 2X\,dj, > 0 respectively. Eq. (2.24), for k = k—1 (if k > 1), implies
also n;_; > 0 and then, proceeding for k£ decreasing from k, we have n, > 0, for k = 1,...,k.
Consequently, the first & entries of d have the same value which must be zero because 7; > 0
implies d; = 0 (see Eq. (2.9)).

Finally, property iii) comes directly from (2.24) with & = k, and from (2.25) as well. The
positivity of the doses is guaranteed by A;A\; < 0 and by the ordering of entries dj,.

Properties i) and ii) imply that only the following structures for 7 are possible:

n >0, k=1,...,5;

Ukzo,kzl,...,5'

)
)

c) m=0,k=1,... k,andn, >0, k=k+1,...,5 withk=1,...,4;
Yme>0,k=1,... ,k,andn, =0, k=k+1,....,5, with k=1,...,4;
)

me >0, k=1,....kn=0k=k+1,... ,kandmn >0, k=Fk+1,..,5 with

k=1,....,3andk=Fk+1..., 4.

As it is shown in the following, the vector d, associated to each structure of 7 in a)-e), contains
at most two different positive entries. So, denoting these entries by z, y and assuming y > x > 0,
the vector d can either have the last j entries equal to y and (possibly) 5 — j zeros or have the
last j entries equal to y, the preceding ¢ entries equal to x and (possibly) the first 5 —i — j entries
equal to zero. When d contains only positive entries equal to y, Eqs. (2.11), (2.12) lead to the
system

Jjy==5,

5 2 (2.26)

JYy = —)
v

which admits the real positive solution y = S/v only for v integer and equal to j. Conversely,
when d contains two different positive values x, y, in order to satisfy the constraints (2.11), (2.12),
it is necessary to solve the system

ix+jy=.9,
52 2.27
ir? + jy2 = —. ( )
v
As it must be y > x > 0, system (2.27) admits a unique real positive solution
r = Ry, 2.28)
y = R}, 2.29)



where

R;; = .S . <1— j(i+j._v)> , (2.30)

and

R = _S 4 <1+ W) . (2.31)

vJj

Indeed, it is easy to verify that the quantities Rﬂ, R are real and positive, with R+ > Rﬂ, if
and only if j <v <1+ j.

Let us now show what vectors d are actually associated to the structures of n in a)-e).

For the structures in a), Egs. (2.9), (2.10) immediately imply d = 0 which does not be-
long to D. For n in b), property iii) guarantees d, = — As/(2)y) > 0, k = 1,... .4, and
ds = — (1+ Xs)/(2\g) > 0 (different for any s, Ay) so that, solving (2.27) with ¢ = 4 and
j=1,wehaved, =2 =Ry, k=1,...,4and ds = y = R}, (see (2.28), (2.29)) if and only if

€(1,5).

Concerning case c¢), property i) implies dy = dj_; > 0, k =k+1,...,5. Then, for k = 1
all the entries have the same value equal to S/v with v = 5 (see solutlon of system (2.26)). For
k > 1, from property iii), we have also d, = —\s/(2)\) > 0,k = 1,...  k—1 (different from
the last entries in view of (2.24) for k = k). Thus, solving system (2 27) with i = £ — 1 and
j =5~k +1 we obtain the solution dy = Rj;,k=1,... ,k—1,dy =R}, k=k,... 5, if and
only if ve (5—k+1,5) (see (2.28), (2.29)).

For the structures d), property ii) guarantees that d, = 0,k =1,... ,l;:. Then, for k= 4,

the vector d has only one positive entry ds = —(1 + A;)/(2Aq) > 0 (see (2.25)) which is equal
to S/v with v = 1, solving (2.26) with j = 1. For k < 4, from property iii) we also have
dp = =Xs/(20g) >0, k =k +1,... .4, and d5 = —(1 + A )/(2)\q) > 0. Thus, solving system
(2.27) with i =4 — k and j = 1 we get d, = Rj;, k =k +1,... 4, and d5 = R, if and only if
ve(1,5-k).

In case e), property ii) implies d, =0, k=1, .k, and property i) implies dy—1 = d, > 0,
k=k+ 1,...,5. Then, for k=Fk+ 1, the Vector d contains k zeros and the last 5 — k entries
positive and equal Solving system (2 26) with j = 5 — k, we obtain the solution dj = S/v,
k =k + 1, .5, if and only if v = 5 — k. Conversely, for k>k + 1, from property iii) it is
di = —A /(2)\ ) >0,k=4k+1,...,k—1. Then, d contains the first k& components equal to zero,
the next k — k — 1 components equal to —Xs/(2)y) and the last 5 — k + 1 components equal to
each other (and greater than —\;/(2);)). In particular, the values of the entries of d are given by
dp= Ry, k=k+1,... k—1,anddy =R}, k=Fk,... .5, withi=k—k—1landj=5-Fk+1
if and only if v € (5 —k+1,5— k) (see (2.28), (2.29)).

It is simple to verify that for each extremal given above, at least one pair A, A\, of opposite
sign exists. Thus, Problem 2.1 admits normal extremals for each value of v in [1,5] but their
structure depends on v itself. Note also that, if v = [v] it results Ry =0, R;EU] = S/v so that

1) 1

extremals having two different positive entries coincide with the vector having [v] entries equal
to S/v and 5 — [v] zeroes.

Summarizing, the normal extremals of Problem 2.1 are listed in Table 2 for each v interval.
Note that a unique normal extremal exists for each value of v and that the abnormal extremals,
given in Table 1, are also included in Table 2 for v = [v].



L v | d |

(000 Ry R)
(0 0 Ry, Ry, Ry)
(0 Rz Ry Rz Rj)

(Ry, Ry Ry Ry Ry

(0 0 Ry, Ry, Ry)

(0 0 Ry Ry R)
(0 Rz Ryy Ry Ry)
(0 Ry, Ry Ry Ryy)
(Ryy Ry Ry Ry RY)
(Ry; Ry Ry Ry Ry)

(0 Rz Ryy Ry Ry)
(0 Ry, Ry Ry Roy)
(0 R3 Ry Rfy Rfy)
(Riy Ry Ry Ry Ry
(Ryy Ry Roy Ry Ryy)
(R, Ry Ryy Ry Ry

[3,4)

(Ryy Ry Ry Ry RY)
(Ry3 Ry Ry Ry Ri)
(R Ry Riy Rjy Rijy)
(Ryy Riy Riy Riy Ry

5 | (S/5 S/5 S/5 S/5 S/5)

Table 2: Normal extremals of Problem 2.1.



2.3 Optimal solution

In order to actually determine the optimal solution in each interval of v, we need to evaluate
the cost function J in (2.4) for all the extremals of the interval itself, identifying the minimum
value of the J.

To this purpose we preliminary study the behaviour of R;; defined in (2.31) keeping fixed the
sum s = ¢ + j but letting ¢ vary and fixing the index j but letting s vary. Rewriting R;; as a
function R*(i,s — i) and considering i, s as positive continuous variables, we have

8R+(z,.s—z) :§ L 7 (2.32)
di 2\ vi(s —1)3
which is strictly positive since v < s. On the other hand, rewriting RZT; as a function R* (s —j,7)
and considering s, j as positive continuous variables, we have

2
ort(s—jj) S (Vb =9 = Vils =) .
Os 25%/vj(s —j)(s —v)

which is strictly positive as v > j. Therefore, for a fixed sum i + 7, R;rj increases as % increases,

while for a fixed j, Rjj increases as the sum ¢ + j increases.
Taking into account (2.32) and (2.33), it is easy to determine, in each interval of v, the optimal
solutions of Problem (2.1) which are listed Table 3. In conclusion, the optimum of Problem (2.1)

L v | d |
(0 0 0 Ry, RY))
(0 0 Ry Ry, Ry

(0 Ry Rfy Rfy Rfy)

(Ry Rf, Rfy Ri, R

(S/5 S/5 S/5 S/5 S/5)

Table 3: Optimal solutions of Problem 2.1.

+
1[]

to Ry provided v < 5 (equal to zero if v = [v]) and the remaining 5 — [v] — 1 entries equal to
zero provided v < 4.

is the vector d having the last [v] entries equal to R, ; (equal to S/v if v = [v]), one entry equal

3 Minimum value of the maximal entry of vectors belonging to
“late” constraint boundary and having a maximal entries sum

In [1] we proved that points satisfying g;(d) = 0, ge(d) < 0, d > 0, are such that

5 5 5
gi(d)=p> _di+> _ dp—k =0, D dp <8, d, >0, k=1,...,5. (3.1)
k=1 k=1 k=1

10



So, in order to find the minimal value of the maximal entry of d in the new domain (3.1),
we formulate the following non-linear programming problem whose domain clearly include the
domain of Problem 2.1.

Problem 3.1 Minimize the function:
J(d) = ds, (3:2)

on the admissible set:

5
D={deR|g(d)=0, > dy <S8, d5>dy>ds>dy>dy>0}. (3.3)
k=1

Clearly, Problem 3.1 admits optimal solutions ((3.3) is compact and (3.2) is a continuous
function on it). The Lagrangian function associated to the problem is

5 5 5 4
L(d, Mo, As, Ags ) = Aods+A (pldeJeri —k,> +778<k2dk —S) 1+ et de—dir) , (3.4)
k=1 =1

k=1 k=1

where Ao, ns, A are scalar multipliers and 7 is the 5-dimensional vector of multipliers ng, k =
1,...,5.
The Kuhn-Tucker necessary and admissibility conditions are

oL

ddp Ns +AQdk+p) =k + 1 =0,  k=1,....4, (3.5)
oL

—_— = )\0+?73+)\(2d5+pl)_775207 (36)
ads

mdy = 0,

nk(dk—l_dk) = 0, k=2,...,5,

5
s (de—5> = 0, (3.9)
k=1

5 5
Y de+ Y di—k = 0, (3.10)
k=1 k=1
m > 0, k=1,....,5, (3.11)
ns = 0, (3.12)
X > 0, (3.13)

with Ao, 75, A, 7 never simultaneously equal to zero.

Following a similar procedure used for Problem 2.1, we obtain that the optimum of Problem
3.1 coincides with the optimum of Problem 2.1. Indeed, if ns > 0 it follows 22:1 di = S, meaning
that system (3.5)-(3.13) coincides with system (2.7)-(2.14), by replacing A\s = ns+Ap; and Ay = .
Then, we obtain the same set of candidates of Problem 2.1, obviously containing the vectors of
Table 3, reporting for each value of v the “best” candidate of the set. Conversely, when 1, = 0 we
prove that no additional candidates exist. This is briefly shown in the following items obtained
taking into account (3.5)-(3.13) for ns = 0.

11



e If \y = 0 it must be A > 0, since 75 > 0. However, if A\ = 0 it is np = 0, Vk (see (3.5), (3.6))
and all the multipliers would be simultaneously equal to zero which is not admissible. If
instead A > 0 it is 95 > 0 and nx > ng41, £ = 1,...,4 that imply d = 0, not satisfying
gl(d) = 0.

e Let us suppose A\g > 0. If A>0itisns > 0 and n > ngy1, K =1,...,4 that imply d = 0,
not satisfying ¢g;(d) = 0. If A < 0 it is g < k41, £ = 1,...,4, which means either n; > 0,
Vk,orn =0, n >0, k=2,...,5. The first case provides again d = 0 whereas the second

one implies d = dii+1, K = 1,...,4. For the latter case, in order to satisfies constraints
5

g1(d) =0 and de < S, it must be
k=1
pL pN2 kS
A (7) B2 k=15,
T V) TE S5
or equivalently v > 5 (see [1]). As v € [1,5], only for v = 5 we obtain a candidate, that is
di = S/5, k=1,...,5, which coincides with the optimal solution of Table 3 for v = 5.

In conclusion, as 1, = 0 does not provide additional candidates, the optimal solution of Problem
3.1 is given again in Table 3 for each value of v.

4 Concluding remarks

In this paper we prove a property valid for the admissible protocols of the optimization problem
relevant to the radiotherapy scheduling presented in [1], when both early and late constraints act
independently. In particular we find the minimal value of the maximal dose fraction of the
protocols producing the maximal tolerable damage to both early and late responding tissues or
to late tissues only (making the early constraint strictly satisfied). The minimum value is Rf[

+
1[v]?

dose equal to R (provided v < 5), and 5 — [v] — 1 doses equal to zero (provided v < 4).

v]?

given in (2.31) for i« = 1 and j = [v], and the optimal protocol has [v] doses equal to R ., one

This result is significant for the radiotherapy problem studied in [1], where there is an upper
bound djy; for the dose fraction. Indeed, Rf[v] acts as a threshold, in that when dj; < RILM no
points of the admissible region g;(d) = 0, ge(d) < 0, d > 0 satisfy the upper bound and the
optimum of the problem in [1] is given by a protocol producing a maximal damage to the “early”

tissue.
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