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Abstract

We report the analytical study of a constrained optimization problem which consists in
finding the minimal value of the largest entry of a vector d in R5, with constraints involving
the entries sum and the squared entries sum. The solution of the problem studied in this
paper provides the proof of a property needed to determine the admissible protocols of the
radiotherapy scheduling optimization problem presented in [1], that includes constraints lim-
iting the radiation damages to normal tissues. In particular, we find the minimal value of the
maximal dose fraction of the protocols producing the maximal tolerable damage to both early
and late responding tissues when there is not a prevalent normal tissue constraint. Then, we
extend the property to all the protocols producing the maximal damage to the late responding
tissue only.
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1 Introduction

We address a rather general optimization problem arisen from the radiotherapy scheduling
optimization reported in [1], which consists in determining the fractionated radiotherapy scheme
that maximizes the overall tumour damage, keeping the damages to normal tissues, as well as the
size of the daily dose fraction, within given admissible levels. In [1], some geometrical properties
of the admissible domain, dependent on normal tissue parameter values, are also highlighted, in
order to determine how the optimal solution changes when the normal tissue parameters change.
The geometric characterization of the domain is shown in Table 2 of [1], while the details of the
proof are reported in Appendix A of the same paper. In this report, we study an optimization
problem that proves a property of the points of the admissible domain, in case of absence of
a prevalent normal tissue constraint. In particular we determine the minimum value of the
maximal entry of a 5-dimensional vector d belonging to the intersection between the boundaries
of the normal tissue constrains. Then, we consider a second optimization problem and we extend
the previous result to all the points belonging to the boundary of the “late” constraint satisfying
also the “early” constraint. The study of the last problem proves Theorem 5.3 in [1]. Both the
optimization problems are formulated as non-linear programming problems.

2 Minimum value of the maximal entry of vectors with fixed
entries sum and fixed squared entries sum

In [1] the constraints on the admissible damage to normal tissues are given by

ge(d) = ρe

5∑
k=1

dk +
5∑

k=1

d2
k − ke ≤ 0 , (2.1)

gl(d) = ρl

5∑
k=1

dk +
5∑

k=1

d2
k − kl ≤ 0 , (2.2)

where ρe, ρl are the radiosensitivity parameter ratios and ke, kl are the maximal weekly damages
of the “early” and “late” responding tissues respectively. In [1] it is also proved that points
belonging to the intersections between the boundaries of normal tissue constrains, i.e. points
satisfying ge(d) = gl(d) = 0, d ≥ 0, are such that

5∑
k=1

dk =
ke − kl
ρe − ρl

= S ,

5∑
k=1

d2
k =

ρekl − ρlke
ρe − ρl

=
S2

v
, dk ≥ 0 , k = 1, . . . , 5 , (2.3)

where ke − kl > 0, ρekl − ρlke > 0 and v ∈ [1 , 5] (see Table 2 of [1] in absence of a prevalent
constraint). Then, we formulate the constrained non-linear programming problem of finding the
minimum value of the maximal entry of vectors d having fixed entries sum and fixed squared
entries sum, according to (2.3). The admissible domain is the intersection between a hyperplane
and a hypersphere in the region d ≥ 0 of R5 and, because of their symmetry with respect to the
half-line {d5 = d4 = d3 = d2 = d1 ≥ 0}, we can choose an ordering of the entries of d without
loss of generality. In particular, we choose the ordering d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0 , leading to
the following problem formulation.
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Problem 2.1 Minimize the function:
J(d) = d5, (2.4)

on the admissible set:

D = {d ∈ R5|
5∑

k=1

dk = S ,
5∑

k=1

d2
k =

S2

v
, d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0} . (2.5)

Firstly, we note that D is non-empty as v ∈ [1 , 5] (see Appendix A in [1]). Secondly, Problem
2.1 certainly admits optimal solutions. Indeed, the admissible set (2.5) is compact and the cost
function (2.4) is continuous on it, so that the Weierstrass theorem [2] guarantees the existence of
optimal solutions. Moreover, it is evident that the Problem 2.1 is not convex so that we can only
use the optimal necessary conditions provided by the Kuhn Tucker Theorem [2]. The Lagrangian
function associated to the problem is

L(d, λ0, λs, λq, η)=λ0d5+λs

(
5∑

k=1

dk−S

)
+λq

(
5∑

k=1

d2
k−

S2

v

)
−η1d1+

4∑
k=1

ηk+1 (dk−dk+1) , (2.6)

where λ0 , λs , λq are scalar multipliers and η is the 5-dimensional vector of multipliers ηk, k =
1, . . . , 5, related to the inequality constraints.

Let us now write the necessary and admissibility conditions

∂L

∂dk
= λs + 2λqdk − ηk + ηk+1 = 0 , k = 1, . . . , 4 , (2.7)

∂L

∂d5
= λ0 + λs + 2λqd5 − η5 = 0 , (2.8)

η1d1 = 0 , (2.9)

ηk(dk−1 − dk) = 0 , k = 2 , . . . , 5 , (2.10)

5∑
k=1

dk = S , (2.11)

5∑
k=1

d2
k =

S2

v
, (2.12)

ηk ≥ 0 , k = 1 , . . . , 5 , (2.13)

λ0 ≥ 0 , (2.14)

with λ0 , λs , λq , η never simultaneously equal to zero.
The vectors d and the related multipliers λ0 , λs , λq , η that satisfy the system (2.7)-(2.14)

are the extremals of Problem 2.1, that is all the possible candidates to the optimal solution. In
particular, vectors d satisfying Eqs.(2.7)-(2.14) with λ0 = 0 are called ‘abnormal’ extremals, while
vectors d satisfing Eqs.(2.7)-(2.14) with λ0 6= 0 are called ‘normal’ extremals.
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Taking into account Eqs. (2.9)-(2.12), let us multiply each equation
∂L

∂dk
= 0 in (2.7)-(2.8) by

the corresponding dk , k = 1 , . . . , 5 adding the obtained equations. We get the relation

λ0d5 + λsS + 2λq
S2

v
= 0 , (2.15)

directly linking the multipliers λ0 , λs , λq, which turns out to be useful in the next sections where
we separately study the cases λ0 = 0 and λ0 6= 0.

2.1 Existence and structure of abnormal extremals

By definition, the abnormal extremals satisfy the necessary and admissibility conditions with
λ0 = 0. Then Eq. (2.15) becomes

λs = −2λq
S

v
(2.16)

so that, (as S/v > 0), only the following alternatives for the sign of λs and λq are possible:

1) λs = 0 , λq = 0 ,
2) λs < 0 , λq > 0 ,
3) λs > 0 , λq < 0 ,

(2.17)

Let us verify if at least one of the three alternatives in (2.17) leads to solutions of the system
(2.7)-(2.13).

Case 1) of (2.17) does not provide extremals as λ0 = λs = λq = 0 would imply ηk = 0 , ∀ k
(see (2.7) , (2.8)) and all the multipliers would be simultaneously equal to zero.

To study the last two cases of (2.17), it is convenient to exploit (2.16) rewriting (2.7) , (2.8)
(with λ0 = 0) in terms of λq

ηk = ηk+1 + 2λq

(
dk −

S

v

)
, k = 1 , . . . , 4 , (2.18)

η5 = 2λq

(
d5 −

S

v

)
. (2.19)

Consider case 2) of (2.17), i.e. λq > 0. If η5 > 0, from (2.10) and (2.19), it results d5 = d4 > S/v
and from (2.18), for k = 4, it is η4 > η5 > 0. Similarly, η4 > 0 implies η3 > 0 and so on until
η1 > 0. Then, from (2.9),(2.10), we have dk = 0, k = 1 , . . . , 5, that cannot be accepted as they
do not satisfy Eqs. (2.11), (2.12). Conversely, if η5 = 0, Eq.(2.19) implies d5 = S/v. Because
of the ordering of the entries of d, it must be dk ≤ S/v, k = 1 , . . . , 4, and from (2.18) it is
ηk ≤ ηk+1, k = 1 , . . . , 4. The latter condition can be verified if and only if all the multipliers ηk,
k = 1 , . . . , 5, are equal to zero (as η5 = 0) so that, from (2.18), we have dk = S/v, k = 1 , . . . , 5,
while (2.11) imposes v = 5.

To analyze case 3) of (2.17) we follow a similar procedure. First consider η5 > 0 that gives
d5 = d4 < S/v (see Eqs.(2.10) ,(2.19)) and consequently dk < S/v, k = 1 , . . . , 5, being d5 the
maximal entry. Then, from (2.18), we have ηk > ηk+1, k = 1 , . . . , 4, that implies dk = 0,
k = 1 , . . . , 5 (see (2.9),(2.10)). But, as already said, the vector d with all the entries equal to
zero cannot be an extremal because it does not satisfy constraints (2.11), (2.12). Second consider
η5 = 0 which gives d5 = S/v from Eq.(2.19). As dk ≤ d5 = S/v, k = 1 , . . . , 4, and λq < 0
by hypothesis, from (2.18) we obtain ηk ≥ ηk+1, k = 1 , . . . , 4. Taking into account ηk ≥ 0,
k = 1 , . . . , 5 , the following situations are possible:
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a) ηk = 0, k = 1 , . . . , 5 that implies dk = S/v, k = 1 , . . . , 5 , (see Eqs. (2.19) , (2.18)) and, in
order to satisfy the constraint (2.11), the condition v = 5;

b) ∃ k̄ = 1 . . . , 4 | ηk > 0, k = 1 , . . . , k̄ and ηk = 0, k = k̄ + 1 , . . . , 5. Recalling Eqs.
(2.9),(2.10) and Eqs. (2.18),(2.19), it results dk = 0 , k = 1 , . . . , k̄ and dk = S/v, k =
k̄ + 1 , . . . , 5, respectively. Moreover, in order to satisfy the constraint (2.11), it must be
v = 5− k̄.

In conclusion, if and only if the parameter v is integer Problem 2.1 admits abnormal extremals
and in particular a unique extremal exists for each integer value of v in [1, 5]. The abnormal
extremals are listed in Table 1.

v d

1 (0 0 0 0 S)

2 (0 0 0 S/2 S/2)

3 (0 0 S/3 S/3 S/3)

4 (0 S/4 S/4 S/4 S/4)

5 (S/5 S/5 S/5 S/5 S/5)

Table 1: Abnormal extremals of Problem 2.1.

2.2 Existence and structure of normal extremals

In order to find the normal extremals, let us consider the necessary and admissibility conditions
(2.7)–(2.14) with λ0 = 1 (we normalize the Lagrangian function with respect to λ0 when λ0 > 0).
First of all, Eq. (2.15) can be rewritten as

d5 = −
(
λs + 2λq

S

v

)
S . (2.20)

Since d5 must be positive (d5 = 0 is excluded implying dk = 0 , ∀ k), λs and λq can only take the
following values:

1) λs = 0 , λq < 0 ,
2) λs < 0 , λq ≤ 0 ,
3) λs < 0 , λq > 0 ,
4) λs > 0 , λq < 0 ,

(2.21)

Let us start from case 1) of (2.21) and rewrite Eqs. (2.7) , (2.8) as

ηk = ηk+1 + 2λqdk , k = 1 , . . . , 4 , (2.22)

η5 = 1 + 2λqd5 . (2.23)

As λq < 0 and dk ≥ 0, from Eqs. (2.22), (2.23), it results ηk+1 ≥ ηk , k = 1 , . . . , 4, so that if
ηk > 0, it necessarily is ηk+1 > 0, too. Then, the following situations are possible:
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a) ηk > 0, k = 1 , . . . , 5 , that, from Eqs. (2.9) , (2.10), implies dk = 0, k = 1 , . . . , 5, which is
a non-admissible vector as it does not satisfy (2.11) or (2.12);

b) ηk = 0, k = 1 , . . . , 5, that implies dk = 0, k = 1 , . . . , 4, and d5 = −1/2λq (see (2.22) ,
(2.23)). Then, in order to satisfy constraints (2.11) and (2.12), it must be d5 = S (because
it results λq = −2/S) and v = 1;

c) ∃ k̄ = 1 , . . . , 4 | ηk = 0 , k = 1 , . . . , k̄, and ηk > 0 , k = k̄ + 1 , . . . , 5. First of all, from
(2.10), it results dk = dk−1 , k = k̄ + 1 , . . . , 5, and then it results dk > 0 , k = k̄ , . . . , 5,
because Eq.(2.22) for k = k̄, implies dk̄ > 0 (ηk̄ = 0, ηk̄+1 > 0 by definition and λq < 0).
Note that, if k̄ = 1 we have a vector d with all the components equal to each other and
positive, while if k̄ > 1 we have dk = 0 , k = 1 , . . . , k̄ − 1 , because Eq. (2.22) for k =
k̄ − 1 implies dk̄−1 = 0 (ηk̄ = ηk̄−1 = 0 by definition) and consequently all the remaining
components are zero too, taking into account the ordering of the components of d. So, we
have a vector d with k̄ − 1 components equal to zero and 5 − k̄ + 1 positive components
equal to each other. These vectors are actually extremals if and only if v = 5 − k̄ + 1 and
dk = S/v , k = k̄ , . . . , 5 (see constraints (2.11) , (2.12)).

So, case 1) of (2.21) provides the extremals of the previous section.
Considering case 2) of (2.21), Eq. (2.7) implies ηk+1 > ηk, k = 1 , . . . , 4 , leading to the

following situations:

a) ηk > 0, k = 1 , . . . , 5 , that implies d = 0 (non-admissible);

b) η1 = 0 , ηk > 0, k = 2 , . . . , 5, which, taking into account (2.10) , implies dk = dk−1,
k = 2 , . . . , 5, all positive because d = 0 has to be excluded. As already seen, the vector d
with five components equal to each other satisfies the constraints (2.11) , (2.12) if and only
if dk = S/v, k = 1 , . . . , 5, and provided that v = 5.

For the last two alternatives of (2.21), it is not possible to determine an a priori ordering for
the multipliers ηk, k = 1, . . . , 5, because λs · λq < 0. Nevertheless, by exploiting the necessary
conditions (2.7), (2.8), explicitly rewritten as

ηk = ηk+1 + λs + 2λqdk , k = 1 , . . . , 4 , (2.24)

η5 = 1 + λs + 2λqd5 , (2.25)

along with the complementary conditions (2.9), (2.10), it is possible to give some preliminary
properties useful to characterize the structure of the extremal pairs η, d, as well as to exclude
some configurations of the vector η. The properties are listed in the following:

i) if for an integer k̄ = 1, . . . , 4 it is ηk̄ = 0 and ηk̄+1 > 0, it follows ηk > 0 for k = k̄+ 1, . . . , 5
and then the last 5− k̄ + 1 entries of d are positive and equal to each other;

ii) if for an integer k̄ = 1, . . . , 4 it is ηk̄ > 0 and ηk̄+1 = 0, it follows ηk > 0 for k = 1, . . . , k̄
and then the first k̄ entries of d are equal to zero;

iii) if for an integer k̄ = 1, . . . , 4 it is ηk̄ = ηk̄+1 = 0, it follows dk̄ = −λs/(2λq) > 0 and, if
k̄ = 4, also d5 = −(1 + λs)/(2λq) > 0.
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Let us prove property i). Eq. (2.10) for k = k̄ + 1 shows that ηk̄+1 > 0 gives dk̄+1 = dk̄,
whereas Eq. (2.24) for k = k̄ shows that the pair of conditions ηk̄ = 0 and ηk̄+1 > 0 imply
λs + 2λqdk̄ < 0. Exploiting again Eq. (2.24), this time for k = k̄ + 1 (if k̄ < 4), it is ηk̄+2 > 0
because ηk̄+1 > 0 and λs +2λqdk̄+1 < 0 (dk̄+1 = dk̄). Proceeding for k increasing over k̄, it is easy
to obtain ηk > 0, and consequently dk = dk−1, for k = k̄ + 1, . . . , 5. Then, as d5 is necessarily
positive, it follows that the last 5− k̄ entries of d are positive and equal each other.

Property ii) can be proved similarly. Indeed, exploiting Eqs. (2.10), (2.24) for k = k̄, we have
dk̄ = dk̄−1 (if k̄ > 1) and λs + 2λqdk̄ > 0 respectively. Eq. (2.24), for k = k̄− 1 (if k̄ > 1), implies
also ηk̄−1 > 0 and then, proceeding for k decreasing from k̄, we have ηk > 0, for k = 1, . . . , k̄.
Consequently, the first k̄ entries of d have the same value which must be zero because η1 > 0
implies d1 = 0 (see Eq. (2.9)).

Finally, property iii) comes directly from (2.24) with k = k̄, and from (2.25) as well. The
positivity of the doses is guaranteed by λsλq < 0 and by the ordering of entries dk.

Properties i) and ii) imply that only the following structures for η are possible:

a) ηk > 0, k = 1 , . . . , 5;

b) ηk = 0, k = 1 , . . . , 5;

c) ηk = 0, k = 1 , . . . , k̃, and ηk > 0, k = k̃ + 1 , . . . , 5, with k̃ = 1 , . . . , 4;

d) ηk > 0, k = 1 , . . . , k̃, and ηk = 0, k = k̃ + 1 , . . . , 5, with k̃ = 1 , . . . , 4;

e) ηk > 0, k = 1 , . . . , k̃, ηk = 0, k = k̃ + 1 , . . . , k̂, and ηk > 0, k = k̂ + 1 , . . . , 5, with
k̃ = 1 , . . . , 3 and k̂ = k̃ + 1 . . . , 4.

As it is shown in the following, the vector d, associated to each structure of η in a)-e), contains
at most two different positive entries. So, denoting these entries by x, y and assuming y > x > 0,
the vector d can either have the last j entries equal to y and (possibly) 5 − j zeros or have the
last j entries equal to y, the preceding i entries equal to x and (possibly) the first 5− i− j entries
equal to zero. When d contains only positive entries equal to y, Eqs. (2.11) , (2.12) lead to the
system  jy = S ,

jy2 =
S2

v
,

(2.26)

which admits the real positive solution y = S/v only for v integer and equal to j. Conversely,
when d contains two different positive values x, y, in order to satisfy the constraints (2.11) , (2.12),
it is necessary to solve the system  ix+ jy = S ,

ix2 + jy2 =
S2

v
.

(2.27)

As it must be y > x > 0, system (2.27) admits a unique real positive solution

x = R−
ji , (2.28)

y = R+
ij , (2.29)
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where

R−
ji =

S

i+ j

(
1−

√
j(i+ j − v)

vi

)
, (2.30)

and

R+
ij =

S

i+ j

(
1 +

√
i(i+ j − v)

vj

)
. (2.31)

Indeed , it is easy to verify that the quantities R−
ji, R

+
ij are real and positive, with R+

ij > R−
ji, if

and only if j < v < i+ j.
Let us now show what vectors d are actually associated to the structures of η in a)-e).
For the structures in a), Eqs. (2.9), (2.10) immediately imply d = 0 which does not be-

long to D. For η in b), property iii) guarantees dk = − λs/(2λq) > 0, k = 1 , . . . , 4, and
d5 = − (1 + λs)/(2λq) > 0 (different for any λs , λq) so that, solving (2.27) with i = 4 and
j = 1, we have dk = x = R−

14, k = 1 , . . . , 4 and d5 = y = R+
41 (see (2.28) , (2.29)) if and only if

v ∈ (1 , 5) .
Concerning case c), property i) implies dk = dk−1 > 0 , k = k̃ + 1 , . . . , 5. Then, for k̃ = 1

all the entries have the same value equal to S/v with v = 5 (see solution of system (2.26)). For
k̃ > 1, from property iii), we have also dk = −λs/(2λq) > 0 , k = 1 , . . . , k̃ − 1 (different from
the last entries in view of (2.24) for k = k̃). Thus, solving system (2.27) with i = k̃ − 1 and
j = 5− k̃ + 1 we obtain the solution dk = R−

ji , k = 1 , . . . , k̃ − 1 , dk = R+
ij , k = k̃ , . . . , 5, if and

only if v ∈ (5− k̃ + 1 , 5) (see (2.28) , (2.29)).
For the structures d), property ii) guarantees that dk = 0 , k = 1 , . . . , k̃. Then, for k̃ = 4,

the vector d has only one positive entry d5 = −(1 + λs)/(2λq) > 0 (see (2.25)) which is equal
to S/v with v = 1, solving (2.26) with j = 1. For k̃ < 4, from property iii) we also have
dk = −λs/(2λq) > 0, k = k̃ + 1 , . . . , 4, and d5 = −(1 + λs)/(2λq) > 0. Thus, solving system
(2.27) with i = 4 − k̃ and j = 1 we get dk = R−

ji, k = k̃ + 1 , . . . , 4, and d5 = R+
ij , if and only if

v ∈ (1 , 5− k̃).
In case e), property ii) implies dk = 0, k = 1 , . . . , k̃, and property i) implies dk−1 = dk > 0,

k = k̂ + 1 , . . . , 5. Then, for k̂ = k̃ + 1, the vector d contains k̃ zeros and the last 5 − k̃ entries
positive and equal. Solving system (2.26) with j = 5 − k̃, we obtain the solution dk = S/v,
k = k̃ + 1 , . . . , 5, if and only if v = 5 − k̃. Conversely, for k̂ > k̃ + 1, from property iii) it is
dk = −λs/(2λq) > 0 , k = k̃+ 1 , . . . , k̂−1. Then, d contains the first k̃ components equal to zero,

the next k̂ − k̃ − 1 components equal to −λs/(2λq) and the last 5 − k̂ + 1 components equal to
each other (and greater than −λs/(2λq)). In particular, the values of the entries of d are given by

dk = R−
ji, k = k̃+ 1 , . . . , k̂− 1, and dk = R+

ij , k = k̂ , . . . , 5, with i = k̂− k̃− 1 and j = 5− k̂+ 1

if and only if v ∈ (5− k̂ + 1 , 5− k̃) (see (2.28) , (2.29)).
It is simple to verify that for each extremal given above, at least one pair λs, λq of opposite

sign exists. Thus, Problem 2.1 admits normal extremals for each value of v in [1 , 5] but their
structure depends on v itself. Note also that, if v = [v] it results R−

[v]i = 0, R+
i[v] = S/v so that

extremals having two different positive entries coincide with the vector having [v] entries equal
to S/v and 5− [v] zeroes.

Summarizing, the normal extremals of Problem 2.1 are listed in Table 2 for each v interval.
Note that a unique normal extremal exists for each value of v and that the abnormal extremals,
given in Table 1, are also included in Table 2 for v = [v].
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v d

(0 0 0 R−
11 R+

11)

(0 0 R−
12 R−

12 R+
21)

[1, 2)
(0 R−

13 R−
13 R−

13 R+
31)

(R−
14 R−

14 R−
14 R−

14 R+
41)

(0 0 R−
12 R−

12 R+
21)

(0 0 R−
21 R+

12 R+
12)

(0 R−
13 R−

13 R−
13 R+

31)
[2, 3)

(0 R−
22 R−

22 R+
22 R+

22)

(R−
14 R−

14 R−
14 R−

14 R+
41)

(R−
23 R−

23 R−
23 R+

32 R+
32)

(0 R−
13 R−

13 R−
13 R+

31)

(0 R−
22 R−

22 R+
22 R+

22)

(0 R−
31 R+

13 R+
13 R+

13)
[3, 4)

(R−
14 R−

14 R−
14 R−

14 R+
41)

(R−
23 R−

23 R−
23 R+

32 R+
32)

(R−
32 R−

32 R+
23 R+

23 R+
23)

(R−
14 R−

14 R−
14 R−

14 R+
41)

(R−
23 R−

23 R−
23 R+

32 R+
32)

[4, 5)
(R−

32 R−
32 R+

23 R+
23 R+

23)

(R−
41 R+

14 R+
14 R+

14 R+
14)

5 (S/5 S/5 S/5 S/5 S/5)

Table 2: Normal extremals of Problem 2.1.
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2.3 Optimal solution

In order to actually determine the optimal solution in each interval of v, we need to evaluate
the cost function J in (2.4) for all the extremals of the interval itself, identifying the minimum
value of the J .

To this purpose we preliminary study the behaviour of R+
ij defined in (2.31) keeping fixed the

sum s = i + j but letting i vary and fixing the index j but letting s vary. Rewriting R+
ij as a

function R+(i, s− i) and considering i, s as positive continuous variables, we have

∂R+(i, s− i)
∂i

=
S

2

√
s− v

vi(s− i)3
, (2.32)

which is strictly positive since v < s. On the other hand, rewriting R+
ij as a function R+(s− j, j)

and considering s, j as positive continuous variables, we have

∂R+(s− j, j)
∂s

=
S
(√

v(s− j)−
√
j(s− v)

)2

2s2
√
vj(s− j)(s− v)

, (2.33)

which is strictly positive as v > j. Therefore, for a fixed sum i + j, R+
i j increases as i increases,

while for a fixed j, R+
i j increases as the sum i+ j increases.

Taking into account (2.32) and (2.33), it is easy to determine, in each interval of v, the optimal
solutions of Problem (2.1) which are listed Table 3. In conclusion, the optimum of Problem (2.1)

v d

[1, 2) (0 0 0 R−
11 R+

11)

[2, 3) (0 0 R−
21 R+

12 R+
12)

[3, 4) (0 R−
31 R+

13 R+
13 R+

13)

[4, 5) (R−
41 R+

14 R+
14 R+

14 R+
14)

5 (S/5 S/5 S/5 S/5 S/5)

Table 3: Optimal solutions of Problem 2.1.

is the vector d having the last [v] entries equal to R+
1[v] (equal to S/v if v = [v]), one entry equal

to R−
[v]1 provided v < 5 (equal to zero if v = [v]) and the remaining 5 − [v] − 1 entries equal to

zero provided v < 4.

3 Minimum value of the maximal entry of vectors belonging to
“late” constraint boundary and having a maximal entries sum

In [1] we proved that points satisfying gl(d) = 0, ge(d) ≤ 0, d ≥ 0, are such that

gl(d)=ρl

5∑
k=1

dk+
5∑

k=1

d2
k−kl =0,

5∑
k=1

dk ≤ S , dk ≥ 0 , k = 1, . . . , 5 . (3.1)
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So, in order to find the minimal value of the maximal entry of d in the new domain (3.1),
we formulate the following non-linear programming problem whose domain clearly include the
domain of Problem 2.1.

Problem 3.1 Minimize the function:
J(d) = d5, (3.2)

on the admissible set:

D = {d ∈ R5| gl(d)=0 ,
5∑

k=1

dk ≤ S, d5 ≥ d4 ≥ d3 ≥ d2 ≥ d1 ≥ 0}. (3.3)

Clearly, Problem 3.1 admits optimal solutions ((3.3) is compact and (3.2) is a continuous
function on it). The Lagrangian function associated to the problem is

L(d, λ0, λs, λq, η)=λ0d5+λ

(
ρl

5∑
k=1

dk+

5∑
k=1

d2
k−kl

)
+ηs

(
5∑

k=1

dk−S

)
−η1d1+

4∑
k=1

ηk+1 (dk−dk+1) , (3.4)

where λ0, ηs, λ are scalar multipliers and η is the 5-dimensional vector of multipliers ηk, k =
1, . . . , 5.

The Kuhn-Tucker necessary and admissibility conditions are

∂L

∂dk
= ηs + λ (2dk + ρl)− ηk + ηk+1 = 0 , k = 1, . . . , 4 , (3.5)

∂L

∂d5
= λ0 + ηs + λ (2d5 + ρl)− η5 = 0 , (3.6)

η1d1 = 0 , (3.7)

ηk(dk−1 − dk) = 0 , k = 2 , . . . , 5 , (3.8)

ηs

(
5∑

k=1

dk − S

)
= 0 , (3.9)

ρl

5∑
k=1

dk +

5∑
k=1

d2
k − kl = 0 , (3.10)

ηk ≥ 0 , k = 1 , . . . , 5 , (3.11)

ηs ≥ 0 , (3.12)

λ0 ≥ 0 , (3.13)

with λ0, ηs, λ, η never simultaneously equal to zero.
Following a similar procedure used for Problem 2.1, we obtain that the optimum of Problem

3.1 coincides with the optimum of Problem 2.1. Indeed, if ηs > 0 it follows
∑5

k=1 dk = S, meaning
that system (3.5)-(3.13) coincides with system (2.7)-(2.14), by replacing λs = ηs+λρl and λq = λ.
Then, we obtain the same set of candidates of Problem 2.1, obviously containing the vectors of
Table 3, reporting for each value of v the “best” candidate of the set. Conversely, when ηs = 0 we
prove that no additional candidates exist. This is briefly shown in the following items obtained
taking into account (3.5)-(3.13) for ηs = 0.
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• If λ0 = 0 it must be λ ≥ 0, since η5 ≥ 0. However, if λ = 0 it is ηk = 0, ∀k (see (3.5), (3.6))
and all the multipliers would be simultaneously equal to zero which is not admissible. If
instead λ > 0 it is η5 > 0 and ηk > ηk+1, k = 1, . . . , 4 that imply d = 0, not satisfying
gl(d) = 0.

• Let us suppose λ0 > 0. If λ ≥ 0 it is η5 > 0 and ηk ≥ ηk+1, k = 1, . . . , 4 that imply d = 0,
not satisfying gl(d) = 0. If λ < 0 it is ηk < ηk+1, k = 1, . . . , 4, which means either ηk > 0,
∀k, or η1 = 0, ηk > 0, k = 2, . . . , 5. The first case provides again d = 0 whereas the second
one implies dk = dk+1, k = 1, . . . , 4. For the latter case, in order to satisfies constraints

gl(d) = 0 and

5∑
k=1

dk ≤ S, it must be

dk = −ρl
2

+

√(ρl
2

)2
+
kl
5
≤ S

5
, k = 1, . . . , 5 ,

or equivalently v ≥ 5 (see [1]). As v ∈ [1, 5], only for v = 5 we obtain a candidate, that is
dk = S/5, k = 1, . . . , 5, which coincides with the optimal solution of Table 3 for v = 5.

In conclusion, as ηs = 0 does not provide additional candidates, the optimal solution of Problem
3.1 is given again in Table 3 for each value of v.

4 Concluding remarks

In this paper we prove a property valid for the admissible protocols of the optimization problem
relevant to the radiotherapy scheduling presented in [1], when both early and late constraints act
independently. In particular we find the minimal value of the maximal dose fraction of the
protocols producing the maximal tolerable damage to both early and late responding tissues or
to late tissues only (making the early constraint strictly satisfied). The minimum value is R+

1[v],

given in (2.31) for i = 1 and j = [v], and the optimal protocol has [v] doses equal to R+
1[v], one

dose equal to R−
[v]1 (provided v < 5), and 5− [v]− 1 doses equal to zero (provided v < 4).

This result is significant for the radiotherapy problem studied in [1], where there is an upper
bound dM for the dose fraction. Indeed, R+

1[v] acts as a threshold, in that when dM < R+
1[v] no

points of the admissible region gl(d) = 0, ge(d) ≤ 0, d ≥ 0 satisfy the upper bound and the
optimum of the problem in [1] is given by a protocol producing a maximal damage to the “early”
tissue.
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