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1 Introduction

In productivity and efficiency analysis, most of theoretical and empirical studies have been

based on the Farell-Debreu radial oriented measures (Farrell, 1957, Debreu, 1951, Shephard,

1970). The basic idea was to gauge how much the outputs should be increased (maximal

attainable value), given the level of the inputs used, to reach the efficient frontier. Alterna-

tively, mainly when the outputs are not under the control of the DMUs, like in some service

industries, one could analyze how much a firm should reduce its inputs, given the level of

outputs it is producing.

Later, directional distance functions have been introduced (see Chambers, Chung and

Färe, 1996, 1998, Färe and Grosskopf, 2004, Färe et al., 2008) to generalize the radial input

and output distance functions. A directional distance function projects the input-output

vector onto the technology frontier in a direction given by the vector d = (dx, dy) ≥ 0. It

encompasses indeed both the input and the output oriented radial measures as special cases

when some elements of the directional vector d are fixed at zero.

Recently, Simar and Vanhems (2012) have shown that by choosing an appropriate prob-

abilistic formulation of the production process (as initiated by Cazals et al. 2002), all the

known statistical properties of the nonparametric estimators of the radial efficiency scores

were easily adapted to the FDH nonparametric estimators of the directional distance func-

tions. They provided also robust versions of these estimators, based on the order-m partial

frontiers (Cazals et al., 2002) and order-α quantile frontiers (Daouia and Simar, 2007). Fi-

nally, Simar and Vanhems (2012) only sketch how conditional directional distances could be

defined in this framework, without providing any information about their computational im-

plementation. Furthermore, Simar et al. (2012) analyze the statistical properties of the DEA

estimators of directional distances. Statistical inference for individual directional distances

was derived in these papers, and it implies the use of bootstrap methods.

Interestingly, the great flexibility of the directional distances rests in their ability to

handle non-discretionary inputs and/or outputs by simply setting at zero any subset of the

vector d. The only constraint is that the vector d should not be equal to zero for all its

components.

On the other hand, recently, Bădin et al. (2012) have developed the methodology initiated

by Daraio and Simar (2005, 2007) for investigating the impact of environmental, external

factors on the production process. Their approach uses conditional efficiency measures (see

Bădin et al. 2013 for a recent survey of available techniques). All these approaches, however,

use traditional radial measures.

In this paper we combine the tools recently developed by Simar and Vanhems (2012)
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and Bădin et al. (2012) by adapting the methodology for detecting the impact of external-

environmental variables on the production process to the directional distance framework.

Our contribution is thus fourfold.

- First we operationalize, by explicating the algorithms, the computation of directional

distance estimates, where Simar and Vanhems (2012) were only mentioning the possi-

bility of extension, without giving any computational details. In particular, we provide

a practical procedure for computing directional distances and their robust versions

when some of the elements of the directional vector are zeros (both in inputs and/or

in outputs).1

- Second, we explicit the computations for the conditional distance estimates, including

their robust versions. By doing this, we particularize to conditional directional dis-

tances the procedure for selecting the appropriate bandwidth, suggested by Bădin et

al. (2010).

- Third, we adapt the methodology for measuring the impact of environmental variables

implemented so far for radial oriented efficiency scores (Bădin et at. 2012) to the

directional distance context. This includes the appropriate second stage regression to

explore the effect of external variables on the expected efficiency scores.

- Finally, we provide a test for assessing the significance of the effect of external variables

on the expected efficiency scores. This test adapts a bootstrap methodology suggested

for traditional nonparametric regression to this peculiar context. Specifically, we show

how a consistent bootstrap test can be implemented by working with order-α quantile

frontiers. The procedure is illustrated with some simulated data sets and with a real

data set on Mutual Funds. We analyze the role of Market Risk on the mean efficiency

in a simple Mean-Variance model.

The paper is organized as follows. Section 2 introduces the basic notation for directional

distances and their robust versions. In Section 3 we illustrate how to compute the FDH

nonparametric estimators of directional distances when some elements of the direction d

are set at zero. Then Section 4 gives all the details for computing conditional directional

distances and their robust versions. The test of significance of the external factors, based on

bootstrap methods, is explained in Section 5. Section 6 illustrates the proposed procedure

1For saving space, we limit the presentation to the case of quantile frontiers. This can be adapted
without much difficulties to the order-m partial frontiers, but at a cost of notational complexity, see Simar
and Vanhems (2012), the algorithm for computing order-m directional distance requires a Monte-Carlo
procedure, which can be directly adapted to the cases described in this paper for the quantile frontiers.
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with some data sets. The bootstrap algorithm (including the double bootstrap) is detailed

in Appendix A. Section 7 summarizes the main findings and concludes the paper.

2 Directional Distances

2.1 Basic concepts and notations

In production theory (see Shephard, 1970), we consider a set of producing units (hereafter

we will use the term “DMU”) that produce a set of outputs Y ∈ R
q by combining a set of

inputs X ∈ R
p. The technology is characterized by the attainable set T , the set of all the

combinations of (x, y) that are technically achievable, defined as:

T = {(x, y) ∈ R
p × R

q|x can produce y}. (2.1)

We know (Cazals et al., 2002) that under the free disposability assumption for the inputs

and the outputs2, the set can be described as:

T = {(x, y) ∈ R
p × R

q|HXY (x, y) > 0}, (2.2)

where HXY (x, y) is the probability of observing a unit (X, Y ) dominating the production

plan (x, y), i.e. HXY (x, y) = Prob(X ≤ x, Y ≥ y).

The efficient boundary of T is of interest and several ways have been proposed in the

literature to measure the distance of the unit (x, y) to (from) the efficient frontier. One of

the most flexible approach is based on directional distances introduced by Chambers et al.

(1998) (see also Färe and Grossopf, 2004 and Färe et al., 2008). Given a directional vector

for the inputs dx ∈ R
p
+ and a direction for the outputs dy ∈ R

q
+, a directional distance is

defined as:

β(x, y; dx, dy) = sup{β > 0|(x− βdx, y + βdy) ∈ T}, (2.3)

or equivalently, under the free disposability assumption (see Simar and Vanhems, 2012):

β(x, y; dx, dy) = sup{β > 0|HXY (x− βdx, y + βdy) > 0}. (2.4)

That is, we measure the distance of unit (x, y) from the efficient frontier in an additive way,

and along the path defined by (−dx, dy). This way of measuring the distance is very flexible

and generalizes the “oriented” radial measures proposed by Debreu (1950) and Farrell (1957),

see also Shephard (1970). Certainly, by choosing dx = 0 and dy = y (or dx = x and dy = 0),

we can recover the traditional Farrell-Debreu output (resp. input) radial distance. The

2The free disposability we used in this paper is the assumption that if (x, y) ∈ T then (x̃, ỹ) ∈ T for all
x̃ ≥ x and all ỹ ≤ y. It is a minimal assumption generally made on production processes.
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flexibility of this approach rests on the fact that we might have some elements of the vector

dx and/or of the vector dy that can be set at zero. This is the case when one wants to focus

the analysis on distances to the frontier along certain particular paths or, for instance, when

some inputs or outputs are non-discretionary, not under the control of the manager, and so

on.

An important point to note is that the efficient frontier is uniquely defined by the bound-

ary of the attainable set T (where all the inputs and outputs are involved), but the distance

to the frontier depends on the chosen direction. In particular, in the optimization (2.3),

some inputs or outputs could not be involved.

For a discussion about the choice of a direction, see Färe et al. (2008). The direction

can be different for each unit (like in the radial cases) or it can be the same for all the

units. Färe et al. (2008) argue that a common direction would be a kind of egalitarian

evaluation reflecting a kind of social welfare function. Researchers often select in the latter

case dx = E(X) and dy = E(Y ), where E(.) means expected value of (.) and in practice

empirical averages are chosen.

Simar and Vanhems (2012) show the equivalence between directional and hyperbolic

distances. Accordingly we have:

β(x, y; dx, dy) = log(γ(x∗, y∗)),

where γ(x∗, y∗) = sup{γ > 0|HX∗Y ∗(γ−1x∗, γy∗) > 0}. (2.5)

We see indeed that γ(x∗, y∗) is the hyperbolic distance from (x∗, y∗) to the efficient frontier

along an hyperbolic path (Färe et al., 1985) in a transformed coordinates space, (X∗, Y ∗).

When both dx > 0 and dy > 0, the monotonic transformation proposed by Simar and

Vanhems (2012) is defined by:

X∗ = exp(X./dx) and Y ∗ = exp(Y./dy), (2.6)

where ./ refers to the Hadamar componentwise division of vectors. It will be seen below that

this link provides a simple way to define robust version of directional distances and simple

formulae for computing nonparametric estimates. A contribution of the present paper is to

show how to handle the case of zero directional elements in dx and/or in dy. This is provided

in Section 3.2 below.

2.2 Robust quantile frontiers

Quantile frontiers for evaluating the performance of DMUs have been introduced in the full

multivariate setup by Daouia and Simar (2007), by using (input or output) oriented radial
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measures. Their adaptation to directional distances is due to Simar and Vanhems (2012)

and is quite natural after the representation given in (2.4) and exploiting the link between

directional and hyperbolic distances.

Hence, in place of looking to the support of the distribution HXY , as in (2.4), we bench-

mark the DMU against a point which leaves on average α×100% of points above the frontier.

This benchmark is the α-quantile frontier. Formally the order-α directional distance is de-

fined as:

βα(x, y; dx, dy) = sup{β > 0|HXY (x− βdx, y + βdy) > 1− α}. (2.7)

Here a value βα(x, y; dx, dy) = 0 indicates a point (x, y) on the α-quantile frontier, a positive

value is a point below the quantile frontier and a negative value is a point above the quantile

frontier. We see clearly that when α → 1 we recover the full frontier definition. As explained

in Simar and Vanhems, and using the transformation (2.6) we have

βα(x, y; dx, dy) = log(γα(x
∗, y∗)),

where γα(x
∗, y∗) = sup{γ > 0|HX∗Y ∗(γ−1x∗, γy∗) > 1− α}, (2.8)

Note that, as already pointed by Daouia et al. (2013) the corresponding α-quantile frontier,

defined as the set of points (x, y) such that HXY (x, y) = 1 − α, is uniquely determined

whatever being the chosen direction. Certainly, the value of the distance itself, instead,

relies on the chosen path (−dx, dy).

3 Nonparametric Estimation

3.1 The regular case: all the directions are strictly positive

The FDH estimator (Deprins et al. 1984) is obtained by plugging the natural empirical

version of HXY (·, ·) in the formulae above:

β̂(x, y; dx, dy) = sup{β ≥ 0|Ĥn,XY (x− βdx, y + βdy) > 0},
β̂α(x, y; dx, dy) = sup{β ≥ 0|Ĥn,XY (x− βdx, y + βdy) > 1− α},

where Ĥn,XY (x, y) = (1/n)
∑n

i=1 1I(Xi ≤ x, Yi ≥ y), and 1I(.) is an indicator function, equal

to one if the condition (.) is verified or zero otherwise. Due to the simple monotonic

transformation (2.6), Simar and Vanhems derive for the case of dx > 0 and dy > 0, a

simple sorting formula for computing these estimators.3 They provide also the asymptotic

3The DEA version, appropriate under the additional assumption of convexity of the attainable set T ,
and its asymptotic properties are derived in Simar et al. (2012).
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properties of the resulting estimators. The FDH estimator is given by:

β̂(x, y; dx, dy) = log(γ̂(x∗, y∗)),

where γ̂(x∗, y∗) = max
j∈Dx,y

{
min

{
min

k=1,...,p

(
x∗,k

X∗,k
j

)
, min
ℓ=1,...,q

(
Y ∗,ℓ
j

y∗,ℓ

)}}
, (3.1)

where Dx,y = {i|Xi ≤ x, Yi ≥ y} is the set of labels of observations dominating the point

(x, y) which is evaluated.4 Therefore, the computation of γ̂(x∗, y∗) can be obtained as a

standard output-oriented FDH estimator by considering an extended set of (p+ q) outputs

{(1./X∗
i , Y

∗
i ), i = 1, . . . , n} and a single fixed input.

The nonparametric estimator of γα(x
∗, y∗) is also provided in Simar and Vanhems (2012).

Define for i = 1, . . . , n the variables:

Xi = min

{
min

k=1,...,p

(
x∗,k

X∗,k
i

)
, min
ℓ=1,...,q

(
Y ∗,ℓ
i

y∗,ℓ

)}
, (3.2)

and let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistics of the variables Xi. Then we have

γ̂α(x
∗, y∗) =

{
X(αn) if αn is an integer
X([αn]+1) otherwise,

(3.3)

where [·] denotes the integer part of a real number; then β̂α(x, y; dx, dy) = log(γ̂α(x
∗, y∗)).5

We remark also that γ̂(x∗, y∗) ≡ γ̂1(x
∗, y∗) = X(n).

The projection of any (x, y) ∈ T on the estimated α-quantile frontier is given by the

points (x̂∂
α, ŷ

∂
α) defined as

x̂∂
α = x− β̂α(x, y; dx, dy)dx, and ŷ∂α = y + β̂α(x, y; dx, dy)dy. (3.4)

Since the resulting estimator will not envelop all the data points, the resulting frontier is

more robust to outliers and extreme data points than its full version above. Properties of

this estimator are derived in Simar and Vanhems (2012).

3.2 The case of zero elements in the directional vector

When some elements of dx and/or of dy are equal to zero, the transformation (2.6) has to be

adapted. Simar and Vanhems (2012) give only some indication on how to proceed for the

pure input (pure output) orientation dy = 0 (resp. dx = 0) and Simar and Wilson (2013)

4Note that, as in Simar and Vanhems (2012), Dx,y ≡ {i|X∗

i ≤ x∗, Y ∗

i ≥ y∗}, because the inequalities are
equivalent due to the monotonicity of (2.6).

5Note the unfortunate typos around formula (51) in Simar and Vanhems (2012). The correct formulation,
using similar notations is given in equations (3.2)–(3.3). Note that the results in the empirical section of
Simar and Vanhems use the correct formulae.
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explain how to proceed for the full frontier case, but to the best of our knowledge, the case

of the order-α directional distance was never analyzed. We will see that using an additional

transformation of the variables, the nonparametric estimators in both cases (full frontier and

order-α frontier) can be easily computed.

Without loss of generality, let us partition dx = (dx1
, dx2

), where dx2
= 0 is of dimension

p2. So dx1
> 0 and p1 = p − p2. Note that dx2

could be the empty vector ∅ with p2 = 0,

covering the case where all the elements of dx > 0. We use the same notational convention

for dy = (dy1, dy2), with dy2 = 0, which is of dimension q2, with q2 ≥ 0. We partition all the

input and output vectors X and Y accordingly, remembering that X2 and/or Y2 could be

empty vectors. The directional distances are now defined as:

β(x, y; dx, dy) = sup{β > 0|HXY (x1 − βdx1
, x2, y1 + βdy1, y2) > 0}. (3.5)

Therefore, the monotone transformation (2.6) becomes as follows:

X∗
1 = exp(X1./dx1

) and X∗
2 = X2,

Y ∗
1 = exp(Y1./dy1) and Y ∗

2 = Y2. (3.6)

From this, it is easy to see that:

β(x, y; dx, dy) = log(γ(x∗, y∗)),

where γ(x∗, y∗) = sup{γ > 0|HX∗Y ∗(γ−1x∗
1, x

∗
2, γy

∗
1, y

∗
2) > 0}, (3.7)

We have similar expressions for the order-α case. The order-α directional distance is now:

βα(x, y; dx, dy) = sup{β > 0|HXY (x1 − βdx1
, x2, y1 + βdy1, y2) > 1− α},

= log(γα(x
∗, y∗)),

where γα(x
∗, y∗) = sup{γ > 0|HX∗Y ∗(γ−1x∗

1, x
∗
2, γy

∗
1, y

∗
2) > 1− α}. (3.8)

The easiest way to define the FDH estimators, obtained by replacing HX∗Y ∗ by its em-

pirical version Ĥn,X∗Y ∗ , is to adapt the notations introduced in Daouia et al. (2013) to our

case here. Consider the following random variable:

Wxy(X∗, Y ∗) = 1I (X∗
2 ≤ x∗

2, Y
∗
2 ≥ y∗2)min

{
min

k=1,...,p1

(
x∗,k
1

X∗,k
1

)
, min
ℓ=1,...,q1

(
Y ∗,ℓ
1

y∗,ℓ1

)}
. (3.9)

The random variable Wxy(X∗, Y ∗) could be interpreted as the “partial” hyperbolic efficiency

score of a random points (X∗, Y ∗) dominating (x, y) for the variables (x∗
2, y

∗
2) and where only

the variables (x∗
1, y

∗
1) are used in the optimization. It can be seen that:

Prob(Wxy(X∗, Y ∗) ≥ w) = SWxy(w) = HX∗Y ∗(w−1x∗
1, x

∗
2, wy

∗
1, y

∗
2), (3.10)
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and that γ(x∗, y∗) = sup{w|SWxy(w) > 0} and γα(x
∗, y∗) = sup{w|SWxy(w) > 1− α}. Note

that here SWxy(w) = 1 for w < 0 but SWxy(0) = HX∗
2
Y ∗
2
(x∗

2, y
∗
2) ≡ HX2Y2

(x2, y2) ≤ 1. As a

consequence, for any α ≤ 1 − HX2Y2
(x2, y2), γα(x

∗, y∗) = 0 and βα(x, y; dx, dy) = −∞. We

remark also that if both X2 and Y2 are empty, SWxy(0) = 1 as in the regular case where all

the directions are strictly positive and βα(x, y; dx, dy) will be well defined for all α ∈ (0, 1].

The nonparametric estimators can now be easily derived by plugging the empirical ver-

sion of SWxy(·) in the formulae. We evaluate Wxy at each observation (X∗
i , Y

∗
i ), Wxy

i =

Wxy(X∗
i , Y

∗
i ) and we denote Wxy

(i) the ith order statistic of these n observations, such that

Wxy
(1) ≤ Wxy

(2) ≤ . . .Wxy
(n). Note that by construction, the first n−n2 order statistics are equal

to zero and only the last n2 ones are positive. Here n2 =
∑n

i=1 1I
(
X∗

2,i ≤ x∗
2, Y

∗
2,i ≥ y∗2

)
is the

number of observations dominating the point (x2, y2) in the restricted space of dimension

(p2 + q2). Note that if both X2 and Y2 are empty vectors (p2 + q2 = 0), we have n2 = n and

the observations Wxy
i coincide with Xi defined in (3.2). We now have the simple expression

for the nonparametric estimators of the hyperbolic measures γ’s

γ̂(x∗, y∗) = Wxy
(n), (3.11)

γ̂α(x
∗, y∗) =

{ Wxy
(αn) if αn is an integer

Wxy
([αn]+1) otherwise,

(3.12)

Note that if α ≤ 1 − Ĥn,X2Y2
(x2, y2) = 1 − n2/n, we have γ̂α(x

∗, y∗) = 0. Taking the log of

the γ̂’s produce the estimates of the directional distances as follows:

β̂(x, y; dx, dy) = log(γ̂(x∗, y∗)), (3.13)

β̂α(x, y; dx, dy) = log(γ̂α(x
∗, y∗)). (3.14)

Note that the latter formulae can be used in all the cases (any directional vectors) with the

remark done above that if dx > 0 and dy > 0, then n2 = n and Wxy
i ≡ Xi for all i = 1, . . . , n.

3.3 Analyzing the gaps

It may be useful for practitioners to measure, in original units of the inputs and of the

outputs, the estimated distance of a DMU from the frontier. This permits to appreciate

the efforts to be achieved in increasing the outputs and decreasing the inputs to reach the

efficient frontier. For the full frontier this measure is given by what we call the “gaps” to

efficiency. They are directly given by:

Gx = β̂(x, y; dx, dy)dx, and Gy = β̂α(x, y; dx, dy)dy. (3.1)

For the partial frontiers, the gaps appear as being the difference between (x, y) and the

projections on the α-quantile frontier given in (3.4). They are particularly useful to detect
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outliers in the direction given by the path (−dx, dy). This will be the case in the input

direction if Gα,x = β̂α(x, y; dx, dy)dx has some elements with large negative value: the DMU

(x, y) is well below the estimated α-frontier in the input direction, and/or a very large

negative value in some elements of the vector Gα,y = β̂α(x, y; dx, dy)dy warns a point being

well above the quantile frontier.

4 Conditional Directional Distances

4.1 Definition and estimation

Here we want to introduce in the production model exogenous variables or external, envi-

ronmental factors Z ∈ R
r. These variables are neither inputs nor outputs, and they are

not under the direct control of the manager. However, they may influence the production

process. A natural way for introducing these variables has been initiated by Cazals et al.

(2002) and extended to define conditional measures by Daraio and Simar (2005).

The idea is very simple, we only have to replace HXY (x, y) in the above unconditional

model by HXY |Z(x, y|Z = z) = Prob(X ≤ x, Y ≥ y|Z = z) where we condition to the value

z of the external factors that the unit (x, y) has to face. In our setup here, this allows to

define a conditional directional distance β(x, y; dx, dy|z), as shown in Simar and Vanhems

(2012). Simar and Vanhems indicate the link with a conditional hyperbolic distance, but

they do not provide any explicit algorithm. Moreover, so far, no indication has been given

for the bandwidth selection, for cases where there are directions with zero values and for

robust (α-quantile) versions. We fill this gap in this section.

A non parametric estimator of HXY |Z(x, y|Z = z) is given by

Ĥn,XY |Z(x, y|Z = z) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)K

(
(Zi − z)/h

)
∑n

i=1K
(
(Zi − z)/h

) , (4.1)

where K(.) is a kernel function with compact support and h is the bandwidth. When r > 1,

Z = (Z1, . . . , Zr) is multivariate and we use a product kernel with a vector of bandwidths

h = (h1, . . . , hr) and K
(
(Zi − z)/h

)
is the shortcut notation for

∏r
j=1K

(
(Zj

i − zj)/hj

)
.

Bădin et al. (2010) provide a way of selecting optimal bandwidths in the case of radial

input (or output) oriented measures. In our case here, since we use the joint probability on

inputs and outputs, conditional on Z, we can directly apply the optimal procedure suggested

by Hall at al. (2004), providing optimal bandwidths for the conditional probability distri-

bution function (pdf) of (X, Y ), conditional on Z.6 As explained in Li and Racine (2007),

6This is a standard problem in nonparametric density estimation and is obtained by Least Squares Cross
Validation (LSCV). For instance, the np package in R, Hayfield and Racine (2008), provides such algorithm.
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this gives a bandwidth of order n−1/(4+p+q+r). Since the optimal bandwidth for estimating

a conditional cumulative distribution has to be, for each component, of order n−1/(4+r), the

optimal values found by Least Squares Cross Validation (LSCV) for pdf have to be rescaled

by the multiplication of the factor n1/(4+p+q+r)n−1/(4+r) = n−(p+q)/((4+p+q+r)(4+r)).

The computations of the conditional hyperbolic measures in the transformed spaces are

then easy to obtain. We present directly the case where some directions in dx and/or dy

could be equal to zero, and when necessary we will particularize to the “regular” case where

dx > 0 and dy > 0. We use the notations introduced above from (3.6) to (3.10), noting that

in the regular case X2 and Y2 are empty vectors. The conditional survival function of Wxy

is given by:

SWxy|Z(w|Z = z) = HX∗Y ∗|Z(w
−1x∗

1, x
∗
2, wy

∗
1, y

∗
2|Z = z). (4.2)

Then we have:

γ(x∗, y∗|z) = sup{w|SWxy|Z(w|Z = z) > 0}, (4.3)

γα(x
∗, y∗|z) = sup{w|SWxy|Z(w|Z = z) > 1− α}. (4.4)

We can verify that here we have γα(x
∗, y∗|z) = 0 for α ≤ 1 − HX2,Y2|Z(x2, y2|Z = z), and

in the regular case, γα(x
∗, y∗|z) > 0 for α ∈ (0, 1]. The nonparametric estimator are then

obtained by using the empirical version of the survival function:

Ŝn,Wxy|Z(w|Z = z) =

∑n
i=1 1I

(
Wxy

i ≥ w
)
K
(
(Zi − z)/h

)
∑n

i=1K
(
(Zi − z)/h

) . (4.5)

Denote by Zxy
[j] the observation Zi corresponding to the jth order statistic Wxy

(j). The esti-

mated survival can also be written as:

Ŝn,Wxy|Z(w|Z = z) =

∑n
j=1 1I

(
Wxy

(j) ≥ w
)
K
(
(Zxy

[j] − z)/h
)

∑n
i=1K

(
(Zi − z)/h

) . (4.6)

As pointed in Daraio and Simar (2005) and Jeong et al. (2010), for the full conditional

hyperbolic measure γ̂(x∗, y∗|z) = sup{w|Ŝn,Wxy|Z(w|Z = z) > 0} is given by the greatest

order statistic Wxy
(i) among the observations i such that |Zi − z| ≤ h. For multivariate Z

the later inequality has to be understood componentwise. In practice, and equivalently, the

formula for obtaining β̂(x, y; dx, dy|z) is exactly the same as the one described above except

that the estimation is “localized” in a neighborhood of the given z value. The neighborhood

is tuned by the selected bandwidths. The formula for β̂(x, y; dx, dy|z) can be written exactly

as in (3.1) except that now Dx,y is replaced by its localized version. Therefore we have:

β̂(x, y; dx, dy|z) = log(γ̂(x∗, y∗|z)),

where γ̂(x∗, y∗|z) = max
j∈Dx,y|z

{
min

{
min

k=1,...,p

(
x∗,k

X∗,k
j

)
, min
ℓ=1,...,q

(
Y ∗,ℓ
j

y∗,ℓ

)}}
, (4.7)
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where now,

Dx,y|z = {i|Xi ≤ x, Yi ≥ y, |Zj
i − zj | ≤ hj , j = 1, . . . , r}. (4.8)

The latter set is the set of labels of data dominating the point (x, y), and having “similar”

values for the r components of Zi. Asymptotic properties of these nonparametric estimator

of conditional efficiency scores have been established by Jeong et al. (2010) for the radial

cases, and, as explained in Simar and Vanhems (2012), they remain valid for directional

distances.

For robust α-quantile, it is less obvious. It can be verified that, in the general case where

some elements of the directional vector are zero, we have:

Ŝn,Wxy|Z(w|Z = z) =





1 if w ≤ 0
Lk+1 if Wxy

(k) < w ≤ Wxy
(k+1), for k = n− n2, . . . , n− 1

0 if w > Wxy
(n),

where Lk+1 =
∑n

j=k+1K
(
(Zxy

[j] − z)/h
)
/
∑n

i=1K
(
(Zi − z)/h

)
. We note that indeed Wxy

(j) = 0

for all j = 1, . . . , n−n2. In the regular case with n2 = n, Wxy
(j) > 0 for all j and the estimate

slightly particularizes in:

Ŝn,Wxy|Z(w|Z = z) =





1 if w ≤ Wxy
(1)

Lk+1 if Wxy
(k) < w ≤ Wxy

(k+1), for k = 1, . . . , n− 1

0 if w > Wxy
(n),

where Lk+1 is as before. In the general case, the estimator of the hyperbolic measure is:

γ̂α(x
∗, y∗|z) =





0 if 1− α ≥ Ln−n2+1

Wxy
(k) if Lk > 1− α ≥ Lk+1, for k = n− n2, . . . , n− 1

Wxy
(n) if 0 ≤ 1− α < Ln,

(4.9)

Hence, the directional estimate β̂(x, y; dx, dy|z) = log
(
γ̂α(x

∗, y∗|z)
)
will take finite values,

only for α > 1− Ln−n2+1 = 1− Ĥn,X2Y2|Z(x2, y2|Z = z). It is easy to see that in the regular

case where dx > 0 and dy > 0, we have for all α ∈ (0, 1]:

γ̂α(x
∗, y∗|z) =

{ Wxy
(k) if Lk > 1− α ≥ Lk+1, for k = 1, . . . , n− 1

Wxy
(n) if 0 ≤ 1− α < Ln.

(4.10)

4.2 Measuring the impact of environmental variables

Here we adapt the methodology described in details in Bădin et al. (2012, 2013) for radial

oriented distances, to the directional distances case. When using Farrell or Shephard radial

measures of efficiencies, the ratio of the conditional to unconditional efficiency scores is quite

natural. For instance, the shift of the frontier at a point (x, y) in the output direction
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can be measured by the ratio of the modulus of projection of (x, y) on the conditional

frontier in the output direction, ||y∂z || = λ(x, y|z)||y||, to its projection, in the same direction,

on the unconditional frontier given by ||y∂|| = λ(x, y)||y||. This ratio is indeed given by

λ(x, y|z)/λ(x, y). And the analysis, suggested by Daraio and Simar (2005, 2007) and detailed

in Bădin et al. (2012, 2013) follows, including the case where the robust order-α efficiency

scores are used.

Here the situation is more complex because the projection of a point w = (x, y) on

the frontier is given by the point in R
p+q with coordinate (x − βdx, y + βdy) where β is

β(x, y; dx, dy) (reps. β(x, y; dx, dy|z)) for the unconditional (reps. conditional) frontier. In

particular, the modulus of the point w = (x, y) projected on the frontier, in the direction

(−dx, dy) is given by:

||w∂|| =

√√√√
p∑

j=1

(
xj − β(x, y; dx, dy)d

j
x

)2
+

q∑

k=1

(
yk − β(x, y; dx, dy)dky

)2
, (4.11)

where β(x, y; dx, dy) would be replaced by β(x, y; dx, dy|z) for defining ||w∂
z ||. This is not a

simple function of the β’s, depending on (x, y) but also on the chosen direction (−dx, dy). The

analysis becomes simpler if we choose, for investigating the impact of Z on the production

process, the following directions:

dx = x and dy = y. (4.12)

We remember indeed that the frontier levels do not depends on the chosen direction, both

for the full frontier and for the α-quantile frontier computed with directional distances. The

choice (4.12) will appear quite useful and also allows to compute order-α measures for all

α ∈ (0, 1].

The modulus of the frontier points would then be given by
√
(1− β)2||x||2 + (1 + β)2||y||2,

where β is the appropriate distance (conditional or unconditional). We see that here the

ratios ||w∂
z ||/||w∂|| does not simplify unless we are back in the radial cases where dx (or dy)

is set to zero. Indeed in the latter case, e.g. dx = 0 and dy = y, the ratios simplify to

(1+ β(x, y; dx, dy|z))/(1+ β(x, y; dx, dy)) which turns out, as expected, to be the ratios used

in the radial output measures λ(x, y|z)/λ(x, y) described above (choosing dx = x and dy = 0

would give the radial input oriented case). Nothing is new for these particular radial cases.7

In a more general case and using (4.12), it is easy to check that the distance in R
p+q

between w∂
z and w∂ is simply given by:

||w∂
z − w∂|| =

(
β(x, y; dx, dy)− β(x, y; dx, dy|z)

)
||w||, (4.13)

7Recent applications of conditional directional distances within this framework include Halkos and
Tzeremes (2013) and Bonaccorsi et al. (2013).
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where the first factor is by construction greater or equal to zero. So a simple unit free

measure of the shift of the frontier at the point w = (x, y) in the direction (−dx, dy), is given

by the relative distance:

δ(x, y, z) = ||w∂
z − w∂||/||w|| = β(x, y; dx, dy)− β(x, y; dx, dy|z) ≥ 0. (4.14)

By following the same arguments, it easy to show that the relative distance between the

quantile-α frontiers (conditional and unconditional) is given by:

||w∂
α,z − w∂

α||/||w|| = |βα(x, y; dx, dy)− βα(x, y; dx, dy|z)|. (4.15)

Note that here we need the absolute value of the difference because this difference (like the

measures βα themselves) can be either positive or negative. It can be seen that whatever

being the sign of the measures, if βα(x, y; dx, dy) ≥ βα(x, y; dx, dy|z), the conditional quantile
frontier is below the unconditional one in the direction (−dx, dy), and the contrary when

βα(x, y; dx, dy) ≤ βα(x, y; dx, dy|z). Since the sign of these differences is informative, we will

use as tool for measuring the impact of Z on the α-quantile frontiers the quantity:

δα(x, y, z) = βα(x, y; dx, dy)− βα(x, y; dx, dy|z), (4.16)

where both the sign and the absolute value are of importance in the interpretation. As

explained in Bădin et al. (2012), if we want robust versions of the frontier levels, α has to

be chosen near 1, but for analysis of the effect of Z on the middle of the distribution of

efficiencies, a value of α = 0.5 is more appropriate because it provides an estimate of the

median of the distribution.

Certainly, in practice these quantities are unknown but we can use rather their nonpara-

metric estimates. An estimate of the shift of the conditional frontier at the point (x, y) in

the direction (−dx, dy) is given by:

δ̂(x, y, z) = β̂(x, y; dx, dy)− β̂(x, y; dx, dy|z) ≥ 0, (4.17)

which is positive since the maximum for computing the γ̂ in (3.1) is over a more restricted

set for the conditional measure than for the unconditional ones (compare the sets Dx,y and

Dx,y|z).

Adapting the approach of Daraio and Simar (2005) and Bădin et al. (2012) to this

directional distance framework, we can say that a positive value of δ̂ indicates a shift of

the frontier of T in the direction (−dx, dy) (the conditional frontier is always below the

unconditional one). The biggest is the difference the biggest is the shift at this point and

for this value of z. Looking at the picture of δ̂(Xi, Yi, Zi) as a function of the elements of Z
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can be useful to indicate if δ has a tendency to increase or to decrease with z. An increasing

trend indicates a bigger negative shift with larger values of z, so z has a negative effect on the

attainable set. On the contrary if there is a tendency of δ to decrease with z, it means that

the conditional frontier is less shifted below the unconditional when z increase, indicating a

favorable effect of z on the attainable set.

The robust version using δ̂α(x, y, z) with large values of α is desirable if we expect to

have some outliers or extreme data points in the sample. But as pointed in Bădin et al.

(2012), the analysis of δ̂α(x, y, z) for smaller values of α, like α = 0.5 explores the potential

shift of the distribution of the inefficiencies as a function of z, because β̂0.5(x, y; dx, dy) and

β̂0.5(x, y; dx, dy|z) correspond to the “median” frontiers. If the difference are bigger than the

differences computed for the full frontier, it means that in addition to the potential shift of

the frontier, there is a shift of the median in the inefficiency distribution (less efficiency).

With the opposite conclusion if the differences are smaller (more concentration of the distri-

bution near the efficient frontier). As explained above, the sign of δ̂α(x, y, z) indicates if the

conditional quantile frontier is below or above the unconditional one.

In Bădin et al. (2013), confidence intervals for ratios of conditional to unconditional

Farrell radial measures, at a fixed set of grid values for z, have been proposed by using sub-

sampling techniques (m out of n bootstrap). Their analysis can certainly be adapted here

for building confidence intervals for E(δ(X, Y |Z = z)) at fixed values of z on a grid. The

procedure would use nonparametric regression of δ(X, Y |Z) on Z. Nevertheless, as pointed

in Bădin et al. (2013), a formal proof of the consistency of this bootstrap has still to be

derived.

As a conclusion, the analysis and comparison of unconditional and conditional efficiency

estimates, both with large α (even α = 1) and small values like α = 0.5, allows to disen-

tangle the potential effect of z on the frontier from the effect of z on the distribution of the

inefficiencies.

4.3 Second stage regression: effect of Z on average efficiency

scores

Another interesting analysis of individual conditional directional distances, for any direc-

tional vector d = (dx, dy), is to provide a tool allowing to investigate the effect of z on the

mean of the conditional directional distances. This is in the spirit of the so called two-stage

regression approaches, where the estimated unconditional efficiency scores (input or out-

put oriented) are regressed, in a second stage, against the Z variables. However we know

from Simar and Wilson (2007, 2011) that this has a meaning only under the “separability”

assumption, which assumes that the frontier of the attainable set does not depend on the
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values of z. Formally, let denote by T z the support of HXY |Z(x, y|Z = z), i.e. the set of

attainable points in the input-output space of DMUs facing the external conditions Z = z.

The “separability” condition states that T z ≡ T for all z. This assumption is very restrictive

and often unrealistic.

As indicated in Bădin et al. (2012), the use of the estimated conditional efficiency

scores for this second stage regression, does not require this restrictive assumption. We can

evidently do the same here with conditional directional distances. Therefore, the flexible sec-

ond stage regression can be written as the following location-scale nonparametric regression

model:

β(X, Y ; dx, dy|Z = z) = µ(z) + σ(z)ε, (4.18)

where ε and Z are independent with E(ε) = 0 and V(ε) = 1. From which:

µ(z) = E(β(X, Y ; dx, dy|Z = z)) and σ2(z) = V(β(X, Y ; dx, dy|Z = z)).

These two functions can be estimated non-parametrically from a sample of observations{
Zi, β̂(Xi, Yi; dx, dy|Zi)

}
, i = 1, . . . , n by using, e.g., Nadaraya-Watson, Local linear es-

timates, and so on (see Bădin et al., 2012 and the references cited therein for technical

details). As shown with simulated samples in Bădin et al., the analysis of µ̂(z) as a function

of z will enlighten the potential effect of Z on the average efficiency of DMUs, with the

help of σ̂(z) which may indicate the presence of heteroscedasticity. The resulting residuals

ε̂i = (β̂(Xi, Yi; dx, dy|Zi)− µ̂(Zi))/σ̂(Zi) can be viewed as the remaining part of the efficiency

when its dependence on Z has been removed. They can be used for ranking units even when

they are confronted to different environmental conditions measured by Z. Finally, they can

be interpreted according to Bădin et al. as “pure” or “managerial” efficiency measures. We

discuss in the next section some issues of statistical inference in these models and how the

bootstrap can help to test the significance of Z.

5 Testing the Significance of the Environmental Vari-

ables

One would be very happy to derive a procedure for testing if the effect of Z (or some

components of Z) are significant on the average efficiency scores. Testing the significance of

some elements of Z in the nonparametric regression of β(X, Y ; dx, dy|Z) on Z seems to be

straightforward if the true values β(Xi, Yi; dx, dy|Zi) would have been available. This could

indeed be achieved by applying the bootstrap procedure described in Racine (1997). The

procedure is seemingly simple. To summarize, the local linear estimators of the regression
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are used to estimate the local derivatives with respect of any selected element of Z and a test

statistics is built on the average of the square of those derivatives. Finally by bootstrapping

the re-centered residuals of the nonparametric regression constrained by the null hypothesis,

a p-value is approximated by using the percentiles of the bootstrap distributions of the chosen

statistic. This procedure is correct when the dependent variable of the regression is observed

which is the usual situation.

However, in the setup here, it is not the case because the β(Xi, Yi; dx, dy|Zi) are not

observed and have to be replaced by their nonparametric estimates. So the simple bootstrap

described in Racine cannot be used here because it ignores the noise introduced by this first

stage estimation and so, underestimate (in the bootstrap world) the sampling variation of the

nonparametric regression estimates. This approach is in general not consistent, in particular

if the noise introduced at the first stage estimation of β(Xi, Yi; dx, dy|Zi) is larger than

the noise due to the second stage nonparametric regression. The procedure is complicated

because the nonparametric estimators of the efficiency scores are plagued by the curse of

dimensionality. As pointed above, the asymptotic properties of the individual efficiency

estimators at fixed points (x, y, z) are well established, but the analysis of statistics which

are functions of these estimators evaluated at random points becomes more complicated.

The problem comes mainly from the bias of the resulting statistic which does not disappear

at the appropriate rate compared to the variance of the statistic. Kneip et al (2013) illustrate

this problems for a simple average of DEA and FDH efficiency scores and also for weighted

averages of these scores (by investigating a simple OLS regression of DEA or FDH scores on

exogenous factors). The latter procedure described in Kneip et al. for the OLS case, could

be adapted here, because local linear (or local constant) are also weighted averages with

weights determined by kernel functions, but there is little hope to get sensible results when

using full frontier estimates as soon as the number of inputs and outputs p+ q is bigger than

2 (see Kneip et al., 2013 for details).

We will now explain how to avoid the plague due to the dimensionality of the input-

output space and how to adapt the bootstrap algorithm described in Racine (1997) to our

setup here, explaining why this bootstrap is consistent. A solution is indeed to use rather

partial quantile frontiers and the order-α efficiency measures, because their nonparametric

estimators have, for any fixed level α ∈ (0, 1), rates of convergence not depending of the

number of inputs and outputs. Only the dimension of Z will play a role for the rates of

convergence of the efficiency scores but, as explained below, this will not hurt for the second

stage regression of interest. Hence, we test the significance of Z on the average efficiency

µ(z) = E [βα(X, Y ; dx, dy|Z = z)]. For large values of α, say, α = 0.95 or 0.99, the analysis

could be viewed as a robust version of the analysis for full efficiency scores.
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We know from Cazals et al. (2002), Daouia and Simar (2007), Jeong et al. (2010) and

Simar and Vanhems (2012) that the conditional efficiency estimates for partial frontiers share

similar properties that the unconditional ones, where the sample size n is replaced by the

“effective” one in nonparametric estimation, i.e. nh1 . . . hr, where r is the size of Z. To

summarize we have, as n → ∞ and for any fixed point (x, y, z):

√
nh1 . . . hr

(
β̂α(x, y; dx, dy|Z = z)− βα(x, y; dx, dy|Z = z)

)
L−→ N

(
0, σ2

α(x, y, z)
)
, (5.19)

where σ2
α(x, y, z) > 0 is a known function of different characteristics of the DGP. Since,

as recalled above, the optimal bandwidths are hj = cjn
−1/(r+4), for some constant cj , the

rate of convergence is
√
n4/(r+4) which can be compared with the rate

√
n achieved by the

unconditional order-α directional distance (see Simar and Vanhems, 2012). So we see clearly

how the conditioning on Z deteriorates the rate of convergence when r increases. The same

is true for the partial frontiers of order-m (see Cazals et al., 2002) and for the full frontier

estimates (see Jeong et al., 2010). So, we note that for order-α scores we will use here, the

dimensions p and q does not play any role on the convergence rates.

In what follows, we simplify the notations and use βα(x, y, z) for βα(x, y; dx, dy|Z = z).

Let b = (b1, . . . , br) be the vector of bandwidths used in the second stage nonparametric

regression of βα on Z. It is clear that by using local linear kernel methods on a sample

{(Zi, βα(Xi, Yi, Zi)|i = 1, . . . , n}, we would obtain (see Li and Racine, 2007, Theorem 2.7):

√
nb1 . . . br

(
µ̃(z)− µ(z) +

r∑

k=1

b2kCk(z)
)

L−→ N
(
0, V1

)
, (5.20)

√
nb1 . . . brbj

(
η̃j(z)− ηj(z)

)
L−→ N

(
0, V2

)
, (5.21)

for some finite constants Ck(z) depending on the second partial derivative of µ(z), where

V1, V2 are finite variances depending on the characteristics of the DGP (see Li and Racine,

2007, for explicit formulae). The mean function µ(z) is now E [βα(x, y; dx, dy|Z = z)] and

ηj(z) = ∂µ(z)/∂zj for j = 1, . . . , r are the partial derivatives, that will be used for building

the test statistic. It is well known that the estimates µ̃(z) and η̃j(z) can be written as

weighted averages of the n values βα(Xi, Yi, Zi). In particular we have:

η̃j(z) =
n∑

i=1

Wi,j(Zi, z, b)βα(Xi, Yi, Zi), (5.22)

where Wi,j(Zi, z, b) are known functions of (Zi − z) and of the kernel K
(
(Zi − z)./b

)
.8 It is

also known that the optimal bandwidths bj can be determined by LSCV (least-squares cross

8Explicit formulae for Wi,j(Zi, z, b) are complicated and are not needed for the argument here, but they
have a simple form in matrix notation, e.g., as equation (2.10) in Li and Racine (2007) which gives the
estimator of the vector (µ̃(z), η̃′(z))′. The expression (5.22) is the (j + 1)th element of this vector.
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validation) providing values bj of the same order as the bandwidths hj used in estimating

the conditional distribution in the first step above, i.e. bj = djn
−1/(r+4) for some constant dj.

Note that the rate of convergence for estimating any derivative ηj(z) is given by
√
n2/(r+4)

due to the presence of bj , which is worst than the rate
√
n4/(r+4) achieved when estimating

the mean µ(z). In this setup then, testing the significance of any subset of the vector Z

could then be developed by following the algorithm described in Racine (1997). It is based

on the test statistic denoted by τ̃ written as:

τ̃ = n−1

n∑

i=1

r1∑

j=1

[η̃j(Zi)]
2 , with r1 ≤ r, (5.23)

where the null hypothesis is:

H0 : ∀z,
∂µ(z)

∂zj
= 0, for j = 1, . . . , r1, (5.24)

i.e., the first r1 components of Z do not affect µ(z) against the alternative hypothesis

HA :
∂µ(z)

∂zj
6= 0, for some z and j = 1, . . . , r1 (5.25)

i.e., some components of Z affect µ(z). Note that without loss of generality we test the

significance of the first r1 ≤ r components of Z. We would reject the null in favor of the

alternative when τ̃ is too big. Either the p-value of H0 or critical values of any size can

be determined by the bootstrap algorithm described in Racine (1997), where the bootstrap

samples have to be generated, as usually required, under the null hypothesis.

As pointed above, we do not observe the βα(Xi, Yi, Zi); we only have their estimates

β̂α(Xi, Yi, Zi). Given the asymptotic properties of partial order-α frontiers, plugging these

estimates in place of the true values in the above procedure will not create any problem

and will not change the validity of the asymptotic results (as explained below). Therefore,

we will rather use in the test statistics the estimators of the derivatives η̂j(z), obtained by

the nonparametric regression of β̂α on z from the available sample {(Zi, β̂α(Xi, Yi, Zi)|i =
1, . . . , n} without loosing the properties described above. We will denote τ̂ the resulting

test statistic. The asymptotic theory described above for η̃j(z) is indeed still valid for η̂j(z)

because, in the weighted averages (5.22), the error we introduce by replacing βα(Xi, Yi, Zi)

by β̂α(Xi, Yi, Zi) is of order
√
n−4/(r+4) that is smaller than the order

√
n−2/(r+4) of the error

between η̃j(z) and ηj(z). So, by using optimal bandwidths we have

n1/(r+4)
(
η̂j(z)− ηj(z) + op

(
n−1/(r+4)

)) L−→ N
(
0, V2

)
, (5.26)

This explains also why full frontier estimates cannot be used, because the noise introduced

in the first stage by estimating β(Xi, Yi|Zi) could not be neglected, the op
(
n−1/(r+4)

)
would
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be replaced by Op

(
n−γ

)
with - for the FDH case-, γ = 2/((p+ q)(r+4)) < 1/(r+4) as soon

as p+ q > 2.9 For DEA estimates, γ = 4/((p+ q + 1)(r + 4)), so we would have problem as

soon as p+ q > 3 (see Kneip et al., 2013 for a discussion on these issues).

Finally, it has to be noted that, as pointed in Racine (1997), we can improve the per-

formance of test (both size and power) by using a pivotal version of the test statistics

t̂ = τ̂ /SE(τ̂ ), where SE(τ̂) can be estimated by an inner loop in the bootstrap algorithm.

This is known in the literature as the “double bootstrap”. The reader is referred to the

detailed algorithm in Appendix A.

6 Empirical Illustrations

In this section we illustrate how the testing procedure proposed in the previous section works

with 3 simulated samples and with a real data set to test the effect of market risk on the

performance of mutual funds.

6.1 Simulated examples

We select here the data sets of size n = 200 simulated by scenario inspired from Simar and

Wilson (2011) and already used in Bădin et al. (2012). To summarize we have the three

following different DGPs:

Y = g(X)e−U (6.1)

Y ∗ = g(X)e−U |Z−2| (6.2)

Y ∗∗ = g(X)(1 + |Z − 2|/2)1/2 e−U , (6.3)

where g(X) = [1 − (X − 1)2]1/2 with X ∼ U(0, 1) and Z ∼ U(0, 4). Finally U ≥ 0 with

U ∼ N+(0, σ2
U), and we choose for the illustration here σ2

U = 0.20. In DGP1 (6.1), Z has

no effect on the production process (Z is independent of (X, Y )). The situation is different

in DGP2 (6.2), we have the separability condition described in Simar and Wilson (2011),

i.e. T z ≡ T, ∀z but Z influences the distribution of the inefficiencies (higher probability

of being inefficient when |Z − 2| increases). Whereas, in DGP3 (6.3), the effect of Z is

only on the boundary of the attainable (X, Y ), violating the separability condition, the shift

(increasing the level of the attainable frontier) is multiplicative and more important when

|Z − 2| increases.
Figure 1 gives the results of the local linear regression of β̂α(X, Y, Z) on Z for α = 0.99.

We see clearly that the results are as expected: no visible effect for DGP1 and DGP3. For

9A sequence of random variables An is Op(n
−α) if nαAn is bounded in probability when n → ∞. Saying

that An = op(n
−α) is stronger and means that nαAn converges in probability to zero as n → ∞.
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the latter, it has to be noticed that Z has an important effect on the frontier level, but not on

the probability of being more or less efficient. In this case, a traditional two-stage regression

on the unconditional β̂α(X, Y ) on Z would be meaningless providing a wrong information

(see Simar and Wilson, 2007, 2011, for a detailed discussion). For DGP2, as expected we

recover the shape of the influence of Z on the average efficiency levels, the effect being more

important at Z = 2.

Certainly, a visual inspection of these pictures is a good tool; nevertheless, a formal test

is even better. By using our bootstrap algorithm we obtain the p-values (with B1 = 1000

and B2 = 100) reported in Table 6.1 below. We should not reject the null hypothesis (no

effect of Z) for DGP1 and DGP3. On the contrary, we should reject the null for DGP2,

at any reasonable level given that the p-values calculated for DGP2 is very small. This is

exactly what we expected. We remark that in these examples, the double bootstrap and the

simple bootstrap provide very similar estimates of the p-values.

6.2 Effect of Market risk on the performance of Mutual funds

We illustrate now the methodology with a real data set. We have data on the Aggressive-

Growth (AG) category of US Mutual Funds data collected by Morningstar, updated at

May 2002. We concentrate our analysis on 129 AG funds previously analyzed in Daraio

and Simar (2006) and in Bădin et al. (2010, 2013), where more details on the data are

given. These studies used input-oriented radial efficiency scores because most output (return)

have negative values and so output oriented measures were not appropriate when using

radial, multiplicative, efficiency scores. Simar and Vanhems (2012) uses the same data set to

estimate directional distances (with a common direction for all units, including both inputs

and outputs). They derive individual bootstrap confidence intervals for full frontier but also

their robust versions for partial frontiers (order-m and order-α quantile frontiers).

Here we will rather focus on the effect of the Market Risk (Z) on the performance of the

funds by using directional distances where both inputs and outputs are considered together.

Given the limited number of data points (n = 129) we restrict our analysis to the classical

Mean-Variance framework. In fact we use as output Y the Total Return and as input X ,

a measure of the volatility, i.e. the standard deviation of Return. Market risks reflects the

percentage of a funds movements that can be explained by movements in its benchmark

index. It is calculated on a monthly basis, based on a least- squares regression of the funds

returns on the returns of the funds benchmark index. We use as in Simar and Vanhems

(2012) a common direction for evaluating all the funds: dx = X̄ and dy = |Y | (we take the

mean of the absolute value because most of the values Yi are negative).

Figure 2 displays the results of the local linear regression of β̂α(X, Y, Z) on Z. Here
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we have chosen α = 0.95, because we know from previous studies that there are extreme

data and outlying points in this dataset. We see that Z has an inverted U-shaped effect

on the average values of βα(X, Y, Z). Market risk shows a slightly negative effect followed

by a slightly positive effect on the average of the distances β̂α(X, Y, Z). We see also the

S-shaped form of the derivatives. An average effect was also detected in Bădin et al. (2013),

where they used radial input orientation (in a model with two additional inputs, measuring

management cost and trading activity). Here, in addition, we provide a formal test. Our

bootstrap algorithm provides a p-value of 0.059 (when using the test statistic t̂) and 0.049

(when using τ̂ ). Hence, the picture is clearer: for many levels (higher than 0.06) we would

reject the null hypothesis. Therefore, the effect of Market Risk seems to be significant.

Certainly, having more data would give an even clearer picture.

7 Conclusions

In this paper we show how to implement and operationalize the computations of conditional

and unconditional directional distances and their robust versions. We provide all the detailed

algorithms to compute conditional and unconditional distances when some elements of the

directional vector are fixed at zero. We describe how the methodology proposed in Bădin

et al. (2012) for radial measures can be adapted to directional distances. We detail in

particular how to select the bandwidth in the context of conditional directional distances

and how to make a sensible two-stage regression in this framework.

Finally, we provide a formal test of significance of external-environmental factors on the

average conditional efficiency. This test adapts a bootstrap methodology suggested for usual

nonparametric regression. We show how a consistent bootstrap test can be implemented by

working with order-α quantile frontiers. The procedure is illustrated with some simulated

data sets and with a real data set on US Mutual Funds, by analyzing the role of Market

Risk on the mean efficiency, in a simple Mean-Variance model.
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A Appendix: The Bootstrap Algorithm

The algorithm is adapted from the one proposed by Racine (1997). We are considering the

nonparametric regression of W on Z where we have a sample of n data points (Zi,Wi),

i = 1, . . . , n. In our setup Wi = β̂α(Xi, Yi, Zi). We want to test the hypothesis that the first

r1 ≤ r components of Z are not significant, i.e.

H0 : ∀z,
∂µ(z)

∂zj
= 0, for j = 1, . . . , r1

HA :
∂µ(z)

∂zj
6= 0, for some j, z,

where µ(z) = E(W |Z = z). We will denote by Z1 the r1 components not significant under

H0. The test statistic is t̂ = τ̂ /SE(τ̂ ), where SE(τ̂) is the standard error of τ̂ that will

be estimated by resampling. The bootstrap algorithm we use for obtaining the sampling

distribution of t̂ under the null hypothesis can be described as follows:

[0] From the sample (Zi,Wi), i = 1, . . . , n compute the local linear estimate µ̂(Zi) and

η̂j(Zi) for j = 1, . . . , r. Evaluate τ̂ = n−1
∑n

i=1

∑r1
j=1 [η̂j(Zi)]

2.

[1] From the sample (Zi,Wi), i = 1, . . . , n, estimate the local linear model under the null,

i.e. estimate E(W |Zi1 = Z1, Zi2) where the first r1 components of Z are fixed to their

mean values Z1 due to the null hypothesis. We denote the resulting local mean under

the null, µ̂0(Z1, Zi2). Recenter the n residuals Wi − µ̂0(Z1, Zi2) around zero and so,

obtain êi, i = 1, . . . , n which have mean zero.

[2] By sampling, with replacement, in the centered residuals we obtain a bootstrap sample

of residuals e∗i , i = 1, . . . , n.

[3] GenerateW ∗
i = µ̂0(Z1, Zi2)+e∗i and obtain the bootstrap sample (Zi,W

∗
i ), i = 1, . . . , n.

[4] Estimate from the bootstrap sample µ̂∗(Zi) and η̂∗j (Zi) for j = 1, . . . , r and calculate

τ̂ ∗ = n−1
∑n

i=1

∑r1
j=1

[
η̂∗j (Zi)

]2
the bootstrap version of τ̂ . Now evaluate SE(τ̂ ∗) by an

inner bootstrap loop.

[4.1] With the sample (Zi,W
∗
i ), i = 1, . . . , n, estimate the local linear model under the

null, i.e. estimate E(W ∗|Zi1 = Z1, Zi2) where the first r1 components of Z are

fixed to their mean values Z1. We denote the resulting local mean under the null,

µ̂∗
0(Z1, Zi2). Recenter the n residuals W ∗

i − µ̂∗
0(Z1, Zi2) around zero and so, obtain

ê∗i , i = 1, . . . , n which have mean zero.
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[4.2] By sampling, with replacement, in the centered bootstrap residuals we obtain

a bootstrap sample of residuals e∗∗i , i = 1, . . . , n. Then we generate W ∗∗
i =

µ̂∗
0(Z1, Zi2) + e∗∗i and obtain the second level bootstrap sample (Zi,W

∗∗
i ), i =

1, . . . , n.

[4.3] From the sample (Zi,W
∗∗
i ), i = 1, . . . , n, compute, with local linear method, the

estimates of the derivatives η̂∗∗j (Zi) and the test statistic τ̂ ∗∗ = n−1
∑n

i=1

∑r1
j=1

[
η̂∗∗j (Zi)

]2
.

[4.4] Redo steps [4.1]−[4.3] a large number of times, say B2, and compute the empirical

standard deviation of the B2 values τ̂ ∗∗: this provides the estimate SE(τ̂ ∗).

[5] The bootstrap evaluation of the pivotal statistics is now t̂∗ = τ̂ ∗/SE(τ̂ ∗).

[6] Redo steps [2]− [5] a large number of times, say B1. This gives a set of B1 values of t̂
∗

and a set of B1 values of τ̂ ∗ (obtained at step [4]). The empirical standard deviation

of latter set provides a bootstrap estimate of SE(τ̂). The former set of B1 values of t̂∗

provides the bootstrap approximation of the sampling distribution of t̂ under the null.

[7] Calculate the value of the test statistic t̂ = τ̂ /SE(τ̂). The p-value of H0 is given by

#{t̂∗ ≥ t̂}/B1. We reject H0 is this p-value is too small.

In practice, we compute the optimal bandwidths b1, . . . , br in the step [0] of the algorithm,

and keep their values in the bootstrap loops (because they have the appropriate size). Racine

(1997) indicates that the procedure is very robust to the choice of the bandwidths, resulting

in a test having nice properties (appropriate size and good power).

In our application, in step [2] and [4.2], we use rather the wild bootstrap for allowing

heteroskedasticity in the regression model in a very efficient way (see e.g. Härdle, 1990, p.

107). For instance, in step [2], we define rather for i = 1, . . . , n:

e∗i = ei

[
1I(U ≤ (5 +

√
5)/10)(1−

√
5)/2 + 1I(U > (5 +

√
5)/10)(1 +

√
5)/2

]
,

where U ∼ Unif[0, 1]. We use the analog transformation of ê∗i for defining e∗∗i in step [4.2].
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[18] Färe, R., S. Grosskopf and D. Margaritis (2008), Efficiency and Productivity:

Malmquist and More, in The Measurement of Productive Efficiency, 2nd Edition, Harold

Fried, C.A. Knox Lovell and Shelton Schmidt, editors, Oxford University Press.

[19] Hall, P., Racine, J.S. and Q. Li (2004), Cross-Validation and the Estimation of Con-

ditional Probability Densities, Journal of the American Statistical Association, Vol 99,

486, 1015–1026.

[20] Halkos G.E., Tzeremes N.G. (2013), A conditional directional distance function ap-

proach for measuring regional environmental efficiency: Evidence from UK regions, Eu-

ropean Journal of Operational Research, 227, 182–189.

[21] Hayfield, T. and J.S. Racine (2008), Nonparametric Econometrics: The np package,

Journal od Statistical Software, 27,(5).
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Figure 1: Local linear regression of β̂α(X, Y, Z) on Z. Top panel, from left to right: DGP1

and DGP2 and bottom panel, DGP3. Here n = 200 and α = 0.99 and the dots are the

estimated β̂α(Xi, Yi, Zi). The black lines are the local fitted values and the red lines, the

estimated derivatives.

DGP Using t̂ Using τ̂
DGP1 0.190 0.196
DGP2 0.002 0.003
DGP1 0.179 0.188

Table 1: Bootstrapped p-values obtained with the test statistics t̂ and τ̂ .
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Figure 2: Mutual Funds data set. Local linear regression of β̂α(X, Y, Z) on Z. Here α = 0.95

and the dots are the estimated β̂α(Xi, Yi, Zi). The black line shows the local fitted values and

the red line indicates the estimated derivatives.
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