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Abstract 

In this work we show that some recent centrality measures in network analysis are exactly an application of 

the principles underlying the Vickrey-Clarke-Groves (VCG) mechanism. We then present specific examples of 

completely different frameworks which highlights how these centrality measures à la VCG can indeed provide 

valuable information to fairly assess the importance of the analyzed network elements. However, by taking 

inspiration from the relevant literature on the VCG auction design, we verify that in general cases centrality 

measures à la VCG can determine a poor estimate of the actual significance of some network elements; 

therefore, we provide a general approach to effectively improve such estimates, based on applying the VCG 

rule to suitable groups of elements of the network. 
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1. Introduction 

In network analysis framework, several centrality measures have been defined in the literature with the aim 

of studying the structure of the network and, in particular, identifying the most important elements (e.g. 

nodes or links) of the network (see Koschützki et al. 2005, Newman 2010). These measures have been 

effectively applied in many different contexts, such as, for instance, in telecommunications, railways, air 

transport, postal services, data networks, social networks. Depending on the specific context they are 

referring to, they represent completely different meanings (e.g. independence, risk, power, consensus, value, 

brokerage). 

 Any proposed measure is based on some criterion aimed at answering what is centrality. For instance, 

Freeman (1977, 1979) observed that the properties of the center of a star-shaped network could be applied 

to define the characteristic of suitable centrality measures. Thus, he provided a formulation of the well-

known betweenness centrality of a node, which gets its maximum value exactly for the center of a star-

shaped network. In particular, betweenness centrality of a node is based on the assumption that shortest 

paths are the drivers of any consideration about the centrality of a node, since the resources of a network 

are most efficiently used when the content of the linkages (e.g. traffic, information) follows shortest paths; 

in fact, betweenness centrality measures the degree to which a node is on shortest paths connecting pairs of 

other nodes (it considers the number of shortest paths from any node to all others that pass through that 

node).1 

 Stephenson and Zelan (1989) relaxed the assumption that the content of the linkages have to spread 

exclusively along shortest paths, while providing propagation models where arbitrary paths can play a role. 

Newman (2005) shared such a point of view and defined a version of node betweenness centrality which 

includes further paths between nodes, although the shortest ones are considered more crucial than the 

others (in particular, it computes how often any given node falls on a random walk between another pair of 

nodes). In Borgatti (2005), a dynamic view of the centrality concept is proposed, in the sense that the 

                                                           
1 Unfortunately, the computational effort to exactly determine the betweenness centrality can exponentially grows with 
the size of the network; in fact, identifying algorithms to compute effective approximations of betweenness centrality 
is a significant research topic in the network analysis framework. However, in this work we are not interested to 
computational aspects of the centrality measures. 



importance of a node in a network is based on how traffic/information actually flows through the network. 

A weighted version of betweenness centrality is then introduced in Borgatti and Everett (2006), where all 

shortest paths are weighted inversely proportional to their length, as the authors assumed the principle that 

the longer a path, the less significant it is to determine the centrality of the elements. Furthermore, Gómez, 

Figueira and Eusébio (2013) observed that single dimensional metrics are not effective for dealing with many 

real-world problems and thus they extend some classical centrality measures to take into account several 

dimensions (e.g. flows between pair of nodes and cost associated with communications). 

 In a recent paper, Everett and Borgatti (2010) propose a new approach to measure the centrality of 

the network elements, based on considering the direct contribution of the element to the overall network 

centrality and of an indirect contribution of the element to the centrality of all other elements. In this work, 

we first contribute to analyze and interpret some basics of centrality theory by showing how the new 

centrality measures introduced in Everett and Borgatti (2010) are exactly an application of the well-known 

Vickrey-Clarke-Groves (VCG) mechanism (Ausubel and Milgrom 2002, Pekeč and Rothkopf 2003, Avenali 

2009) to the context of centrality measures.2 Moreover, we present some examples of completely different 

frameworks where applying the principle underlying the VCG rule indeed provides valuable information for 

a fair assessment of the actual centrality of the analyzed network elements. Then, by taking inspiration from 

the relevant literature on auction design, which highlights some drawbacks of the VCG mechanism (Ausubel 

and Milgrom 2002, Hidvégi, Wang and Whinston 2007, Avenali 2009)3, we verify that also centrality measures 

à la VCG suffer from similar drawbacks. In particular, we show that in general cases centrality measures à la 

VCG can determine a poor estimate of the actual significance of some network element (analogously, VCG 

auctions can generate very low revenue for the auctioneer). Therefore, by taking as a starting point some 

results developed within the VCG auction design, we provide a general approach to refine such estimates, 

based on applying the VCG rule to suitable groups of elements of the network (correspondingly, in VCG 

                                                           
2 Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961, Clarke 1971, Groves 1973), also known as the generalized 
Vickrey auction, is the generalization of the second-price Vickrey rule for single-item case and can be applied in the 
context of combinatorial auctions. It is largely studied by the economics, computer science and operations research 
communities. 
3 For instance, VCG payment scheme is highly affected by revenue failures and vulnerability to collusion and shill bidding. 



auctions the revenue failure can be effectively hindered if the auctioneer may compel specific groups of 

players to take part to the auction as coalitions, instead of as separate single players). 

 This paper is organized as follows. Section 2 briefly illustrates those characteristics of the VCG 

mechanism which will be recalled later in the paper. Section 3 shows that the approach proposed in Everett 

and Borgatti (2010) is an application of the VCG mechanism, and then presents some examples to point out 

how centrality measures à la VCG can provide valuable information. Section 4 discusses how centrality 

measures à la VCG can poorly estimate the actual importance of some network elements, and thus provides 

a general approach to improve such estimates. Finally, Section 5 concludes. 

2. The VCG mechanism 

In this section we illustrate how the VCG mechanism works in a setting which is very general and effective to 

introduce the main ideas in next sections. In particular, let us consider an auction framework, where: 

- The auction is direct, namely the auctioneer sells items while the participants offer to buy them. 

- 𝑛 ≥ 2 rival participants with independent and private valuations and with no budget constraints take 

part in the auction. Let 𝑇 be the set of the 𝑛 players.4 

- 𝑚 ≥ 1 items are simultaneously auctioned off. Although some of the items on sale could be identical, 

each item is uniquely determined (thus, every possible copy of an object is identified separately). Let 

𝐻 be the set of the 𝑚 items. 

- Any bidder is allowed to submit offers for any set of items on sale (bundle). Bidding for a bundle means 

that if the bid is selected as winning, then all the items in the bundle must be allocated with the player 

who submitted the offer. 

- The auctioneer has to choose the winning bids taking into account that some pairs of bids are 

incompatible, i.e. they cannot be both simultaneously selected as winning. In particular, every player 

can transmit information to the auctioneer on which bids (among the ones he has announced) are 

                                                           
4 Assuming players with independent and private valuations means that no valuation changes across the auction course; 
therefore, for instance, a bidder does not alters his valuations even if he discovers opponents’ valuations or in the case 
when some specific items are being won by other participants. 



incompatible; moreover, the auctioneer himself consider as incompatible any pair of bids which share 

an item (both if submitted by the same player or by distinct players). 

In the relevant literature, such a format is referred to as combinatorial auction format (Pekeč and Rothkopf 

2003, Rothkopf, Pekeč and Harstad 1998, De Vries and Vohra 2003). Submitting bids on bundles and signaling 

incompatibilities among these bids to the auctioneer allow the players to model and manage possible 

complementarity/substitutability relationships among items5, and therefore to offer up to their valuations 

without running the risk of undergoing irrational allocations (Avenali and Bassanini 2007). 

 Under the so-called first-price rule, items are allocated to those players who offer for them at the most 

(winning bids are identified by maximizing the auctioneer’s revenue6), and each player has to pay to the 

auctioneer exactly what he has offered in his winning bids. 

 As known, under the VCG rule, what players win depends on what they offer, while what they pay 

depends on what opponents offer. In particular, winning bids are identified by maximizing the auctioneer’s 

revenue (as the first-price rule does), while any player 𝑡 ∈ 𝑇 has to pay to the auctioneer an amount which 

reflects the externality generated on the other bidders by player 𝑡’s participation in the auction7. In fact, the 

VCG payment of bidder 𝑡 (denoted by 𝑝𝑡
𝑉𝐶𝐺) is equal to the summation of the externalities imposed on every 

player 𝑗 ∈ 𝑇 − {𝑡}, each one equal to the difference between the value of the winning bids of player 𝑗 when 

bidder 𝑡 does not participate in the auction (let us denote it by 𝑝𝑗,−𝑡) and the value of the winning bids of 

player 𝑗 when player 𝑡 takes part in the auction (denoted by 𝑝𝑗 ), that is, 𝑝𝑡
𝑉𝐶𝐺 = ∑ (𝑝𝑗,−𝑡 − 𝑝𝑗 )𝑗∈𝑇−{𝑡} . By 

letting 𝑝𝑡  be the value of the winning bids of player 𝑡 when all players take part in the auction, and by setting 

                                                           
5 Complementarity occurs when a player values a bunch of items more than the sum of the values of every single items, 
while substitutability when he values the set less than the sum. 
6 In general, alternative sets of winning offers that ensure the same (maximum) revenue can exist. If any, ties are broken 
randomly. In particular, the order in which these sets are found along the computation phase depends on an identifying 
label assigned to each submitted offer before starting the computation; such labels are randomly assigned. 
7 In an economic system, a positive (negative) externality is a revenue (cost) which is imposed to an agent 𝑎 by a 
decision/action of another agent 𝑏 because of the absence of a market where 𝑏 can sell to (buy from) 𝑎 a specific item 
at a price that balances such a revenue (cost). For instance, let us consider a firm which pollutes a river by dumping 
waste material. All the houses in the neighborhood will lose value and thus every private house owner will be deemed 
to bear a negative externality (measured by the depreciation cost of his own house). By designing a specific market 
where the firm must acquire the right to pollute from the house owners, the externality turns into a fair compensation 
which balances the market value decrement of the houses. In the auction context, the externality is generated by the 
fact that there no exist a market where the players’ participation in the auction can be negotiated and priced (obviously, 
if we does not consider collusion among participants). 



𝑝−𝑡 = ∑ 𝑝𝑗,−𝑡𝑗∈𝑇−{𝑡}  and 𝑝 = 𝑝𝑡
′ + ∑ 𝑝𝑗

′
𝑗∈𝑇−{𝑡} , then we can rearrange the expression of 𝑝𝑡

𝑉𝐶𝐺 as difference 

between the total value of the winning bids of the other players when bidder 𝑡 does not participate in the 

auction (i.e. 𝑝−𝑡) and the total value of the winning offers of the other players when player 𝑡 takes part in the 

auction (which is equal to 𝑝 − 𝑝𝑡 , ), namely, 𝑝𝑡
𝑉𝐶𝐺 = ∑ (𝑝𝑗,−𝑡 − 𝑝𝑗 )𝑗∈𝑇−{𝑡} = 𝑝−𝑡 − (𝑝 − 𝑝𝑡 ). Moreover, 

since 𝑝𝑡
𝑉𝐶𝐺 = 𝑝−𝑡 − (𝑝 − 𝑝𝑡 ) = 𝑝𝑡 − (𝑝 − 𝑝−𝑡) and 𝑝𝑡  is the summation of the prices offered by player 𝑡 

for his winning bids, the VCG rule imposes a discount equal to 𝑝̇𝑡 = 𝑝 − 𝑝−𝑡 on the overall offered price 𝑝𝑡 , 

that is, 𝑝̇𝑡 = 𝑝 − 𝑝−𝑡 = 𝑝𝑡 − 𝑝𝑡
𝑉𝐶𝐺. By construction, 𝑝𝑡

𝑉𝐶𝐺 is nonnegative for any 𝑡 ∈ 𝑇. Definitively, the 

revenue the auctioneer obtains by means of the VCG rule is 𝑝𝑉𝐶𝐺 = ∑ 𝑝𝑡
𝑉𝐶𝐺

𝑡∈𝑇 .8 

 Let us consider the following example with 3 bidders and 2 items; player 𝑎 is interested in the pair of 

items 𝑌 and 𝑍, and values them at 50, while bidder 𝑏 values item 𝑌 at 60, and player 𝑐 values item 𝑍 at 40. 

For simplicity, let us assume that they offer up to their valuations. It easy to verify what follows (𝑝 = 100 as 

𝑏 offers 60 for 𝑌 and 𝑐 bids 40 for 𝑍): 

𝑝𝑎
𝑉𝐶𝐺 = ∑ (𝑝𝑗,−𝑎 − 𝑝𝑗 )𝑗∈𝑇−{𝑎} = (60 − 60) + (40 − 40) = 𝑝−𝑎 − (𝑝 − 𝑝𝑎 ) = 100 − (100 − 0) = 0, 

𝑝𝑏
𝑉𝐶𝐺 = (50 − 0) + (0 − 40) = 50 − (100 − 60) = 10, 

𝑝𝑐
𝑉𝐶𝐺 = (0 − 0) + (60 − 60) = 60 − (100 − 40) = 0, 

𝑝𝑉𝐶𝐺 = 0 + 10 + 0 = 10. 

 Thus, the discounts allowed with respect to the offered prices are respectively: 

𝑝̇𝑎 = (𝑝 − 𝑝−𝑎) = 100 − 100 = 0, 

𝑝̇𝑏 = 100 − 50 = 50, 

𝑝̇𝑐 = 100 − 60 = 40, 

𝑝̇ = 0 + 50 + 40 = 90. 

                                                           
8 Incidentally, let us recall that, assuming players with independent and private valuations and with no budget 
constraints, the VCG mechanism has the significant property of making truthful bidding a dominant strategy for every 
player (it is strategy-proof); this means that it is able to extract from the players all the information concerning their 
valuations and thus to induce maximum allocative efficiency (Milgrom 2004). 



 Note that bidder 𝑏 generates a negative externality of 50 on player 𝑎 and a positive externality of 40 

on player 𝑐, therefore according to the VCG rule his overall payment is 10. On the contrary, payers 𝑎 and 𝑐 

induce no externality on the other bidders and thus their VCG payments are both equal to 0. 

 It is important to remark that 𝑝𝑡
𝑉𝐶𝐺 represents an aggregated measure of the externalities generated 

on the other players by bidder 𝑡’s participation, in the sense that if ties among the winning bids of 𝑡’s 

opponents occur when 𝑡 does not take part to competition, then there can be alternative scenarios in terms 

of generated externalities.9 For instance, let us extend the previous example by introducing one more player, 

say 𝑑; player 𝑑 is interested in item 𝑌 and values it at 10. For simplicity, let us assume again that all bidders 

offer up to their valuations. Now when bidder 𝑏 does not take part in the auction there are two alternative 

scenarios: (i) both items are allocated to 𝑎 and thus 𝑏 generates a negative externality of 50 on player 𝑎 and 

a positive externality of 40 on player 𝑐 (𝑝𝑏
𝑉𝐶𝐺 = ∑ (𝑝𝑗,−𝑏 − 𝑝𝑗 )𝑗∈𝑇−{𝑏} = (50 − 0) + (0 − 40) + (0 − 0) =

10); (ii) else item 𝑌 and 𝑍 are allocated respectively to 𝑑 and 𝑐, and therefore 𝑏 generates only a negative 

externality of 10 on player 𝑑 (𝑝𝑏
𝑉𝐶𝐺 = (0 − 0) + (40 − 40) + (10 − 0) = 10). Summarizing, the overall 

externality generated by player 𝑏 is equal to 10 (𝑝𝑏
𝑉𝐶𝐺 = 𝑝−𝑏 − (𝑝 − 𝑝𝑏 ) = 50 − (100 − 60) = 10), while 

the externality generated by player 𝑏 on every opponent is not uniquely determined. 

3. The relevance of externalities in centrality measures 

In a recent paper Everett and Borgatti (2010) studied some theoretical aspects of centrality measures in 

network analysis.10 In particular, given any network 𝑊 and set 𝑉 of the analyzed network elements (e.g. 

nodes or arcs), they observed that by selecting any metric 𝐶 to measure the centrality, and considering the 

sum of the centrality scores of the elements in 𝑉, it is possible to define the total centrality of any element 

𝑡 ∈ 𝑉 as 𝑐𝑡
𝑡𝑜𝑡 = ∑ 𝑐𝑗𝑗∈𝑉 − ∑ 𝑐𝑗,−𝑡𝑗∈𝑉−{𝑡} = 𝑐 − 𝑐−𝑡, where 𝑐𝑗  is the centrality score of element 𝑗 given 

network 𝑊, 𝑐𝑗,−𝑡 is the centrality measure of element 𝑗 after removing 𝑡 from network 𝑊, 𝑐 = ∑ 𝑐𝑗𝑗∈𝑉  

                                                           
9 When 𝑚 = 1 (just one item is auctioned off), the VCG mechanism collapses into the so-called second-price rule or 
Vickrey auction (Milgrom 2004), where the winning player generates only negative externalities on the rivals and his 
payment is always equal to second highest bid. 
10 Since the structure of a network is usually modeled as a graph, in the following we will speak indifferently of networks 
and graphs. 



represents the overall centrality of all elements, and 𝑐−𝑡 = ∑ 𝑐𝑗,−𝑡𝑗∈𝑉−{𝑡}  is the overall centrality of the 

residual elements after removing 𝑡 from 𝑊. Therefore, Everett and Borgatti (2010) remarked that the total 

centrality of any element reflects the element’s direct contribution to the network overall centrality but also 

the indirect contribution of the element to the centrality of the other elements of the network. Moreover, 

they call 𝑐𝑡  the endogenous centrality of the element, and ∑ (𝑐𝑗 − 𝑐𝑗,−𝑡)𝑗∈𝑉−{𝑡}  the exogenous centrality of 

the element; thus, the total centrality 𝑐𝑡
𝑡𝑜𝑡 of 𝑡 is the sum of the endogenous and exogenous centralities of 

𝑡, that is, 𝑐𝑡
𝑡𝑜𝑡 = 𝑐𝑡 + ∑ (𝑐𝑗 − 𝑐𝑗,−𝑡)𝑗∈𝑉−{𝑡} . 

 Everett and Borgatti (2010) defined total, endogenous and exogenous centrality concepts by taking 

inspiration from an approach used in last decades to study the resilience or robustness of a network 

(Koschützki et al. 2005, Snediker, Murray and Matisziw 2008, Zobel 2011), which consists of measuring the 

degradation of the network performances (in terms of some specific properties) after the removal of nodes 

and/or arcs.11 

 It easy to verify that such centrality concepts are exactly an application of the generalized Vickrey 

principle. In fact, by substituting the metric of the offered price with the metric 𝐶 underlying the centrality 

measure at issue, and by considering the network elements in 𝑉 instead of the players in 𝑇, the exogenous 

centrality is the “payment” returned by the VCG rule (with the opposite sign) applied to the new metric (i.e., 

∑ 𝑐𝑗 − 𝑐𝑗,−𝑡𝑗∈𝑉−{𝑡} = −𝑐𝑡
𝑉𝐶𝐺 corresponds to −𝑝𝑡

𝑉𝐶𝐺 = −∑ (𝑝𝑗,−𝑡 − 𝑝𝑗 )𝑗∈𝑇−{𝑡} ), the endogenous centrality 

is the “value of the winning bids” (i.e. 𝑐𝑡  matches with 𝑝𝑡 ), and the total centrality is the resulting “discount” 

under the VCG rule (i.e. 𝑐𝑡
𝑡𝑜𝑡 corresponds to 𝑝̇𝑡 ). Therefore, by setting ∑ 𝑐𝑗 − 𝑐𝑗,−𝑡𝑗∈𝑉−{𝑡} = −𝑐𝑡

𝑉𝐶𝐺 and 

𝑐𝑡
𝑡𝑜𝑡 = 𝑐̇𝑡 , we can formally write: 

𝑐𝑡
𝑡𝑜𝑡 = 𝑐 − 𝑐−𝑡 = 𝑐𝑡 + ∑ (𝑐𝑗 − 𝑐𝑗,−𝑡)𝑗∈𝑉−{𝑡} = 𝑐𝑡 − 𝑐𝑡

𝑉𝐶𝐺 = 𝑐̇𝑡   

                                                           
11 In general, the removal of nodes and/or arcs disrupts the paths between the nodes and thus making the 
communication between nodes harder or impossible. There are several ways of measuring the degradation of the 
network performance after the removal (see Koschützki et al. 2005). For instance, a simple way to measure the 
performance degradation it is to calculate the decrease in size of the largest connected component in the network (a 
connected component is any set of nodes of the network such that a path exists between any two nodes of the set), 
where the size can be modelled, for example, in terms of cardinality of the connected component, or as weighted sum 
of the nodes of the connected component. 



 In other words, the exogenous centrality is the externality (with the opposite sign) generated by the 

presence of element 𝑡 on the other elements of the network.12 The main difference with respect to the 

auction framework (apart from the strategic interaction among the players, obviously) lies in the fact that 

the VCG payment under the metric of the offered price is always nonnegative, while under other metrics for 

the centrality measures the overall externality generated by an element can also be negative. 

 Moreover, centrality measures based on the application of the principle underlying the VCG rule have 

a natural interpretation; in fact, in the Vickrey’s language, the total centrality of an element reflects the sum 

of its centrality and of the positive and negative externalities which it generates on all other elements 

(positive externalities when the centrality of other elements benefits from its “presence” in the network, 

while negative externalities in the case that its “presence” reduces the centrality of other elements). Since 

these centrality measures (each one associated with a different metric 𝐶) follow the VCG paradigm of 

analyzing the marginal contribute of an element per time in a given context, in the following we will refer to 

these centrality measures also as VCG centralities.13 

 As shown in following examples, there are cases where the centrality score of an element 𝑣 of a 

network could be misleading if we apply centrality measures which do not take into account the potential 

role of the other elements in the network, namely, the contribution to the network of the other elements in 

the case that the network should operate without 𝑣. In other words, it can be useful to study the centrality 

of an element of a network by also investigating how much the other elements of the network would value 

the miss of 𝑣. In particular, if we look at the externalities which the elements generate on the other ones, 

some elements could be considered much more or less crucial than they appear at first sight. To better clarify 

such ideas, let us consider the following different cases. 

                                                           
12 In the network context, the externality represents the sum of the negative and positive effects, as measured by some 
metric, which are imposed upon the other elements of the network. 
13 In some cases it could be useful to define and apply centrality measures which reflects only negative (only positive) 
externalities generated by an element of the network on the other ones. Further research could be focused on this 
issue. 



Case 1 

As a first example, let us focus on the betweenness centrality of a node 𝑣 in a network, which is normally 

defined as the share of shortest paths from any node of the network to all others that pass through node 𝑣 

(from now on denoted by 𝑏𝑐𝑣)14. In particular, let us consider two transport networks represented by the 

weighted directed graphs 𝐺̌ and 𝐺̅ in Figure 1. 

 

        

Figure 1 

 

 More formally, graphs 𝐺̌ = (𝑁̌, 𝐴̌, 𝑐̌) and 𝐺̅ = (𝑁̅, 𝐴̅, 𝑐̅), where 𝑁̌ = {𝑑̌, 𝑒̌, 𝑓, ℎ̌, 𝑘̌} and 𝑁̅ =

{𝑑̅, 𝑒̅, 𝑓̅, ℎ̅, 𝑘̅} are the node sets, 𝐴̌ = {𝑎̌1 = (𝑑̌, ℎ̌), 𝑎̌2 = (𝑑̌, 𝑘̌), … } and 𝐴̅ = {𝑎̅1 = (𝑑̅, 𝑏̅), 𝑎̅2 = (𝑑̅, ℎ̅),… } are 

the arc sets, 𝑐̌ = (𝑐̌1 = 1, 𝑐̌2 = 3,… )
𝑇 ∈ ℝ+

|𝐴̌|
 and 𝑐̅ = (𝑐1̅ = 3, 𝑐2̅ = 1,… )

𝑇 ∈ ℝ+
|𝐴̅| are the vectors of costs 

associated with the arcs15 (where ℝ+  is the set of positive reals and zero). 

                                                           
14 Classical definition of betweenness centrality focuses only on shortest paths which pass through nodes and thus arcs 
are excluded from the set of shortest paths which determine betweenness centrality. 
15 For instance, if nodes represent cities, a cost can represent the physical length of the corresponding link between a 
pair of cities, or the monetary cost that must be supported to travel along that route, or the required time to move from 
a city to another. 
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 By direct inspection of 𝐺̌, it easy to verify that totally there are 12 shortest paths and everyone enters 

and exits exclusively node ℎ̌; therefore, 𝑏𝑐ℎ̌ =
12

12
= 1 while 𝑏𝑐𝑑̌ = 𝑏𝑐𝑒̌ = 𝑏𝑐𝑓̌ = 𝑏𝑐𝑘̌ =

0

12
= 0. Equally, we 

see that 𝑏𝑐ℎ̅ =
12

12
= 1 and 𝑏𝑐𝑑̅ = 𝑏𝑐𝑒̅ = 𝑏𝑐𝑓̅ = 𝑏𝑐𝑘̅ =

0

12
= 0. However, is indeed appropriate to state that 

nodes ℎ̌ and ℎ̅ are equally crucial in their respective network? It easy to verify that node ℎ̌ generates much 

more externalities on the other nodes of 𝐺̌ than ℎ̅ does on the other nodes of 𝐺̅. In fact, node ℎ̌ prevent node 

𝑘̌ from being a crossroads of the shortest paths from any node of the network to all others, while node ℎ̅ do 

not “subtract” shortest paths from any other node of 𝐺̅. In particular, by removing node ℎ̌ from the network, 

we see that betweenness centrality of node 𝑘̌ increases from 0 up to 
6

6
= 1 (while the other ones are still 0); 

instead, if we remove ℎ̅ from 𝐺̅, the betweenness centrality of the remaining nodes does not change (they 

are still 0). Economically speaking, we can say that ℎ̌ generates a (negative) externality on node 𝑘̌, while ℎ̅ 

induces no externality on any other node. In other words, node ℎ̌ can be substituted by its node competitors 

in terms of rearranging shortest paths, while the removal of node ℎ̅ would be ruinous for network 𝐺̅ as several 

connections cannot be restored. For instance, in a transport network, node ℎ̌ can be somehow bypassed, 

while node ℎ̅ is a bottleneck and thus pivotal, although both nodes have the same betweenness centrality. 

 To take into account such theoretical considerations, the centrality of these nodes could be 

represented by a measure of the marginal contribution of the node in terms of betweenness centrality, by 

subtracting to its betweenness centrality the generated externalities. In particular, the VCG betweenness 

centrality of nodes ℎ̌ and ℎ̅ is, respectively, equal to 𝑏𝑐̇ℎ̌ = 1 − 1 = 0 and 𝑏𝑐̇ℎ̅ = 1 − 0 = 1 > 𝑏𝑐̇ℎ̌ ; such 

centrality measures effectively reflects that node ℎ̌ seems to be less critical in the context of 𝐺̌ than node ℎ̅ 

is in the context of 𝐺̅. 

Case 2 

Let us now focus on a different context, namely, a stylized scenario where economic agents (consumers and 

firms) interact with each other and aim at maximizing their own net surplus16. In such a case, economists are 

                                                           
16 The net surplus of a consumer is the difference between his willingness to pay for the purchased products and the 
prices paid to buy them, while the net surplus of a firm is the difference between revenues and costs (also referred to 
as profit or payoff). 



usually interested in maximizing the welfare, that is, the summation of the net surplus of any economic agent; 

therefore, a measure of centrality of the economic agents is represented by their contributions to the 

welfare. In particular, let us consider a so-called linear city (Tirole 1988), where (i) consumers are uniformly 

distributed within the segment [0,18] and have unit demand, and (ii) there are three firms 𝑎, 𝑏 and 𝑐 placed 

in 0, 4 and 18, respectively. Each firm is single-product and three products 𝑎, 𝑏, 𝑐 are perceived by consumers 

as horizontally differentiated (i.e., even when they are offered at the same price, there can be consumers 

who purchase product 𝑎, other consumers who demand 𝑏 and other consumers who buy 𝑐). Let the 

maximum willingness to pay of a consumer 𝑧 ∈ [0,18] for product 𝑎 be equal to 8 − 𝑧 (when it gets negative 

it means that consumer 𝑧 would require a subside to buy the product); therefore, when 𝑧 purchases from 

firm 𝑎, 𝑧’s net surplus is 𝑛𝑠𝑎(𝑧, 𝑝𝑎) = 8 − 𝑧 − 𝑝𝑎, where 𝑝𝑎 ≥ 0 is the price required by firm 𝑎. Similarly, the 

net surplus of a consumer 𝑧 ∈ [0,4] who buys from firm 𝑏 is 𝑛𝑠𝑏(𝑧, 𝑝𝑏) = 6 +
6

5
(𝑧 − 4) − 𝑝𝑏, where 𝑝𝑏 ≥ 0 

is the price required by firm 𝑏, while net surplus of a consumer 𝑧 ∈ [4,18] who buys from firm 𝑏 is 

𝑛𝑠𝑏(𝑧, 𝑝𝑏) = 6 + (4 − 𝑧) − 𝑝𝑏. Finally, the net surplus of a consumer 𝑧 ∈ [0,18] who buys from firm 𝑏 is 

𝑛𝑠𝑐(𝑧, 𝑝𝑐) = 5 +
5

8
(𝑧 − 18) − 𝑝𝑐, where 𝑝𝑐 ≥ 0 is the price required by firm 𝑐. If a consumer 𝑧 does not buy 

any product his net surplus is zero. Consumers want to maximize their net surplus. 

 Figure 2 shows the graphic representation of the willingness to pay of all consumers for any product 

(the dashed line represents the willingness to pay for product 𝑎, the double line represents the willingness 

to pay for product 𝑏, the dotted line represents the willingness to pay for product 𝑐). For any firm, the net 

surplus is equal to the multiplication of the share of consumers who buy its product and the required price 

(all costs are assumed to be zero). 

 



 

Figure 2 

 

 Incidentally, let us note that a naïve graph-based representation of the considered scenario is the 

weighted directed graph 𝐸𝐺 in Figure 3. Weights on arcs of graph 𝐸𝐺 represent capacities, some of which 

are definitively determined (the ones equal to infinity) while the others depends on the prices 𝑝𝑎, 𝑝𝑏 and 𝑝𝑐; 

in particular, 𝜋𝑘(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐) is firm 𝑘’s net surplus and 𝐶𝑆𝑘(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐) is the net surplus of consumers buying 

from firm 𝑘, for 𝑘 = 𝑎, 𝑏, 𝑐. It is easy to verify that, given the prices 𝑝𝑎, 𝑝𝑏 and 𝑝𝑐 and thus the arc capacities, 

the welfare induced in the scenario at issue is equal to determining the maximum flow between origin 𝑠 and 

destination 𝑡 of graph 𝐸𝐺. 

 

𝑛𝑠𝑎(𝑧, 0)  

4  0  18  

Linear city  

𝑛𝑠𝑏(𝑧, 0)  

𝑛𝑠𝑐(𝑧, 0)  



 

Figure 3 

 

 Note that, the maximum welfare which could be generated in the considered scenario would be equal 

to 74.9 (obtained by setting 𝑝𝑎 = 𝑝𝑏 = 𝑝𝑐 = 0). Observe also that, the maximum contribution to the welfare 

which firms 𝑎 and 𝑏 could generate is equal to 32, while firm 𝑐’s potential contribution would be at the most 

20 (such possible contributions to the welfare would be obtained by setting any product price at zero). 

However, any firm strategically sets the product price in order to maximize its net surplus. By applying Nash 

equilibrium methodology to determine the outcome of the strategic interaction among firms in the 

considered linear city (Tirole 1988), it is easy to verify that the net surplus of consumers buying from firms 𝑎, 

𝑏, 𝑐 is respectively equal to 4.3, 7.2, 5 (therefore, net surplus of all consumers 𝐶𝑆 = 𝐶𝑆𝑎 + 𝐶𝑆𝑏 + 𝐶𝑆𝑐 is 

equal to 16.5), while the net surplus of firms 𝑎, 𝑏, 𝑐 is respectively 11.3,  14.5, 10; therefore, the welfare is 

𝑊 = 52.3. In terms of contribution to the welfare, the price decided by firm 𝑎 induce a firm 𝑎’s net surplus 

equal to 𝜋𝑎 = 11.3 and a consumers’ net surplus equal to 𝐶𝑆𝑎 = 4.3, and thus firm 𝑎’s impact on welfare is 

𝑊𝑎 = 15.6. Analogously, the contribution of firms 𝑏, 𝑐 is respectively 𝑊𝑏 = 𝜋𝑏 + 𝐶𝑆𝑏 = 14.5 + 7.2 = 21.7, 

 𝑊𝑐 = 𝜋𝑐 + 𝐶𝑆𝑐 = 10 + 5 = 15. Therefore, should we conclude that firm 𝑏 is the most important element 

in the given context? This analysis only restricts the attention on the absolute value of the impact of the firm, 

while it does not investigate on the marginal contribution of the firm to welfare, which in fact depends on 

the contribution which could be offered by the other firms. In order to analyze also this aspect, Table 1 

𝑠  𝑏  

𝑐  

𝑡  

𝑎  ∞  

∞  

∞  

Network 𝐸𝐺  

𝜋𝑎(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐) + 𝐶𝑆𝑎(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐)  

𝜋𝑏(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐) + 𝐶𝑆𝑏(𝑝𝑎, 𝑝𝑏, 𝑝𝑐)  

𝜋𝑐(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐) + 𝐶𝑆𝑐(𝑝𝑎, 𝑝𝑏 , 𝑝𝑐)  



reports the firms’ contributions in different scenarios, namely, when all firms enter the market, and when 

one firm per time exits the market. 

 

 firms 𝑎, 𝑏, 𝑐 firms 𝑏, 𝑐 firms 𝑎, 𝑐 firms 𝑎, 𝑏 

𝑊𝑎  11.3 + 4.3 = 15.6   16 + 8 = 24  11.3 + 4.3 = 15.6  

𝑊𝑏  14.5 + 7.2 = 21.7  16.5 + 8.3 = 24.8   14.5 + 7.2 = 21.7  

𝑊𝑐  10 + 5 = 15  10 + 5 = 15  10 + 5 = 15   

𝑊  52.3  39.8  39  37.3  

Table 1 

 

By inspecting the table we can observe that firm 𝑎 generates a negative externality of 3.1 = 24.8 − 21.7 on 

firm 𝑏, firm 𝑏 induces a negative externality of 8.4 = 24 − 15.6 on firm 𝑎, and firm 𝑐 generates no 

externality. Therefore, by taking into account both the absolute contribution to the welfare and the 

generated externality on the opponents, it results that the VCG welfare centrality of firms 𝑎, 𝑏, 𝑐 is 

respectively equal to 𝑊̇𝑎 = 15.6 − 3.1 = 12.5, 𝑊̇𝑏 = 21.7 − 8.4 = 13.3, 𝑊̇𝑐 = 15. Now, the role of firm 

𝑏 does not seem so crucial anymore, since the strong competition with firm 𝑎 induces a partial substitutability 

between 𝑎 and 𝑏 (namely, firm 𝑎’s contribution to the welfare could partially offset firm 𝑏’s one). On the 

other hand, firm 𝑐 results the most important agent in the given context. For instance, let us assume that the 

illustrated case model the broadband retail market in a country, where segment [0,10] represents the 

metropolitan areas and segment [10,18] represents the rural areas. The proposed centrality analysis, based 

also on a measure of externalities, would suggest a public authority to have much more consideration for a 

monopoly firm in the rural areas instead of further promoting competition in the urban areas (in other words, 

the digital divide between rural and metropolitan areas, which the absence of monopolistic firm 𝑐 would 

generate, would be worse than the lower level of competition in the metropolitan area which the absence 

of firm 𝑏, or else of firm 𝑎, would induce). 



4. A general approach to better estimate the induced externalities 

As known from the auction literature, the VCG approach can be affected by failure revenues (namely, the 

VCG payments can be extremely low or even zero although high bids for the items on sale have been 

submitted), since the externality induced by removing simultaneously some players can be largely different 

from the sum of the externalities generated by removing every single player per time (see Avenali 2009). In 

other words, some players can generate significant externalities on the others players only if assumed united 

in a same coalition. For instance, some offers submitted by distinct players are winning because they combine 

each other to defeat a single offer of a common opponent; more, an offer is selected as winning because it 

completes another offer by a different player which is unilaterally able to defeat the offers of a common 

opponent. Analogously, in the centrality measure framework, the centrality of an element could be poorly 

estimated if we look exclusively at the externality generated by its removal. For instance, some high network 

performances can be guaranteed by the joint contribution of a group of elements, while looking only at the 

contribution of a single element would not reflect the actual role of that element. 

 Before providing an example, let us introduce a few notation and definitions. Let us consider any 

network 𝑊 and any metric 𝐶 to measure the centrality. Let also 𝑉 be the set of the analyzed network 

elements and S ⊆ V be a nonempty set of network element. By applying the VCG mechanism to group S 

(Avenali 2009), the centrality measure à la VCG of S (denoted by 𝑐̇𝑆 ) can be defined as follows: 

𝑐̇𝑆 = ∑ 𝑐𝑗𝑗∈𝑉 − ∑ 𝑐𝑗,−𝑆𝑗∈𝑉−{𝑆} = ∑ 𝑐𝑗𝑗∈𝑆 + ∑ (𝑐𝑗 − 𝑐𝑗,−𝑆)𝑗∈𝑉−{𝑆} = 𝑐𝑆 − 𝑐𝑆
𝑉𝐶𝐺  

where 𝑐𝑗  is the centrality score of element 𝑗 given network 𝑊, 𝑐𝑗,−𝑆 is the centrality measure of element 𝑗 

after removing each element of 𝑆 from network 𝑊, 𝑐 = ∑ 𝑐𝑗𝑗∈𝑉  represents the overall centrality of all 

elements, 𝑐−𝑆 = ∑ 𝑐𝑗,−𝑆𝑗∈𝑉−{𝑆}  is the overall centrality of the residual elements after removing each element 

of 𝑆  from 𝑊, 𝑐𝑆
𝑉𝐶𝐺 = −∑ (𝑐𝑗 − 𝑐𝑗,−𝑆)𝑗∈𝑉−{𝑆}  is the externality jointly generated by the presence of every 

element of 𝑆 on the other elements of the network, 𝑐𝑆 = ∑ 𝑐𝑗𝑗∈𝑆  is the overall centrality of the elements 

of 𝑆. In the following, we will refer to 𝑐𝑆
𝑉𝐶𝐺 as joint externality and to 𝑐̇𝑆  as joint centrality. 

 Let us now discuss an example. We consider a network 𝐺 = (𝑁, 𝐴, 𝑢, 𝑢𝑜, 𝑢𝑡), where 𝑁 is the node set, 

𝐴 is the arc set, 𝑢 is the vector of the arc capacities, 𝑢𝑜 ∈ ℝ+
|𝑁| is the vector of upper bounds on the flow that 



can be generated by (or originated from) any node (in addition to the incoming flow), 𝑢𝑡 ∈ ℝ+
|𝑁| is the vector 

of upper bounds on the flow that can be consumed by (or terminated to) each node (in addition to the 

outgoing flow). 

 Let the overall flow on the network be the selected metric, and the flow-based centrality of the arcs 

be the core of the network analysis. The flow maximization problem Υ can be formulated as follows 

(Bertsimas and Tsitsiklis 1997): 

{
 

 
𝑚𝑎𝑥 ∑ 𝑓𝑟𝑟∈𝐴

−𝑢𝑜𝑘 ≤ ∑ 𝑓𝑟𝑟∈𝐴:𝑟=(𝑖,𝑘) − ∑ 𝑓𝑟𝑟∈𝐴:𝑟=(𝑘,𝑗) ≤ 𝑢𝑡𝑘        𝑘 ∈ 𝑁

0 ≤ 𝑓𝑟 ≤ 𝑢𝑟       𝑟 ∈ 𝐴
𝑓𝑟 ∈ ℝ       𝑟 ∈ 𝐴

  

where 𝑓𝑟 is the flow on arc 𝑟 ∈ 𝐴 in any feasible solution. Let 𝑓̅ ∈ ℝ+
|𝐴| be an optimal solution to problem Υ; 

then, the quantity ∑ 𝑓𝑟̅𝑟∈𝐴  is the optimal flow of the problem. 

 First of all, let us observe that in such a framework the VCG flow-based centrality is always 

nonnegative. 

 

Theorem. Given a network 𝐺 = (𝑁, 𝐴, 𝑢, 𝑢𝑜, 𝑢𝑡) and the related flow maximization problem Υ. The VCG flow-

based centrality of any arc is always nonnegative. 

Proof. Removing an arc 𝑟 from 𝐺 is equivalent to adding the constraint 𝑓𝑟 = 0 to the problem Υ (let us call 

Υ−𝑟 the resulting flow maximization problem); thus, the optimal flow of problem Υ−𝑟 can only decreases or 

remains unchanged. Let 𝑓̅Υ ∈ ℝ+
|𝐴| and 𝑓̅

Υ−𝑟 ∈ ℝ+
|𝐴| be optimal solutions to problem Υ and Υ−𝑟, respectively. 

Therefore, for any arc 𝑟 ∈ 𝐴 we have that 𝑐 = ∑ 𝑓𝑗̅
Υ

𝑗∈𝐴 ≥ 𝑐−𝑟 = ∑ 𝑓̅𝑗
Υ−𝑟

𝑗∈𝐴−{𝑟}  and thus 𝑐̇𝑟 = 𝑐 − 𝑐−𝑟 ≥ 0. 

 

 In particular, let us consider the example in Figure 4, where 𝑢𝑜𝑣𝑖 = 𝑢𝑡𝑣𝑖 = 0 for 𝑖 = 1,… ,4. 

 



 

Figure 4 

 

 It is easy to verify (by solving the corresponding flow maximization problems) that the overall flow is 

equal to 110 (with 𝑓𝑎 = 10, 𝑓𝑏 = 30, 𝑓𝑐 = 20, 𝑓𝑑 = 0, 𝑓𝑒 = 20, 𝑓ℎ = 30), and that the VCG flow-based 

centralities of the arcs are as follows: 

𝑐̇𝑎 = 𝑐 − 𝑐−𝑎 = 110 − 80 = 𝑐𝑎 − 𝑐𝑎
𝑉𝐶𝐺 = 10 − ((20 − 30) + (20 − 20) + (0 − 0) + (20 − 20) + (20 −

30)) = 30  

𝑐̇𝑏 = 𝑐 − 𝑐−𝑏 = 110 − 30 = 𝑐𝑏 − 𝑐𝑏
𝑉𝐶𝐺 = 30 − (−50) = 80  

𝑐̇𝑐 = 𝑐 − 𝑐−𝑐 = 110 − 30 = 𝑐𝑐 − 𝑐𝑐
𝑉𝐶𝐺 = 20 − (−60) = 80  

𝑐̇𝑑 = 𝑐 − 𝑐−𝑑 = 110 − 110 = 𝑐𝑑 − 𝑐𝑑
𝑉𝐶𝐺 = 0 − 0 = 0  

𝑐̇𝑒 = 𝑐 − 𝑐−𝑒 = 110 − 60 = 𝑐𝑒 − 𝑐𝑒
𝑉𝐶𝐺 = 20 − (−30) = 50  

𝑐̇ℎ = 𝑐 − 𝑐−ℎ = 110 − 0 = 𝑐ℎ − 𝑐ℎ
𝑉𝐶𝐺 = 30 − (−80) = 110  

 

 Looking at these VCG flow-based centralities, link ℎ appears to be the most crucial for the network, 

while link 𝑑 seems of no significance. However, as regards link 𝑑, this is not a fair conclusion, as the following 

considerations show. 

𝑣1  

𝑣3  

𝑣4  

𝑣2  

𝑢𝑎 = 10  

𝑢𝑑 = 10  𝑢𝑐 = 20  

𝑢ℎ = 50  

𝑢𝑏 = 30  

𝑢𝑒 = 20  

Network 𝐺  



 Let us compute the joint externality 𝑐𝑐𝑑
𝑉𝐶𝐺 generated by the family of arcs 𝑐 and 𝑑 (and joint centrality 

𝑐̇𝑐𝑑). It is easy to verify that this joint externality is exactly equal to the sum of the externalities generated 

separately by 𝑐 and 𝑑 (as well as the joint centrality is the sum of the VCG flow-based centralities of 𝑐 and 𝑑): 

𝑐𝑐𝑑
𝑉𝐶𝐺 = (10 − 10) + (10 − 30) + (0 − 20) + (10 − 30) = −60 = 𝑐𝑐

𝑉𝐶𝐺 + 𝑐𝑑
𝑉𝐶𝐺  

𝑐̇𝑐𝑑 = 𝑐 − 𝑐−𝑐𝑑 = 110 − 30 = 𝑐𝑐𝑑 − 𝑐𝑐𝑑
𝑉𝐶𝐺 = (20 + 0) − (−60) = 80 = 𝑐̇𝑐 + 𝑐̇𝑑   

 Instead, let us now compute the joint externality 𝑐𝑑𝑒
𝑉𝐶𝐺 generated by the family of arcs 𝑑 and 𝑒 (and 

joint centrality 𝑐̇𝑑𝑒). This joint externality is lower than the sum of the externalities generated separately by 

arcs 𝑑 and 𝑒 (while joint centrality 𝑐̇𝑑𝑒 is larger than the sum of 𝑐̇𝑑  and 𝑐̇𝑒 ): 

𝑐𝑑𝑒
𝑉𝐶𝐺 = (10 − 10) + (10 − 30) + (0 − 20) + (10 − 30) = −60 < 𝑐𝑑

𝑉𝐶𝐺 + 𝑐𝑒
𝑉𝐶𝐺 = −30  

𝑐̇𝑑𝑒 = 𝑐 − 𝑐−𝑑𝑒 = 110 − 30 = 𝑐𝑑𝑒 − 𝑐𝑑𝑒
𝑉𝐶𝐺 = (0 + 20) − (−60) = 80 > 𝑐̇𝑑 + 𝑐̇𝑒 = 50  

 This is because in the considered network the goal of maximizing the surplus is obtained by maximizing 

the flow from 𝑣1 and 𝑣4, and there are three different paths from 𝑣1 and 𝑣4 (which we shortly denote by 

ordered strings of arcs): 𝑎𝑏, 𝑐𝑑, 𝑐𝑒𝑏. Paths 𝑐𝑑 and 𝑐𝑒𝑏 have a first shared part, that is, arc 𝑐; therefore, in a 

sense, arcs 𝑑 and 𝑒 compete (for a flow at the most equal to 10) to bring flow from 𝑣1 and 𝑣4, and thus they 

can partially substitute each other in guaranteeing the performance of the network. Similarly, it easy to verify 

that also 𝑑 and 𝑏 are partially in competition (up to on a flow of ten), and that 𝑐𝑏𝑑
𝑉𝐶𝐺 = −80 < 𝑐𝑏

𝑉𝐶𝐺 + 𝑐𝑑
𝑉𝐶𝐺 =

−50 (as well as it results that 𝑐̇𝑏𝑑 = 110 > 𝑐̇𝑏 + 𝑐̇𝑑 = 80). 

 Therefore, in the case where some fair criterion to share the identified joint externality 𝑐𝑑𝑒
𝑉𝐶𝐺 between 

arcs 𝑑 and 𝑒 is applied, we could claim that arc 𝑑 can actually generate externality different from 0 

(potentially, down to −30 = 𝑐𝑑𝑒
𝑉𝐶𝐺 − (𝑐𝑑

𝑉𝐶𝐺 + 𝑐𝑒
𝑉𝐶𝐺)), and thus that 𝑑 is of some importance. 

 A general approach to overcome this drawback of centrality measures à la VCG could be obtained by 

following what proposed in Avenali (2009) under a different context17. In that paper, a new issue is proposed, 

which is to find that partition of players into coalitions which maximize the auctioneer’s revenue in the case 

whereby such coalitions take part to a VCG auction each one as a single agent (i.e. as a joint group). As shown 

                                                           
17 The assumed framework is auction design where players have independent and private valuations and no budget 
constraints. 



in Avenali (2009), such a partition is the one that minimize the sum of the coalition discounts under a VCG 

auction where the participants are exactly the coalitions represented by the partition; moreover, determining 

such a partition is equivalent to finding a partition which maximizes the joint externalities generated by the 

coalitions represented by the partition (i.e. the joint VCG payments in the auction framework). 

 Therefore, putting apart the computational problem, we could better estimate the actual centrality of 

any network element by a two steps procedure: (i) identifying any partition of the elements which maximizes 

the sum of the joint centralities (in the following, referred to as optimal partition), (ii) for every identified 

optimal partition, sharing the joint centrality of any group of elements in the optimal partition among its 

members. 

 In particular, let us consider any network 𝑊 and any metric to measure the centrality. Let 𝑉 be the set 

of the analyzed network elements, and let Π be any partition of V in nonempty sets (obviously, |Π| ≤ |V|); in 

addition, we denote by Ψ(𝑉) the set of all the partitions of V in nonempty sets. It is easy to verify that 

identifying a partition Π ∈ Ψ(𝑉) which maximizes the sum of the related joint centralities ∑ 𝑐̇𝑆𝑆∈Π  is 

equivalent to selecting a partition Π ∈ Ψ(𝑉) which minimizes the sum of the related joint externalities 

∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π . 

 

Theorem. Determining a partition Π ∈ Ψ(𝑉) with maximum ∑ 𝑐̇𝑆𝑆∈Π  is equivalent to finding a partition Π ∈

Ψ(𝑉) with minimum ∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π . 

Proof. For any partition Π ∈ Ψ(𝑉), we have that ∑ 𝑐𝑆𝑆∈Π = ∑ ∑ 𝑐𝑡𝑡∈𝑆𝑆∈Π = ∑ 𝑐𝑡𝑡∈𝑉 . Moreover, it results 

that ∑ 𝑐̇𝑆𝑆∈Π = ∑ 𝑐𝑆𝑆∈Π −∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π = ∑ 𝑐𝑡𝑡∈𝑉 − ∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π . Since max
Π∈Ψ(𝑉)

∑ 𝑐̇𝑆𝑆∈Π = max
Π∈Ψ(𝑉)

[∑ 𝑐𝑡𝑡∈𝑉 −

∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π ] = ∑ 𝑐𝑡𝑡∈𝑉 − min
Π∈Ψ(𝑉)

∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π , then determining a partition with maximum ∑ 𝑐̇𝑆𝑆∈Π  is 

equivalent to finding a partition with minimum ∑ 𝑐𝑆
𝑉𝐶𝐺

𝑆∈Π . 

 

 Coming back to the example in Figure 4, optimal partitions are {{𝑎}, {𝑏}, {𝑐}, {ℎ}, {𝑑, 𝑒}}, 

{{𝑎}, {𝑐}, {𝑒}, {ℎ}, {𝑏, 𝑑}}, {{𝑏}, {ℎ}, {𝑎, 𝑐}, {𝑑, 𝑒}}, {{𝑒}, {ℎ}, {𝑎, 𝑐}, {𝑏, 𝑑}}, {{𝑐}, {ℎ}, {𝑎, 𝑒}, {𝑏, 𝑑}}, where 

𝑐𝑎
𝑉𝐶𝐺 = −20,  𝑐𝑏

𝑉𝐶𝐺 = −50, 𝑐𝑐
𝑉𝐶𝐺 = −60, 𝑐ℎ

𝑉𝐶𝐺 = −80, 𝑐𝑑𝑒
𝑉𝐶𝐺 = −60, 𝑐𝑒

𝑉𝐶𝐺 = −30, 𝑐𝑏𝑑
𝑉𝐶𝐺 = −80, 𝑐𝑎𝑐

𝑉𝐶𝐺 =



−80, 𝑐𝑎𝑒
𝑉𝐶𝐺 = −50, (and where 𝑐̇𝑎 = 30, 𝑐̇𝑏 = 80, 𝑐̇𝑐 = 80, 𝑐̇ℎ = 110, 𝑐̇𝑑𝑒 = 80, 𝑐̇𝑒 = 50, 𝑐̇𝑏𝑑 = 110, 

𝑐̇𝑎𝑐 = 110, 𝑐̇𝑎𝑒 = 80). The sum of the joint externalities (joint centralities) for any optimal partition is −270 

(380). 

 Given an optimal partition, the joint externality (joint centrality) of any identified group has to be 

divided somehow among the element of the coalition. This is not a main goal of this work and future research 

could investigate about this issue. In this work we apply a naïve criterion to split the joint externality of each 

group, which goes as follows. A share is allocated to any element of the group which is equal to the sum of 

the externality of the single element and of a slice of the difference between the joint externality and the 

externalities of the single members of the group; in particular, we equally share this difference among all 

members of the group. 

 Finally, after splitting the joint externality (joint centrality) among the members of each group for every 

optimal partition, the amount of externality (centrality) which is associated with any element is averaged by 

the number of the optimal partitions. We define this resulting quantity as full externality (full centrality).18 

From now on, we denote by 𝑐̇𝑡
̅̅ ̅̅  and 𝑐𝑡

𝑉𝐶𝐺̅̅ ̅̅ ̅̅ , respectively, the full centrality and the full externality of any 

element 𝑡 ∈ 𝑉. 

 Let us now come back to the example in Figure 4. Let us consider, for instance, the joint externality 

𝑐𝑑𝑒
𝑉𝐶𝐺 = −60 < 𝑐𝑑

𝑉𝐶𝐺 + 𝑐𝑒
𝑉𝐶𝐺 = 0 − 30 = −30 (the joint centrality 𝑐̇𝑑𝑒 = 80 > 𝑐̇𝑑 + 𝑐̇𝑒 = 0 + 50 = 50); 

by applying the described sharing criterion, we allocate to arcs 𝑑 and 𝑒, respectively, an externality share 

equal to 0 +
−60−(−30)

2
= −15 and −30 +

−60−(−30)

2
= −45 (a centrality share equal to 0 +

80−(50)

2
= 15 

and 50 +
80−(50)

2
= 65). Furthermore, by taking into account all the computed optimal partitions, the full 

centralities and the full externalities of the arcs in 𝐴 are as follows: 

𝑐̇𝑎
̅̅ ̅̅ =

(30+30+30+30+30)

5
= 𝑐𝑎 − 𝑐𝑎

𝑉𝐶𝐺̅̅ ̅̅ ̅̅ = 10 −
(−20−20−20−20−20)

5
= 30  

𝑐̇𝑏
̅̅ ̅̅ =

(80+95+80+95+95)

5
= 30 −

(−50−65−50−65−65)

5
= 89  

𝑐̇𝑐
̅̅ ̅̅ =

(80+80+80+80+80)

5
= 20 −

(−60−60−60−60−60)

5
= 80  

                                                           
18 The introduced names recall the full cost accounting, which is based on direct costs and a fair share of indirect costs. 



𝑐̇𝑑
̅̅ ̅̅ =

(15+15+15+15+15)

5
= 0 −

(−15−15−15−15−15)

5
= 15  

𝑐̇𝑒
̅̅ ̅̅ =

(65+50+65+50+50)

5
= 20 −

(−45−30−45−30−30)

5
= 56  

𝑐̇ℎ
̅̅ ̅̅ =

(110+110+110+110+110)

5
= 30 −

(−80−80−80−80−80)

5
= 110  

 Thus, by considering the externalities generated by groups of elements it clearly emerges that arc 𝑑 

has some importance in the given context (𝑐̇𝑑
̅̅ ̅̅ = 15 > 𝑐̇𝑑 = 0). Moreover, let us observe that in this 

particular case every optimal partition highlights a positive role of 𝑑 for the network; therefore, even by 

randomly choosing only one optimal partition to define the full externality and centrality (instead of 

considering all of them), arc 𝑑 would never be of no significance. 

 Although the computational aspects of the centrality measures are not a goal of this work, we observe 

that, unfortunately, finding all optimal partitions requires in general a lot of computational effort. Thus, 

future research could be focused on designing and developing heuristics to quickly verify whether it is 

possible to identify a set of elements whose joint externalities are different from the sum of the single 

externalities. In such a case, after identifying one or more sub-optimal partitions by means of some heuristic, 

an approximation of the full externality could be promptly provided as shown above. 

5. Conclusion 

In this work we have shown how recent proposals in the literature related to the centrality measures are an 

application of the well-known generalized Vickrey mechanism. Moreover, we have provided examples to 

show how a proper measure of the centrality of an element should take into account the marginal 

contribution of the element to the network (for instance, in terms of connectivity or welfare generated). 

 Then, we have shown that centrality measures à la VCG inherit some drawbacks by the VCG 

mechanism, and can thus in general provide a poor estimate of the actual importance of some network 

elements. Moreover, by exploiting some results provided in the literature within the VCG auction design, we 

have proposed an approach to refine such estimates, based on considering also the joint externalities 

generated by groups of elements of the network and on sharing these externalities among the respective 

elements. We have referred to such new estimates as full centralities. 



 Our approach is general in the sense that it does not depend on a particular selected metric; therefore, 

it could be applied in several real-word networks, with respect to different metrics, to provide effective and 

fair estimates of the actual centrality of any element of the network. 
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