
Automatic and Context-Aware Cross-Site
Scripting Filter Evasionp g

Fabrizio d’Amore
Mauro Gentile

T h i l R 4 2012Technical Report n. 4, 2012

Dept. of Computer, Control, and

Management Engineering Antonio Ruberti

Sapienza University of Rome

Technical Report

AUTOMATIC AND CONTEXT-AWARE

CROSS-SITE SCRIPTING FILTER

EVASION

October 2012

Fabrizio d’Amore

Dept. of Computer, Control, and

Management Engineering Antonio Ruberti

Sapienza University of Rome

damore@dis.uniroma1.it

Mauro Gentile

Dept. of Computer, Control, and

Management Engineering Antonio Ruberti

Sapienza University of Rome

gentile.mauro.mg@gmail.com

Abstract

Cross-Site Scripting (XSS) is a pervasive vulnerability that involves a huge portion of modern

web applications. Implementing a correct and complete XSS filter for user-generated content

can really be a challenge for web developers. Many aspects have to be taken into account since

the attackers may continuously show off a potentially unlimited armory.

This work proposes an approach and a tool – named snuck – for web application penetration

testing, which can definitely help in finding hard-to-spot and advanced XSS vulnerabilities.

This methodology is based on the inspection of the injection’s reflection context and relies on a

set of specialized and obfuscated attack vectors for bypassing filter based protections, adopted

against potentially harmful inputs. In addition, XSS testing is performed in-browser, this

means that a web browser is driven in reproducing the attacker and possibly the victim be-

havior.

Results of several tests on many popular Content Management Systems proved the benefits

of this approach: no other web vulnerability scanner would have been able to discover some

advanced ways to bypass robust XSS filters.

Keywords: computer security, network security, web application security, browser security,

vulnerability detection, cross-site scripting, XSS

snuck is an open-source software released under the Apache 2.0 license -

http://code.google.com/p/snuck/

1

http://code.google.com/p/snuck/

Contents

1 Introduction 5

1.1 Overview . 5

1.2 XSS Classification and Threat Model . 6

1.3 Scenario and terminology . 8

1.3.1 Basic filter based XSS prevention techniques 9

1.3.2 Web Application Security Scanners 9

1.4 Motivation . 10

1.4.1 Workflow-based approach . 10

1.4.2 Context-aware paradigm . 11

1.4.3 In-browser scanner . 12

1.5 Objectives . 13

2 Defense and offense concepts 14

2.1 Protecting against XSS . 14

2.2 Attack scenarios . 15

3 Methodology and Tools 19

3.1 Stateful approach for penetration testing . 19

3.2 Selenium: automating web browsers . 20

3.3 Reflection context . 20

3.4 Sets of attack vectors . 21

3.5 Multiple browsers approach . 23

4 snuck ’s Architecture 24

4.1 snuck ’s architecture . 24

4.2 Designing Use Cases . 24

4.3 Modular set of attack vectors . 27

4.4 Reverse Engineering process . 27

4.5 Victim’s behavior reproduction . 28

4.6 Run example . 29

2

5 Experimental Results 30

5.1 Designing and starting the test . 30

5.2 Test results . 30

5.3 Evaluation and comparison . 35

6 Future Work 42

6.1 Future improvements . 42

6.1.1 Client side XSS filter testing . 42

6.2 Main limitations . 45

6.3 Conclusions . 46

7 Bibliography 47

8 Sitography 49

A Appendix 51

A.1 Appendix 1 . 51

A.2 Appendix 2 . 52

A.3 Appendix 3 . 53

A.4 Appendix 4 . 53

A.5 Appendix 5 . 55

A.6 Appendix 6 . 56

A.7 Appendix 7 . 57

3

About this document

Preamble. This technical report derives from the Master’s Thesis “Automatic and Context-

Aware Cross-Site Scripting Filter Evasion” by Mauro Gentile, submitted in Octo-

ber 2012 in partial fulfillment of the requirements for the Master of Engineering in

Computer Science at the School of Information Engineering, Computer Science, and

Statistics of Sapienza University of Rome under the supervision of the prof. Fabrizio

d’Amore.

Work’s goal. The goal of this work is to propose an approach for significantly testing an

XSS filter by reproducing the behavior of the attacker who insistently tries to break

it. In addition, since we want to reduce the false positive rate to zero, we propose a

new method to simulate the victim’s behavior with respect to the occurred injection.

We will illustrate these concepts in detail in the next chapters.

Paper organization. This paper is organized as follows. Chapter 1 gives a wide overview

about modern web application security scanners, trying to explain their limitations

and which are the methods we want to employ to test XSS filters. Chapter 2 explains

the basic concepts behind Cross-Site Scripting prevention and presents many common

attack scenarios. Chapter 3 describes the methodologies we adopted and the techniques

we employed for building up the tool snuck. Chapter 4 explains the tool’s architecture

by giving particular attention to the operations it performs against an XSS filter. In

Chapter 5 we present the performed experiments against popular Content Management

Systems, whereas in Chapter 6 we propose several future improvements.

4

Chapter 1

Introduction

1.1 Overview

Cross-Site Scripting is a web application vulnerability in which malicious scripts are injected

into a trusted web site by an attacker. This type of vulnerability has emerged as one of

the most serious threats on the Web1 since it revealed to affect a very large number of web

applications.

On the one side it is usually straightforward to exploit an XSS vulnerability, on the other

side it may be really a challenge to build a completely XSS-safe web site.2 Hence, several

research has been performed in order to detect or prevent unauthorized scripts from being

included in the server output. The impact of such vulnerabilities may really harm an authen-

ticated user since many techniques can be adopted to make a convincing exploit; stealing

session information is just the tip of the iceberg since much more sophisticated attacks may

take place once an injection point is detected, leading for instance to escalating privileges

with only one click from the victim’s perspective.

Cross-Site Scripting attacks are commonly underestimated by many web developers, who

naively assume that stopping payloads like <script>alert(1)</script> is the most suit-

able way to lay up an XSS-safe web site. Unfortunately modern web browsers offer a huge

set of possibilities for the attackers to execute malicious JavaScript. We will show many

examples in this work.

1CWE, 2011 CWE/SANS Top 25 Most Dangerous Software Errors, http://cwe.mitre.org/top25/index.

html (Sep 2011)
2OWASP, OWASP Appsec Tutorial Series - Episode 3: Cross Site Scripting (XSS), http://www.youtube.

com/watch?v=_Z9RQSnf8-g (July 2011)

5

http://cwe.mitre.org/top25/index.html
http://cwe.mitre.org/top25/index.html
http://www.youtube.com/watch?v=_Z9RQSnf8-g
http://www.youtube.com/watch?v=_Z9RQSnf8-g

1.2 XSS Classification and Threat Model

As any good work regarding XSS attacks, we distinguish three types: reflected, stored and

DOM Based XSS. These threats are briefly described in the next lines.

Reflected XSS. An XSS vulnerability is reflected if the injection is echoed by the server

in the immediate response to an HTTP request. It is usually required that the victim

clicks on a crafted link to make the attack start; in addition, a cross domain request

could be employed to trigger such kind of issues. These are also referred as first-order

XSS.

Stored XSS. The injection is stored in a permanent data store and it is echoed every time

a user visits the unsafe web site. Obviously the range of potential victims is greater

than in the reflected XSS, since the payload is displayed to any visitor. These are also

referred as second-order XSS.

DOM Based XSS. OWASP refers to this type of XSS as “an XSS attack wherein the

attack payload is executed as a result of modifying the DOM “environment” in the

victim’s browser”.3 In practice the attacker could misuse the existent client side script

in order to make it work maliciously. In fact, the categorization “reflected” and “stored”

XSS is not sufficient since attacks “that do not rely on sending the malicious data to

the server in the first place” may definitely happen in Web 2.0 [1] (where client side

scripting is gaining more and more attention [2]).

Besides the typical circumstances, XSS attacks can take place through advanced scenar-

ios, a common example is through Content Sniffing: web browsers tend to perform obscure

operations and somersaults to detect and handle various file types and encoding schemes.

This may lead to Cross-Site Scripting in the case for instance the browser renders as HTML

what meant to be an image.

Basically “a clever attacker could manipulate the browser into interpreting seemingly harm-

less images or text documents as HTML, Java, or Flash – thus gaining the ability to execute

malicious scripts in the security context of the application displaying these documents”,4

therefore serving uploaded documents properly becomes fundamental for preventing these

attacks. Good practices, such as returning an explicit and well-know Content-Type value and

a precise charset, are mandatory for realizing a robust application; nevertheless the safest

approach consists of adopting separate, isolated web origins such that uploaded files cannot

be a threat at all. Obviously this would lead to define robust policies for accessing files:

using the users’ cookies for the “sandbox” domain is mindless, while introducing random

3OWASP, DOM Based XSS, https://www.owasp.org/index.php/DOM_Based_XSS
4Zalewski, M., Content hosting for the modern web, http://googleonlinesecurity.blogspot.it/2012/

08/content-hosting-for-modern-web.html (Aug 2012)

6

https://www.owasp.org/index.php/DOM_Based_XSS
http://googleonlinesecurity.blogspot.it/2012/08/content-hosting-for-modern-web.html
http://googleonlinesecurity.blogspot.it/2012/08/content-hosting-for-modern-web.html

and temporary tokens in the URLs looks to be a winning approach.

For the sake of completeness, since Internet Explorer up to version 7 could in some cases

report a MIME type different than the type specified by the web server, a precise HTTP

response header was introduced in order to stop the so called MIME-sniffing, the X-Content-

Type-Options ; if setted to nosniff the content will not be sniffed, thus preventing for instance

to render a text/plain document as HTML. Nevertheless omitting this header may sometimes

lead IE to perform some obscure procedures in order to sniff the content: Hasegawa, a well

known security researcher, showed how it is possible to force IE to sniff the content in order

to trigger an XSS attack [3].

As you might guess, realizing a robust application able to serve users’ uploaded content is

not a trivial task at all, for further information refer to the excellent Zalewski’s book [Zal12].

Open Redirect [4] is another severe vulnerability, in which the attacker could make the victim

visit malicious web pages without realizing it. These attacks could take place from both the

client and the server side: JavaScript and in particular the location object is involved in the

client-side, while the HTTP response header Location comes into play at the server-side.

On the client-side, it is quite common to discover DOM Based XSS in which the attacker

may trigger an XSS through pseudo-schemes, such as javascript and data, while at the

server-side having access to a Location’s value might lead to redirect the victim to another

unexpected domain. Note that having access to an HTTP header’s response might lead to

another severe vulnerability, called HTTP response splitting,5 which is associated with many

exploitation scenarios, such as session fixation and, again, XSS. Basically web browsers offer

several approaches to execute a redirect, thus to initialize attacks and execute script code.

Browsers’ plugins, such as Flash, Java, PDF, have their own methods to produce a redirect,

the interested reader can refer to the HTML5 Security Cheatsheet, Redirection Methods.6

XSS attacks may be triggered through Clickjacking7 too, this technique allows attackers to

alter a web site’s visual display while preserving its functionality. In this case the attacker

may put a target web site into an invisible iframe and ask the victim to extract or inject con-

tent through drag and drop operations giving possibly place to a Self-XSS or cross-domain

content extraction.

Being able to inject malicious JavaScript into a trusted web site implies a really high

risk for the users: XSS can achieve very sophisticated results in the case the attacker uses

5OWASP, HTTP Response Splitting, https://www.owasp.org/index.php/HTTP_Response_Splitting
6HTML5 Security Cheatsheet, RedirectionMethods, http://code.google.com/p/html5security/wiki/

RedirectionMethods
7Kotowicz, K., Exploiting the unexploitable XSS with clickjacking, http://blog.kotowicz.net/2011/03/

exploiting-unexploitable-xss-with.html

7

https://www.owasp.org/index.php/HTTP_Response_Splitting
http://code.google.com/p/html5security/wiki/RedirectionMethods
http://code.google.com/p/html5security/wiki/RedirectionMethods
http://blog.kotowicz.net/2011/03/exploiting-unexploitable-xss-with.html
http://blog.kotowicz.net/2011/03/exploiting-unexploitable-xss-with.html

exploitation frameworks, such as BeEF8 or XSSF9. Basically, the hackers could fingerprint

the internal network via JavaScript in order to identify known connected devices and exploit

them whenever a vulnerability exists. Furthermore XSS tunneling proxy permits to browse

the hooked domain through the security context of the victim browser; this implies that

the authenticated surface can be scanned to detect new vulnerabilities, which could not be

accessible earlier.

Web application security is a fundamental component in the modern computing industry.

In the last years many flaws allowed hackers to illegally access sensitive data; consequently

huge costs are required to assess the impact of the attack, the application’s weaknesses and

especially the backwashes in terms of customers loss.

1.3 Scenario and terminology

Since the end user’s browser has no way to know whether a script comes from an injection,

it will have no reasons to not execute it; developers use to adopt several countermeasures

in order to avoid these kind of flaws, but realizing robust XSS filters may result in a very

difficult task since several aspects should be taken into account.

Web application vulnerabilities can be detected by making manual penetration testing and

this reveals to be successful in the case the tester can also examine the code. Unfortunately,

this is a very time consuming task and it might require expert skills. Web vulnerability

scanners, instead, allow penetration testers and developers to automatically analyze web

sites aiming at of detecting security issues in a relative small time window and in a fairly

good detection rate.

In this work we talk about several attack scenarios, in which basically the attacker injects

a web page (injection page) by making an HTTP request; we expect this injection being

reflected into the same page or into another page and we refer such a page as a reflection

page. In addition, we are interested in the context, that is the exact point within the injected

web page’s DOM in which the injection is reflected and we refer such a context as a reflection

context.

For instance the attacker could inject a web page A by submitting a form, while the payload

will be reflected in a web page B, that is actually related to the first one. The relation is

based on the web application’s intended workflow and it should be identified by the tester

once got a basic understanding of the way it works. At this point the attacker should need to

know which is the reflection context within the HTML code of B in order to identify whether

an attack is possible and especially which is the right payload to be employed in order to

trigger an XSS attack.

8BeEF, The Browser Exploitation Framework Project, http://beefproject.com/
9XSSF, Cross-Site Scripting Framework, http://code.google.com/p/xssf/

8

http://beefproject.com/
http://code.google.com/p/xssf/

1.3.1 Basic filter based XSS prevention techniques

In the last years several approaches for protecting against XSS have been proposed. The

complexity of such a task is obviously huge from the point of view of web developers, who

should be trained by security experts about this type of threat. The adopted protection

should also be exposed to a strong testing phase, performed by very experienced penetration

testers.

The “real-world” XSS protections are widely discussed in Chapter 2; essentially web appli-

cations stop users to provide malicious inputs by inspecting them in order to detect whether

an XSS injection attempt is occurring and this is the most common way of detecting and

stopping XSS. Different approaches are also possible: for instance Web Application Firewalls

are appliances that block common attacks by enforcing a set of rules to an HTTP conversa-

tion.

In this work XSS protection systems and sanitization functions that prevent malicious code

to be supplied are referred as filters ; in particular we consider that users can marshal content

through a web application and that this latter adopts its own prevention techniques to stop

harmful inputs or to modify them in an harmless form.

Input validation should be adopted when handling an input from a data entry point, while

contextual output encoding should used when reflecting it. Although this practice looks to

be easy, many applications validate inputs through poorly effective filters, that would allow

attackers to manage an attack.

After all, filtering the user-generated content has critical consequences in terms of security:

giving people the possibility to publish its own HTML is in many cases synonym of XSS.

In addition, testing a filter is extremely compelling: discovering a successful bypass could

require time and especially a very strong background in breaking web application protection

systems.

1.3.2 Web Application Security Scanners

Once defined the basic terminology and showed a simple scenario, we remind the way web

vulnerability scanners work. They can be divided into two wide categories: black-box and

white-box scanners.

The first approach practically works by looking for data entry points (DEPs) through a

crawler module – which are from the scanner’s perspective toys to play with – and by in-

jecting various patterns in order to identify security issues. Basically the most naive way

to do that consists of trying to understand whether the injected payload is reflected within

the reflection page without being somehow modified. Regular expressions and XPath queries

may be really useful to achieve such a result. A good example could be SecuBat by Kals et

al. [KKKJ06], whereas a wider discussion has been provided by Fong et al. [FO07].

By the way Petukhov et al. [PZ08] showed that this approach does not guarantee neither

9

accuracy nor completeness of the obtained results: false positives are actually possible and a

poor coverage of DEPs may severely decrease the overall completeness of analysis. This prob-

lem becomes considerable in the case the tested application makes massive use of JavaScript

code, possibly causing the crawler to miss relevant pages to explore whenever links are gen-

erated at run-time through client-side code. Classical scanning mixed with logged requests

through a proxy10 could address this problem, but obviously it might be required to interact

with all the components constituting a web page to extract every “hidden” URL.

The second approach, white-box scanning, is based on web application analysis with the

assumption that source code is available and can be reviewed; it is surely the most complete

way to detect security vulnerabilities, but it requires experts and security minded people.

1.4 Motivation

Black-box web vulnerability scanners still struggle with the detection of XSS vulnerabili-

ties, especially the second order ones. Actually the inability to catch the web application’s

intended workflow reveals to be the main limitation of the current scanners, moreover com-

plex forms with aggressive input checking may block them, without giving any chance to go

deeper in the web site structure.

Bau et al. [BBGM10] and Doup et al. [DCV10] are excellent evaluations of web vulnerability

scanners. Both showed that almost all of them fail to properly detect second order XSS; in

practice scanners are not able to understand what is the relationship among different web

pages: an injection in a web page A may trigger an XSS in a completely different web page

B.

Modern web application, in particular social networks, owe their popularity to people who

publish their own contents; it is obvious that giving the users the possibility to share stuff,

which is permanently stored and accessible to many visitors, may lead to XSS in the case no

proper sanitization is performed. Hence, web developers might need to significantly test their

sanitization systems in order to assess whether bugs are actually present. Obviously, since

many steps could separate the injection page from the reflection page, the testing mechanism

should need to know how precisely reach this latter and which are the operations needed to

activate the XSS filter.

In other words, we need a tool which is able to break an XSS filter, given the path from the

injection page to the reflection one.

1.4.1 Workflow-based approach

The classical data-driven approach for scanning web applications for security issues requires

a crawler module, which is able to identify data entry points; basically it is straightforward

10Ivashchenko, T., Automation of modern web application security testing, http://www.oxdef.info/talk/

en/j4m2012/webapps/

10

http://www.oxdef.info/talk/en/j4m2012/webapps/
http://www.oxdef.info/talk/en/j4m2012/webapps/

to infer that a poor crawling engine implies a very low detection rate [DCV10]. Hence,

Korscheck [Kor10] introduced a smart way to realize a penetration test, that is practically

based on the possibility to define a path to be tested, trying to overcome barriers in the

workflow. The workflow-based approach can absolutely leverage the XSS detection rate and

it seems to be a promising concept to solve the above mentioned limitations.

In this work we use this approach by giving the tester the possibility to define a sequence

of operations the tool should replicate, but we specialize the testing with respect to one

particular XSS filter; this means that we are not going to describe a tool which, given a

workflow, tries to just discover XSS vulnerabilites along this path, but an approach for

significantly testing XSS filters by giving the testers the chance to select a path within the

application, that connects the injection page to the reflection page. Detailed information and

concepts will be mentioned in the next chapters.

1.4.2 Context-aware paradigm

The way many scanners generate XSS injection patterns is often naive and consists of inject-

ing a complete set of strings, such as <script>alert(1)</script> and similars, without

considering the reflection context. For instance it does not make sense to inject an HTML

element such as in the case the payload is reflected

within an attribute of an HTML element, which cannot be broken.11 This naive logic may

considerable decrease the detection rate for simple to detect XSS vulnerabilities too.

Skipfish12, web application security reconnaissance tool, and XSS Rays13, XSS reversing/s-

canner tool, solve this issue by injecting a complex string, a multi context XSS vector, that

works in multiple contexts and web browsers. However many different filtering techniques

against user-generated content are possible, thus several muti-context XSS vectors should

be injected in order to reliably assess whether a bug is present. For instance let us consider

a form accepting a syntactically correct URL with a parsing engine just blocking strings

containing script, img or svg; we might end up our test by reporting that no XSS is possible

because every vector we adopted contained at least one disallowed tag, whereas something

like javascript:alert(1) would have triggered an XSS.

Taking decisions during the test process would be an obvious way of proceeding in order to

identify which are the best payloads to be employed for a certain reflection context. This

approach can be easily achieved by first making a non-malicious injection, then by inspecting

the page for the reflection context and eventually by specializing the malicious vectors to be

supplied.

In fact generating attacks on the basis of the output in a feedback fashion was similarly used

11It means that quotes are escaped, therefore the attacker cannot break the attribute
12Zalewski, M., Skipfish, web application security scanner, http://code.google.com/p/skipfish/
13Heyes, G., XSS Rays extension, http://www.thespanner.co.uk/2011/01/21/xss-rays-extension/

(Jan 2011)

11

http://code.google.com/p/skipfish/
http://www.thespanner.co.uk/2011/01/21/xss-rays-extension/

by Ciampa et al. [CVDP10] in a heuristic-based approach for SQL-Injection vulnerabilities

[5, 6] detection. Obviously pattern matching of error messages cannot be applied for XSS

injections, but the idea of having a set of particular and targeted vectors is absolutely rea-

sonable for increasing the chances of catching vulnerabilities.

The aforementioned approach is currently adopted by many valid scanners, that’s the case

for instance of IronWasp [7], Acunetix Web Vulnerability Scanner14 and OWASP ZAP15,

whose XSS detection engines make targeted injection on the basis of the point in which the

injection falls.

1.4.3 In-browser scanner

Modern web browsers have somehow different capabilities and offer different ways to trigger

a Cross-Site Scripting attack. HTML5 Security Cheatsheet16 is an excellent resource for

identifying which vectors work on major web browsers. Actually a very good XSS scanner

would need to really search for XSS vulnerabilities within the web browser context, therefore

different browsers should be taken into account and different results may be generated on

this basis.

The most trivial example consists of a web page which accepts a parameter, whose content

is reflected within an attribute style of a DIV element; older versions17 of Internet Explorer

allow to trigger an XSS by employing the CSS extension expression().18,19 By running a

scanner within Firefox, it would report that no XSS is possible, while it would return positive

results in Internet Explorer.

Scanners and web browsers need to be somehow strictly related in order to achieve a complete

and reliable scan.

Obviously the same could be performed through basic scanners without web browser support,

however this classical approach would result in many false positives; realizing whether an

injection is successful can be done by catching alert dialog windows in the web browser. In

this work the concept of grabbing an alert window will be adopted in order to reduce the

false positive rate to zero. Obviously we make the assumption that no alert dialog windows

are already present in the reflection page: we do not rate it as a strong assumption since

modern web applications rarely disturb visitors through such alerts.

14Acunetix Web Vulnerability Scanner, http://www.acunetix.com/vulnerability-scanner/
15OWASP ZAP, https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
16HTML5 Security Cheatsheet, http://html5sec.org/
17Internet Explorer 7, Internet Explorer 8 and 9 in compatibility mode or if no doctype defined. Also Opera

allows to execute JS within the CSS context via the -o-link property - http://html5sec.org/#9
18MSDN, About Dynamic Properties, http://msdn.microsoft.com/en-us/library/ms537634(v=vs.85)

.aspx
19Hasegawa, Y., Cause of XSS by excessive detection of “expression” in IE, http://openmya.hacker.jp/

hasegawa/security/expression.txt (Nov 2006)

12

http://www.acunetix.com/vulnerability-scanner/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://html5sec.org/
http://html5sec.org/#9
http://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
http://openmya.hacker.jp/hasegawa/security/expression.txt
http://openmya.hacker.jp/hasegawa/security/expression.txt

1.5 Objectives

The aim of this work is to present a security tool, which is able to identify and exploit very

difficult to spot cross-site scripting vulnerabilities within a web application, or more precisely

to automatically reproduce the behavior of an expert while trying to identify a bypass for

an XSS filter.

Since it is widely focused on second order cross-site scripting vulnerabilities, it uses a

workflow-based approach as introduced by Korscheck [Kor10] with the tool iSTAR; it differ-

entiates itself since it is able to automatically detect which is the reflection context and to

specialize the attack vectors on this basis. Moreover it allows the tester to reverse engineer

the XSS filter in order to understand what is allowed to be supplied; it gives him also the

possibility to add new malicious payload to be injected in a simple and modular way and it

is designed with attack vectors’ obfuscation in mind. Another key point, that distinguishes

our tool from other XSS scanners, is the fact that false positive rate is equal to zero because

each reported vulnerability is the result of a successful injection.

Let us imagine to have a social network where users can share information and their friends

can read it; this target web site performs some kind of input validation and it just allows to

share plain text posts or links under the form of HTML anchors, i.e. <a href="http://evil.

com">click me!. The smart attacker would obviously think that links may be in-

volved to trigger an XSS attack, it would try to inject something like <a href="javascript:

alert(1)">click me! and it would click the resulting link in order to check whether

an alert window is fired. From the web scanner’s perspective it may be useful to perform two

steps in the case an injection requires user interaction to be triggered, the first one consisting

of injecting a malicous anchor, while the second one consisting of reproducing the behavior

of a victim, who clicks that link. This is the basic idea we used for our tool in order to

reproducing both sides of a real attack; more information about this point will be explained

in the next chapters.

Classical web application scanners work quite differently with respect to our tool, since this

latter is able to discover XSS vulnerabilities within the reflection page only; it practically

requires the tester to have a basic understanding about the way the application works and

to be able to define a sequence of operations in which a data entry point is injected and

a reflection page is inspected for the presence of malicious scripts. In other words it can

be properly considered as an automatic XSS tester which can definitely help in discovering

hard-to-spot vulnerabilities, given a certain logic for the application.

In this work we present snuck, a cross-site scripting filters evasion tool, and we also describe

some experiments on a variety of web applications in order to show its behavior with respect

to robust XSS filters.

13

Chapter 2

Defense and offense concepts

This chapter presents a brief survey on the common methods that web applications use to

protect themselves against XSS and explains basic, but very common, XSS attack scenarios.

2.1 Protecting against XSS

With the advent of Web 2.0, user-generated content gained increasingly attention and started

being the main content of modern web applications; on the one side applications need to

be simple, usable and flexible, on the other side they need to be as secure as possible. This

reveals to a be a kind of trade-off, the more the application is flexible and gives the users

multiple levels of freedom in terms of allowed inputs, the more likely the attacker is able to

discover a flaw to attack it.

Web applications use to prevent malicious users from injecting JavaScript or inserting mal-

formed HTML within web pages with different techniques. The most common way to protect

against XSS consists of adopting HTML filters, such as HTML Purifier,1 that inspect input

sources looking for XSS evidence and perform a sanitization process in order to clean any

potentially harmful input.

XSS can be mitigated on the client-side too, this is the case of NoScript,2 a Firefox extension

whose goal is to detect and block malicious script from being executed. Actually modern web

browsers started adopting built-in protections against reflected XSS by identifying attack ev-

idences in the URL and modifying the injected web page in order to avoid the execution of

the malicious code; Google Chrome and Internet Explorer are currently employing their own

filters.

Another approach consists of adopting Web Application Firewalls (WAFs), which are ap-

pliances that basically detects and stops malicious requests to reach the web application in

order to avoid security breaches. Since the underline application remains insecure, WAFs

1HTML Purifier, http://htmlpurifier.org/
2Maone, G., NoScript, http://noscript.net/

14

http://htmlpurifier.org/
http://noscript.net/

can be seen like plasters: they do not completely solve the issues, but they just try to stop

them coming out.

A modern introduction for preventing XSS is the Content Security Policy (CSP): since new

vulnerabilities may be introduced along the time, a secure site today can become vulnerable

in the future. Content Security Policy3 is an experimental security extension whose goal is

to help mitigating and detecting types of attacks such as XSS and data injection by specify-

ing the domains that the browser should consider to be valid sources of executable scripts.

Thus inline scripts and event-handling HTML attributes are not executed by default in CSP

enabled sites.

The CSP policy directives are delivered via HTTP headers, so the receiver browser should

be able to understand which particular resource should be trusted and rendered.

For the sake of completeness, an interesting automatic tool aiming at retrieving CSP poli-

cies, called CSP AiDer [Jav11], has been introduced by Javed. In practice it works through

a crawler which scans web pages to grab information needed in the policies.

Despite the potential of this further security layer, very few sites are currently adopting it

and the qualitative effects of such an adoption may be not exciting as expected [8].

2.2 Attack scenarios

Since we need to understand how an attacker interacts with a target web application, we

present three different attack scenarios; our main goal is to find out which is the most

accurate and complete way an automated XSS filter “breaker” could work.

Scenario 1: Blog Comment I Let us consider a target application that allows users to

leave comments: the accepting form consists of three fields, the first one need to be

filled with the user’s name, the second one is optional and it would contain the visitor’s

website, whereas the third one contains the comment (Figure 2.1).

From the penetration tester’s perspective, it is useful to define a sequence of operations

such that the form is populated with correct inputs, it is submitted and the reflection

page is inspected for the presence of an XSS – i.e. by looking for the injection within

the web page containing the comments.

For the sake of simplicity we are assuming that the first two fields are correctly sani-

tized, while the third one needs further investigation in order to state whether a stored

XSS is possible – we are assuming that comments are stored in a database.

The attacker could adopt a black-box testing approach, basically based on two steps.

The first step consists of reverse engineering the filter to identify which HTML tags and

attributes are allowed to be supplied. The second step consists of injecting malicious

HTML elements by looking for a flaw that would allow to execute arbitrary JavaScript.

3Mozilla, Security/CSP/Specification, https://wiki.mozilla.org/Security/CSP/Specification

15

https://wiki.mozilla.org/Security/CSP/Specification

Figure 2.1: Scenario 1: Blog comment I

In addition, the attacker could detect the context in which the injection is reflected

– for instance within a P element, i.e. <p>UNTRUSTED DATA</p> – and it can take

advantage of this information in order to identify a successful bypass.

This example is a classical scenario in which a stored XSS can be detected. The more

perverse, creative and modern is the set of employed attack vectors, the more likely

XSS vulnerabilities can be spotted. The set of attack vectors is a key point for XSS

detection scanners; in particular HTML5 introduced a plethora of advanced ways for

executing JavaScript code, therefore throwing an entire (outdated) XSS cheatsheet at

the target is surely not a winning approach.

A much more complex scenario would be a modified one in which multiple steps have to

performed before landing on the reflection page; however this case could be successfully

addressed via a workflow-based approach as shown in iSTAR [Kor10].

Scenario 2: Blog Comment II By considering the previous example, we can assume that

the username and the comment fields are correctly sanitized, while the one accepting

the visitor’s URL need to be significantly tested for detecting whether a stored XSS

vulnerability can be triggered (Figure 2.2).

In this case the attacker would inject a random string in the URL field and look for

its presence within the reflection page. Since the reflection context will obviously be

the attribute href of an anchor, knowing which are the allowed schemes would give a

precious information during the black-box testing.

Some web application scanners would treat this specific data entry point without mak-

ing any distinction from the other ones; this implies that something like

<script>alert(1)</script> is likely to be injected, but it will never trigger an XSS

because of the context in which the injection will fall.

Smarter scanners would try to break the attribute href and inject an event attribute,

16

Figure 2.2: Scenario 2: Blog comment II

but this may not be accurate in terms of correctness. By assuming for instance that

the reflection context is the attribute value of an INPUT element, whose type is set to

hidden, then the unique chance to perform a successful injection consists of breaking

the HTML element, an on*4 attribute would not execute malicious JavaScript at all.

The most accurate approach consists of injecting malicious URIs, such as javascript,

feed5 and data6 URIs, and reproducing the victim’s behavior, who clicks the injected

anchor.

At this point we can assume the target web application disallows malicious URIs by

a naive filtering logic, which consists of splitting the supplied URL by the colon

character and looking whether the scheme is disallowed (blacklist approach). It is

straightforward to guess that no bypass can be realized with something like data:

text/html,%3Cscript%3Ealert(1)%3C/script%3E. The attacker needs to somehow

obfuscate the payload in order to bypass the XSS filter, a string like data

:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg== is very likely

to be identified as an harmless input, whereby automated scanners have to take into

account the possibility to use different encoding techniques too.

For the sake of completeness, since the adopted filtering logic is really trivial an in-

jection such as data:text/html,%3Cscript%3Ealert(1)%3C/script%3E would

4on* is an abbreviation referring to the HTML event attributes, such as onclick, onmouseover, onkeyup and

so on.
5click me executes Javascript if clicked

in Firefox (up to version 13) – Soroush, D., Drag and Drop XSS in Firefox by

HTML5 (Cross Domain in frames), http://soroush.secproject.com/blog/2011/12/

drag-and-drop-xss-in-firefox-by-html5-cross-domain-in-frames/ (Dec 2011)
6data URIs inherit the domain of the opening page in Firefox and Opera – Kotowicz, K., The sad

state of DOM security (or how we all ruled Mario’s challenge), http://blog.kotowicz.net/2011/10/

sad-state-of-dom-security-or-how-we-all.html (Oct 2011)

17

data:text/html,%3Cscript%3Ealert(1)%3C/script%3E
data:text/html,%3Cscript%3Ealert(1)%3C/script%3E
data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==
data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==
data:text/html,%3Cscript%3Ealert(1)%3C/script%3E
http://soroush.secproject.com/blog/2011/12/drag-and-drop-xss-in-firefox-by-html5-cross-domain-in-frames/
http://soroush.secproject.com/blog/2011/12/drag-and-drop-xss-in-firefox-by-html5-cross-domain-in-frames/
http://blog.kotowicz.net/2011/10/sad-state-of-dom-security-or-how-we-all.html
http://blog.kotowicz.net/2011/10/sad-state-of-dom-security-or-how-we-all.html

Figure 2.3: Scenario 3: Profile’s details viewer

have resulted in a bypass too.

Basically we showed that the reflection context is particularly important in XSS test-

ing, moreover the in-browser scanner concept is really effective in the case we want to

reproduce both sides of an attack: the injection by the attacker and the interaction

with the “malicious component” by the victim.

Scenario 3: Profile’s details viewer Let us consider the target blog employes a web page

which allows to show some details about registered users; it accepts an HTTP GET

parameter whose content must be a username. We assume that the reflection context is

a JavaScript variable such as var a = "My name is UNTRUSTED DATA !"; and we would

like to know whether a reflected XSS is possible (Figure 2.3).

Since the injection falls within a JavaScript variable, it does not make sense to inject

something like <script>alert(1)</script>, nevertheless the attacker could break

the variable or directly close the SCRIPT element. However many details have to be

taken into account in order to understand whether quotes are escaped and the way

this has place.7 Injecting ";alert(1) would not be enough to trigger an XSS as a

JavaScript error would appear: we would need to comment out the rest of the string.

The most accurate way to automate this process consists of injecting several ad-hoc

attack vectors, by taking into account the reflection context and the way special char-

acters, such as double quotes, are escaped.

Our tool is able to handle reflected XSS testing too and in the shown scenario it

basically breaks the JavaScript variable and it automatically comments out the rest.

Since alert(1) is likely to be somehow blacklisted, it performs multiple injections with

obfuscated payloads, such as ∖u0061∖u006c∖u0065∖u0072∖u0074(1).8

7Barron, J., Anatomy of an XSS Injection, https://blog.whitehatsec.com/

anatomy-of-an-xss-injection/ (April 2011)

Barron, J., Escaping Escapes, https://blog.whitehatsec.com/escaping-escapes/ (April 2011)
8∖u0061∖u006c∖u0065∖u0072∖u0074(1) is equivalent to alert(1) unicode encoded

18

https://blog.whitehatsec.com/anatomy-of-an-xss-injection/
https://blog.whitehatsec.com/anatomy-of-an-xss-injection/
https://blog.whitehatsec.com/escaping-escapes/

Chapter 3

Methodology and Tools

The main goal of this work is to show a promising approach for significantly testing XSS

filters. Since the attacker might need to make many steps before having an XSS vulnerability

triggered, it is useful to employ a stateful approach, which is based on the idea of recording

a chain of user actions. In addition, having access to the web pages’ DOM avoids useless

injections and prevents data noises, i.e. false positives.

3.1 Stateful approach for penetration testing

The existing stateless penetration testing tools revealed to be often unsuccessful since the

intended workflows may be hard to define in applications that use AJAX. Pavlosoglou [9]

showed that given a login prompt, it is possible to automate a brute-force attack with a long

list of passwords by using Selenium IDE1 [10]; the advantage of such an approach consists

of quickly assessing successful or failed logins, and, in the case of SQL-Injection testing, it

allows to know all filter evasion characters and successful payloads. Obviously it is required

to define a sequence of actions, that basically generate the login use case, and to find out a

way to distinguish whether a login is successful or whether a SQL-injection is triggered.

We adopted these concepts to replicate the attacker’s behavior through events within the

web browser. The necessary steps to generate an injection and to look for its reflection are

represented by use cases – as similarly shown in [Kor10] – which are actually XML files,

whose content looks like a sequence of Selenium commands (refer to the next section for

details).

This methodology puts a huge advantage since the test can be performed without deacti-

vating CSRF2 protection mechanisms as every request is naturally generated within the web

browser.

1Selenium IDE, http://seleniumhq.org/projects/ide/
2“CSRF” is the abbreviation for Cross-Site Request Forgery: a web application vulnerability where the

attacker can force the victim into triggering actions that it did not want to perform

19

http://seleniumhq.org/projects/ide/

Furthermore, we decided to give the possibility to perform reflected XSS testing too. In this

case the specific HTTP GET parameter to test and the target URL are required.

3.2 Selenium: automating web browsers

Selenium is a web application testing system allowing to reproduce a set of operations in

the web browser context. It is able to run in many browser and operating systems and can

be easily controlled through many programming languages. The aim of automating a web

browser may vary according to the needs and developers could find really useful to record

and playback a chain of operations for simulating the visitors’ behavior through the applica-

tion, whereas security professionals could exploit its capabilities for driving the browser into

reproducing the behavior of an attacker.

The WebDriver3 is a software giving a programming interface whose goal is to offer the

possibility of making direct calls to the browser using the browsers’ native support for au-

tomation. In practice for each supported browser there is a driver, which sends commands

to it, and retrieves its results. Since many programming languages are supported, few lines

of code could be used to automate the selected web browser for realizing a complete test

against a web application.

Eventually, automating browsers through Selenium could deeply improve the test process

since a complete set of automation functionalities are accessible in a very easy fashion.

Furthermore, since quick reproduction of security issues is absolutely possible, security pro-

fessionals could send the vendor a script which reproduces the attack procedure and makes

him quickly aware of the threat, without possibly incurring in misunderstandings.

3.3 Reflection context

As shown in Chapter 1, the reflection context, that is the exact point in the HTML code of the

injected page in which the injection falls, is a precious information for better understanding

which are the most appropriate attack vectors to be employed. Many web application security

scanners handle each data entry point in the same way, without considering the possibility

to take decisions during the test in order to select the attack vectors more likely to trigger

an XSS vulnerability.

Our tool uses XPath queries on the DOM tree to identify the exact reflection context and it

specializes the attack on this basis. Let us assume a scenario in which the injection falls within

a P element, then a XPath query like //*[text[contains(.,’random_injection’)]] will

inform us that the reflection context is the text of a tag P.

JavaScript functions are instead adopted when running in Internet Explorer as advanced

3Selenium WebDriver, http://seleniumhq.org/docs/03_webdriver.html

20

//*[text[contains(., 'random_injection')]]
http://seleniumhq.org/docs/03_webdriver.html

XPath queries do not return successfully, thereafter the DOM is inspected through client-

side scripting code.4

As shown in Table 3.1, many contexts have been taken into account, starting from the

Abridged XSS Prevention Cheat Sheet.5 Note that many other possible contexts have been

considered.

Basically snuck makes at first a harmless injection with a random string, then it detects

the reflection context and eventually it starts the malicious injections with a set of targeted

attack vectors. Since there are many cases in which XSS vulnerabilities need user interaction

to be triggered – i.e. click a malicious link or an HTML element with an onclick attribute –

the tool detects the injected “component” after each injection and interacts with it in order

to reproduce the victim’s behavior; XPath queries are employed for this latter task too.

We will show an exhaustive example in Chapter 4.

3.4 Sets of attack vectors

Attack vectors are categorized on the basis of the reflection context and four different classes

have been selected:

HTML payloads. They are basically useful when the reflection context is the HTML body.

Malicious URIs. data and javascript URIs trying to execute JavaScript code. Useful when

the injection falls in attributes such as src or href.

Javascript alerts. alert(1) and similar payloads. Useful when the attacker is able to break

a JavaScript variable or to inject an on* attribute.

Expression payloads. Payloads using the CSS extension expression. Useful when the in-

jection falls in a style attribute in Internet Explorer.

Several attack vectors are considered for each of these classes; we assume that the bigger

is the vectors’ set, the more likely an XSS vulnerability can be spotted. In addition, obfusca-

tion methods are taken into account for filter evasion: HTML entities and several encodings

techniques are used within the attack vectors’ set to significantly test robust defenses too.

As many different situations can arise, snuck performs some adjustments to the attack vec-

tors before injecting them; for instance let us assume the reflection context is the textual

content of a TITLE element, then it will inject the HTML payloads vectors, prepending

them with </title>.

Detailed information about obfuscation and really fascinating web browsers’ quirks are re-

ported in an excellent book by Heiderich et al. [HVNEL10].

4Selenium Web Driver gives the possibility to execute JavaScript code in the context of the loaded web page
5OWASP, Abridged XSS Prevention Cheat Sheet, https://www.owasp.org/index.php/Abridged_XSS_

Prevention_Cheat_Sheet

21

https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_XSS_Prevention_Cheat_Sheet

Reflection Context Code Sample Specialized Injection

Sample

HTML Body UNTRUSTED

DATA

<img src=xx:x

onerror=alert(1)

/>

marquee, style, xmp,

title, etc. content

<title>UNTRUSTED

DATA</title>

</title><img

src=xx:x

onerror=alert(1)

/>

HTML Attributes <input type="text"

name="fname"

value="UNTRUSTED

DATA">

" onclick=alert(1)//

GET Parameter <a

href="/search?value=

UNTRUSTED

DATA">clickme

" onclick=alert(1)//

Untrusted URL in a

SRC or HREF at-

tribute

<a href="UNTRUSTED

URL">clickme

javascript:alert(1)

<iframe

src="UNTRUSTED URL"

/>

CSS value <div style="width:

UNTRUSTED

DATA;">X</div>

expression(alert(1));

JavaScript Variable <script>var

currentValue="UNTRUSTED

DATA";</script>

";alert(1)//

Table 3.1: Reflection contexts and specialized injections. For each point, in which the injec-

tion may fall in, we can identify a specialized attack payload; the table shows the most basic

and common contexts only, many others have been omitted.

22

3.5 Multiple browsers approach

Since modern web browsers have different capabilities and offer several ways to trigger a

Cross-Site Scripting attack – as widely shown in the HTML5 Security Cheatsheet – we de-

cided to give the tester the possibility to choose which web browser he wants to run the

test with; at the moment the choice is among Mozilla Firefox, Google Chrome and Internet

Explorer.

The basic idea is that each attack vector may execute malicious code in a web browser A,

but it may not in another web browser B, and/or C.

Classical web vulnerability scanners do not work in-browser, thereafter they use to inject

very common and browser-independent attack vectors. Actually a complete and reliable scan

would require to cover all the major web browsers in order to state that the considered XSS

filter is not affected by any flaw in any “browser-context”.

23

Chapter 4

snuck ’s Architecture

This chapter describes the tool’s architecture by presenting its basic components, and shows

some examples for better understanding the way it works.

4.1 snuck ’s architecture

The snuck tool has been implemented in Java, since this language is supported through

Selenium Remote Control drivers. As explained in the previous chapters, the core of the

proposed approach consists of retrieving the reflection context to perform a specialized at-

tack; thus XPath queries are used through the Selenium WebDriver, which allows to have

complete access to the DOM tree.

The architecture of snuck is shown in Figure 4.1. The XSS Injector works as core of the

injection process, it asks the Use Case Parser to parse the Selenium commands within the

XML file given in input (Step I), and to translate them into browser events through the

Controller (Step II). Once the first harmless injection has been made, the latest landed web

page (reflection page) is inspected in order to retrieve the reflection context. The XSS Injec-

tor will use this information for selecting the specific Set of Attack Vectors (Step III) and

starting the malicious injections. At the end of each injection the tool waits for alert windows

and reproduces the victim’s behavior, if needed (Step IV). Successful injections and reverse

engineering information are treated by the injector component, which eventually composes

a detailed HTML report about the discovered vulnerabilities (Step V).

4.2 Designing Use Cases

As shown in Figure 4.1, the penetration tester has to write the use case and give it as input

to the tool. Login use cases can be also used in order to perform an authentication before

making malicious injections.

We distinguish two types of XML configuration files, a first one in which a sequence of op-

24

Figure 4.1: snuck ’s architecture and injection process

25

erations is given, as reported in Appendix A.1, and a second one for reflected XSS testing.

Appendix A.2 shows a very simple example, that basically contains the target URL, the

fixed GET parameters and the one we need to test.

Let us assume to target an XSS filter which accepts content through a form, which asks the

user to supply its own email, then we can easily design the use case as reported in Listing 4.1.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<parameters >

<parameter >

<name >email </name >

<value >myemail_for_testing@test.org </value >

</parameter >

</parameters >

<commands >

<command >

<name >open </name >

<target >http:// target.foo </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=email </target >

<value >${RANDOM_EMAIL }</value >

</command >

<command >

<name >type </name >

<target >name=content </target >

<value >${INJECTION }</value >

</command >

<command >

<name >submit </name >

<target >id=comment </target >

<value ></value >

</command >

</commands >

</post >

</root >

Listing 4.1: Use case sample in which a simple form is filled and submitted

The example shows that the tester could manage the definition of parameters, such as an

email, through the element parameter, which needs two children, name and value; referring

to these may be performed via placeholders in the form of ${name}, whereas the tested field

need to be populated with the placeholder ${INJECTION}. Commands are supplied in the

26

form of Selenium tuples through the tag named command.

In the aforementioned web page we would have the following HTML code (Listing 4.2) –

hosted at http://target.foo – as you can understand from the selectors used within the

tags named target.

<form action="post.php" method="POST" id="comment">

<input type="email" name="email" />

<input type="content" />

<input type="submit" value="OK" />

</form >

Listing 4.2: Injected sample form’s HTML code

At this point we assume to target a web page, which accepts an HTTP GET parameter

named xss testing. Designing an XML configuration file is again straightforward, however

we can avoid writing it manually by just writing two parameters in the command line, in

particular -reflected followed by the targeted URL and -p followed by the parameter to

inject, xss testing.

Many other examples are reported in the tutorial, that is reachable from the snuck ’s web

site.

4.3 Modular set of attack vectors

Attack vectors are stored in textual files, categorized as shown in Section 3.4. For any of the

four types there exists a corresponding textual file, fully describing, one per line, possible

injections. The penetration tester is allowed to add new vectors by just appending further

lines to the corresponding file; such repositories are stored in a directory named payloads.

Placeholders could be used inside the set of vectors categorized as HTML Payloads. For

instance, if we add the line <script src=data:,%alert%></script> to the list of vectors,

then the tool will consider the string %alert% as a placeholder and it will replace it by a

JavaScript alert chosen at random among the vectors categorized as JavaScript alerts.

Something like <svg onload=%uri%> will be treated similarly, however the random choice

will happen among the URIs vectors.

By moving to this direction, the tester could easily populate the set of injections without

specifically selecting the payloads that will be supplied.

4.4 Reverse Engineering process

Reverse engineering an XSS filter [11] is a useful task for detecting what is allowed to be

supplied in terms of HTML elements and attributes. This process consists of injecting several

HTML elements with attributes and checking whether they are reported in the reflection

27

http://target.foo

page; an alternative process is performed when the injection falls in attributes such as href

and src, this is basically based on recognizing the allowed schemes.

The reverse engineering process is carried out through HtmlUnit,1 which is the fastest and

most lightweight implementation of Selenium WebDriver. In practice it is a browser without

GUI, that allows to emulate the behavior of a real web browser supporting JavaScript,

by reconstructing the web pages’ DOM in main memory; thereafter no browser window is

showed once the HTMLUnit driver is started.

We adopted this approach for the reverse engineering process since no particular web browser

capabilities are required and, as said above, the aforementioned driver boasts of outstanding

performance, so that a successful reverse process quickly gets to the end in few seconds.

The subsequent test – i.e. the malicious injections – is instead performed through the

chosen web browser by using its own Selenium Web Driver. This obviously means that a web

browser window is opened and the selected operations are automatically performed by the

web driver; the web application’s behavior is immediately showed to the tester during the

injection process.

Furthermore, since the web driver runs very quickly, the tester might find quite difficult to

understand the way the application responds to the injections, it may be worthy to introduce

a delay between two consecutive injections by starting snuck with the argument -delay (see

Appendix A.3 for the command line manual).

4.5 Victim’s behavior reproduction

The victim’s behavior reproduction is regulated by the XSS Injector component, which makes

XPath queries in order to detect the specific point to interact with; obviously this task is

performed for user interaction attack vectors only, such as malicious URIs and event handler

attributes.

Let us assume the reflection context is the attribute href of an anchor, then malicious URIs

will be retrieved through a XPath query, such as //a[@href=’INJECTION’]. By asking the

driver to look for such an element in the reflection’s page DOM, we can firstly understand

whether the injection is reflected, and secondly retrieve the correspondent anchor to click

on.

For the sake of completeness, if the attacker is able to break an HTML attribute in order to in-

ject an event handler, then a XPath query such as //*[contains(@onclick,’INJECTION’)]

is trivially adopted.

In addition, the tool distinguishes two possible operations with respect to the web ap-

plication’s database, INSERT and UPDATE. The first one is detected when two (or more)

sequential injections are both reported in the reflection page, so by making a first injection

1Selenium, HtmlUnit Driver, http://code.google.com/p/selenium/wiki/HtmlUnitDriver

28

-delay
http://code.google.com/p/selenium/wiki/HtmlUnitDriver

A and a second injection B, then both are reported in the same reflection page; this is quite

common in the case the target application runs a forum. The second case is detected when

each injection is independent from the others, thus the second injection B will replace the

previous injection A.

At the end of each injection the tool waits for one or more alert windows on the basis of the

detected operation. Obviously the web browser might be flooded by alert windows whenever

the operation is detected as an INSERT and the XSS filter is too weak, whereby a threshold

has been set in order to stop the test after a certain number of successful injections.

4.6 Run example

We present in Table 4.1 the way the tool operates with respect to the Scenario 2 shown in

Section 2.2. Many steps are involved to generate a complete and reliable scan, eventually an

HTML report is returned for the inspection of the results.

Operation

Start HtmlUnit

Inject a random alphanumeric string to check whether the injection is reflected

The XSS filter won’t probably reflect the injection as it is not a correct URL

Inject a random numeric string to check whether the injection is reflected

The XSS filter won’t probably reflect the injection as is is not a correct URL

Inject a URL to check whether the injection is reflected

The XSS filter will accept it and reflect it in the reflection page

The reflection context is retrieved =>attribute href of an HTML element, A

The reverse engineering process is started, many correct URLs with different

schemes are injected in order to understand which protocols are allowed

Detect the operation (INSERT OR UPDATE, see section 4.5 for information)

Quit HtmlUnit

The chosen web browser is started

Check whether the attribute href is breakable

Start injecting several malicious payloads, such as javascript:alert(1), and click

the resulting anchors

If href is breakable, then inject on* attributes and eventually try to break the

attribute for injecting new HTML elements

The web browser is closed

An HTML report is generated

Table 4.1: snuck ’s run example with respect to the Scenario 2 shown in Section 2.2

29

Chapter 5

Experimental Results

One goal of this study is to evaluate the XSS injection approach and the tool snuck proposed

in this paper. We selected many popular open source CMSs1 and we performed several test

against them.

The next sections illustrate how the tests were carried out and the experimental results we

found out.

5.1 Designing and starting the test

As shown in the previous sections, the penetration tester is required to define a sequence

of operations to be performed by filling in a use case, thereafter it needs to select which

specific path, within the web application, connects the injection page to the reflection one.

Obviously a basic understanding about the way the application works is required to discover

the correlation among different web pages.

In our empirical study we selected some of the most common operations, that use to be tasty

from the attacker’s perspective. In other words we performed many tests against procedures

that make the application accept user-generated content and reflect it.

We filled in the use cases manually as it is extremely easy and intuitive to write them.

5.2 Test results

This section will present point by point the results we found out in several CMSs and blogging

platforms. All the shown vulnerabilities were responsibly reported to the vendors and part

of these have been fixed. Much more detailed advisories are reported in some cases as well;

please note that since snuck was under development and in a non-public phase at the time

of making these experiments, you will not find any trace of it in the online advisories.

1CMS stands for Content Management System

30

Test Results

CLICK ME

<a href="feed:data:text/html,<script>alert(1)</script>">CLICK ME

Table 5.1: Test results in WordPress 3.3.1 : XSS filter for visitors’ comments

WordPress. WordPress2 is the most popular open source blogging platform, basically it

allows to publish posts where visitors can leave comments. Since comments may con-

tain a subset of HTML elements, we decided to significantly test the HTML filter that

is used, wp kses3. This latter employs a whitelist approach to sanitize the input, which

makes sure that only the allowed HTML element names, attribute names, attribute

values and only sane HTML entities can occur within the supplied comment.

We performed the test in WordPress 3.3.1 by employing the use case in Appendix A.4;

the basic idea was to give the tool some logically correct inputs to be supplied through

the HTML form accepting the visitor’s information and the comment. Actually the

injection page is the same as the reflection page since supplied comments are reflected

within the page with the “Leave a new comment” form. In addition, no other steps

need to be done before landing in the reflection page: the injection process consists of

two steps, populate and submit the form, and inspect the reflection page for detecting

XSS issues.

Since WordPress adopts an anti-flooding mechanism in order to stop bots to continu-

ously insert comments, we started snuck with the argument -delay.

The reverse engineering process gave us some information that we were already aware

of since we previously inspected the filter’s PHP code: basically neither harmful ele-

ments nor event handler attributes are allowed. Instead the malicious test reported a

stored XSS vulnerability while running in Firefox (Table 5.1).

Obviously the reason why this is allowed is related to the fact that the feed scheme

is considered harmless; unfortunately Firefox (up to version 13) executes JavaScript

when encountering a sequence of feed: followed by a “malicious” protocol.

This issue was fixed in WordPress 3.3.2 ; detailed information about the fix and how

to exploit this in order to manage a privilege escalation attack are accessible online.4

Habari. Habari5 is a quite popular blogging platform, its functionalities are more or less

the same as the WordPress ones. We focused on the filter used against the visitors’

comments (use case in Appendix A.5). Unfortunately, the malicious test returned that

2WordPress, http://wordpress.org/
3WordPress, Function Reference/wp kses, http://codex.wordpress.org/Function_Reference/wp_kses
4Gentile, M., Multiple vulnerabilities in Wordpress, http://www.sneaked.net/

multiple-vulnerabilities-in-wordpress
5Habari Project, http://habariproject.org/en/

31

http://wordpress.org/
http://codex.wordpress.org/Function_Reference/wp_kses
http://www.sneaked.net/multiple-vulnerabilities-in-wordpress
http://www.sneaked.net/multiple-vulnerabilities-in-wordpress
http://habariproject.org/en/

Reflection Context

[...]

Table 5.2: Symphony 2.2.5, URL field for visitors’ comments – reflection context

no XSS is possible (Habari 0.8), while the reverse engineering process allowed us to

infer that a white-list approach is used to sanitize the input; actually the InputFilter

class makes sure that only sane input is reflected, however harmful HTML elements,

such as iframe6, are allowed in the case no attributes are supplied.

snuck found out this oddity when reverse engineering the filter: the attacker may

supply a comment whose content is <iframe> to basically break the reflection page’s

output as the filter does not successfully handle unclosed tags.

Symphony CMS. Symphony7 is a XSLT8-powered open source content management sys-

tem, it is very popular among users who want a widely customizable CMS. We pro-

ceeded our survey on XSS filters against users’ comments with the one employed by

this web application, xssfilter.9 Basically we conducted two different test (Symphony

2.2.5), in the first one we injected the comment field (similar to Scenario I in chapter

2), in the second one the URL field (similar to Scenario II in Chapter 2, with use case

in Appendix A.6).

� Testing the comment field. In this case the injection page is the same as the

reflection pages, so the main purpose of snuck is to populate the HTML form

accepting the users’ information with the right input and to inject the comment

field. The detected reflection context is a P html element as expected, thereafter

HTML Payloads are adopted for the attack.

No positive results were reported since HTMLPurifier is adopted for sanitization

purposes, while xssfilter works as a detection layer, stopping requests containing

malicious inputs.

� Testing the URL field. Positive results were returned when testing the field ac-

cepting the visitors’ web site. snuck successfully reversed the XSS filter by finding

out the allowed schemes, as the reflection context is the attribute href an A el-

ement (Table 5.2), and it eventually discovered two different ways to bypass it

(Table 5.3).

Actually the vulnerability was related to an incomplete regular expression in xssfilter :

supplied URLs are marked as harmful and blocked through a black-list approach. At

6Habari, inputfilter.php, http://doc.habariproject.org/inputfilter_8php_source.html#l00073
7Symphony CMS, http://getsymphony.com/
8XSLT stands for Extensible Stylesheet Language Transformations, http://en.wikipedia.org/wiki/XSLT
9Symphony CMS, xssfilter, https://github.com/symphonycms/xssfilter

32

http://doc.habariproject.org/inputfilter_8php_source.html#l00073
http://getsymphony.com/
http://en.wikipedia.org/wiki/XSLT
https://github.com/symphonycms/xssfilter

Test Results

data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==

data:text/html,%3csvg%20onload=alert%281%29%3e

feed:data:text/html,%3csvg%20onload=alert%281%29%3e

Table 5.3: Test results in Symphony 2.2.5 – detected XSS

the moment of this writing the vulnerabilities were not yet fixed; although we reported

many other really severe security issues, just few reflected XSS were fixed in Symphony

2.3.

GetSimple. GetSimple10 is an “XML based, stand-a-alone, fully independent and lite Con-

tent Management System”; we selected this one (GetSimple 3.1) among many others

because it is quite trivial to understand how it works. In addition, it widely adopts

HTTP GET parameters for its operations, thus it might be a good candidate for eval-

uating the way our tool works with respect to reflected XSS.

We mixed our approach with the typical one used by web application security scanners

and we started crawling the application by extracting every HTTP GET parameter,

and we eventually treated them as data entry points. We gave them as input to snuck.

Although this approach revealed to be really time consuming, it returned many vulner-

able parameters. In particular, no advanced payloads were needed to execute malicious

code, <iframe src=javascript:alert(document.cookie)// would have been enough.

At the moment of this writing these vulnerabilities were not yet fixed.

Plone. Plone is an open source CMS written in Python that “has the best security track

record of any major CMS”.11 We managed some experiments as shown in the previous

cases, in particular against the XSS filter for the user-generated content, i.e. comments

to public posts. Tests were conducted in Plone 4.4.1 (use case in Appendix A.7), in

which we setted the “comment text transform parameter” to Markdown.

Basically the XSS filter (Safe HTML12) is pretty gentle, besides no event handlers are

allowed and no malicious schemes can be supplied, potentially harmful tags can be

injected. Since random attributes are not filtered out, we could infer that a black-list

approach is used with respect to HTML elements, while a white-list with respect to

attributes.

Eventually our tool returned three attack vectors, they were strictly related to each

other as they all exploited the same bug (Table 5.4).

Actually the HTML5 named character reference : (U+0003A COLON) is not

decoded by the filter into a colon character, thus bypassing it. This latter looks for

10GetSimple, http://get-simple.info/
11Plone, http://plone.org/
12Plone, HTML Filtering options, http://plone.org/documentation/kb/filteringhtml

33

http://get-simple.info/
http://plone.org/
http://plone.org/documentation/kb/filteringhtml

Test Results

<a hrEf=data:text/html;base64,PHNjcmlwdD5hbGVydC

gxKTwvc2NyaXB0Pg==>_DUMmY_9701

_DummY_62502

_dUMMy_59371

<meta name="Description" content="0;url=data:text

/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==" HTTP-EQUIV=

"refresh">

<meta name="Description" content="0;url=javascript:alert(1)"

HTTP-EQUIV="refresh">

Table 5.4: Test results in Plone 4.1.4 – detected XSS by combining the results from Firefox

and Chrome

Opera(-only) Attack Vector

<a x="dAta:image/svg+xml;charset=utf-8;base64,PHN2Z

yB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciPjxzY3JpcHQ%2

BYWxlcnQoMSk8L3NjcmlwdD48L3N2Zz4NCg==" style="-o-link:attr(x);

-o-link-source:current">click me

Table 5.5: Opera based attack vector in Plone 4.1.4

malicious schemes, such as javascript: and data: without taking into account this

other opportunity of supplying a colon character.

By combining the reversing results with the aforementioned exploits we came out with

two other injections (refer to the last two rows in Table 5.4), which take advantage of

the meta element for generating a malicious redirect.

For the sake of completeness, since the style attribute is absolutely harmless from the

filter’s perspective, we came out with a fascinating Opera based attack vector (Table

5.5).

The shown vulnerabilities were not yet fixed at the moment of this writing, but a patch

will be available very soon.

Breaking XSS filters is absolutely a creative task, which obviously cannot be completely

automated, however the shown experiments prove that successful testing can be performed

through the described approach. We do not present multi-step attacks, where the attacker

would need to follow many steps before landing in the reflection page – i.e. in an e-commerce

web site – but it would not be different from the aforementioned experiments.

34

5.3 Evaluation and comparison

This section presents the evaluation of nine modern web vulnerability scanners with respect

to snuck. We crafted five XSS vulnerable web pages, which adopt some very naive filtering

mechanisms and we asked the tools to break these XSS prevention “systems”.

The test suite was composed by an index page (Listing 5.1) and the actual vulnerable pages,

we will refer to these as test A (Listing 5.2), test B (Listing 5.3), test C (Listing 5.4), test D

(Listing 5.5), test E (Listing 5.6).

<!DOCTYPE html >

<html >

<meta charset='utf -8'>

<title >uhhhh?!</title >

<body >

click

click

click

click

click

</body >

</html >

Listing 5.1: index.html - it points to the actual vulnerable web pages

<!DOCTYPE html >

<html >

<meta charset="utf -8">

<title >uhhhh?!</title >

<body >

<?php

function clean($var){

return strip_tags($var , '<i><a>');

}

echo ((isset($_GET['x']) && !empty($_GET['x'])) ? clean($_GET['x'])

: "O.o");

?>

</body >

</html >

Listing 5.2: a.php - reflected XSS vulnerable web page

35

<!DOCTYPE html >

<html >

<meta charset="utf -8">

<title >uhhhh?!</title >

<body >

<?php

function clean($var){

return preg_replace(array("/:/", "/\"/"), array("", ""), $var);

}

?>

<a href="<?php echo ((isset($_GET['x ']) && !empty($_GET['x '])) ?

clean($_GET['x ']) : "O.o"); ?>">click me

</body >

</html >

Listing 5.3: b.php - reflected XSS vulnerable web page

<!DOCTYPE html >

<html >

<meta charset="utf -8">

<title >uhhhh?!</title >

<body >

<script >

var z = "user_ <?php

echo ((isset($_GET['x ']) && !empty($_GET['x '])) ? clean($_GET['x '])

: "O.o");

?>";

</script >

<?php

function clean($var){

return preg_replace(array("/\"/", "/script/"), array("\\\"",""),

$var);

}

?>

</body >

</html >

Listing 5.4: c.php - reflected XSS vulnerable web page

36

<!DOCTYPE html >

<html >

<meta charset="utf -8">

<title >uhhhh?!</title >

<body >

<script >

<?php

echo "// xxx ".((isset($_GET['x']) && !empty($_GET['x'])) ?

clean($_GET['x']) : "O.o")." xxx";

?>

</script >

<?php

function clean($var){

return preg_replace(array("/script/"), array(""), $var);

}

?>

</body >

</html >

Listing 5.5: d.php - reflected XSS vulnerable web page

<!DOCTYPE html >

<html >

<meta charset="utf -8">

<title >uhhhh?!</title >

<body >

<input type="hidden" value="<?php echo (isset($_GET['x ']) &&

!empty($_GET['x '])) ? preg_replace("/>/", "", $_GET['x ']) : "O.o";

?>" />

</body >

</html >

Listing 5.6: e.php - reflected XSS vulnerable web page

Practically speaking, the aforementioned pages strip out potential harmful characters

from the HTTP GET parameters’ value and reflect the “sanitized” content, therefore neither

validation nor contextual output encoding are performed. This could obviously lead to XSS

attacks in the case the attacker is smart enough to produce a successful attack vector.

Test A The PHP function strip tags()13 represents one of the most basic way to naively

clean user-supplied HTML. Actually this function cannot supply a solid protection

against XSS attacks as it does not validate attributes at all and it requires a series of

regular expressions that strip out event handler attributes.14

13PHP: strip tags, http://php.net/manual/en/function.strip-tags.php
14Is strip tags() horribly unsafe?, http://security.stackexchange.com/questions/10011/

is-strip-tags-horribly-unsafe

37

http://php.net/manual/en/function.strip-tags.php
http://security.stackexchange.com/questions/10011/is-strip-tags-horribly-unsafe
http://security.stackexchange.com/questions/10011/is-strip-tags-horribly-unsafe

Test B The page expects to receive a local URL, by stripping out colon characters; moreover

it makes sure that no quotes are reflected. This is a quite common scenario in which

the web developer does not want to give users the chance to supply a scheme, such as

http:, https:, ftp: and so on.

Test C The HTTP GET parameter is reflected in a double quoted JavaScript variable, the

protection consists of putting a backslash before quotes; closing the script element is

not allowed.

Test D The HTTP GET parameter is reflected in a single-line JavaScript comment, the

basic protection is performed by stripping out the script keyword.

Test E This example is a little bit subtle, basically the reflection happens in the attribute

value of an element input, but the type is set to hidden. Since modern web browsers

do not allow to override the attribute type15 and fixed any possibility to make the

input visible through the attribute style, the unique chance to execute malicious code

consists of breaking the attribute and injecting a new HTML element executing the

payload.

We selected nine web application security scanners and snuck for our test, the selection

was made on the basis of the results gained in “The Web Application Vulnerability Scanners

Benchmark, 2012”.16

Acunetix WVS Free Edition 8 (build 20120808) The free version of Acunetix WVS17

allows to detect XSS vulnerabilities only, thereafter it is sufficient for our purposes.

OWASP ZAP 1.4.1 OWASP ZAP18 acts as a proxy intercepting requests to web appli-

cations; by starting the active scan option against the visited web pages, it is able to

discover vulnerabilities which are identified by alerts.

Ironwasp 0.9.1.4 We’ve already mentioned Ironwasp19 in the previous chapters, it is a pen-

etration testing suite, which covers the most common security vulnerabilities. More-

over, it boasts of a DOM based XSS detection engine, that is based on JavaScript

static analysis.

15If override was possible, then injecting " type=image src=xx:x onerror=alert(1) " would trigger

an XSS
16Chen, S., The Web Application Vulnerability Scanners Benchmark, 2012, http://sectooladdict.

blogspot.it/2012/07/2012-web-application-scanner-benchmark.html
17Acunetix WVS, http://www.acunetix.com/vulnerability-scanner/features.htm
18OWASP ZAP, https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
19Ironwasp, http://ironwasp.org/

38

http://sectooladdict.blogspot.it/2012/07/2012-web-application-scanner-benchmark.html
http://sectooladdict.blogspot.it/2012/07/2012-web-application-scanner-benchmark.html
http://www.acunetix.com/vulnerability-scanner/features.htm
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://ironwasp.org/

ProxyStrike 2.2 ProxyStrike20 acts similarly to OWASP ZED, it is actually a proxy that

analyzes the exchanged parameters in background mode and possibly detects security

issues.

SandCat Mini 4.4.3.0 Syhunt Mini21 is a web application security scanner which performs

several injections and attempts in order to discover issues.

ParosPro Desktop Edition 1.9.12 ParosPro22 is a fully automated web application se-

curity scanner, which is basically composed by a crawler module, an attack component

and an analysing module.

Arachni 0.4.0.2 Arachni23 is a free web application security scanner framework, which

boasts of a graphical interface through a web application which allows to start a scan

and handle reports.

XSSSNIPER XSSSNIPER24 is an automatic XSS discovery tool, it allows to perform mass

scanning against web applications in a very easy fashion.

Xelenium Xelenium25 is a security testing tool, that is able to discover XSS vulnerabilities

by employing Selenium; it practically detects the web pages you want to test by acting

as a proxy and performs injections with respect to the form fields which are present in

these pages. Unfortunately running the aforementioned experiments would not generate

any injection since the tool expects form fields only to identify data entry points.

Although we did not adopt this tool during our test, we decided to discover the way it

practically works by making some basic experiments; we are quite fascinated by this

tool as it seems to be very interesting and quite similar to the one we implemented.

Xelenium works in a very easy fashion, basically it extracts the form fields from the

current web page and it injects them with several attack vectors; if the vector is

perfectly reflected, then an XSS vulnerability is detected. The main drawback is that

the reflection context is not taken into account and injections composed by multiple

steps cannot be defined.

Table 5.6 shows the detection results, “NO” means that the vulnerability wasn’t spotted,

the light green “YES” indicates that the tool discovered the issue but the results need to be

discussed, whereas the green “YES” stands for a successful spot.

Acunetix WVS Acunetix performs injections on the basis of the reflection context; in our

test suite it discovered the issue in test D by injecting a carriage return in order to break

20ProxyStrike, http://www.edge-security.com/proxystrike.php
21SandCat Mini, http://www.syhunt.com/?n=Sandcat.Mini
22ParosPro,http://www.milescan.com/
23Arachni, http://arachni-scanner.com/
24XSSSNIPER, https://bitbucket.org/gbrindisi/xsssniper
25Xelenium, https://www.owasp.org/index.php/OWASP_Xelenium_Project

39

http://www.edge-security.com/proxystrike.php
http://www.syhunt.com/?n=Sandcat.Mini
http://www.milescan.com/
http://arachni-scanner.com/
https://bitbucket.org/gbrindisi/xsssniper
https://www.owasp.org/index.php/OWASP_Xelenium_Project

test A test B test C test D test E

Acunetix WVS Free Edition NO NO NO YES YES

OWASP ZAP NO YES NO YES YES

IronWasp NO YES NO YES YES

ProxyStrike YES YES YES YES YES

SandCat Mini YES YES YES YES YES

ParosPro NO NO NO YES YES

Arachni NO NO NO NO YES

XSSSNIPER NO NO YES YES NO

snuck YES YES YES YES NO

Table 5.6: Detection results with respect to five reflected XSS vulnerable web pages - read

the paragraph above for the legend.

the single-line JavaScript comment, in particular it reported 922550%0a%28%29%3a%3b

942842 as a successful injection. Furthermore it discovered the XSS in test E and

reported " onmouseover=prompt(927905) bad=", this was obviously not difficult to de-

tect, the main problem is that the injection would not trigger an XSS in modern web

browsers.

OWASP ZAP OWASP ZAP worked correctly with respect to test A by injecting %3Cb+

onMouseOver%3Dalert%281%29%3B%3Etest%3C%2Fb%3E, nevertheless it strangely did not

report the XSS vulnerability. It detected the issue in test B, the problem here is that

the returned injection "><script>alert(1);</script> is obviously improper with

respect to that reflection context; although it is almost perfectly reflected, it cannot

lead to XSS at least in that form. Eventually it worked correctly in test D and test E,

very similarly to Acunetix WVS.

Ironwasp IronWasp worked similarly to Acunetix, but it was able to successfully detect a

Scriptless HTML Injection - not an XSS - in test B by injecting //olxizrk. Further-

more it correctly addressed the issue in test D by reporting %0adzkqivxy%3b%2f* as a

proper injection - note that random characters are injected instead of actual payloads,

for instance it returned " olqpir="vtikr(1)" in test E, which is correct though.

ProxyStrike ProxyStrike correctly detected all the issues. Unfortunately information about

possible attack vectors are not returned, it just reports for each HTTP GET parameter

the potentially harmful characters which are perfectly reflected.

SandCat Mini Syhunt Mini worked similarly to ProxyStrike, by detecting all the issues

but not returning any successful exploit.

40

//olxizrk

ParosPro ParosPos spotted the last two test, D and E, by respectively returning XSS in

SCRIPT section and XSS w/o angle brackets, which is perfectly legit. However no

possible injection are returned.

Arachni Arachni discovered the XSS in test E. Unfortunately information about possible

injections and the particular type of the issue are not given.

XSSSNIPER XSSSNIPER correctly discovered the XSS in test C and D, by respec-

tively returning %5B%2700001%27%5D and %5B%27user 00001%27%5D as injections. This

tool works by injecting complex random strings which contain potentially harmful

characters and checking whether they are completely reflected; this approach is per-

fectly fair, but it could decrease the detection rate in the case the filtering mechanisms

strips out at least one character.

snuck snuck worked correctly with respect to all the experiments, but the last one. In-

fact it returned many successful injections, it addressed test A with %3Ca%20href%3D

javascript%3Aalert(1)%3Edummy link, test B with javascript%26%2358;alert(1), test

C with %5C%22%3Balert(1)%2F%2F and, eventually, test D with %0D%0Aalert(1)%2F%2F.

The reason why it was not able to manage the issue in test E is related to the fact that

it just reports successful injections, thereafter since no modern web browser is able to

trigger an XSS in that situation, it cannot reproduce a correct exploit.

For the sake of completeness, the malicious payloads just presented are obviously url-

encoded: snuck returns them url decoded, whereby the attacker just has to encode

them before injecting.

The aforementioned experiments indicate that also straightforward XSS vulnerabilities

might be difficult to detect. Although snuck seems to work properly in many situations, it

is conceived to produce a test with respect to a given HTTP GET parameter, whereas web

application security scanners need to discover the parameter before managing an attack.

Actually it appears to be a good approach to adopt snuck for realizing whether a successful

exploit exists and which particular payload would trigger an XSS exploit. In other words it

could be used as a tool for assessing whether, given a possibly vulnerable parameter, it is

really possible to inject it to perform an XSS attack.

Obviously a situation in which multiple steps need to be performed before landing in the

reflection page would be a really different scenario; this might involve a stored XSS vulner-

ability in the case a weak filter is adopted. In this case snuck reveals to be an excellent tool

as web application scanners would likely get in trouble, by having no idea about the way the

application needs to be crossed.

41

Chapter 6

Future Work

6.1 Future improvements

The tool we presented in this work is still in an experimental phase. Even if quite stable, it

is however worthy of a few improvements to widen its analysis capabilities. In this chapter

we describe some further features whose implementation has just begun.

Since we were fascinated by the idea of creating an XSS filter breaker service, we came

out with the idea in which users can remotely ask snuck to perform an XSS test against a

certain web site, by just uploading an XML configuration file: the tool will be automatically

started, will perform the required test and eventually will make the related report available.

Nevertheless such an architecture would require that the applicant certifies he is the target

web site’s owner, and the complexity of such a system discouraged us to realize it.

6.1.1 Client side XSS filter testing

Instead of waiting for every web site to fix its XSS vulnerabilities, modern web browser ven-

dors decided to supply a further security layer, that can mitigate some classes of XSS issues,

i.e. the reflected ones. Bates et al. [BBJ10] widely analyzed the state of the art of client side

XSS filters and proposed an interesting design which has been implemented in XSSAuditor,

that is currently enabled by default in Google Chrome.

Basically these filters block injections by looking for content that is present in both the

HTTP response and the HTTP request that generated the response. It is clear that building

a filter with zero false negatives could really be a challenge, since several attack methodolo-

gies and encoding techniques have to be taken into account. In addition, false positives are

actually possible and the common practice of “mangling” the injected payload by altering

the HTTP response may give place to XSS on natively safe web pages, as shown by Nava et

al. [12] with the Internet Explorer 8’s XSS filter.1

1Ross, D., IE 8 XSS Filter Architecture / Implementation, http://blogs.technet.com/b/srd/archive/

2008/08/19/ie-8-xss-filter-architecture-implementation.aspx

42

http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx

We slightly modified our XSS testing tool in order to use it as a tester for client side XSS

filters. We crafted a vulnerable XSS web page, whose purpose was to simply reflect a certain

GET parameter, as show in Listing 6.1.

<?php

echo $_GET["xss"];

?>

Listing 6.1: Sample web page vulnerable to XSS attacks (a)

By starting snuck against the previous vulnerable web page in reflected XSS “mode”, we

are able to detect whether an injection is blocked or not by the adopted web browser’s XSS

filter. In other words if we are able to grab an alert, then we are sure that the client side

XSS filter is bypassed.

No source code changes were needed for performing the test in Internet Explorer 9,2 while

it required to start Google Chrome with XSSAuditor on.3 In the case of Firefox, we just

needed to import the NoScript4 extension before starting the web driver – actually Firefox

has no native client-side XSS filter, fortunately NoScript is a really valid and robust defense

to most common web attacks, for instance clickjacking prevention is also accomplished.

Test were performed through Google Chrome 20.0.1132.57, Internet Explorer 9.0.8 and No-

Script 2.4.4.

No interesting results came out by experimenting with these settings, every attack vector

was correctly blocked by the adopted web browsers. We noticed that XSSAuditor does not

prevent data URIs, nevertheless this cannot be considered as a security issue, as they do not

inherit the privileges of their referrer in Chrome [BBJ10].

Interesting results can be achieved through overflow, that is the case of generating an XSS

vulnerability by exploiting characters that already exist in the page (Listing 6.2).

<script >

var x = "<?php echo $_GET['x ']; ?>";

</script >

Listing 6.2: Sample web page vulnerable to XSS attacks (b)

snuck can be started against the previous web page, located for instance at http:

//127.0.0.1/test/xss.php in the following manner, Listing 6.3.

2Internet Explorer’s XSS filter is enabled by default, you need to disable it before using snuck – we did not

find a way to deactivate it through Selenium Web Driver.
3snuck starts Google Chrome with the flag: --disable-xss-auditor
4Firefox does not have a built-in client side XSS filter, NoScript, http://noscript.net/, is an extension

which provides really robust protection against security vulnerabilities

43

http://127.0.0.1/test/xss.php
http://127.0.0.1/test/xss.php
--disable-xss-auditor
http://noscript.net/

> java --jar snuck.jar

-report report.html

-reflected "http ://127.0.0.1/ test/xss.php"

-p x

Listing 6.3: How to start snuck against the page in Listing 6.2

XSSAuditor does not block any malicious payload in the shown example, it just works as

an effective XSS protection if the injection does not take advantage of the reflection context.

Internet Explorer’s XSS filter stops malicious requests by replacing sensitive characters from

the attack vectors with a # character.

IE and NoScript employ a set of regular expressions to detect a potential attack, thereafter

the attacker should find a way to neuter these in order to execute malicious JavaScript.5,6

Basically injections which follows the pattern ”;a(b) are immediately detected, the same

happens when redirecting to javascript or data URIs, i.e. ”;location=.

(Un)fortunately our tool returned an attack vector which works in Internet Explorer, see

Table 6.1. This latter is actually an awesome XSS technique without parentheses, discovered

by Gareth Heyes7, that we added into the list of possible injections for the JavaScript context.

Injection

";onerror=eval;throw'alert\x281\x29';//

Table 6.1: IE XSS filter bypass

For the sake of completeness, we decided to compare the client-side XSS filters’ behavior

with respect to another reflection context, in particular the href attribute of an anchor.

5Multiple excellent evasion techniques against IE and WebKit are showed in http://xss.cx/examples/ie/

internet-exploror-ie9-xss-filter-rules-example-regexp-mshtmldll.txt
6Dalili, S., SecProject Web AppSec Challenge Series 1 Results, http://soroush.secproject.com/blog/

2012/06/challenge-series-1-result-and-conclusion/
7Heyes, G., XSS technique without parentheses, http://www.thespanner.co.uk/2012/05/01/

xss-technique-without-parentheses/

44

http://xss.cx/examples/ie/internet-exploror-ie9-xss-filter-rules-example-regexp-mshtmldll.txt
http://xss.cx/examples/ie/internet-exploror-ie9-xss-filter-rules-example-regexp-mshtmldll.txt
http://soroush.secproject.com/blog/2012/06/challenge-series-1-result-and-conclusion/
http://soroush.secproject.com/blog/2012/06/challenge-series-1-result-and-conclusion/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/

<a href="<?php echo $_GET['x ']; ?>">

CLICK ME

Listing 6.4: Sample web page vulnerable to XSS attacks (c)

XSSAuditor does not block any injection in the form of scheme:payload, such as javascript:

alert(1), while Internet Explorer blocks malicious URIs – i.e. javascript and vbscript – by

replacing the r character with a #. NoScript works similar to IE, it modifies the attack vec-

tors in order to transform them into an harmless form, nevertheless data URIs are allowed

and attackers could take advantage of this to trigger an XSS by using the base64 encoding.

Further investigation and analysis would be obviously required for testing client-side XSS

filters. Many security researchers are working on this point trying to continuously break

them: wonderful examples are given by Kinugawa, who discovered several interesting bugs8

in NoScript ; the same holds for Heiderich, who found out several bypass techniques, some

examples are reported in his excellent PhD thesis [Hei12].

Our idea was to employ a slightly modified version of snuck in order to use it as an evasion

tool for testing client-side XSS filters. Since this task would require a kind of fuzzing ap-

proach, it would be useful to employ a set of fuzzed9 attack vectors.

Moreover, multiple parameters injections are likely to result in a client-side XSS filter eva-

sion, thus future works would require to extend the tool to managing multiple injection

points.

6.2 Main limitations

Despite the potential of the presented approach for significantly testing XSS filters, some

drawbacks should be taken into account.

Running a complete test against a filter requires time, which is proportional to the number

of malicious vectors the tool will employ; basically using the Selenium Web Driver instead

of writing a web browser extension is a good chance for covering the most common web

browsers with very limited effort. A web browser extension should be rewritten for each

browser you want to be compatible with, but obviously it would show off better performance

– for instance Websecurify10 is a browser extension which quickly perfoms web application

security testing.

In addition, manually writing a use case for each test reveals to be quite cumbersome and

annoying; however since our purpose was not to present a “point-and-click” scanner, but

a much more customizable tool, realizing a software, which allows the tester to graphically

8Kinugawa, M., NoScript Anti-XSS, http://masatokinugawa.l0.cm/2012/07/noscriptanti-xss18.html
9Shazzer, http://shazzer.co.uk/, could be a valid repository to take the attack vectors from
10Websecurify, http://www.websecurify.com/features

45

http://masatokinugawa.l0.cm/2012/07/noscriptanti-xss18.html
http://shazzer.co.uk/
http://www.websecurify.com/features

select the components in a web page to interact with, could be the most accurate solution

to this problem. We omitted this point in the previous section as further investigation is

needed in order to assess whether it is achievable by slightly modifying the Selenium IDE,

web browser extension.

Another problem might arise whenever the tested application uses CAPTCHAs to block

robots to perform automatic operations, such as posting spam comments. In that case the

automation would need to be stopped at any time a CAPTCHA appears, asking the human

intervention.

Finally, we should not forget that snuck is at the moment restricted to a specific set of well

known and predefined injections. This means that bypassing a filter would require to know in

advance a possibly successful injection. This approach is quite fair with respect to common

XSS filters, but it might be unsuccessful against much more complex protection systems;

thereafter it would be really interesting to extend it with a fuzzer module that should be

able to combine HTML tags and attributes, special characters and the available payloads in

order to inject many fuzzed, but reasonable, vectors. This problem could be addressed by

making snuck learn how different encoding techniques could be adopted in several contexts

and by making it aware of how it is possible to combine HTML tags with rational event

handler attributes. Future improvements are moving to this direction.

Eventually, evading filters requires a creative mind and new attack vectors should be con-

tinuously added into the pool of the employed payloads in order to expand the possibilities

to spot an issue.

6.3 Conclusions

The primary goal of this work was to describe an approach for testing XSS filters in an

uncommon way. This opportunity is related to the possibility to use Selenium WebDriver

in order to drive the web browser into making a sequence of operations in which multiple

injections are performed against a targeted web application. Furthermore we focused on the

importance of the reflection context, by hoping that every web application security scanner

vendor will move in this direction; basically no big effort would be required, since XPath

queries or HTML parsers could be successfully used to retrieve the reflection context, however

attack vectors would need to be categorized.

Eventually, approaching the XSS filters evasion problem by following the aforementioned

methodologies might be quite cumbersome in the case the web application adopted multiple

points in which users may marshal content; nevertheless it could be interesting to convert

the tool into a plugin for common web application security scanners, by giving the tester

the chance to perform a targeted test against a filter. Such an approach might significantly

improve the detection of bugs in XSS filters and it would have the huge advantage of covering

the most used web browsers, whereby a huge portion of potential victims.

46

Chapter 7

Bibliography

[BBGM10] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art:

Automated black-box web application vulnerability testing. In Proceedings of

IEEE Symposium on Security and Privacy, Los Alamitos, CA, USA, 2010. IEEE

Computer Society.

[BBJ10] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered

harmful in client-side XSS filters. In Proceedings of the 19th international con-

ference on World wide web, WWW ’10, pages 91–100, New York, NY, USA,

2010. ACM.

[CVDP10] Angelo Ciampa, Corrado Aaron Visaggio, and Massimiliano Di Penta. A

heuristic-based approach for detecting SQL-injection vulnerabilities in web ap-

plications. In Proceedings of the 2010 ICSE Workshop on Software Engineering

for Secure Systems, SESS ’10, pages 43–49, New York, NY, USA, 2010. ACM.

[DCV10] Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny can’t pentest: an

analysis of black-box web vulnerability scanners. In Proceedings of the 7th in-

ternational conference on Detection of intrusions and malware, and vulnerabil-

ity assessment, DIMVA’10, pages 111–131, Berlin, Heidelberg, 2010. Springer-

Verlag.

[FO07] Elizabeth Fong and Vadim Okun. Web application scanners: Definitions and

functions. In Proceedings of the 40th Annual Hawaii International Conference

on System Sciences, HICSS ’07, pages 280b–, Washington, DC, USA, 2007.

IEEE Computer Society.

[Hei12] Mario Heiderich. Towards elimination of XSS attacks with a trusted and capa-

bility controlled DOM. http://heideri.ch/thesis, 2012. [PhD Thesis].

47

http://heideri.ch/thesis

[HVNEL10] Mario Heiderich, Eduardo Alberto Vela Nava, Gareth Eyes,

and David Lindsay. Web Application Obfuscation: ’-

/WAFs..Evasion..Filters//alert(/Obfuscation/)-’. Syngress, 2010.

[Jav11] Ashar Javed. Csp aider: An automated recommendation of content security

policy for web applications. In IEEE Symposium on Security and Privacy,

2011.

[KKKJ06] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. Secubat:

a web vulnerability scanner. In Proceedings of the 15th international conference

on World Wide Web, WWW ’06, pages 247–256, New York, NY, USA, 2006.

ACM.

[Kor10] Christian Korscheck. Automatic detection of second-order cross-site scripting

vulnerabilities. http://www.korscheck.de/diploma-thesis.pdf, 2010.

[PZ08] Andrey Petukhov and Dmitry Zozlov. Detecting security vulnerabilities in web

applications using dinamic analysis with penetration testing. In Proceedings of

Application Security Conference, 2008.

[Zal12] Michal Zalewski. The Tangled Web: A Guide to Securing Modern Web Appli-

cations. No Starch Press, 2012.

48

http://www.korscheck.de/diploma-thesis.pdf

Chapter 8

Sitography

[1] A. Klein, DOM based cross site scripting or XSS of the third kind, http://www.

webappsec.org/projects/articles/071105.shtml, 2005, [Last accessed in Septem-

ber 14, 2012].

[2] D. Wichers, Unraveling some of the mysteries around DOM-based XSS,

ASDC12, https://www.owasp.org/images/f/f4/ASDC12-Unraveling_some_of_

the_Mysteries_around_DOMbased_XSS.pdf, 2012, [Last accessed in September 14,

2012].

[3] Y. Hasegawa, Make a contract with IE and become a XSS girl!, Hitcon

2011, http://hitcon.org/hit2011/downloads/09_Make%20A%20Contract%20with%

20IE%20and%20Become%20a%20XSS%20Girl.pdf, 2011, [Last accessed in September 14,

2012].

[4] E. Vela Nava and D. Lindsay, Cross site location jacking (XSLJ), OWASP AppSec

Research, http://www.youtube.com/watch?v=P0YFwhYtrwM, 2010, [talk’s video].

[5] V. Chapela, Advanced SQL injection, http://cs.unh.edu/~it666/reading_list/

Web/advanced_sql_injection.pdf, 2005, [Last accessed in September 14, 2012].

[6] B. D. A. Guimares, Advanced SQL injection to operating system full

control, http://www.blackhat.com/presentations/bh-europe-09/Guimaraes/

Blackhat-europe-09-Damele-SQLInjection-whitepaper.pdf, 2009, [Last accessed

in September 14, 2012].

[7] L. Kuppan, Ironwasp a web application security testing platform, Securitybyte 2011,

http://securitybyte.org/resources/2011/presentations/ironwasp.pdf, [Last

accessed in September 14, 2012].

[8] M. Zalewski, Postcards from the post-XSS world, http://lcamtuf.coredump.cx/

postxss/, 2011, [Last accessed in September 14, 2012].

49

 http://www.webappsec.org/projects/articles/071105.shtml
 http://www.webappsec.org/projects/articles/071105.shtml
https://www.owasp.org/images/f/f4/ASDC12-Unraveling_some_of_the_Mysteries_around_DOMbased_XSS.pdf
https://www.owasp.org/images/f/f4/ASDC12-Unraveling_some_of_the_Mysteries_around_DOMbased_XSS.pdf
http://hitcon.org/hit2011/downloads/09_Make%20A%20Contract%20with%20IE%20and%20Become%20a%20XSS%20Girl.pdf
http://hitcon.org/hit2011/downloads/09_Make%20A%20Contract%20with%20IE%20and%20Become%20a%20XSS%20Girl.pdf
http://www.youtube.com/watch?v=P0YFwhYtrwM
http://cs.unh.edu/~it666/reading_list/Web/advanced_sql_injection.pdf
http://cs.unh.edu/~it666/reading_list/Web/advanced_sql_injection.pdf
http://www.blackhat.com/presentations/bh-europe-09/Guimaraes/Blackhat-europe-09-Damele-SQLInjection-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Guimaraes/Blackhat-europe-09-Damele-SQLInjection-whitepaper.pdf
http://securitybyte.org/resources/2011/presentations/ironwasp.pdf
http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

[9] Y. Pavlosoglou, Penetration testing with Selenium, https://www.owasp.

org/images/3/37/OWASP_London_14-Jan-2009_Penetration_Testing_with_

Selenium-Yiannis_Pavlosoglou_v2.pdf, 2009, [Last accessed in September 14,

2012].

[10] Z. Chao Chao and P. Cheng Yu, Automated web testing with Selenium, http://www.

ibm.com/developerworks/opensource/library/os-webautoselenium/, 2010, [Last

accessed in September 14, 2012].

[11] A. Sotirov, Blackbox reversing of XSS filters, Recon 2008, http://recon.cx/2008/a/

alexander_sotirov/recon-08-sotirov.pdf, 2008, [Last accessed in September 14,

2012].

[12] E. Vela Nava and D. Lindsay, Abusing Internet Explorer 8’s XSS filters, BlackHat

Europe 2010, http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf, 2010, [Last

accessed in September 14, 2012].

50

https://www.owasp.org/images/3/37/OWASP_London_14-Jan-2009_Penetration_Testing_with_Selenium-Yiannis_Pavlosoglou_v2.pdf
https://www.owasp.org/images/3/37/OWASP_London_14-Jan-2009_Penetration_Testing_with_Selenium-Yiannis_Pavlosoglou_v2.pdf
https://www.owasp.org/images/3/37/OWASP_London_14-Jan-2009_Penetration_Testing_with_Selenium-Yiannis_Pavlosoglou_v2.pdf
http://www.ibm.com/developerworks/opensource/library/os-webautoselenium/
http://www.ibm.com/developerworks/opensource/library/os-webautoselenium/
http://recon.cx/2008/a/alexander_sotirov/recon-08-sotirov.pdf
http://recon.cx/2008/a/alexander_sotirov/recon-08-sotirov.pdf
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf

Appendix A

Appendix

This appendix contains the use cases employed during the presented experiments and

other details we omitted in the discussion.

A.1 Appendix 1

Sample use case in which a sequence of operation is defined. Note that data are described in

the form of <name, value>.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<parameters >

<parameter >

<name >username </name >

<value >new_test77 </value >

</parameter >

<parameter >

<name >email </name >

<value >new_test77@test.org </value >

</parameter >

</parameters >

<commands >

<command >

<name >open </name >

<target >http://foo.foo </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=author </target >

<value ></value >

51

</command >

<command >

<name >type </name >

<target >name=author </target >

<value >${USERNAME}</value >

</command >

<command >

<name >type </name >

<target >name=comment </target >

<value >${INJECTION }</value >

</command >

<command >

<name >submit </name >

<target >id=comment </target >

<value ></value >

</command >

</commands >

</post >

</root >

A.2 Appendix 2

Sample XML configuration file for reflected XSS testing. Note that you also can avoid writing

this file and start snuck with the arguments -reflected and -p set. Starting the tool in the

following way will make it achieve the same task without the need of writing the configuration

file.

>java -jar snuck.jar

-report report.html

-reflected "http :// target.foo/xss.php?foo=bar&foo2=bar2"

-p hidden_xss

<?xml version="1.0" encoding="UTF -8"?>

<root >

<get >

<parameters >

<targeturl >http:// target.foo/xss.php </targeturl >

<reflectionurl ></reflectionurl >

<paramtoinject >hidden_xss </ paramtoinject >

<parameter >foo=bar </parameter >

<parameter >foo2=bar2 </parameter >

</parameters >

</get >

</root >

52

A.3 Appendix 3

Available options in snuck.

>java -jar snuck.jar

Usage: snuck [-start xmlconfigfile] -config xmlconfigfile

-report htmlreportfile [-d #ms_delay] [-proxy IP:port]

[-chrome chromedriver] [-ie iedriver]

[-remotevectors URL] [-stop -first]

[-reflected targetURL -p parameter_toTest] [-no-multi]

Options:

-start path to login use case (XML file)

-config path to injection use case (XML file)

-report report file name (html extension is required)

-d delay (ms) between each injection

-proxy proxy server (IP:port)

-chrome perform a test with Google Chrome , instead of Firefox

It needs the path to the chromedriver

-ie perform a test with Internet Explorer , instead of Firefox

Disable the built in XSS filter in advance

-remotevectors use an up -to -date online attack vectors ' source

instead of the local one

-stop -first stop the test upon a successful vector is detected

-no-multi deactivate multithreading for the reverse

engineering process - a sequential approach

will be adopted

-reflected perform a reflected XSS test

(without writing the XML config file)

-p HTTP GET parameter to inject

(useful if -reflected is set)

-help show this help menu

A.4 Appendix 4

Use case adopted inWordPress 3.3.1 for testing the filter used against the visitors’ comments.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<parameters >

<parameter >

<name >username </name >

53

<value >new_test77 </value >

</parameter >

<parameter >

<name >email </name >

<value >new_test77@test.org </value >

</parameter >

</parameters >

<commands >

<command >

<name >open </name >

<target >http:// 127.0.0.1/ wordpress /?p=1</target >

<value >noforce </value >

</command >

<command >

<name >type </name >

<target >name=author </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=author </target >

<value >${USERNAME}</value >

</command >

<command >

<name >type </name >

<target >name=email </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=email </target >

<value >${EMAIL}</value >

</command >

<command >

<name >type </name >

<target >name=comment </target >

<value >${INJECTION }</value >

</command >

<command >

<name >submit </name >

<target >id=comment </target >

<value ></value >

</command >

</commands >

</post >

</root >

54

A.5 Appendix 5

Use case adopted in Habari 0.8 for testing the filter used against the visitors’ comments.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<parameters >

<parameter >

<name >username </name >

<value >test </value >

</parameter >

<parameter >

<name >email </name >

<value >test@test.org </value >

</parameter >

</parameters >

<commands >

<command >

<name >open </name >

<target >http:// 127.0.0.1/ habari -0.8/ habari </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >id=comment_name </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >id=comment_name </target >

<value >${RANDOM}</value >

</command >

<command >

<name >type </name >

<target >id=comment_email </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >id=comment_email </target >

<value >${RANDOM_EMAIL }</value >

</command >

<command >

<name >type </name >

<target >id=comment_content </target >

55

<value >${INJECTION }</value >

</command >

<command >

<name >submit </name >

<target >id=comment -public </target >

<value ></value >

</command >

</commands >

</post >

</root >

A.6 Appendix 6

Use case adopted in Symphony 2.2.5 for testing the filter used against the visitors’ comments.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<commands >

<command >

<name >open </name >

<target >http:// 127.0.0.1/ symphony2 .2.5/ articles/

a-primer -to -symphony -2s-default -theme/#comments </target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[author]</target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[author]</target >

<value >${RANDOM}</value >

</command >

<command >

<name >type </name >

<target >name=fields[email]</target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[email]</target >

<value >test@test.com </value >

</command >

56

<command >

<name >type </name >

<target >name=fields[website]</target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[website]</target >

<value >${INJECTION }</value >

</command >

<command >

<name >type </name >

<target >name=fields[comment]</target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[comment]</target >

<value >${RANDOM}</value >

</command >

<command >

<name >click </name >

<target >name=action[save -comment]</target >

<value ></value >

</command >

<command >

<name >type </name >

<target >name=fields[website]</target >

<value ></value >

</command >

</commands >

</post >

</root >

A.7 Appendix 7

Use case adopted in Plone 4.4.1 for testing the filter used against the visitors’ comments.

<?xml version="1.0" encoding="UTF -8"?>

<root >

<post >

<commands >

<command >

<name >open </name >

<target >http:// localhost :8080/ Test/news/op </target >

57

<value ></value >

</command >

<command >

<name >type </name >

<target >id=form -widgets -text </target >

<value >${INJECTION }</value >

</command >

<command >

<name >click </name >

<target >id=form -buttons -comment </target >

<value ></value >

</command >

<command >

<name >click </name >

<target >name=form.button.DeleteComment </target >

<value ></value >

</command >

</commands >

</post >

</root >

58

	copertinaTR-4
	DIAG-TechRep2012
	Introduction
	Overview
	XSS Classification and Threat Model
	Scenario and terminology
	Basic filter based XSS prevention techniques
	Web Application Security Scanners

	Motivation
	Workflow-based approach
	Context-aware paradigm
	In-browser scanner

	Objectives

	Defense and offense concepts
	Protecting against XSS
	Attack scenarios

	Methodology and Tools
	Stateful approach for penetration testing
	Selenium: automating web browsers
	Reflection context
	Sets of attack vectors
	Multiple browsers approach

	snuck's Architecture
	snuck's architecture
	Designing Use Cases
	Modular set of attack vectors
	Reverse Engineering process
	Victim's behavior reproduction
	Run example

	Experimental Results
	Designing and starting the test
	Test results
	Evaluation and comparison

	Future Work
	Future improvements
	Client side XSS filter testing

	Main limitations
	Conclusions

	Bibliography
	Sitography
	Appendix
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7

