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Abstract

In the era of multi-core systems, the need for tools simplifying the development of concurrent applications

is increasingly looming. In such a context, Software Transactional Memory (STM) is recognized as an effective

programming paradigm, thanks to its ability to guarantee consistency of data that are shared across concurrent threads

in an application transparent manner. On the other hand, a core problem to cope with for STM, which has received

great attention of late, deals with (dynamically) regulating the degree of concurrency, in order to deliver optimal

performance. In fact, depending on the application workload, whose profile can also change over time, an oversized

number of concurrent threads may cause loss in performance due to excessive data contention, which may give rise

to excessively high transaction abort rate. Conversely, an undersized number of threads may hamper performance

due to limited exploitation of parallelism. We address this problem by proposing a self-regulation approach of the

concurrency level, which leverages a parametric analytical performance model aimed at predicting the scalability of

the STM application as a function of the actual workload profile and the number of concurrent threads supposed to

sustaining the execution. The regulation scheme allows achieving optimal performance during the whole lifetime of the

application via dynamically resizing the number of concurrent threads according to the predictions by the model. The

later is customized for a specific application/platform pair through regression analysis, which is based on a lightweight

sampling phase. We also present a real implementation of the model-based concurrency self-regulation architecture

integrated within the open source TinySTM framework. Further, the effectiveness of the proposal is evaluated via an

experimental assessment based on standard STM benchmark applications.

Keywords: Software Transactional Memory, performance modeling, concurrency regulation, self-tuning

The software produced as a result of the research activity presented in this paper can be downloaded at the URL

http://www.dis.uniroma1.it/∼hpdcs/CSR-STM.tar



I. INTRODUCTION

Software Transactional Memory (STM) [1] has emerged as a promising paradigm that aims at simplifying the

development of parallel/concurrent applications. Leveraging on the well know concept of atomic transaction, STM

provides application developers with a friendly alternative to traditional lock-based synchronization. More in detail,

any code block accessing data that are shared across concurrent threads can be marked as a transaction, thus demanding

coherency of the data access/manipulation to the STM layer, rather than to any handcrafted synchronization scheme.

The relevance of the STM paradigm has significantly grown given that multi-core systems have become mainstream

computing platforms, so that even entry-level desktop and laptop machines are nowadays equipped with multiple

processors and/or CPU-cores.

Even though one main target for STM is the simplification of the software development process, another aspect

that is central for the success of the STM paradigm relates to the actual level of performance it can deliver. As for

this aspect, STM needs to be complemented by schemes aimed at determining the well suited degree of concurrency

(in terms of number of threads exploited for running the application), which is expected to allow the overlying

application to reach optimal speedup values thanks to fruitful parallelism exploitation. This issue arises since STM

applications are prone to thrashing phenomena (caused by excessive transactions rollbacks) in case the data access

pattern tends to exhibit non-negligible conflict among concurrent transactions and the degree of parallelism in the

execution is excessively high. On the other hand, for too low parallelism levels, the achievable speedup may still be

suboptimal.

Recent approaches coping with this problem have been targeted at selecting/controlling the degree of parallelism

by (dynamically) determining the well suited number of concurrent threads to sustain application execution. Such a

suited concurrency level is expected to lead to the exploitation available computing resources (namely the available

CPU-cores) at the maximum extend still avoiding thrashing phenomena, hence optimizing the achievable speedup.

Along this path we can find solutions ranging from analytical models [2], [3], to heuristic-based schemes [4], to

machine learning approaches [5]. On the other hand, any of the proposed approaches exhibits some shortcoming.

Classical analytical approaches are in fact know to become unreliable as soon as the assumptions they rely on (e.g.

in terms of data access distribution and/or distribution of the CPU time for specific operations) are not met. Further,

according to the outcomes in [6], the transaction abort rate can be strongly affected by the order according to which

data are accessed along the transaction execution path, which is typically neglected by analytical models. On the

other hand, even in case the effects of such an ordering are captured analytically, the actual exploitation of the

performance model would require detailed knowledge of the data access pattern for the specific application, which

may be unavailable or arduous to build. As for heuristic and/or machine learning approaches, they do not require

specific (stringent) assumptions to be met in relation to, e.g., the transactional profile of the application. Hence,



they exhibit the potential for high effectiveness in generic application contexts, and for generic computing platforms.

On the other hand, these approaches entail limited extrapolation capabilities, thus being unsuited for forecasting the

performance that would be achieved with levels of concurrency not belonging to the already explored domain (e.g.

the training domain in case of machine learning). Further, the time required for building the knowledge base to be

exploited by the machine learner may be non-minimal, which may make the actuation of the optimized concurrency

configuration untimely.

In this article we tackle the issue of regulating the concurrency level in STM via a model-based approach, which

differentiates from classical ones in that it avoids the need for the STM system to meet specific assumptions (e.g. in

terms of data access pattern). Our proposal relies a parametric analytical expression capturing the expected trend in

the transaction abort probability (versus the degree of concurrency) as a function of variations of a set of features

associated with the actual workload profile. The parameters appearing within the model exactly aim at capturing

execution dynamics and effects that are hard to be expressed through classical (non-parametric) analytical modeling

approaches. We derived the parametric expression of the transaction abort probability via combined exploitation of

literature results in the field of analytical modeling and a simulation-based analysis. Further, the parametric model

is thought to be easily customizable for a specific STM system by calculating the values to be assigned to the

parameters (hence by instantiating the parameters) via regression analysis. The latter can be performed by exploiting

a set of sampling data gathered through run-time observations of the STM application. However, differently from

what happens for the training process in machine learning approaches, the actual sampling phase (needed to provide

the knowledge base for regression in our approach) is very light. Specifically, a very limited number of profiling

samples, related to a few different concurrency levels for the STM system, likely suffice for successful instantiation

of the model parameters via regression. Finally, our approach inherits the extrapolation capabilities proper of pure

analytical models (although it does not require their typical stringent assumptions to be met, as already pointed out),

hence allowing reliable performance forecast even for concurrency levels standing distant from the ones for which

sampling was actuated.

A bunch of experimental results achieved by running the STAMP benchmark suite [7] on top of the TinySTM

open source framework [8] are reported for validating the proposed modeling approach. Further, we present the

implementation of a concurrency self-regulating STM, exploiting the proposed model-based approach, still relying

on TinySTM as the core STM layer, and we report experimental data for an assessment of this architecture.

The remainder of this paper is organized as follows. In Section II, literature results related to our proposal are

discussed. Section III is devoted to describing and validating our STM performance model. The STM architecture

entailing self-regulation capabilities of the concurrency level is presented and evaluated in Section IV.



II. RELATED WORK

Our proposal has relations with literature results in the field of analytical modeling of concurrency control protocols

for transactional systems. These include performance models for traditional database systems and related concurrency

control mechanisms (see, e.g., [9], [10], [11]) and approaches specifically targeting STM (see, e.g., [12]). One common

point for literature analytical models is that they either rely on (stringent) assumptions on the data access pattern or

rely on the knowledge of the precise distribution of the accesses performed by the transactions. The first category

includes models (see, e.g., [11], [13]) that assume data to be uniformly accessed on one or more datasets of fixed

cardinality. In [9] the b-c model is assumed, where b% of the transactions are assumed to uniformly access elements

within the c% of the dataset, and the remaining accesses are assumed to be targeted to the remaining data. This

model has been further extended in [14], [15], in order to encompass several transactional classes, each accessing

a disjoint portion of the whole dataset. Differently from all these works, our proposal does not assume any specific

distribution for the data accesses, thus being more general and exploitable in generic application contexts. This is

achieved by relying on a parametric analytical expression (as opposed to non-parametric models) where one role of

the parameters is exactly to avoid the need for explicitly expressing hard-to-capture dynamics and effects related to

the specific data access pattern exhibited by the transactional application.

The second category includes models which are able to capture more complex data access patterns (see, e.g., [16],

[6]), such as when assuming a different probability to access a set of data depending on the phase of execution of

the transaction (which is expressed via a matrix representation where an element m(i,j) specifies the probability for

a transaction to access datum j at operation i). Compared to these solutions, our proposal avoids the need for any

detailed characterization of the data access distribution. As a reflection of this aspect, the instantiation of the parameters

appearing in our model requires a much lighter application sampling process than what required to instantiate the

actual data access distribution (e.g. in terms of m(i,j) values) to be provided in input to the aforementioned models.

In [17] the authors propose a technique to approximate the performance of the STM application when considering

different amounts of concurrent threads. The technique is based on the usage of different types of functions, such

as polynomial, rational and logarithmic functions. The approximation process relies on sampling the speed-up of the

application over a set of runs, each one executed with a different number of concurrent threads. After, the speed-up

forecasting function is instantiated by interpolating the measurements. Compared to our proposal, a limitation of

this approach lies on that the workload profile of the application is not taken into account while instantiating the

performance forecasting function. This may lead to reduced reliability of the forecasting outcome, especially when

the sampled application changes its workload profile.

As for machine learning, it has been used in [18] in order to select the best performing conflict detection and

management algorithm. Conversely, it has been used in [19] to select suitable thread to CPU-core mappings allowing



performance improvements thanks to increased effectiveness of the caching system. The goal of both these works is

different and orthogonal with respect to our one since we focus on the regulation of the overall concurrency level in

the system. To the best of our knowledge, the only machine learning based approach targeting this same problem has

been presented in [5]. Compared to this solution, the present proposal relies on a sampling process that is lighter than

the one required for building the machine learning based performance model via training. Further, the approach in [5]

suffers from limited extrapolation capabilities (in terms of ability to forecast speed-up values for concurrency levels

that are outside the training domain), as typical of machine learning (as confirmed by experimental data we report

in this paper). Instead, the present proposal entails high extrapolation capabilities, being it based on an analytical

approach.

The work in [4] presents a black-box approach, based on the hill-climbing heuristic scheme, which dynamically

increases or decreases the level of concurrency within the STM. Particularly, the approach determines whether the

trend of increasing/decresing the concurrency level has positive effects of the observed throughput, in which case

the trend is maintained. Differently from our proposal, no direct attempt to capture the relation between the actual

transaction profile and the achievable performance (depending on the level of parallelism) is done. Further, similarly to

the case of machine learning based schemes, the proposal in [4] does not entail significant extrapolation capabilities.

Given that our model-based approach is ultimately aimed at regulating concurrency to the optimal level, for which

thrashing phenomena do not appear, our proposal is related to pro-active transaction scheduling schemes, which

cope with the issue of performance degradation due to excessive data contention [20], [21], [22]. These solutions

avoid scheduling the execution of transactions whose associated conflict probability is estimated to be high. The

work in [20] presents a control algorithm that dynamically changes the number of threads concurrently executing

transactions on the basis of the observed transaction conflict rate. It is decreased when the rate exceeds a threshold

while it is incremented when the rate is lower than another threshold. In [21], incoming transactions are enqueued

and sequentialized when an indicator, referred to as contention-intensity, exceeds a pre-determined threshold. The

contention intensity is calculated as a dynamic average depending on the number of aborted vs committed transactions.

In the approach in [22], a transaction is sequentialized when a potential conflict with other running transactions is

predicted. The prediction leverages on the estimation of the expected transaction read-set and write-set (on the basis

of the past behavior of others or the same transaction). The sequentializing mechanism is activated only when the

amount of aborted vs committed transactions exceeds a given threshold. Compared to our model-based concurrency

regulation approach, all the above proposals do not directly estimate the likelihood of transaction aborts as a function

of the level of concurrency. Rather, they attempt to control the wasted time in an indirect manner according to

heuristics schemes.



III. THE PARAMETRIC PERFORMANCE MODEL

As already hinted, we decided to exploit a model leveraging a parametric analytical expression which captures

the expected trend of the transaction abort probability while varying: (1) a set of features characterizing the current

workload profile, and (2) the number of concurrent threads sustaining the STM application. The parameters of the

analytical expression aim at capturing effects that are hard to express through a classical (non-parametric) analytical

modeling approach. Further, they are exploited to customize the model for a specific STM application through

regression analysis, which is done by exploiting a set of sampling data gathered through run-time observations of the

application. In the remainder of this section we provide the basic assumptions on the behavior of the STM application,

which are exploited while building the parametric analytical model. Then the actual construction of the model is

presented. Finally, the outcomes of a model validation study, carried out with STM benchmark applications specified

by STAMP [7], are reported.

A. Basic Assumptions

The STM application is assumed to be run on top of a number k of concurrent threads. The execution flow of each

thread is characterized by the interleaving of transactions and non-transactional code (ntc) blocks. This is the typical

structure for common STM applications, which is also reflected in most of the widely diffused STM benchmarks

(see, e.g., [7]).

The read-set (write-set) of a transaction is the set of shared data objects that are read (written) by the thread

while executing the transaction. If a conflict between two concurrent transactions occurs, then one of the conflicting

transactions is aborted and re-started (which leads to a new transaction run). After the thread commits a transaction,

it executes a ntc block, which ends before the execution of the begin operation of the subsequent transaction along

the same thread.

B. Model Construction

The set of features P exploited for the construction of the parametric analytical model, which are used to capture

the workload profile, consists of:

• the average size of the transaction read-set rss;

• the average size of the transaction write-set wss;

• the average execution time tt of committed transaction runs (i.e. the average duration of transaction runs that

are not aborted);

• the average execution time tntc of ntc code-blocks;



• the read/write affinity rwa, namely the probability that an object read by a transaction is also written by other

transactions;

• the write/write affinity wwa, namely the probability that an object written by a transaction is also written by

other transactions.

Operatively, rwa can be calculated as the dot product between the distribution of read operations and the distribution

of write operations (both expressed in terms of relative frequency of accesses to shared data objects). On the other

hand, wwa can be calculating as the dot product between the distribution of write operations and itself.

Our parametric analytical model expresses the transaction abort probability Pa as a function of the parameters

belonging to the set P , and the number k of concurrent treads supposed to run the STM application. Overall, it

expresses (in a parametric manner) the structure of the function:

pa = f(rss, wss, rwa, wwa, tt, tntc, k) (1)

Leveraging literature results, particularly literature models proposing approximated performance analysis for transac-

tion processing systems (see [11], [23]), we capture the expected trend for the transaction abort probability through

the function

pa = 1− e−α (2)

However, while in literature results the parameter α is expressed as the multiplication of parameters directly expressing,

e.g. the data access patter and the workload intensity (such as the transaction arrival rate λ for the case of open

systems), in our approach we express α as the multiplication of different functions, which in their turn depend on

the set of input parameters appearing in Equation (1). Overall, our expression for pa is structured as follows

pa = 1− e−ρ·ω·φ (3)

where the function ρ is assumed to depend on the input parameters rss, wss, rwa and wwa, the function ω is assumed

to depend on the parameter k, and the function φ is assumed to depend on the parameters tt and ntct.

As an important preliminary observation, Equation (2) has been derived in literature while modeling the abort

probability for the case optimistic concurrency control schemes, where transactions are aborted (and restarted) right

upon detecting any conflict. Consequently, this expression for pa and the variation we propose in Equation (3)

are both expected to well match the STM context, where pessimistic concurrency control schemes (according to

which transactions can experience lengthy lock-wait phases upon conflicting) are not used since they would limit

the exploitation of parallelism in the underlying architecture. More specifically, in typical STM implementations

(see, e.g., [8]), transactions are immediately aborted right upon executing an invalid read operation. Further, they are

aborted on write-lock conflicts either immediately or after a very short wait-time.



The model we propose in Equation (3) is parametric thanks to expressing α as the multiplication parametric

functions that depend on a simple and concise representation of the workload profile (via the features in the set P )

and on the level of parallelism. This provides it with the ability to capture variations of the abort probability (e.g.

vs the degree of parallelism) for differentiated application profiles. Particularly, different applications may exhibit

similar values for the featuring parameters in the set P , but may anyhow exhibit different dynamics, leading to

a different curve for pa while varying the degree of parallelism. This is catchable by our model vis application-

specific instantiation of the parameters characterizing the functions ρ, ω and φ, which can be done through a simple

regression-analysis process. In the next section we discuss how we have derived the actual ρ, ω and φ functions,

hence the actual function expressing α = ρ · ω · φ.

C. Instantiating ρ, ω and φ

The shape of the functions ρ, ω and φ determining α is derived in our approach by exploiting the results of a

simulation study. We decided to exploit simulation, rather than using measurements from real systems, since our model

is aimed at capturing the effects associated with data contention on the abort probability, while it is not targeted at

capturing the effects of thread-contention on hardware resources (such as shared interconnections and/or shared lower

level caches on a multi-core machine). Consequently, the instantiation of the functions appearing within the model

has been based on an ”ideal hardware” simulation model showing no contention effects due to concurrency. Anyway,

when exploiting our data contention model for concurrency regulation in a real system, a hardware scalability model

(e.g. a queuing network-based model) can be used to estimate variations of the processing time due to contention

effects on shared hardware resources as a function of the number of the concurrent threads. In the final part of this

paper, we provide some results that have been achieved by exactly using our data contention model and a very simple

hardware scalability model in a joint fashion, with the target of regulating at run-time the STM concurrency level to

performance suited values.

The simulation framework we have exploited in this study is the same used in [3] for validating a traditional

analytical performance model for STM. Details on this simulation framework are provided in the Appendix. In the

simulation runs we performed to derive and validate the expression of α, we varied rss and wss between 0 and 200,

rwa and wwa between 25 · 10−6 and 0.01, tt between 10 and 150 µsec, and tntc between 0 and 15 · 104 µsec. These

intervals include values that are typical for the execution of STM benchmarks such as [7], hence being representative

of workload features that can be expected in real execution contexts. Further, we varied k between 2 and 64 in the

simulations. Due to space constraints, we omit to explicitly show all the achieved simulation results. However, the

shown results are a significant, although concise, representation of the wider set of all achieved results.

The building of the analytical expressions for ρ, ω and φ has been based on an incremental approach, where

we step-by-step validate the incrementally achieved expression of pa. Particulary, we first derive the expression of ρ



analyzing simulation results varying workload configuration parameters affecting it, i.e. rss, wss, rwa, wwa, while

keeping fixed other parameters. After, we calculate the values of ρ from the ones achieved for pa via simulation,

which is done by using the inverse function ρ = f−1(pa), once set ω = 1 and φ = 1. After having identified a

parametric fitting function for ρ, we derive the expression of ω via the analysis of the simulation results achieved

while also varying k. Hence, we calculate ω = f−1(pa), where we use for ρ the previously identified expression,

and where we set φ = 1. Therefore, we select a parametric fitting function for ω. Finally, we use the same approach

to derive the expression of φ, which is done by exploiting the simulation results achieved while varying all workload

profile parameters and the level of concurrency k, thus calculating φ = f−1(pa), where we use for ρ and ω the

previously chosen expressions.

In order to derive the expression of ρ, we initially analyzed via simulation the relation between the values of

pa and the values of the parameters wss and wwa. In Figure 1 we provide some results showing the values of ρ

as calculated through the f−1(pa) inverse function (like depicted above) by relying on simulation data as the input.

Particularly, the data refer to variations of wwa and to 3 different values of wss, while all the other parameters have

been kept fixed. We note that ρ appears to have a logarithmic form. Additionally, in order to chose a parametric

function fitting the calculated values of ρ, we need to consider that if wwa = 0 then pa = 0. In fact, no data

contention ever arise in case of no write operations within the transactional profile (which implies ρ = 0). Thus, we

approximated the dependency of ρ on wwa through the following parametric logarithmic function:

c · ln(a · wwa + 1) (4)

where a and c are the fitting parameters. We note that the presence of the +1 term in the above expression is due

to the above-mentioned constraint according to which wwa = 0 implies ρ = 0.

After, we also considered the effects of the parameter wss on ρ. To this aim, in Figure 2 we report the values of

ρ, derived from the simulation results, while varying wss and for 3 different values of wwa. We remark the presence

of a flex point. Therefore, in this case, we approximated the dependency of ρ on wss using the function:

e · (ln(b · wss + 1))d (5)

where b, d and e are fitting parameters. The flex is captured by the above expression through the presence of the

parameter d. Assuming that the effects on the transaction abort probability are multiplicative with respect to wwa

and wss (which is aligned to what literature models state in term of the proportionality of the abort probability wrt

the multiplication of the conflict probability and the number of operations, see, e.g., [11]), we achieved the following

parametric expression of ρ (vs wwa and wss), where d has been used as the exponent also for expression in (4) in

order to capture the effects of shifts of the flex point caused by variations of wwa (as shown by the plots in Figure

2 relying on simulation):

[c · (ln(b · wss + 1)) · ln(a · wwa + 1)]d (6)



where we collapsed the original parameters c and e within one single parameters c. We validated the accuracy of

the function in expression (6) via comparison with values achieved through a set of simulations, where we used

different workload profile parameters. On the other hand, the parameters appearing in expression (6) have been

calculated through regression analysis. Specifically, for each test, we based the regression analysis on 40 randomly

selected workload profiles achieved while varying wwa and wss. Then, we measured the average error between the

transaction abort probability evaluated via simulation and the one predicted using for ρ the function in expression (6)

for a set of 80 randomly selected workload profiles. As an example, in Figure 6, we depict results for the case with

k = 8. Along the x-axis, workload profiles are identify by integer numbers (id) and are ordered by the associated

values of wss and wwa. The average error we measured in all the performed tests was 5.3%.

Successively, we considered the effects on the transaction abort probability caused by read operations. Thus,

we analyzed the relation between pa and the parameters rss, rwa and wss. The parameter wss is included since

contention on transactional read operations is affected by the amount of write operations by concurrent transactions.

In Figure 4 we report simulation results showing the values of ρ while varying rss and for 3 different values of rwa.

In Figure 5, we report values of ρ achieved while varying rwa and for 3 different values of rss. We note that the

shape of the curves are similar to the above cases, where we analyzed the relation between pa and the parameters

wwa and wss. Thus, using a similar approach, and considering that pa is also proportional to wss, we approximate

the dependency of ρ on rwa, wss and wwa using the following function:

[e · (ln(f · rwa + 1)) · ln(g · rss + 1) · wss]z (7)

where e, f , g and z are the fitting parameters. The final expression for ρ, including the dependencies on all the relevant

parameters, is, in our model, the sum of the expressions (6) and (7). Intuitively, this is related to that adding read

operations within a transaction, the likelihood of abort due to conflicts on original write operations does not change.

However, the added read operations give rise to an increase of the overall abort probability for the transaction, which

we capture summing the two expressions. Also in this case, we validated the final expression for ρ via comparison

with the values achieved through a set of simulations, where we varied the workload profile. Similarly to what done

before, the regression analysis has been based on 40 workload profiles, while the comparison has been based on

80 workload profiles, all selected by randomly varying wwa, wss, wsa, rss. The results for k = 8 are reported in

Figure 6. Along the x-axis, workload profiles are ordered by values of rss, rwa, wss and wwa. The average error

we measured in all the tests was 2.7%.

Successively, in order to build the expression for ω, we considered the effects of the number of concurrent threads,

namely the parameter k, on the abort probability. On the basis of simulation results, some of which are reported in

Figure 7, we decided also in this case to use a parametric logarithmic function as the approximation curve of ω vs

k. Clearly, the constraint needs to be accounter for that if k = 1 then ω = 0 (since no concurrency cannot give rise
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to transaction aborts). Thus, we approximate ω as:

h · (ln(l · (k − 1) + 1), (8)

where h and l are the fitting parameters. Again, we validated the out-coming function for pa, depending on ω (and

hence depending on modeled effects of the variation of k), using the same amount of workload profiles as in the

previous studies, still selected by randomly varying wwa, wss, rwa, rss and k. Some results are depicted in Figure
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8 for variations of k between 1 and 64. The average error we measured in all the tests was 2.1%.

Finally, we built the expression of φ, which depends on tt and tntc. To this aim, we note that if tt = 0 (which

represent the unreal case where transactions are executed instantaneously) then φ must be equal to 0 (give that

the likelihood of concurrent transactions is zero). Additionally, we note that tt can be seen as the duration of a

vulnerability window during which the transaction is subject to be aborted. For longer fractions of time during which

transaction are vulnerable, higher probability of actual transaction aborts can be expected. Thus we assume φ to be

proportional to

θ =
tt

tt + tntc
, (9)

We analyzed through simulations the relation between φ and θ. Some results are shown in Figure 9, on the basis of

which we decided to approximate φ using the function:

m · ln(n · θ + 1) (10)

where m and n are the fitting parameters.
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parameters

The expression of pa in Equation (3) is now fully defined. To validate such final expression, we used the same

approach that has been adopted for the validation of each of the aforementioned incremental steps. Some results,

where we randomly selected workload profiles, are shown in Figure 10. In all our tests, we measured an average

relative error of 4.8%.

D. Model Validation with Respect to a Real System

As a further validation step we compared the output by the proposed model with real measurements taken by

running applications belonging to the STAMP benchmark suite [7] on top of the open source TinySTM framework

[8]. Additionally, we evaluated the model ability to provide accurate predictions while varying the amount of samples

used to perform the regression analysis, gathered through observations of the behavior of the real system. Particularly,

we evaluate the extrapolation capability of the model, namely its ability to forecast the transaction abort probability

that would be achieved when running the STM application at levels of concurrency levels (number of of threads) not

included in the observed domain, where regression samples are taken.



The presented results refer to three different benchmark applications of the STAMP suite, namely Kmeans, Yada

and Vacation. As shown in [7], these three applications are characterized by quite different workload profiles, in terms

of various parameters, such as the transaction duration, read-set and write-set sizes, data access distribution, ratio

between the time spent executing transactions and the total application execution time. This allowed us to evaluate the

model accuracy with respect to a relatively wide workload configuration domain. All the tests have been performed

on top of an HP ProLiant server equipped with two AMD OpteronTM6128 Series Processor, each one having eight

CPU-cores (for a total of 16 cores), and 32 GB RAM, running Linux Debian with kernel version 2.7.32-5-amd64.

For each application, we performed regression analysis to calculate three different sets of values for the model

parameters, hence instantiating three models relying on the proposed parametric analysis. Any regression has been

performed using one of three different sets of measurements, each set including 80 samples. The first set included

samples gathered observing the application running with 2 and 4 concurrent threads. The second one included samples

gathered observing the application running with 2, 4 and 8 concurrent threads. Finally, the third one included samples

gathered observing the application running with 2, 4, 8 and 16 concurrent threads. This allowed us to evaluate the

extrapolation ability of the model, with respect the number of concurrent threads, while observing the application

for limited amounts of concurrency levels (say for 2, 3 or 4 different levels of concurrency). We performed, for each

application, the following tests. After setting up the model instances, we executed a set of runs of the application

using different values for the application input parameters (leading the same application to run with somehow different

profiles) and with a number of concurrent threads spanning from 2 to 16. During each run, we measured the average

values of the workload profile features included in the set P along different observation intervals having a pre-

established length, and we used them as the input to the three instantiated models in order to compute the expected

abort probability for each observation interval. After, for each instantiated model, we compared the predicted value

with the real one observed during the runs.

In Table I, we reported the average value of the prediction error (and its variance) for all the target benchmark

applications, and for the three model instances, while considering variations of the actual level of concurrency between

2 and 16. By the results, we note that, for the cases of Yada and Vacation, it has been sufficient to execute regression

analysis with samples gathered observing the application running with only 2 and 4 threads in order to achieve a

prediction error of 2.4% for any level of concurrency between 2 and 16. When enlarging the observation domain for

the gathering of samples to be used by regression, i.e. when observing the application running also with 8 concurrent

threads, we achieved for Yada a slight error reduction. With Vacation, the reduction is more accentuated. On the other

hand, the prediction error achieved with observations of the application running with 2 and 4 concurrent threads only

was noticeably greater for Kmeans with respect to the other applications. However, such an error drastically drops

down when including samples gathered with 8 concurrent threads in the data set for regression. As for regression

based on samples gathered with 2, 4, 8 and 16 threads, we note that the error marginally increases in all the cases. We



Observed concurrency levels for the regression analysis

application 2 and 4 threads 2, 4 and 8 threads 2, 4, 8 and 16 threads

Vacation 2.166% (0,00089) 1.323% (0,00028) 1.505% (0,00032)

Kmeans 18.938% (0,09961) 2.086% (0,00100) 2.591% (0,00109)

Yada 2.385% (0,00029) 2.086% (0,00016) 2.083% (0,00022)

TABLE I: Abort probability prediction error (and its variance)

believe that this is due to the high variance of the values of the transaction abort probability we measured along the

execution with 16 concurrent threads, which give rise to variability of the results of the regression analysis depending

on the set of used observations. Overall, by the results, we achieved good accuracy and effectiveness by the model

since it can provide (very) low prediction error, for a relatively wide range of hypothesized thread concurrency levels

(namely between 2 and 16) by just relying on observing the application running with 2, 4 and (at worst also) 8

concurrent threads. In fact, for two out of three selected benchmarks, limiting the observations to concurrency levels

set to 2 and 4 was sufficient in order to get extremely accurate prediction.

We conclude this section comparing the extrapolation ability of our model with respect the neural network-based

model proposed in [5], which, similarly to ours, has been targeted at the estimation of the STM performance (vs

the level of concurrency). To perform fair comparison, a same set of observations has been provided to both the

models. Particularly, the reported results refer to the Yada benchmark application, for which we provided a set

of 80 observations (the same used for validating the model, as shown above), related to executions with 2 and 4

concurrent threads, to both our parametric model and the neural network based model in [5]. As for the neural network

approach, we used a back-propagation algorithm [24], and we selected the best trained network, in terms of prediction

accuracy, among a set of networks having a number of hidden nodes spanning from 2 and 16, using a number of

algorithm iterations spanning from 50 to 1600. In Figure 11, we show two dispersion charts, each one representing the

correlation between the measured values of the transaction abort probability and the ones predicted using the model

(top chart) and the neural network (bottom chart). These refer to concurrency level spanning in the whole interval

2-16. We remark that a lower prediction error corresponds to a higher concentration of points along the diagonal

straight line evidenced in the graphs. We can see that, in the case of the neural network, there is a significantly wider

dispersion of points compared to the model we are proposing. In fact, the average prediction error for the neural

network is equal to 17.3% while for the model, it is equal to 2.385%. This is a clear indication of higher ability to

extrapolate the abort probability by the model when targeting concurrency levels for which no real execution sample

is available (and/or that are far from the concurrency levels for which sampling has been actuated). As a reflection,

the parametric model we present provides highly reliable estimations, even with a few profiling data available for



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ed

ic
te

d

measured

Neural network prediction accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ed

ic
te

d

measured

Model prediction accuracy

Fig. 11: Comparison of the prediction error for the model and for the neural network.

Fig. 12: CSR-STM architecture

the instantiation of its parameters. Hence it is suited for the construction of concurrency regulation systems inducing

low overhead and providing timely selection of the best suited parallelism configuration (just because the model

needs a few samples related to a limited set of configurations in order to deliver its reliable prediction on the optimal

concurrency level to be adopted). The organization of an effective concurrency self-regulation architecture exactly

exploiting the parametric model is presented and experimentally assessed in the next section.



IV. CONCURRENCY SELF-REGULATING STM

A. The Architecture

The architecture of the Concurrency Self-Regulating STM (CSR-STM) is depicted in Figure 12. A Statistic

Collector (SC) provides a Control Algorithm (CA) with the average values of workload profile parameters, i.e. rss,

wss, rwa, wwa, tt and tntc, measured by observing the application on a periodic basis. Then, the CA exploits these

values to calculate, through the parametric model, the transaction abort probability pa,k as predicted when using k

concurrent threads, for each k such that 1 ≤ k ≤ maxthread. The value maxthread represents the maximum amount of

concurrent threads admitted for executing the application. We remark that a number of concurrent threads larger then

the number of available CPU-cores typically penalizes STM performance (e.g. due to costs related to context-switches

among the threads [25], as well as cache invalidation and refill costs). Hence, it is generally convenient to bound

maxthread to the maximum number of available CPU-cores. The set {(pa,k), 1 ≤ k ≤ maxthread} of predictions is

used by the CA to estimate the number m of concurrent threads which is expected to maximize the application

throughput. Particularly, m is identified as the value of k for which

k

wtime,k + tt,k + tntc,k
(11)

is maximized. In the above expression: wtime,k is the average transaction wasted time (i.e. the average execution time

spent for all the aborted runs of a transaction) when the application is supposed to run with k concurrent threads;

ttime,k is the average execution time of committed transaction runs when the application is supposed to run with k

concurrent threads; tntc,k is the average execution time of ntc code-blocks when the application is supposed to run

with k concurrent threads.

We note that wtime,k + tt,k + tntc,k is the average execution time between commit operations of two consecutive

transactions executed by the same thread when there are k active threads. Hence, the formula in (11) expresses the

system throughput. Now we discuss how wtime,k, tt,k and tntc,k are estimated. We note that wtime,k can be evaluated

multiplying the average number of aborted runs of a transaction and the average duration of an aborted transaction

run when the application is executed with k concurrent threads. Thus, the average number of aborted transaction runs

with k concurrent threads can be estimated as pa,k/(1− pa,k), where pa,k is calculated through the presented model.

To calculate the average duration of an aborted transaction run, as well as to estimate tt,k and tntc,k, while varying

k, an hardware scalability model has to be used. In the version of CSR-STM we present in this study, we exploited

the model proposed in [26], where the function modeling hardware scalability is:

C(k) = 1 + p · (k − 1) + q · k · (k − 1) (12)



where p and q are fitting parameters, and C(k) is the scaling factor when the application runs with k concurrent

threads. The values of p and q are again calculated through regression analysis. Thus, assuming that, e.g., during the

last observation interval there were x concurrent threads and the measured average transaction execution time has

been tt,x, then CA can calculate tt,k for each value of k through the formula tt,k = C(k)/C(x) · tt,x.

Once estimated the number m of concurrent threads which is expected to maximize the application throughput,

CA keeps active such a number of threads during the subsequent workload sampling interval.

B. Evaluation Study

In this section we present an experimental assessment of CSR-STM, where we used the benchmark applications

mentioned above, namely Vacation, Kmeans and Yada, running on top of the same 32-core HP ProLiant server

exploited for previous experiments. All tests we present focus on the comparison of the execution time achieved by

running the applications with on top of CSR-STM and on top of the original version of TinySTM. Specifically, in

each test, we measured, for both CSR-STM and TinySTM, the delivered application execution times while varying

maxthread between 2 and 16. In the case of TinySTM, maxthread corresponds to the (fixed) number of concurrent

threads exploited by the application. While, in the case of CSR-STM, the application starts its execution with

a number of concurrent thread equal to maxthread. However, CSR-STM may lead to changes of the number of

concurrent threads setting it to any value between 1 and maxthread, selected as the optimal concurrency level.

For each application, we calculated the values of the parameters of the model through a regression analysis where

we used samples gathered observing the application running with 2 and 4 concurrent threads for the cases of Vacation

and Yada, and including also observations with 8 concurrent threads for the case of Intruder. As for the parameters

appearing in the hardware scalability model expressed in (12), regression analysis has been performed by using,

for each application, the measured average values of the committed runs of transactions, observed with 2, 4 and 8

concurrent threads. The cost of initial sampling and regression are included in the final execution latency delivered

by CSR-STM for fairness in the comparison.

To evaluate the ability of CSR-STM to regulate the concurrency level, we performed a number of runs using, for

each application, different values for the input parameters. Due to space constraints, we only report results achieved

with two different workload profiles for each application, which are shown in Figures 13, 14 and 15 for Vacation,

Kmeans and Yada, respectively. On top of each charts, we report, according to the syntax of the input string established

by STAMP, the values of the input parameters that we used to run the application.

Observing the results, the advantages of CSR-STM with respect to TinySTM can be easily appreciated. For system

configurations where CSR-STM is allowed to use a maximum number of threads (maxthread) greater then the optimal

concurrency level (as identified by the peak performance delivered by TinySTM), it always tunes the concurrency
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Fig. 13: Application execution time with CSR-STM and TinySTM for Vacation

level to suited values. Thus it avoids the performance loss experienced by TinySTM when making available a number

of CPU-cores exceeding the optimal parallelism level. Particularly, the performance by TinySTM tends to constantly

degrade while incrementing the parallelism level, according to the increase of the available number of CPU-cores.

Conversely, CSR-STM prevents this performance loss, providing a performance level which is, for the majority of the

cases, near to the best value, independently of the actual number of available CPU-cores for running the application.

Obviously, when maxthread is lower then the optimum concurrency level, CSR-STM can not activate the well suited

number of concurrent threads, which equals the optimal level of parallelism. However this occurs since the scenario

mimics a run in an undersized platform. Thus, for these configurations, the performance of CSR-STM, in some

cases, is slightly reduced with respect to TinySTM due to the overhead associated with the components/tasks proper

of the concurrency self-regulation mechanism. In relation to these components, we note that, except for the case

of the SC, for which we measured a negligible overhead, the other components, i.e., the CA and the model solver,

require a single processing thread to be run (mostly residing in wait phases). Thus, their overhead on hardware

resources is reduced, with respect the total application workload, of a factor bounded by 1/k, when considering k

available CPU-cores. In fact, by the results, the cases where CSR-STM provides lower performance than TinySTM

(e.g. when maxthread is less than 4 for Vacation and Kmeans), the advantage by TinySTM progressively decreases

while incrementing maxthread.

V. SUMMARY

In this article we have presented a parametric analytical model for determining the optimal level of concurrency in

STM applications. Application-specific instantiation of the parameters can be actuated via a light regression process

based on a few samples related to the run-time behavior of the application. Also, the model does not rely on any

strong assumption in relation to the application profile, hence being usable in generic application contexts. It has been

validated via comparison of its outcomes with real data traced by running applications from the STAMP bechmark
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Fig. 14: Application execution time with CSR-STM and TinySTM for Kmeans
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Fig. 15: Application execution time with CSR-STM and TinySTM for Yada

suite on top of a 32-core HP ProLiant machine. We also presented a concurrency self-regulation architecture based on

the model, which has been integrated in the TinySTM open source framework, and report experimental data showing

it can effectively control the concurrency level to values delivering (close to) optimal performance.

VI. APPENDIX: SIMULATION MODEL DETAILS

The simulation model we used is implemented on a discrete-event simulation platform. It simulates a closed

system with k concurrent threads, each one alternating the execution of transactions and non-transactional code (ntc)

blocks. The concurrency control algorithm is the default algorithm of TinySTM (encounter time locking for write

operations and timestamp-based read validation). A transaction starts with a begin operations, then it interleaves the

execution of read/write operations (accessing a set of shared data objects) and local computation phases, and, finally,

executes a commit operations. Duration of ntc blocks, operations of transactions and local computation phases are

distributed exponentially.
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