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Abstract

In the era of multi-core systems, the need for tools simplifying the development of concurrent applications
is increasingly looming. In such a context, Software Transactional Memory (STM) is recognized as an effective
programming paradigm, thanks to its ability to guarantee consistency of data that are shared across concurrent threads
in an application transparent manner. On the other hand, a core problem to cope with for STM, which has received
great attention of late, deals with (dynamically) regulating the degree of concurrency, in order to deliver optimal
performance. In fact, depending on the application workload, whose profile can also change over time, an oversized
number of concurrent threads may cause loss in performance due to excessive data contention, which may give rise
to excessively high transaction abort rate. Conversely, an undersized number of threads may hamper performance
due to limited exploitation of parallelism. We address this problem by proposing a self-regulation approach of the
concurrency level, which leverages a parametric analytical performance model aimed at predicting the scalability of
the STM application as a function of the actual workload profile and the number of concurrent threads supposed to
sustaining the execution. The regulation scheme allows achieving optimal performance during the whole lifetime of the
application via dynamically resizing the number of concurrent threads according to the predictions by the model. The
later is customized for a specific application/platform pair through regression analysis, which is based on a lightweight
sampling phase. We also present a real implementation of the model-based concurrency self-regulation architecture
integrated within the open source TinySTM framework. Further, the effectiveness of the proposal is evaluated via an

experimental assessment based on standard STM benchmark applications.
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I. INTRODUCTION

Software Transactional Memory (STM) [1] has emerged as a promising paradigm that aims at simplifying the
development of parallel/concurrent applications. Leveraging on the well know concept of atomic transaction, STM
provides application developers with a friendly alternative to traditional lock-based synchronization. More in detail,
any code block accessing data that are shared across concurrent threads can be marked as a transaction, thus demanding
coherency of the data access/manipulation to the STM layer, rather than to any handcrafted synchronization scheme.
The relevance of the STM paradigm has significantly grown given that multi-core systems have become mainstream
computing platforms, so that even entry-level desktop and laptop machines are nowadays equipped with multiple

processors and/or CPU-cores.

Even though one main target for STM is the simplification of the software development process, another aspect
that is central for the success of the STM paradigm relates to the actual level of performance it can deliver. As for
this aspect, STM needs to be complemented by schemes aimed at determining the well suited degree of concurrency
(in terms of number of threads exploited for running the application), which is expected to allow the overlying
application to reach optimal speedup values thanks to fruitful parallelism exploitation. This issue arises since STM
applications are prone to thrashing phenomena (caused by excessive transactions rollbacks) in case the data access
pattern tends to exhibit non-negligible conflict among concurrent transactions and the degree of parallelism in the
execution is excessively high. On the other hand, for too low parallelism levels, the achievable speedup may still be

suboptimal.

Recent approaches coping with this problem have been targeted at selecting/controlling the degree of parallelism
by (dynamically) determining the well suited number of concurrent threads to sustain application execution. Such a
suited concurrency level is expected to lead to the exploitation available computing resources (namely the available
CPU-cores) at the maximum extend still avoiding thrashing phenomena, hence optimizing the achievable speedup.
Along this path we can find solutions ranging from analytical models [2], [3], to heuristic-based schemes [4], to
machine learning approaches [5]. On the other hand, any of the proposed approaches exhibits some shortcoming.
Classical analytical approaches are in fact know to become unreliable as soon as the assumptions they rely on (e.g.
in terms of data access distribution and/or distribution of the CPU time for specific operations) are not met. Further,
according to the outcomes in [6], the transaction abort rate can be strongly affected by the order according to which
data are accessed along the transaction execution path, which is typically neglected by analytical models. On the
other hand, even in case the effects of such an ordering are captured analytically, the actual exploitation of the
performance model would require detailed knowledge of the data access pattern for the specific application, which
may be unavailable or arduous to build. As for heuristic and/or machine learning approaches, they do not require

specific (stringent) assumptions to be met in relation to, e.g., the transactional profile of the application. Hence,



they exhibit the potential for high effectiveness in generic application contexts, and for generic computing platforms.
On the other hand, these approaches entail limited extrapolation capabilities, thus being unsuited for forecasting the
performance that would be achieved with levels of concurrency not belonging to the already explored domain (e.g.
the training domain in case of machine learning). Further, the time required for building the knowledge base to be
exploited by the machine learner may be non-minimal, which may make the actuation of the optimized concurrency

configuration untimely.

In this article we tackle the issue of regulating the concurrency level in STM via a model-based approach, which
differentiates from classical ones in that it avoids the need for the STM system to meet specific assumptions (e.g. in
terms of data access pattern). Our proposal relies a parametric analytical expression capturing the expected trend in
the transaction abort probability (versus the degree of concurrency) as a function of variations of a set of features
associated with the actual workload profile. The parameters appearing within the model exactly aim at capturing
execution dynamics and effects that are hard to be expressed through classical (non-parametric) analytical modeling
approaches. We derived the parametric expression of the transaction abort probability via combined exploitation of
literature results in the field of analytical modeling and a simulation-based analysis. Further, the parametric model
is thought to be easily customizable for a specific STM system by calculating the values to be assigned to the
parameters (hence by instantiating the parameters) via regression analysis. The latter can be performed by exploiting
a set of sampling data gathered through run-time observations of the STM application. However, differently from
what happens for the training process in machine learning approaches, the actual sampling phase (needed to provide
the knowledge base for regression in our approach) is very light. Specifically, a very limited number of profiling
samples, related to a few different concurrency levels for the STM system, likely suffice for successful instantiation
of the model parameters via regression. Finally, our approach inherits the extrapolation capabilities proper of pure
analytical models (although it does not require their typical stringent assumptions to be met, as already pointed out),
hence allowing reliable performance forecast even for concurrency levels standing distant from the ones for which

sampling was actuated.

A bunch of experimental results achieved by running the STAMP benchmark suite [7] on top of the TinySTM
open source framework [8] are reported for validating the proposed modeling approach. Further, we present the
implementation of a concurrency self-regulating STM, exploiting the proposed model-based approach, still relying

on TinySTM as the core STM layer, and we report experimental data for an assessment of this architecture.

The remainder of this paper is organized as follows. In Section II, literature results related to our proposal are
discussed. Section III is devoted to describing and validating our STM performance model. The STM architecture

entailing self-regulation capabilities of the concurrency level is presented and evaluated in Section IV.



II. RELATED WORK

Our proposal has relations with literature results in the field of analytical modeling of concurrency control protocols
for transactional systems. These include performance models for traditional database systems and related concurrency
control mechanisms (see, e.g., [9], [10], [11]) and approaches specifically targeting STM (see, e.g., [12]). One common
point for literature analytical models is that they either rely on (stringent) assumptions on the data access pattern or
rely on the knowledge of the precise distribution of the accesses performed by the transactions. The first category
includes models (see, e.g., [11], [13]) that assume data to be uniformly accessed on one or more datasets of fixed
cardinality. In [9] the b-c model is assumed, where b% of the transactions are assumed to uniformly access elements
within the c% of the dataset, and the remaining accesses are assumed to be targeted to the remaining data. This
model has been further extended in [14], [15], in order to encompass several transactional classes, each accessing
a disjoint portion of the whole dataset. Differently from all these works, our proposal does not assume any specific
distribution for the data accesses, thus being more general and exploitable in generic application contexts. This is
achieved by relying on a parametric analytical expression (as opposed to non-parametric models) where one role of
the parameters is exactly to avoid the need for explicitly expressing hard-to-capture dynamics and effects related to

the specific data access pattern exhibited by the transactional application.

The second category includes models which are able to capture more complex data access patterns (see, e.g., [16],
[6]), such as when assuming a different probability to access a set of data depending on the phase of execution of
the transaction (which is expressed via a matrix representation where an element m(i,j) specifies the probability for
a transaction to access datum j at operation i). Compared to these solutions, our proposal avoids the need for any
detailed characterization of the data access distribution. As a reflection of this aspect, the instantiation of the parameters
appearing in our model requires a much lighter application sampling process than what required to instantiate the

actual data access distribution (e.g. in terms of m(i,j) values) to be provided in input to the aforementioned models.

In [17] the authors propose a technique to approximate the performance of the STM application when considering
different amounts of concurrent threads. The technique is based on the usage of different types of functions, such
as polynomial, rational and logarithmic functions. The approximation process relies on sampling the speed-up of the
application over a set of runs, each one executed with a different number of concurrent threads. After, the speed-up
forecasting function is instantiated by interpolating the measurements. Compared to our proposal, a limitation of
this approach lies on that the workload profile of the application is not taken into account while instantiating the
performance forecasting function. This may lead to reduced reliability of the forecasting outcome, especially when

the sampled application changes its workload profile.

As for machine learning, it has been used in [18] in order to select the best performing conflict detection and

management algorithm. Conversely, it has been used in [19] to select suitable thread to CPU-core mappings allowing



performance improvements thanks to increased effectiveness of the caching system. The goal of both these works is
different and orthogonal with respect to our one since we focus on the regulation of the overall concurrency level in
the system. To the best of our knowledge, the only machine learning based approach targeting this same problem has
been presented in [5]. Compared to this solution, the present proposal relies on a sampling process that is lighter than
the one required for building the machine learning based performance model via training. Further, the approach in [5]
suffers from limited extrapolation capabilities (in terms of ability to forecast speed-up values for concurrency levels
that are outside the training domain), as typical of machine learning (as confirmed by experimental data we report
in this paper). Instead, the present proposal entails high extrapolation capabilities, being it based on an analytical

approach.

The work in [4] presents a black-box approach, based on the hill-climbing heuristic scheme, which dynamically
increases or decreases the level of concurrency within the STM. Particularly, the approach determines whether the
trend of increasing/decresing the concurrency level has positive effects of the observed throughput, in which case
the trend is maintained. Differently from our proposal, no direct attempt to capture the relation between the actual
transaction profile and the achievable performance (depending on the level of parallelism) is done. Further, similarly to

the case of machine learning based schemes, the proposal in [4] does not entail significant extrapolation capabilities.

Given that our model-based approach is ultimately aimed at regulating concurrency to the optimal level, for which
thrashing phenomena do not appear, our proposal is related to pro-active transaction scheduling schemes, which
cope with the issue of performance degradation due to excessive data contention [20], [21], [22]. These solutions
avoid scheduling the execution of transactions whose associated conflict probability is estimated to be high. The
work in [20] presents a control algorithm that dynamically changes the number of threads concurrently executing
transactions on the basis of the observed transaction conflict rate. It is decreased when the rate exceeds a threshold
while it is incremented when the rate is lower than another threshold. In [21], incoming transactions are enqueued
and sequentialized when an indicator, referred to as contention-intensity, exceeds a pre-determined threshold. The
contention intensity is calculated as a dynamic average depending on the number of aborted vs committed transactions.
In the approach in [22], a transaction is sequentialized when a potential conflict with other running transactions is
predicted. The prediction leverages on the estimation of the expected transaction read-set and write-set (on the basis
of the past behavior of others or the same transaction). The sequentializing mechanism is activated only when the
amount of aborted vs committed transactions exceeds a given threshold. Compared to our model-based concurrency
regulation approach, all the above proposals do not directly estimate the likelihood of transaction aborts as a function
of the level of concurrency. Rather, they attempt to control the wasted time in an indirect manner according to

heuristics schemes.



III. THE PARAMETRIC PERFORMANCE MODEL

As already hinted, we decided to exploit a model leveraging a parametric analytical expression which captures
the expected trend of the transaction abort probability while varying: (1) a set of features characterizing the current
workload profile, and (2) the number of concurrent threads sustaining the STM application. The parameters of the
analytical expression aim at capturing effects that are hard to express through a classical (non-parametric) analytical
modeling approach. Further, they are exploited to customize the model for a specific STM application through
regression analysis, which is done by exploiting a set of sampling data gathered through run-time observations of the
application. In the remainder of this section we provide the basic assumptions on the behavior of the STM application,
which are exploited while building the parametric analytical model. Then the actual construction of the model is
presented. Finally, the outcomes of a model validation study, carried out with STM benchmark applications specified

by STAMP [7], are reported.

A. Basic Assumptions

The STM application is assumed to be run on top of a number £ of concurrent threads. The execution flow of each
thread is characterized by the interleaving of transactions and non-transactional code (ntc) blocks. This is the typical
structure for common STM applications, which is also reflected in most of the widely diffused STM benchmarks

(see, e.g., [7]).

The read-set (write-set) of a transaction is the set of shared data objects that are read (written) by the thread
while executing the transaction. If a conflict between two concurrent transactions occurs, then one of the conflicting
transactions is aborted and re-started (which leads to a new transaction run). After the thread commits a transaction,
it executes a ntc block, which ends before the execution of the begin operation of the subsequent transaction along

the same thread.

B. Model Construction

The set of features P exploited for the construction of the parametric analytical model, which are used to capture

the workload profile, consists of:

e the average size of the transaction read-set rss;
e the average size of the transaction write-set wsg;

e the average execution time ¢; of committed transaction runs (i.e. the average duration of transaction runs that

are not aborted);

e the average execution time t,;. of ntc code-blocks;



e the read/write affinity rw,, namely the probability that an object read by a transaction is also written by other

transactions;

e the write/write affinity ww,, namely the probability that an object written by a transaction is also written by

other transactions.

Operatively, rw, can be calculated as the dot product between the distribution of read operations and the distribution
of write operations (both expressed in terms of relative frequency of accesses to shared data objects). On the other

hand, ww, can be calculating as the dot product between the distribution of write operations and itself.

Our parametric analytical model expresses the transaction abort probability P, as a function of the parameters
belonging to the set P, and the number &k of concurrent treads supposed to run the STM application. Overall, it

expresses (in a parametric manner) the structure of the function:

Pa = f(rs&w557rwa7wwaatt,tnt0 k) (1)

Leveraging literature results, particularly literature models proposing approximated performance analysis for transac-
tion processing systems (see [11], [23]), we capture the expected trend for the transaction abort probability through
the function

Po=1—¢€" 2)

However, while in literature results the parameter « is expressed as the multiplication of parameters directly expressing,
e.g. the data access patter and the workload intensity (such as the transaction arrival rate A for the case of open
systems), in our approach we express « as the multiplication of different functions, which in their turn depend on

the set of input parameters appearing in Equation (1). Overall, our expression for p, is structured as follows
pa=1— e Pes (3)

where the function p is assumed to depend on the input parameters rsg, wss, 7w, and ww,, the function w is assumed

to depend on the parameter k, and the function ¢ is assumed to depend on the parameters t; and ntc;.

As an important preliminary observation, Equation (2) has been derived in literature while modeling the abort
probability for the case optimistic concurrency control schemes, where transactions are aborted (and restarted) right
upon detecting any conflict. Consequently, this expression for p, and the variation we propose in Equation (3)
are both expected to well match the STM context, where pessimistic concurrency control schemes (according to
which transactions can experience lengthy lock-wait phases upon conflicting) are not used since they would limit
the exploitation of parallelism in the underlying architecture. More specifically, in typical STM implementations
(see, e.g., [8]), transactions are immediately aborted right upon executing an invalid read operation. Further, they are

aborted on write-lock conflicts either immediately or after a very short wait-time.



The model we propose in Equation (3) is parametric thanks to expressing « as the multiplication parametric
functions that depend on a simple and concise representation of the workload profile (via the features in the set P)
and on the level of parallelism. This provides it with the ability to capture variations of the abort probability (e.g.
vs the degree of parallelism) for differentiated application profiles. Particularly, different applications may exhibit
similar values for the featuring parameters in the set P, but may anyhow exhibit different dynamics, leading to
a different curve for p, while varying the degree of parallelism. This is catchable by our model vis application-
specific instantiation of the parameters characterizing the functions p, w and ¢, which can be done through a simple
regression-analysis process. In the next section we discuss how we have derived the actual p, w and ¢ functions,

hence the actual function expressing o = p - w - ¢.

C. Instantiating p, w and ¢

The shape of the functions p, w and ¢ determining « is derived in our approach by exploiting the results of a
simulation study. We decided to exploit simulation, rather than using measurements from real systems, since our model
is aimed at capturing the effects associated with data contention on the abort probability, while it is not targeted at
capturing the effects of thread-contention on hardware resources (such as shared interconnections and/or shared lower
level caches on a multi-core machine). Consequently, the instantiation of the functions appearing within the model
has been based on an “ideal hardware” simulation model showing no contention effects due to concurrency. Anyway,
when exploiting our data contention model for concurrency regulation in a real system, a hardware scalability model
(e.g. a queuing network-based model) can be used to estimate variations of the processing time due to contention
effects on shared hardware resources as a function of the number of the concurrent threads. In the final part of this
paper, we provide some results that have been achieved by exactly using our data contention model and a very simple
hardware scalability model in a joint fashion, with the target of regulating at run-time the STM concurrency level to

performance suited values.

The simulation framework we have exploited in this study is the same used in [3] for validating a traditional
analytical performance model for STM. Details on this simulation framework are provided in the Appendix. In the
simulation runs we performed to derive and validate the expression of «, we varied rss and wss between 0 and 200,
rwg and ww, between 25-107% and 0.01, ¢, between 10 and 150 usec, and t,;. between 0 and 15 - 10% usec. These
intervals include values that are typical for the execution of STM benchmarks such as [7], hence being representative
of workload features that can be expected in real execution contexts. Further, we varied k£ between 2 and 64 in the
simulations. Due to space constraints, we omit to explicitly show all the achieved simulation results. However, the

shown results are a significant, although concise, representation of the wider set of all achieved results.

The building of the analytical expressions for p, w and ¢ has been based on an incremental approach, where

we step-by-step validate the incrementally achieved expression of p,. Particulary, we first derive the expression of p



analyzing simulation results varying workload configuration parameters affecting it, i.e. rss, wSs, rwWq, WW,, While
keeping fixed other parameters. After, we calculate the values of p from the ones achieved for p, via simulation,
which is done by using the inverse function p = f~!(p,), once set w = 1 and ¢ = 1. After having identified a
parametric fitting function for p, we derive the expression of w via the analysis of the simulation results achieved
while also varying k. Hence, we calculate w = f~!(p,), where we use for p the previously identified expression,
and where we set ¢ = 1. Therefore, we select a parametric fitting function for w. Finally, we use the same approach
to derive the expression of ¢, which is done by exploiting the simulation results achieved while varying all workload
profile parameters and the level of concurrency k, thus calculating ¢ = f~'(p,), where we use for p and w the

previously chosen expressions.

In order to derive the expression of p, we initially analyzed via simulation the relation between the values of
po and the values of the parameters wsg and ww,. In Figure 1 we provide some results showing the values of p
as calculated through the f~!(p,) inverse function (like depicted above) by relying on simulation data as the input.
Particularly, the data refer to variations of ww, and to 3 different values of wss, while all the other parameters have
been kept fixed. We note that p appears to have a logarithmic form. Additionally, in order to chose a parametric
function fitting the calculated values of p, we need to consider that if ww, = 0 then p, = 0. In fact, no data
contention ever arise in case of no write operations within the transactional profile (which implies p = 0). Thus, we

approximated the dependency of p on ww, through the following parametric logarithmic function:
c-in(a-wwg + 1) 4)

where a and c are the fitting parameters. We note that the presence of the +1 term in the above expression is due

to the above-mentioned constraint according to which ww, = 0 implies p = 0.

After, we also considered the effects of the parameter wss on p. To this aim, in Figure 2 we report the values of
p, derived from the simulation results, while varying ws, and for 3 different values of ww,. We remark the presence

of a flex point. Therefore, in this case, we approximated the dependency of p on wsg using the function:
e (In(b-wss +1))4 )

where b, d and e are fitting parameters. The flex is captured by the above expression through the presence of the
parameter d. Assuming that the effects on the transaction abort probability are multiplicative with respect to ww,
and ws (which is aligned to what literature models state in term of the proportionality of the abort probability wrt
the multiplication of the conflict probability and the number of operations, see, e.g., [11]), we achieved the following
parametric expression of p (vs ww, and wss), where d has been used as the exponent also for expression in (4) in
order to capture the effects of shifts of the flex point caused by variations of ww, (as shown by the plots in Figure
2 relying on simulation):

[c- (In(b- wss + 1)) - In(a - ww, 4+ 1)]% (6)



where we collapsed the original parameters ¢ and e within one single parameters c. We validated the accuracy of
the function in expression (6) via comparison with values achieved through a set of simulations, where we used
different workload profile parameters. On the other hand, the parameters appearing in expression (6) have been
calculated through regression analysis. Specifically, for each test, we based the regression analysis on 40 randomly
selected workload profiles achieved while varying ww, and wss. Then, we measured the average error between the
transaction abort probability evaluated via simulation and the one predicted using for p the function in expression (6)
for a set of 80 randomly selected workload profiles. As an example, in Figure 6, we depict results for the case with
k = 8. Along the x-axis, workload profiles are identify by integer numbers (id) and are ordered by the associated

values of ws, and ww,. The average error we measured in all the performed tests was 5.3%.

Successively, we considered the effects on the transaction abort probability caused by read operations. Thus,
we analyzed the relation between p, and the parameters rss, 7w, and wss. The parameter ws; is included since
contention on transactional read operations is affected by the amount of write operations by concurrent transactions.
In Figure 4 we report simulation results showing the values of p while varying rs, and for 3 different values of rwy,.
In Figure 5, we report values of p achieved while varying rw, and for 3 different values of rs;. We note that the
shape of the curves are similar to the above cases, where we analyzed the relation between p, and the parameters
ww, and wsg. Thus, using a similar approach, and considering that p, is also proportional to wss, we approximate

the dependency of p on rw,, wss and ww, using the following function:
le- (In(f-rwg+1))-In(g-rss + 1) - wss)? (7)

where e, f, g and z are the fitting parameters. The final expression for p, including the dependencies on all the relevant
parameters, is, in our model, the sum of the expressions (6) and (7). Intuitively, this is related to that adding read
operations within a transaction, the likelihood of abort due to conflicts on original write operations does not change.
However, the added read operations give rise to an increase of the overall abort probability for the transaction, which
we capture summing the two expressions. Also in this case, we validated the final expression for p via comparison
with the values achieved through a set of simulations, where we varied the workload profile. Similarly to what done
before, the regression analysis has been based on 40 workload profiles, while the comparison has been based on
80 workload profiles, all selected by randomly varying wwg, wss, wsg, 7ss. The results for £ = 8 are reported in
Figure 6. Along the x-axis, workload profiles are ordered by values of rs,, rw,, wss and ww,. The average error

we measured in all the tests was 2.7%.

Successively, in order to build the expression for w, we considered the effects of the number of concurrent threads,
namely the parameter %, on the abort probability. On the basis of simulation results, some of which are reported in
Figure 7, we decided also in this case to use a parametric logarithmic function as the approximation curve of w vs

k. Clearly, the constraint needs to be accounter for that if £ = 1 then w = 0 (since no concurrency cannot give rise
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to transaction aborts). Thus, we approximate w as:
h-(n(l-(k—1)+1), (®)

where h and [ are the fitting parameters. Again, we validated the out-coming function for p,, depending on w (and
hence depending on modeled effects of the variation of k), using the same amount of workload profiles as in the

previous studies, still selected by randomly varying ww,, wss, 7w,, 7Ss and k. Some results are depicted in Figure
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8 for variations of k£ between 1 and 64. The average error we measured in all the tests was 2.1%.

Finally, we built the expression of ¢, which depends on ¢; and ¢,;.. To this aim, we note that if £, = 0 (which
represent the unreal case where transactions are executed instantaneously) then ¢ must be equal to 0 (give that
the likelihood of concurrent transactions is zero). Additionally, we note that ¢{; can be seen as the duration of a
vulnerability window during which the transaction is subject to be aborted. For longer fractions of time during which
transaction are vulnerable, higher probability of actual transaction aborts can be expected. Thus we assume ¢ to be

proportional to
by

po "t 9
te + thte ©)

We analyzed through simulations the relation between ¢ and 6. Some results are shown in Figure 9, on the basis of

which we decided to approximate ¢ using the function:
m-in(n-60+1) (10)

where m and n are the fitting parameters.
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Fig. 10: Comparison between transaction abort probability measured and predicted while varing all workload profile

parameters

The expression of p, in Equation (3) is now fully defined. To validate such final expression, we used the same
approach that has been adopted for the validation of each of the aforementioned incremental steps. Some results,
where we randomly selected workload profiles, are shown in Figure 10. In all our tests, we measured an average

relative error of 4.8%.

D. Model Validation with Respect to a Real System

As a further validation step we compared the output by the proposed model with real measurements taken by
running applications belonging to the STAMP benchmark suite [7] on top of the open source TinySTM framework
[8]. Additionally, we evaluated the model ability to provide accurate predictions while varying the amount of samples
used to perform the regression analysis, gathered through observations of the behavior of the real system. Particularly,
we evaluate the extrapolation capability of the model, namely its ability to forecast the transaction abort probability
that would be achieved when running the STM application at levels of concurrency levels (number of of threads) not

included in the observed domain, where regression samples are taken.



The presented results refer to three different benchmark applications of the STAMP suite, namely Kmeans, Yada
and Vacation. As shown in [7], these three applications are characterized by quite different workload profiles, in terms
of various parameters, such as the transaction duration, read-set and write-set sizes, data access distribution, ratio
between the time spent executing transactions and the total application execution time. This allowed us to evaluate the
model accuracy with respect to a relatively wide workload configuration domain. All the tests have been performed
on top of an HP ProLiant server equipped with two AMD OpteronTM6128 Series Processor, each one having eight
CPU-cores (for a total of 16 cores), and 32 GB RAM, running Linux Debian with kernel version 2.7.32-5-amd64.

For each application, we performed regression analysis to calculate three different sets of values for the model
parameters, hence instantiating three models relying on the proposed parametric analysis. Any regression has been
performed using one of three different sets of measurements, each set including 80 samples. The first set included
samples gathered observing the application running with 2 and 4 concurrent threads. The second one included samples
gathered observing the application running with 2, 4 and 8 concurrent threads. Finally, the third one included samples
gathered observing the application running with 2, 4, 8 and 16 concurrent threads. This allowed us to evaluate the
extrapolation ability of the model, with respect the number of concurrent threads, while observing the application
for limited amounts of concurrency levels (say for 2, 3 or 4 different levels of concurrency). We performed, for each
application, the following tests. After setting up the model instances, we executed a set of runs of the application
using different values for the application input parameters (leading the same application to run with somehow different
profiles) and with a number of concurrent threads spanning from 2 to 16. During each run, we measured the average
values of the workload profile features included in the set PP along different observation intervals having a pre-
established length, and we used them as the input to the three instantiated models in order to compute the expected
abort probability for each observation interval. After, for each instantiated model, we compared the predicted value

with the real one observed during the runs.

In Table I, we reported the average value of the prediction error (and its variance) for all the target benchmark
applications, and for the three model instances, while considering variations of the actual level of concurrency between
2 and 16. By the results, we note that, for the cases of Yada and Vacation, it has been sufficient to execute regression
analysis with samples gathered observing the application running with only 2 and 4 threads in order to achieve a
prediction error of 2.4% for any level of concurrency between 2 and 16. When enlarging the observation domain for
the gathering of samples to be used by regression, i.e. when observing the application running also with 8 concurrent
threads, we achieved for Yada a slight error reduction. With Vacation, the reduction is more accentuated. On the other
hand, the prediction error achieved with observations of the application running with 2 and 4 concurrent threads only
was noticeably greater for Kmeans with respect to the other applications. However, such an error drastically drops
down when including samples gathered with 8 concurrent threads in the data set for regression. As for regression

based on samples gathered with 2, 4, 8 and 16 threads, we note that the error marginally increases in all the cases. We



Observed concurrency levels for the regression analysis
application 2 and 4 threads 2, 4 and 8 threads | 2, 4, 8 and 16 threads
Vacation 2.166% (0,00089) 1.323% (0,00028) 1.505% (0,00032)
Kmeans 18.938% (0,09961) 2.086% (0,00100) 2.591% (0,00109)
Yada 2.385% (0,00029) 2.086% (0,00016) 2.083% (0,00022)

TABLE I: Abort probability prediction error (and its variance)

believe that this is due to the high variance of the values of the transaction abort probability we measured along the
execution with 16 concurrent threads, which give rise to variability of the results of the regression analysis depending
on the set of used observations. Overall, by the results, we achieved good accuracy and effectiveness by the model
since it can provide (very) low prediction error, for a relatively wide range of hypothesized thread concurrency levels
(namely between 2 and 16) by just relying on observing the application running with 2, 4 and (at worst also) 8
concurrent threads. In fact, for two out of three selected benchmarks, limiting the observations to concurrency levels

set to 2 and 4 was sufficient in order to get extremely accurate prediction.

We conclude this section comparing the extrapolation ability of our model with respect the neural network-based
model proposed in [5], which, similarly to ours, has been targeted at the estimation of the STM performance (vs
the level of concurrency). To perform fair comparison, a same set of observations has been provided to both the
models. Particularly, the reported results refer to the Yada benchmark application, for which we provided a set
of 80 observations (the same used for validating the model, as shown above), related to executions with 2 and 4
concurrent threads, to both our parametric model and the neural network based model in [5]. As for the neural network
approach, we used a back-propagation algorithm [24], and we selected the best trained network, in terms of prediction
accuracy, among a set of networks having a number of hidden nodes spanning from 2 and 16, using a number of
algorithm iterations spanning from 50 to 1600. In Figure 11, we show two dispersion charts, each one representing the
correlation between the measured values of the transaction abort probability and the ones predicted using the model
(top chart) and the neural network (bottom chart). These refer to concurrency level spanning in the whole interval
2-16. We remark that a lower prediction error corresponds to a higher concentration of points along the diagonal
straight line evidenced in the graphs. We can see that, in the case of the neural network, there is a significantly wider
dispersion of points compared to the model we are proposing. In fact, the average prediction error for the neural
network is equal to 17.3% while for the model, it is equal to 2.385%. This is a clear indication of higher ability to
extrapolate the abort probability by the model when targeting concurrency levels for which no real execution sample
is available (and/or that are far from the concurrency levels for which sampling has been actuated). As a reflection,

the parametric model we present provides highly reliable estimations, even with a few profiling data available for
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Fig. 12: CSR-STM architecture

the instantiation of its parameters. Hence it is suited for the construction of concurrency regulation systems inducing
low overhead and providing timely selection of the best suited parallelism configuration (just because the model
needs a few samples related to a limited set of configurations in order to deliver its reliable prediction on the optimal
concurrency level to be adopted). The organization of an effective concurrency self-regulation architecture exactly

exploiting the parametric model is presented and experimentally assessed in the next section.



IV. CONCURRENCY SELF-REGULATING STM
A. The Architecture

The architecture of the Concurrency Self-Regulating STM (CSR-STM) is depicted in Figure 12. A Statistic
Collector (SC) provides a Control Algorithm (CA) with the average values of workload profile parameters, i.e. rsg,
WSg, TWq, WWg, t; and t,4., measured by observing the application on a periodic basis. Then, the CA exploits these
values to calculate, through the parametric model, the transaction abort probability p, j as predicted when using k
concurrent threads, for each k such that 1 < k < maxiyread- The value maxipreqq represents the maximum amount of
concurrent threads admitted for executing the application. We remark that a number of concurrent threads larger then
the number of available CPU-cores typically penalizes STM performance (e.g. due to costs related to context-switches
among the threads [25], as well as cache invalidation and refill costs). Hence, it is generally convenient to bound
MaZthread t0 the maximum number of available CPU-cores. The set {(pg k), 1 < k < mazinread} of predictions is
used by the CA to estimate the number m of concurrent threads which is expected to maximize the application

throughput. Particularly, m is identified as the value of k for which

k
Wtime,k + tt,k + tntc,k

(11)

is maximized. In the above expression: wyime i, is the average transaction wasted time (i.e. the average execution time
spent for all the aborted runs of a transaction) when the application is supposed to run with k& concurrent threads;
ttime,k 15 the average execution time of committed transaction runs when the application is supposed to run with k
concurrent threads; ¢, is the average execution time of ntc code-blocks when the application is supposed to run

with k& concurrent threads.

We note that wiime . + te i + tnte ke 18 the average execution time between commit operations of two consecutive
transactions executed by the same thread when there are k active threads. Hence, the formula in (11) expresses the
system throughput. Now we discuss how wyime i, t¢ 1 and 2,41 are estimated. We note that Wy, . can be evaluated
multiplying the average number of aborted runs of a transaction and the average duration of an aborted transaction
run when the application is executed with k concurrent threads. Thus, the average number of aborted transaction runs

with & concurrent threads can be estimated as p, /(1 — pq k), where p, i is calculated through the presented model.

To calculate the average duration of an aborted transaction run, as well as to estimate ¢; ;, and ¢, », while varying
k, an hardware scalability model has to be used. In the version of CSR-STM we present in this study, we exploited

the model proposed in [26], where the function modeling hardware scalability is:

Clk)=1+p-(k—1)+q-k-(k—1) (12)



where p and ¢ are fitting parameters, and C(k) is the scaling factor when the application runs with & concurrent
threads. The values of p and ¢ are again calculated through regression analysis. Thus, assuming that, e.g., during the
last observation interval there were x concurrent threads and the measured average transaction execution time has

been t; ., then CA can calculate ¢, for each value of k through the formula ¢, = C(k)/C(x) - t; 4.

Once estimated the number m of concurrent threads which is expected to maximize the application throughput,

CA keeps active such a number of threads during the subsequent workload sampling interval.

B. Evaluation Study

In this section we present an experimental assessment of CSR-STM, where we used the benchmark applications
mentioned above, namely Vacation, Kmeans and Yada, running on top of the same 32-core HP ProLiant server
exploited for previous experiments. All tests we present focus on the comparison of the execution time achieved by
running the applications with on top of CSR-STM and on top of the original version of TinySTM. Specifically, in
each test, we measured, for both CSR-STM and TinySTM, the delivered application execution times while varying
MaTihread DEtween 2 and 16. In the case of TinySTM, maxp,eqq corresponds to the (fixed) number of concurrent
threads exploited by the application. While, in the case of CSR-STM, the application starts its execution with
a number of concurrent thread equal to maxipyreqq. However, CSR-STM may lead to changes of the number of

concurrent threads setting it to any value between 1 and maxp,eqd, Selected as the optimal concurrency level.

For each application, we calculated the values of the parameters of the model through a regression analysis where
we used samples gathered observing the application running with 2 and 4 concurrent threads for the cases of Vacation
and Yada, and including also observations with 8 concurrent threads for the case of Intruder. As for the parameters
appearing in the hardware scalability model expressed in (12), regression analysis has been performed by using,
for each application, the measured average values of the committed runs of transactions, observed with 2, 4 and 8
concurrent threads. The cost of initial sampling and regression are included in the final execution latency delivered

by CSR-STM for fairness in the comparison.

To evaluate the ability of CSR-STM to regulate the concurrency level, we performed a number of runs using, for
each application, different values for the input parameters. Due to space constraints, we only report results achieved
with two different workload profiles for each application, which are shown in Figures 13, 14 and 15 for Vacation,
Kmeans and Yada, respectively. On top of each charts, we report, according to the syntax of the input string established

by STAMP, the values of the input parameters that we used to run the application.

Observing the results, the advantages of CSR-STM with respect to TinySTM can be easily appreciated. For system
configurations where CSR-STM is allowed to use a maximum number of threads (maxip,eqq) greater then the optimal

concurrency level (as identified by the peak performance delivered by TinySTM), it always tunes the concurrency
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Fig. 13: Application execution time with CSR-STM and TinySTM for Vacation

level to suited values. Thus it avoids the performance loss experienced by TinySTM when making available a number
of CPU-cores exceeding the optimal parallelism level. Particularly, the performance by TinySTM tends to constantly
degrade while incrementing the parallelism level, according to the increase of the available number of CPU-cores.
Conversely, CSR-STM prevents this performance loss, providing a performance level which is, for the majority of the
cases, near to the best value, independently of the actual number of available CPU-cores for running the application.
Obviously, when maz;peqq 1S lower then the optimum concurrency level, CSR-STM can not activate the well suited
number of concurrent threads, which equals the optimal level of parallelism. However this occurs since the scenario
mimics a run in an undersized platform. Thus, for these configurations, the performance of CSR-STM, in some
cases, is slightly reduced with respect to TinySTM due to the overhead associated with the components/tasks proper
of the concurrency self-regulation mechanism. In relation to these components, we note that, except for the case
of the SC, for which we measured a negligible overhead, the other components, i.e., the CA and the model solver,
require a single processing thread to be run (mostly residing in wait phases). Thus, their overhead on hardware
resources is reduced, with respect the total application workload, of a factor bounded by 1/k, when considering k
available CPU-cores. In fact, by the results, the cases where CSR-STM provides lower performance than TinySTM
(e.g. when maxpreqq 18 less than 4 for Vacation and Kmeans), the advantage by TinySTM progressively decreases

while incrementing maxipreqd-

V. SUMMARY

In this article we have presented a parametric analytical model for determining the optimal level of concurrency in
STM applications. Application-specific instantiation of the parameters can be actuated via a light regression process
based on a few samples related to the run-time behavior of the application. Also, the model does not rely on any
strong assumption in relation to the application profile, hence being usable in generic application contexts. It has been

validated via comparison of its outcomes with real data traced by running applications from the STAMP bechmark
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suite on top of a 32-core HP ProLiant machine. We also presented a concurrency self-regulation architecture based on
the model, which has been integrated in the TinySTM open source framework, and report experimental data showing

it can effectively control the concurrency level to values delivering (close to) optimal performance.

VI. APPENDIX: SIMULATION MODEL DETAILS

The simulation model we used is implemented on a discrete-event simulation platform. It simulates a closed
system with k concurrent threads, each one alternating the execution of transactions and non-transactional code (ntc)
blocks. The concurrency control algorithm is the default algorithm of TinySTM (encounter time locking for write
operations and timestamp-based read validation). A transaction starts with a begin operations, then it interleaves the
execution of read/write operations (accessing a set of shared data objects) and local computation phases, and, finally,
executes a commit operations. Duration of nfc blocks, operations of transactions and local computation phases are

distributed exponentially.
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