
A new class of functions for measuring
solution integrality in the Feasibility Pump
approach: Complete Results

Marianna De Santis
Stefano Lucidi
Francesco Rinaldi

Technical Report n. 5, 2013

ISSN 2281-4299

A new class of functions for measuring solution
integrality in the Feasibility Pump approach:

Complete Results

M. De Santis†, S. Lucidi†, F. Rinaldi∗

† Sapienza Università di Roma
Dipartimento di Ingegneria Informatica Automatica e Gestionale

Via Ariosto, 25 - 00185 Roma - Italy

∗Università di Padova
Dipartimento di Matematica

Via Trieste, 63 35121 Padua - Italy

e-mail (De Santis): mdesantis@dis.uniroma1.it
e-mail (Lucidi): stefano.lucidi@dis.uniroma1.it

e-mail (Rinaldi): rinaldi@math.unipd.it

Abstract
Mixed-Integer optimization is a powerful tool for modeling many optimization problems arising from
real-world applications. Finding a first feasible solution represents the first step for several MIP solvers.
The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems which
is effective even when dealing with hard MIP instances. In this work, we start by interpreting the
Feasibility Pump as a Frank-Wolfe method applied to a nonsmooth concave merit function. Then, we
define a general class of functions that can be included in the Feasibility Pump scheme for measuring
solution integrality and we identify some merit functions belonging to this class. We further extend our
approach by dynamically combining two different merit functions. Finally, we define a new version of
the Feasibility Pump algorithm, which includes the original version of the Feasibility Pump as a special
case, and we present computational results on binary MILP problems showing the effectiveness of our
approach.

Keywords. Mixed integer programming, Concave penalty functions, Frank-Wolfe algorithm,
Feasibility Problem.

MSC. 90C06, 90C10, 90C11, 90C30, 90C59

1 Introduction

Many real-world problems can be modeled as Mixed Integer Programming (MIP) problems,
namely as minimization problems where some (or all) of the variables only assume integer
values. Finding quickly a first feasible solution is crucial for solving this class of problems. In
fact, many local-search approaches for MIP problems such as Local Branching [18], guided dives
and RINS [14] can be used only if a feasible solution is available.
In the literature, several heuristics methods for finding a first feasible solution for a MIP problem
have been proposed (see e.g. [4]-[6], [10], [20]-[23], [25], [28]). Recently, Fischetti, Glover and
Lodi [17] proposed a new heuristic, the well-known Feasibility Pump (FP), that turned out to
be very useful in finding a first feasible solution even when dealing with hard MIP instances.
The FP heuristic is implemented in various MIP solvers such as BONMIN [11].
The basic idea of the FP is that of generating two sequences of points {x̄k} and {x̃k} such
that x̄k is LP-feasible, but may not be integer feasible, and x̃k is integer, but not necessarily
LP-feasible. To be more specific the algorithm starts with a solution of the LP relaxation x̄0

and sets x̃0 equal to the rounding of x̄0. Then, at each iteration x̄k+1 is chosen as the nearest
LP-feasible point in �1-norm to x̃k, and x̃k+1 is obtained as the rounding of x̄k+1. The aim of the
algorithm is to reduce at each iteration the distance between the points of the two sequences,
until the two points are the same and an integer feasible solution is found. Unfortunately, it
can happen that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1 = x̃k, and
the strategy can stall. In order to overcome this drawback, random perturbations and restart
procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted to its further
improvements have been developed. Fischetti, Bertacco and Lodi [8] extended the ideas on which
the FP is based in two different directions: handling MIP problems with both 0-1 and integer
variables, and exploiting the FP information to drive a subsequent enumeration phase. In [1], in
order to improve the quality of the feasible solution found, Achterberg and Berthold consider an
alternative distance function which takes into account the original objective function. In [19],
Fischetti and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation. Recently in [3] and [9] new rounding techniques have been proposed.
They are both based on the idea of replacing rounding with a procedure that examines rounded
solutions along a line segment passing through the LP-feasible solution. The Feasibility Pump
has been further extended to the case of mixed integer nonlinear programming problems in
[12, 13].
In [10], J.Eckstein and M.Nediak noticed that the FP heuristic may be seen as a form of Frank-
Wolfe procedure applied to a nonsmooth merit function which penalizes the violation of the 0-1
constraints. In practice, the Feasibility Pump combines a local algorithm (namely the Frank-
Wolfe algorithm) with a suitably developed perturbing procedure for solving a specific global
optimization problem:

x∗ = argmin{f(x) : x ∈ P},
where P is the relaxation of the feasible set of the original MIP Problem and f(x) is a function
penalizing the violation of the integrality constraints. Therefore the Feasibility Pump can be
seen as a form of Iterated Local Search or Basin Hopping algorithm (see e.g. [7, 27, 29]).
In this paper, we analyze in deep the relationship between the Feasibility Pump and the Frank-
Wolfe algorithm. In this context, we define a new class of merit functions that can be included
in the basic FP scheme [17]. A reported extended computational experience seems to indicate
that the use of these new merit functions improves the FP efficiency.
The paper is organized as follows. In Section 2 and 3, we give a brief review of the Feasibility
Pump and the Objective Feasibility Pump heuristics. In Section 4, we show the equivalence be-
tween the FP heuristic and the Frank-Wolfe algorithm applied to a nonsmooth merit function.
In Section 5, we define a new class of merit functions for measuring the solution integrality, we

2

introduce new nonsmooth merit functions and we discuss their properties. We present our algo-
rithm in Section 6. In Section 7, we extend our approach by dynamically combining two different
merit functions. Computational results are shown in Section 8, where we give a detailed perfor-
mance comparison of our algorithm with the FP. Further, we show that using somehow more
than one merit function at time can improve the efficiency of the algorithm. Some conclusions
are drawn in Section 9.

In the following, given a concave function f : Rn → R, we denote by ∂f(x) the set of supergra-
dients of f at the point x, namely

∂f(x) = {v ∈ Rn : f(y)− f(x) ≤ vT (y − x), ∀ y ∈ Rn}.

2 The Feasibility Pump Heuristic

We consider a MIP problem of the form:

min cTx

s.t.Ax ≥ b (MIP)

xj ∈ {0, 1} ∀j ∈ I,

where A ∈ Rm×n and I ⊂ {1, 2, . . . , n} is the set of indices of zero-one variables. Let P =
{x : Ax ≥ b, 0 ≤ xj ≤ 1, ∀ j ∈ I} denote the polyhedron of the LP-relaxation of (MIP). The
Feasibility Pump starts from the solution of the LP relaxation problem x̄0 := argmin{cTx :
x ∈ P} and generates two sequences of points x̄k and x̃k: x̄k is LP-feasible, but may be integer
infeasible; x̃k is integer, but not necessarily LP-feasible. At each iteration x̄k+1 ∈ P is the
nearest point in �1-norm to x̃k:

x̄k+1 := argmin
x∈P

Δ(x, x̃k)

where
Δ(x, x̃k) =

∑
j∈I

|xj − x̃kj |.

The point x̃k+1 is obtained as the rounding of x̄k+1. The procedure stops if at some index l, x̄l

is integer or, in case of failing, if it reaches a time or iteration limit. In order to avoid stalling
issues and loops, the Feasibility Pump performs a perturbation step. Here we report a brief
outline of the basic scheme:

The Feasibility Pump (FP) - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : x ∈ P}
While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{Δ(x, x̃k) : x ∈ P}
Step 5 Update k = k + 1

End While

3

Now we give a better description of the rounding and the perturbing procedures used respectively
at Step 2 and at Step 3 (See e.g. [8], [17]):

Round: This function transforms a given point x̄k into an integer one, x̃k. The easiest
choice is that of rounding each component x̄kj with j ∈ I to the nearest integer, while
leaving the continuous components of the solution unchanged. Formally,

x̃kj =

⎧⎨
⎩

[x̄kj] if j ∈ I

x̄kj otherwise
(1)

where [·] represents scalar rounding to the nearest integer.

Perturb: The aim of the perturbation procedure is to avoid cycling and it consists in two
heuristics. To be more specific:

– if x̃kj = x̃k+1
j for all j ∈ I a weak perturbation is performed, namely, a random number

of integer constrained components, chosen as to minimize the increase in the distance
Δ(x̄k+1, x̃k+1), is flipped.

– If a cycle is detected by comparing the solutions obtained in the last 3 iterations, or
in any case after R iterations, a strong random perturbation is performed. For each
j ∈ I a uniformly random value is generated, ρj ∈ [−0.3, 0.7] and if

|x̄k+1
j − x̃k+1

j |+max{ρj , 0} > 0.5

the component x̃k+1
j is flipped.

Remark 1 The objective function Δ(x, x̃k) discourages the optimal solution of the relaxation
from being “too far” from x̃k. In practice, the method tries to force a large number of variables
of x̄k+1 to have the same (integer) value as x̃k (see [17]).

3 The Objective Feasibility Pump

When using a heuristic like the Feasibility Pump on a MIP problem, one of the target we have
is that of finding a high-quality solution, that is we would like to find a feasible point with the
objective function cTx as small as possible. In general, since the FP scheme discards the original
objective function of the problem after the first iteration, the quality of the feasible solutions
found by the algorithm often tends to be poor. In order to overcome this drawback, in [1] a
different approach, called Objective Feasibility Pump (OFP), has been developed. The idea
is that of combining the original objective function cTx of the problem with the FP objective
function. At each iteration the algorithm gradually reduces the influence of the objective function
and increases the weight of Δ(x, x̃). In this way the OFP, in its first iterations, concentrates
its search on the region of high-quality points. The objective function of the LPs is a convex
combination of the original objective function with the distance function Δ(x, x̃):

Δθ(x, x̃) =
1− θ

‖Δ‖ Δ(x, x̃) +
θ

‖c‖c
Tx

where ‖Δ‖ =
√|I| and θ ∈ [0, 1]. At each iteration k, the coefficient θk is decreased by a factor

ν < 1 (i.e. θk+1 = νθk). The introduction of the new function further requires a modification
of the cycle detection step. While in the original scheme a cycle is found if the same integer

4

point is visited twice, this is not the case in the modified scheme, because the objective function
Δθ has changed in the meantime. The algorithm therefore stores, at each iteration k, the pair
(x̃k, θk) and a cycle is detected if there exist two iterations ki and kj, with ki < kj , such that
x̃ki = x̃kj and θki − θkj ≤ δθ, where δθ ∈ [0, 1] is a fixed parameter.

4 The FP heuristic as a Frank-Wolfe algorithm for minimizing
a nonsmooth merit function

In a recent work J.Eckstein and M.Nediak [10] noticed that the feasibility pump heuristic may
be seen as a Frank-Wolfe procedure applied to a nonsmooth merit function. In order to better
understand this equivalence we recall the unitary stepsize Frank-Wolfe method for concave non-
differentiable functions. Let us consider the problem

min f(x)
x ∈ P

(2)

where P ⊂ Rn is a non empty polyhedral set that does not contain lines going to infinity in
both directions, f : Rn → R is a concave, non-differentiable function, bounded below on P .
The Frank-Wolfe algorithm with unitary stepsize can be described as follows.

Frank-Wolfe - Unitary Stepsize (FW1) Algorithm

Initialization: Set k = 0, let x0 ∈ Rn be the starting point, compute g0 ∈ ∂f(x0)

While xk /∈ argmin
x∈P

(gk)Tx

Step 1 Compute a vertex solution xk+1 of

min
x∈P

(gk)Tx

Step 2 Compute gk+1 ∈ ∂f(xk+1), update k = k + 1

End While

The algorithm involves only the solution of linear programming problems, and the following
result, proved in [31], shows that the algorithm generates a finite sequence and that it terminates
at a stationary point x�, namely a point satisfying the following condition:

(g�)T (x− x�) ≥ 0, ∀x ∈ P (3)

with g� ∈ ∂f(x�).

Proposition 1 The Frank-Wolfe algorithm with unitary stepsize converges to a vertex statio-
nary point of problem (2) in a finite number of iterations.

Now we consider the basic FP heuristic without any perturbation (i.e. without Step 3) and we
show that it can be interpreted as the Frank-Wolfe algorithm with unitary stepsize applied to a
concave, nondifferentiable merit function.
First of all, we can easily see that

Δ(x, x̃k) =
∑

j∈I:x̃k
j=0

xj +
∑

j∈I:x̃k
j=1

(1− xj).

5

At each iteration, the Feasibility Pump for mixed 0-1 problems computes, at Step 2, the rounding
of the solution x̄k, thus giving x̃k. Then, at Step 4, it computes the solution of the LP problem

x̄k+1 ∈ argminΔ(x, x̃k)

s.t. Ax ≥ b (4)

0 ≤ xj ≤ 1 ∀j ∈ I.

These two operations can be included in the unique step of calculating the solution of the
following LP problem:

min
∑

j∈I:x̄k
j<

1
2

xj −
∑

j∈I:x̄k
j≥ 1

2

xj

s.t. Ax ≥ b (5)

0 ≤ xj ≤ 1 ∀j ∈ I.

Since the function

v(t) =

⎧⎨
⎩

1 if t < 1
2

−1 if t ≥ 1
2

(6)

is such that v(t) ∈ ∂min{t, 1 − t}, Problem (5) can be seen as a generic iteration of the Frank
Wolfe method with unitary stepsize applied to the following minimization problem

min
∑
i∈I

min{xi, 1− xi}

s.t. Ax ≥ b (7)

0 ≤ xi ≤ 1 ∀i ∈ I.

5 New nonsmooth merit functions for the FP approach

As we have seen in the previous section, the basic Feasibility Pump is equivalent to minimizing
a separable nonsmooth function which penalizes the 0-1 infeasibility, namely

f(x) =
∑
i∈I

min{xi, 1− xi}. (8)

When using the FrankWolfe unitary stepsize algorithm for solving Problem (7), at each iteration,
if xk is not a stationary point, we get a new point xk+1 such that

(gk)T (xk+1 − xk) < 0,

with gk ∈ ∂f(xk). Then, from the concavity of the objective function we have

f(xk+1) ≤ f(xk) + (gk)T (xk+1 − xk) < f(xk), (9)

which means that at each iteration a reduction of the merit function is obtained. Anyway, this
might not correspond to a reduction in the number of variables that violate integrality.

Example 1 Let us consider the following two points

x =
(
0,

1

2
, 0, 0

)T
; y =

(
0,

1

6
,
1

6
, 0
)T
.

6

Let f be the function defined in (8). It is easy to notice that

f(y) < f(x),

but the number of noninteger components of y is greater than the number of noninteger compo-
nents of x.

As the main goal is finding an integer feasible solution, it would be better to use a function
having the following features:

(i) it decreases whenever the number of integer variables increases;

(ii) if it decreases, then the number of noninteger variables does not increase.

A function satisfying these features is the following:

ψ(x) = card{xi : i ∈ I, xi /∈ {0, 1} }. (10)

The function (10) can be rewritten as:

ψ(x) =
∑
i∈I

s(min{xi, 1− xi}) (11)

where s : R → R+ is the step function:

s(t) =

⎧⎨
⎩

1 if t > 0

0 otherwise.

Since the step function is a nonconvex and discontinuous function, minimizing (11) over a
polyhedral set is a very hard problem. In the following we prove a general result to define
approximations of function (11) that are easier to handle from a computational point of view
and guarantee satisfaction of (i) and (ii) when evaluated on the vertices of a polyhedron.

Proposition 2 Let V ⊂ [0, 1]n be the set of vertices of a polytope P = {x : Ax ≥ b, x ∈ [0, 1] }.
Let αl and αu be the following values:

αl = min
x∈V

l(x)

αu = min
x∈V

u(x)

where

l(x) =

{
min{xi : i = 1, . . . , n; xi
= 0} if x
= 0
1 if x = 0;

u(x) =

{
max{xi : i = 1, . . . , n; xi
= 1} if x
= e
1 if x = e.

Let φ : [0, 1]n → R be a separable function

φ(x) =
∑
i∈I

ϕ(xi). (12)

We assume that ϕ : [0, 1] → R satisfies the following:

1)
ϕ(0) = ϕ(1); (13)

7

2) there exists an M > 0 such that

(i) for ᾱ ∈ {0, 1} and α̃ ∈ [αl, αu] we have

ϕ(ᾱ)− ϕ(α̃) ≤ −M ; (14)

(ii) for ᾱ, α̃ ∈ [αl, αu] we have

|ϕ(ᾱ)− ϕ(α̃)| ≤ M

n
. (15)

Then, for x, y ∈ V :

a) ψ(x) < ψ(y) implies φ(x) < φ(y);

b) φ(x) < φ(y) implies ψ(x) ≤ ψ(y).

Proof.

a) We consider two points x, y ∈ V such that ψ(x) < ψ(y). We can define two sets of indices
related to the non-integer components of x and y:

U = {i ∈ {1, . . . , n} | i ∈ I, xi /∈ {0, 1}},
W = {j ∈ {1, . . . , n} | j ∈ I, yj /∈ {0, 1}}.

Then we can write

φ(x)− φ(y) =
∑
i∈I

ϕ(xi)−
∑
j∈I

ϕ(yj) =

=
∑
i∈U

ϕ(xi) +
∑
i∈I\U

ϕ(xi)−
∑
j∈W

ϕ(yj)−
∑

j∈I\W
ϕ(yj). (16)

Since ψ(x) < ψ(y), we have that
|U | < |W |

and
|I \ U | > |I \W |.

Let us first consider the case
|W | − |U | = 1.

We can assume that there exists an index j̄ such that

W \ {j̄} = U

(I \ U) \ {j̄} = I \W.
Then we can write

φ(x)− φ(y) = ϕ(xj̄)− ϕ(yj̄) +
∑
j∈U

ϕ(xj) +
∑
j∈I\U
j �=j̄

ϕ(xj)−
∑
j∈W
j �=j̄

ϕ(yj)−
∑

j∈I\W
ϕ(yj) =

= ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

ϕ(xj) +
∑

j∈I\U
j �=j̄

ϕ(xj)−
∑
j∈W
j �=j̄

ϕ(yj)−
∑
j∈I\U
j �=j̄

ϕ(yj) =

= ϕ(xj̄)− ϕ(yj̄) +
∑
j∈I\U
j �=j̄

(ϕ(xj)− ϕ(yj)) +
∑
j∈W
j �=j̄

(ϕ(xj)− ϕ(yj)) ≤

≤ ϕ(xj̄)− ϕ(yj̄) +
∑
j∈I\U
j �=j̄

(ϕ(xj)− ϕ(yj)) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)| (17)

8

By using (13) we obtain

φ(x)− φ(y) ≤ ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)|. (18)

Now we notice that xj̄ ∈ {0, 1}, yj̄ ∈ [αl, αu] and xj, yj ∈ [αl, αu] for all j ∈ W \ {j̄} .
Then, by using (14) and (15), we have

φ(x)− φ(y) ≤ ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)| ≤ −M + (|I| − 1)
M

n
< 0. (19)

Hence we have
φ(x) < φ(y).

Let us now consider the case
|W | − |U | > 1.

We can assume that there exists a set J̄ such that

W \ J̄ = U

(I \ U) \ J̄ = I \W.
Then we can write

φ(x)− φ(y) =
∑
j∈J̄

(ϕ(xj)− ϕ(yj)) +
∑
j∈U

ϕ(xj) +
∑
j∈I\U
j/∈J̄

ϕ(xj)−
∑
j∈W
j/∈J̄

ϕ(yj)−
∑

j∈I\W
ϕ(yj).

By using the same arguments used before we obtain

φ(x) − φ(y) ≤
∑
j∈J̄

(ϕ(xj)− ϕ(yj)) +
∑

j∈W\J̄
|ϕ(xj)− ϕ(yj)|. (20)

Now we notice that xj ∈ {0, 1}, yj ∈ [αl, αu] for all j ∈ J̄ and xj , yj ∈ [αl, αu] for all
j ∈W \ J̄ . Then, by using (14) and (15), we have

φ(x)− φ(y) ≤
∑
j∈J̄

(ϕ(xj)− ϕ(yj)) +
∑

j∈W\J̄
|ϕ(xj)− ϕ(yj)| ≤

≤ −M |J̄ |+ (|I| − |J̄ |)M
n
< 0. (21)

Once again we have
φ(x) < φ(y).

b) We assume by contradiction that there exist two points x, y ∈ V such that φ(x) < φ(y)
and

ψ(x) > ψ(y). (22)

By (22), recalling the first part of the proof, we have that φ(x) > φ(y), which contradicts
our initial assumption.

9

�

Summarizing, if an approximation φ(x) satisfying the assumptions of Proposition 2 is available,
we can solve, in place of the original FP problem (7), the following problem

min φ(x) =
∑
i∈I

ϕ(xi)

s.t. Ax ≥ b (23)

0 ≤ xi ≤ 1 ∀i ∈ I.

As the method we use for solving the minimization problem stated above is the Frank-Wolfe
algorithm, which at each step moves from a vertex to another guaranteeing the reduction of
the chosen approximation, we have (by point b) of Proposition 2) that, at each iteration of the
algorithm, the number of the noninteger components of the current solution does not increase.
Taking into account Proposition 2 and the ideas developed in [30, 34], we consider the following
ϕ(·) terms to be used in the objective function of problem (23):

Logarithmic function
ϕ(t) = min

{
ln(t+ ε), ln[(1− t) + ε]

}
(24)

Hyperbolic function
ϕ(t) = min

{− (t+ ε)−p,−[(1 − t) + ε]−p
}

(25)

Exponential function

ϕ(t) = min
{
1− exp(−αt), 1 − exp(−α(1− t))

}
(26)

Logistic function

ϕ(t) = min
{
[1 + exp(−αt)]−1, [1 + exp(−α(1 − t))]−1

}
(27)

where ε, α, p > 0. In Fig. 1, we compare the ϕ term related to the FP heuristic with those given
by (24)-(27).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic function with α = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

Hyperbolic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

Logarithmic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Concave function with α = 5

Figure 1: Comparison between the original FP term (dashed line) and the new terms (solid
line).

Now we prove that, for a particular choice of the ϕ term, the assumptions of Proposition 2 are
satisfied.

10

Proposition 3 For the term (24), there exists a value ε̄ > 0 such that for any ε ∈ (0, ε̄]
assumptions 1) and 2) of Proposition 2 are satisfied.

Proof. It can be easily noticed that when x ∈ {0, 1} we have

ϕ(x) = ln ε,

then assumption 1) of Proposition 2 is satisfied.

Now, without any loss of generality, we suppose

αl = min{αl, 1− αu} (28)

and we notice that there exists a value ε̄ > 0 such that for any ε ∈ (0, ε̄] the following inequality
holds:

ln ε− ln(αl + ε) + n(ln(1/2 + ε)− ln(αl + ε)) ≤ 0. (29)

As the function ϕ(t) is strictly increasing in [0, 12] and strictly decreasing in (12 , 1] and it is
symmetric with respect to the point t = 1

2 , we have for ᾱ ∈ {0, 1} and α̃ ∈ [αl, αu]

ϕ(ᾱ)− ϕ(α̃) ≤ ϕ(0) − ϕ(αl).

Then we set
M = ϕ(αl)− ϕ(0) = ln(αl + ε)− ln ε, (30)

and (i) in Assumption 2) of Proposition 2 is satisfied.

As the maximum of ϕ(t) is attained at t = 1
2 and due to the structure of function ϕ(t), we have

for any choice of ᾱ, α̃ ∈ [αl, αu]:

|ϕ(ᾱ)− ϕ(α̃)| ≤ ϕ(1/2) − ϕ(αl). (31)

Since ii) in Assumption 2) needs to be verified for any choice of ᾱ, α̃ ∈ [αl, αu], by (31) it is
sufficient to show that

ϕ(1/2) − ϕ(αl) ≤ M

n
.

By using (30) and (29), we can easily verify that for any ε ∈ (0, ε̄], the following inequality holds:

ϕ(0)− ϕ(αl) + n(ϕ(1/2) − ϕ(αl)) = (32)

= ln ε− ln(αl + ε) + n(ln(1/2 + ε)− ln(αl + ε)) ≤ 0.

Then (ii) in Assumption 2) of Proposition 2 is satisfied. �

The result proved in Proposition 3 for the term (24) can also be proved for the terms (25)-(27)
repeating the same arguments, thus all the merit functions (24)-(27) are suitable to penalize the
number of variables that violate the integrality constraints.

We remark that functions (24)-(27) have also another interesting theoretical property: they can
be used in an exact penalty approach like that proposed in [30]. In fact, it is possible to prove
that terms (24)-(27) can be used to transform a MIP problem into an equivalent continuous
problem:

11

Proposition 4 Let f be a Lipschitz continuous function bounded on P. For every penalty term

φ(x) =
∑
i∈I

ϕ(xi)

with ϕ as in (24)-(27) a value ε̄ > 0 exists such that, for any ε ∈]0, ε̄], problem
min f(x), s.t. x ∈ P, xi ∈ {0, 1}, ∀i ∈ I (33)

and problem
min f(x) + φ̃(x, ε), s.t. x ∈ P, 0 ≤ xi ≤ 1, ∀i ∈ I (34)

where

φ̃(x, ε) =

⎧⎪⎨
⎪⎩

φ(x) if ϕ is given by (24)-(25)

1

ε
φ(x) if ϕ is given by (26)-(27)

have the same minimum points.

Proof. the proof follows the same arguments as in [30]. See Appendix A for further details. �

This result suggests that these new merit functions can be used to define new Feasibility Pump
heuristics that improve the quality of the solution in terms of objective function value like those
proposed in [1] and [10]. In fact, the heuristic proposed in [1] can be seen as a Frank-Wolfe
algorithm applied to problem (34) with the penalty term (8). Furthermore, the restarting rules
used in the Feasibility Pump algorithm can be reinterpreted as techniques for escaping from
noninteger stationary points.
We can also include these functions into an algorithmic framework to determine the minimizer
of a nonlinear programming problem with integer variables (see e.g. [33]). Anyway, the use of
the continuous reformulation of the original mixed integer problem is beyond the scope of this
paper and will be the subject of a future work.
In the next Section we will focus on finding a first feasible solution to a MIP problem. In
particular, we tackle problem (23) by a modified Feasibility Pump approach based on the concave
functions described above.

6 A reweighted version of the Feasibility Pump heuristic

The use of the merit functions (24)-(27) defined in the previous section leads to a new FP scheme
where the �1-norm used for calculating the next LP-feasible point is replaced with a “weighted”
�1-norm of the form

ΔW (x, x̃) =
∑
j∈I

wj|xj − x̃j | = ‖W (x− x̃)‖1, (35)

where
W = diag(w1, . . . , wn)

and wj , j = 1, . . . , n are positive weights depending on the merit function φ chosen. The main
feature of the method is the use of an infeasibility measure that

- tries to discourage the optimal solution of the relaxation from being far from x̃ (similarly
to the original FP algorithm);

- takes into account, in some way, the information carried by the LP-feasible points obtained
at the previous iterations of the algorithm for speeding up the convergence to 0-1 feasible
points.

12

A possible choice for the weights wj , j = 1, . . . , n is the following:

wj = |gj |, j = 1, . . . , n,

where g ∈ ∂φ(x̄) and x̄ is the LP-feasible point obtained at the previous iteration of the algo-
rithm.

Here we report an outline of the algorithm:

Reweighted Feasibility Pump (RFP) - basic version

Initialization: Set k = 0, let x̄0 := argmin{cTx : x ∈ P}
While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{‖W k(x− x̃k)‖1 : x ∈ P}
Step 5 Update k = k + 1

End While

We assume that the round and perturb procedures are the same as those described in Section 2 for
the original version of the FP heuristic. Anyway, different rounding and perturbing procedures
can be suitably developed.
In particular, the rounding procedure could be replaced with a scheme based on constraint
propagation like that one proposed in [19]. Other possibilities can be inspired by the procedures
recently proposed in [3, 9] examining rounded solutions along suitable line segments.
Following the same reasoning of Section 4, we can reinterpret the reweighted FP heuristic without
perturbation as the unitary stepsize Frank-Wolfe algorithm applied to the merit function φ. Let
us now consider a generic iteration k of the reweighted FP. At Step 2, the algorithm rounds the
solution x̄k, thus giving x̃k. Then, at Step 4, it computes the solution of the LP problem

x̄k+1 ∈ argminΔW k(x, x̃k)

s.t. Ax ≥ b (36)

0 ≤ xj ≤ 1 ∀j ∈ I.

Similarly to the FP algorithm, these two operations can be included in the unique step of
calculating the solution of the following LP problem:

min
∑

j∈I:x̄k
j<

1
2

wk
j xj −

∑
j∈I:x̄k

j≥ 1
2

wk
j xj

s.t. Ax ≥ b (37)

0 ≤ xj ≤ 1 ∀j ∈ I.

By setting
wk
j = |gkj |

with gk ∈ ∂φ(x̄k), Problem (37), as we have already said, can be seen as the iteration of the
Frank Wolfe method with unitary stepsize applied to the minimization problem (23).

13

In order to highlight the differences between the �1-norm and the weighted �1-norm we report
the following example:

Example 2 Consider the MILP problem:

min cTx (38)

s.t. x ∈ P

x ∈ {0, 1}3

where P ⊂ [0, 1]3 is the polyhedron in Fig. 2. Let xL =
(

9
20 ,

1
8 ,

1
8

)
be the solution of the linear

relaxation of (38) and xI = (0, 0, 0) be its rounding. The minimization of Δ(x, xI) = ‖x− xI‖1

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xN

xL

xI

xF

Figure 2: Feasible set of Problem 38.

over P leads to xN =
(
1
8 ,

1
8 ,

1
8

)
, since ‖xN − xI‖1 < ‖x− xI‖1, for all x ∈ P .

Consider now the weighted �1-norm obtained using the logarithmic merit function

φ(x) =
∑
i∈I

min
{
ln(xi + ε), ln[(1− xi) + ε]

}
,

where ε is a small positive value. By minimizing the weighted distance between x and xI over
P , we obtain the point xF = (1, 0, 0). In fact, we have

ΔW (xF , xI) < ΔW (x, xI),

for all x ∈ P . Thus the �1-norm finds a solution which does not satisfy the integrality con-
straints, while the reweighted �1-norm gets an integer feasible solution.

We want to remark that the original Feasibility Pump Algorithm is a special case of the
Reweighted Feasibility Pump obtained by setting W k = I.

We can further use the merit functions (24)-(27) in the OFP approach recalled in Section 3
to obtain a reweighted version of the algorithm, the Objective Reweighted Feasibility Pump
(ORFP). The new objective function of the LPs becomes the following:

ΔW,θ(x, x̃) =
1− θ

‖Δ‖ ΔW (x, x̃) +
θ

‖c‖c
Tx, (39)

14

where ‖Δ‖ =
√|I| and θ ∈ [0, 1]. As in the standard OFP, at each iteration k, the coefficient

θk is decreased by a factor ν < 1 (i.e. θk+1 = νθk).
Anyway, this choice follows exactly the approach proposed in [1] and does not take into account
the fact that the proposed merit functions and the original FP merit function have different
behaviors. Hence, new approaches could be developed to combine those merit functions with
the original objective function (e.g. a convex combination with different coefficients and updating
rules).

7 Combining Two Merit Functions

As we have already said, the main drawback of the FP heuristic is its tendency to stall (i.e. to get
stuck in a point that is not an integer feasible solution). For this reason, a random perturbation
(or a restart) is performed. A good idea might be that of modifying the objective function (in
addition to the random perturbation/restart usually adopted) any time the algorithm stalls.
This modification may help escaping from the last stationary point obtained and speed up the
convergence to an integer feasible solution. A possibility might be that of considering a convex
combination of two different merit functions:

φ(x) = λφ1(x) + (1− λ)φ2(x) (40)

with λ ∈ [0, 1], and modifying the λ parameter as soon as the algorithm stalls. This is equivalent
to use, in the RFP algorithm:

1) a matrix W k with the following terms:

wk
j = λk|gkj |+ (1− λk)|hkj | j = 1, . . . , n

where gkj ∈ ∂φ1(x̄
k) and hkj ∈ ∂φ2(x̄

k);

2) an updating rule for the λ parameter that slightly (significantly) changes the penalty term
anytime a perturbation (restart) is performed.

In Figure 3 we can see the behaviour of a function obtained by combining the exponential and
the logistic function.

8 Numerical Results

In this section we report computational results to compare our version of the FP algorithm with
the original FP described in [17] and the Objective Feasibility Pump described in [1]. The test
set used in our numerical experience consists of 153 instances of 0-1 problems from MIPLIB2003
[2] and COR@L libraries. All the algorithms were implemented in C and we have used ILOG
Cplex [26] as solver of the linear programming problems. All tests have been run on an Intel
Core2 E8500 system (3.16GHz) with 3.25GB of RAM.
We compare the FP with the reweighted version in different scenarios:

1 Randomly generated starting points: for the terms (8), (24)-(27), we solved the
corresponding penalty formulation (23) by means of the Frank-Wolfe algorithm using 1000
randomly generated starting points. The aim of the experiment was to highlight the ability
of each penalty formulation to find an integer feasible solution.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ=1.0

λ=0.8

λ=0.5

λ=0.2

λ=0.0

Figure 3: Behaviour of the function obtained combining exponential and logistic function

2 FP vs RFP: in order to evaluate the effectiveness of the new penalty functions, we
compared the Feasibility Pump algorithm with the Reweighted Feasibility Pump, where
the distance ΔW (x, x̃) is defined using the terms (24)-(27).

3 FP vs Combined RFP: we made a comparison between the Feasibility Pump algorithm
and the Reweighted Feasibility Pump where the distance ΔW (x, x̃) is the combination of
two different penalty terms. The aim of the experiment was to show that the combination
of two different functions can somehow improve the RFP algorithm performance.

4 OFP vs ORFP: we made a comparison between the Objective Feasibility Pump and
the Objective Reweighted Feasibility Pump. In this experiment, the distance ΔW,θ(x, x̃)
is the combination of the original objective function of the problem considered and the
Exponential and Logistic penalty terms.

5 OFP vs Combined ORFP: we made a comparison between the Objective Feasibility
Pump and the Combined Objective Reweighted Feasibility Pump. In this experiment, the
distance ΔW,θ(x, x̃) is the combination of the original objective function of the problem
considered and a term given by the combination of the Exponential and Logistic penalty
terms. The aim of the experiment was to show that the combination of the two merit
functions proposed is beneficial also for the Objective Feasibility Pump.

The choice of the merit function parameters is critical for the efficiency of the algorithm. From
one hand, by following Proposition 2, it would be better setting the parameter of a chosen merit
function to a sufficiently small value. On the other hand, when the parameter is very small,
the slope of the graph related to the function ϕ gets very large close to 0 or 1, thus making the
problem, in some cases, hard to be solved. We performed our experiments using:

- Penalty term (8) denoted by FP;

- Penalty term (24) denoted by Log, with ε = 0.1;

- Penalty term (25) denoted by Hyp, with ε = 0.1;

- Penalty term (26) denoted by Exp, with α = 0.5;

- Penalty term (27) denoted by Logis, with α = 0.1.

16

On the basis of our numerical experience, the values of the parameters reported above represent
a good compromise between theory and practice.

In scenarios 2, 3, 4 and 5, we stop the algorithms if an integer solution is found or if the limit
of 1500 iterations is reached. Due to the random effects introduced by perturbations and major
restarts, each problem is tested on a particular penalty function on 10 runs (with different
random seeds).

8.1 Computational results for randomly generated starting points

In this first experiment, we applied the Frank-Wolfe algorithm to solve problem (23) with the
objective functions (8), (24)-(27). The algorithm stops when it finds a stationary point (which
is not necessarily integer feasible). The goal of the experiment was to understand how good
is each function in finding an integer feasible solution. In order to obtain reliable statistics we
used 1000 randomly generated starting points. The results obtained on the MIP problems when
using randomly generated starting points are shown in Figure 4, where we report the box plots
related to the distribution of the number of integer feasible solutions found by each function
(we discarded the problems where no function found an integer feasible solution). On each
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and outliers are
plotted individually.

0

100

200

300

400

500

600

700

800

900

1000

FP EXP LOG HYP LOGIS

Figure 4: Comparison between the original FP term and the new terms for randomly generated
starting points.

0

50

100

150

200

250

300

333

FP FP−EXP−LOGIS
0

50

100

150

200

250

300

333

EXP FP−EXP−LOGIS
0

50

100

150

200

250

300

333

LOGIS FP−EXP−LOGIS

Figure 5: Number of integer feasible solutions found in the parallel experiment.

17

We can observe that the results obtained by means of the Exp and the Logis functions, in terms
of number of integer feasible solutions found, are slightly better than those obtained using the
FP. FP, in turn, gives better results than Log and Hyp penalty functions.
This preliminary computational experience seems to show that the functions have a different
behavior in forcing the integrality of the solution. These diversities could be somehow exploited
into a multistart strategy. In particular, we could develop a new framework where the mini-
mization of different functions is carried out in parallel. In order to investigate the effect of the
parallel use of different functions, we applied the Frank-Wolfe algorithm to three merit functions
(using three different randomly generated starting points) and we chose the solution with the
highest number of integer components among the three. We compared this strategy with the
one where we use the same merit function on three different starting points. In Figure 5, we
report the results obtained on 333 repetitions of the parallel experiment, when using for each
repetition:

- the same merit function with three different starting points;

- three different merit functions (FP, Exp and Logis) each one with a different starting point.

We discarded the problems where in both cases no integer feasible solution over the 333 rep-
etitions was found. We can see from Figure 5 that the use of three different merit functions
in parallel outperforms the use of only one merit function in the case of FP and Exp. The
difference in the performances between the use of three different merit functions in parallel and
the use of the Logis merit function is less evident, however the results obtained by the Logis
function have a median of 298.0 and a 25th percentile of 95.5, while the results obtained by
using three different merit functions have a median of 302.5 and a 25th percentile of 98.5. The
results obtained in the parallel experiment suggest that, into a multistart strategy, the use of
different merit functions can help diversifying the local minima computed by the algorithm, thus
increasing the number of integer feasible solutions found.

8.2 Comparison between FP and RFP

In order to evaluate the ability of finding a first feasible solution, we report in Table 1, for each
penalty term:

• The number of problems for which no feasible solution has been found (Not found);

• The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

• The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

• The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 1, FP, Exp and Logis terms have a similar behavior and they are
slightly better than Hyp and Log terms.
In order to show the efficiency in terms of objective function value, we consider the 108 problems
for which an integer feasible solution is found in all the ten runs by all the algorithms and, in
Table 2, we report for each penalty term:

• Number of problems for which the best average o.f. value (average over ten runs) is
obtained (Best Average o.f.);

• Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

18

As we can see by taking a look at Table 2, the Log and Hyp terms give the best performance
in terms of objective function value. Furthermore, Exp and Logis terms are comparable and
perform better than FP term.

Not found Found at least once Found 10 times Average number of f.s. found
FP 16 9 128 8.61
Exp 15 11 127 8.75
Log 18 15 120 8.28
Hyp 27 15 111 7.65
Logis 16 11 126 8.71

Table 1: Comparison between FP and RFP (Feasible solutions).

Best Average o.f. Best Min o.f.
FP 24 24
Exp 28 27
Log 30 26
Hyp 32 28
Logis 27 25

Table 2: Comparison between FP and RFP (Objective function value)

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the penalty terms (24)-(27) are shown in Tables 17 - 21. The results re-
lated to the problems for which an integer feasible solution is found in all the ten runs are
reported in Tables 17 - 19. The results related to the problems for which an integer feasible
solution is found in less than ten runs are reported in Tables 20 - 21. By taking a look at the
tables, we can notice that the RFP algorithm obtained using the Exp merit function (Exp RFP
algorithm) and the one obtained using the Logis merit function (Logis RFP algorithm) are
competitive with the FP in terms of both number of iterations and CPU time. They are also
better than the RFP algorithm with the Log merit function (Log RFP algorithm) and the one
with the Hyp merit function (Hyp RFP algorithm) that, in addition, have a larger number of
failures. Despite these facts, Log RFP and Hyp RFP algorithms generally give good results in
terms of objective function value. In order to better assess the differences in terms of iterations
and CPU time between FP and the various versions of the RFP algorithm, we report in Table
3 the geometric means for all the algorithms calculated over 108 instances (those problems for
which a feasible solution is found in all the ten runs). In the calculations of the geometric means
individual values smaller than 1 are replaced by 1. The results in Table 3 seem to confirm that
Exp and Logis RFP algorithms are competitive with FP algorithm.

FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
Iter Time Iter Time Iter Time Iter Time Iter Time
5.774 1.793 4.851 1.683 5.684 1.657 7.193 1.757 4.869 1.678

Table 3: Comparison between FP and RFP (Geometric Means)

In order to better assess the differences between the FP algorithm and the Reweighted FP
algorithm, we considered the 123 problems for which an integer feasible solution is found in all
the ten runs by FP, Exp RFP and Logis RFP algorithms. We divided the problems into three
different classes depending on the CPU time t (seconds) needed by the algorithms to find a
feasible solution:

19

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time t ≤ 1 (76 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (12 problems);

- Medium. All the problems that are neither Easy nor Hard (35 problems).

We report in Figure 6 the results, in terms of CPU time, obtained by the FP, Exp RFP and Logis
RFP algorithms on the three classes of problems. Exp RFP and Logis RFP are comparable with
FP on the Easy and Medium classes, while they outperform it on the Hard class. Once again,
we could develop a new framework where different algorithms are used in parallel. In order to
investigate the effect of the parallel use of different algorithms, we ran three algorithms and we
chose the solution with the lowest CPU time among the three. We report in Figure 7 the results
obtained using:

- 3 runs of the FP algorithm;

- one different algorithm (FP, Exp RFP and Logis RFP) for each run.

By taking a look at the results, we can see that the use of different functions improves the
performance in Medium and Hard classes, while giving comparable results on the Easy class.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FP EXP LOGIS

0

2

4

6

8

10

12

14

16

18

20

FP EXP LOGIS
−200

0

200

400

600

800

1000

1200

1400

1600

FP EXP LOGIS

Easy Medium Hard

Figure 6: Results in terms of CPU time for the three classes of problems.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FP FP−EXP−LOGIS

0

2

4

6

8

10

12

14

16

18

FP FP−EXP−LOGIS

0

100

200

300

400

500

600

700

FP FP−EXP−LOGIS

Figure 7: Results in terms of CPU time for the parallel experiment.

20

8.3 Comparison between FP and combined RFP

In this subsection, we show the effects of combining two different functions. We report the
results obtained combining the following functions:

- Fp term and Log term, denoted by FP+Log;

- Exp term and Log term, denoted by Exp+Log;

- Logis term and Log term, denoted by Logis+Log;

- Exp term and Logis term, denoted by Exp+Logis.

We set φ1(x) equal to the merit function obtained using the first term and φ2(x) equal to the
merit function obtained using the second term (See (40)). We start with λ0 = 1 and we reduce
it every time a perturbation occurs. More precisely, we can have two different cases:

- Weak Perturbation Update: λk+1 = 0.5λk

- Strong Perturbation Update: λk+1 = 0.1λk

When a strong perturbation occurs, it means that the algorithm is stuck in a cycle. Then the
updating rule significantly changes the penalty term, so moving towards the function belonging
to the second class.
In order to evaluate the ability of finding a first feasible solution, we report in Table 4, for each
penalty term:

• The number of problems for which no feasible solution has been found (Not found);

• The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

• The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

• The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 4, All terms have a similar behavior.
In order to show the efficiency in terms of objective function value, we consider the 123 problems
for which an integer feasible solution is found in all the ten runs by all the algorithms and, in
Table 5, we report for each penalty term:

• Number of problems for which the best o.f. value (average over ten runs) is obtained (Best
Average o.f.);

• Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

As we can see by taking a look at Table 5, the combined terms give better performance in terms
of objective function value than the FP term. Furthermore, Exp+Log combination gives the
best performance.

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the combined penalty terms are shown in Tables 22 - 26. The results
related to the problems for which an integer feasible solution is found in all the ten runs are
reported in Tables 22 - 24. The results related to the problems for which an integer feasible

21

Not found Found at least once Found 10 times Average number of f.s. found
FP 16 9 128 8.61
FP+Log 17 11 125 8.61
Exp+Log 19 6 128 8.55
Logis+Log 17 9 127 8.58
Exp+Logis 16 10 127 8.59

Table 4: Comparison between FP and Combined RFP (Feasible solutions)

Best Average o.f. Best Min o.f.
FP 19 19
FP+Log 31 30
Exp+Log 35 33
Logis+Log 32 30
Exp+Logis 32 30

Table 5: Comparison between FP and Combined RFP (Objective function value)

solution is found in less than ten runs are reported in Tables 25 - 26. By taking a look at the
tables, we can notice that the Combined RFP algorithm obtained using the Exp and the Logis
merit functions (Exp+Logis RFP algorithm) gives the best performance. Furthermore, all the
versions of the Combined RFP algorithm are competitive with the standard FP algorithm. We
report in Table 6 the geometric means for all the algorithms calculated over 123 instances (those
problems for which a feasible solution is found in all the ten runs). In the calculations of the
geometric means individual values smaller than 1 are replaced by 1. The results in Table 6 seem
to confirm that the Exp+Logis RFP Algorithm is the best among the combined versions of the
RFP algorithm and that all the combined RFP algorithms behave favorably when compared to
the original FP algorithm in terms of CPU time.

FP FP+Log Exp+Log Logis+Log Exp+Logis
Iter Time Iter Time Iter Time Iter Time Iter Time
6.252 2.034 6.474 1.630 6.438 1.650 6.388 1.663 5.765 1.617

Table 6: Comparison between FP and Combined RFP (Geometric Means)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FP EXP+LOGIS

0

2

4

6

8

10

12

14

16

18

20

FP EXP+LOGIS
−200

0

200

400

600

800

1000

1200

1400

1600

FP EXP+LOGIS

Easy Medium Hard

Figure 8: Results in terms of CPU time for the three classes of problems.

In order to better assess the differences between the FP algorithm and the Exp+Logis RFP
algorithm, we considered the 124 problems for which an integer feasible solution is found in
all the ten runs by the two algorithms. We divided the problems into three different classes
depending on the CPU time t (seconds) needed by the algorithms to find a feasible solution:

22

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time t ≤ 1 (80 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (12 problems);

- Medium. All the problems that are neither Easy nor Hard (32 problems).

We report in Figure 8 the results, in terms of CPU time, obtained by the FP and Exp+Logis
RFP algorithms on the three classes of problems. As we can see, Exp+Logis RFP improves the
performance in all the classes.

8.4 Comparison between OFP and ORFP

In the following we report a comparison between the Objective Feasibility Pump (OFP) [1]
and the Objective Reweighted Feasibility Pump with the Exp (Exp ORFP) and Logis (Logis
ORFP) terms. In order to evaluate the ability of finding a first feasible solution, we report in
Table 7, for each penalty term:

• The number of problems for which no feasible solution has been found (Not found);

• The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

• The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

• The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 7, OFP, Exp ORFP and Logis ORFP terms have a similar average
number of feasible solutions found. Logis ORFP has the highest number of failures in terms of
number of problems for which no feasible solution has been found, but also the highest number
of problems for which a feasible solution has been found for all the ten runs.

Not found Found at least once Found 10 times Average number of f.s. found
OFP 17 29 107 7.99
Exp ORFP 17 32 104 7.94
Logis ORFP 21 21 111 7.92

Table 7: Comparison between OFP and ORFP (Feasible solutions)

The detailed results of the comparison between the Objective Feasibility Pump algorithm and
the Objective Reweighted Feasibility Pump are shown in Tables 27 - 31. The results related to
the problems for which an integer feasible solution is found in all the ten runs are reported in
Tables 27 - 29. The results related to the problems for which an integer feasible solution is found
in less than ten runs are reported in Tables 30 - 31. The OFP fails to find a feasible solution in
all the ten runs for 46 instances, the Exp ORFP for 49, the Logis ORFP for 42.

The introduction of the objective function generally improves the quality of the feasible solution
found and in some cases we notice a relevant improvement in the percentage gap with respect to
the best known solution. This improvement can sometimes correspond to an improvement in the
computational time, too. We report in Table 8 the CPU time and the gap with respect to the

23

FP OFP Exp RFP Exp ORFP Logis RFP Logis ORFP
Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.2 18 0.1 13388 0.2 18 0.1 14873 0.2 18 0.1
dano3-3 73 31.7 0 53.2 73 13.3 0 79.3 73 17.7 0 104.8
dano3-4 73 23.9 0 119.2 73 13.6 0 108.5 69 15.9 0 96.4
dano3-5 72 26.5 0 104.1 73 14.5 0 128.3 73 16.5 0 134.5

neos-476283 160 444.7 1 47.7 80 121.2 1 47.2 68 71.8 2 48.0
neos-780889 216 48.2 0 13.4 223 52.4 0 13.4 219 50.2 0 13.3

qap10 48 1690.5 14 27.8 19 7.5 20 36.0 19 8.7 3 21.2

Table 8: Improvement in the quality of the solution by the introduction of the objective function
in the FP and in the RFP.

optimal solution for some instances where the introduction of the objective function improves
the quality of the solution.

Overall, the OFP and the Logis ORFP found the optimal solution for 10 instances, while the
Exp ORFP for 12 instances. Since in this case we are interested in finding the algorithm with
best performance in terms of both CPU time and Gap value, we compare Exp OFP and Logis
OFP with OFP in terms of wins (minimum CPU time and minimum Gap):

- OFP vs Exp ORFP: The OFP has a number of 39 wins against 46 wins of the Exp
ORFP;

- OFP vs Logis ORFP: Both the OFP and the Logis ORFP have 38 wins.

Let us now analyze the behavior of the various algorithms in terms of number of iterations
and computational time. We report in Table 9 the geometric means for all the algorithms
calculated over those problems for which a feasible solution is calculated in all the ten runs. In
the calculations of the geometric means individual values smaller than 1 are replaced by 1. The
results in Table 9 indicate that both the Exp ORFP and the Logis ORFP have a geometric
mean in terms of CPU time slightly lower than the geometric mean of the OFP; while the Logis
ORFP has a geometric mean in terms of number of iterations higher than the other two.

OFP Exp ORFP Logis ORFP
Iter Time Iter Time Iter Time

16.7396 1.8725 16.3445 1.8694 18.6573 1.8123

Table 9: Comparison between OFP and ORFP (Geometric Means)

In order to better assess the differences between the OFP and the ORFP, we considered the
problems for which an integer feasible solution is found in all the ten runs by the algorithms in
comparison. We divided the problems into three different classes depending on the CPU time t
(seconds) needed by the algorithms to find a feasible solution:

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time t ≤ 1 (66 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (8 problems);

- Medium. All the problems that are neither Easy nor Hard (27 problems).

We report in Figure 9 the results in terms of CPU Time, obtained by the OFP, the Exp ORFP
and the Logis ORFP algorithms for the three classes of problems. We further report the CPU
time and Gap percentage for the instances in the Hard Class in Table 10. We can notice that
on the Easy Class the three algorithms have the same behavior. On the medium class they are

24

comparable, while in the Hard Class the Logis ORFP has the highest median. However looking
at the results in Table 10, it can be seen that the Logis ORFP has the lowest CPU time on 5
instances over 8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V

al
ue

s

0

2

4

6

8

10

12

14

16

18

V
al

ue
s

0

50

100

150

200

250

V
al

ue
s

OFPOFPOFP ExpExpExp LogisLogisLogis

Easy Medium Hard

Figure 9: Box plots of the CPU time - OFP vs ORFP.

Problem OFP EXP ORFP LOGIS ORFP
Time Gap% Time Gap% Time Gap%

air04 23.8 4 23.3 4 23 4
dano3mip 275.6 - 282.6 - 273.9 -
dano3-3 53.2 0 79.3 0 104.8 0
dano3-4 119.2 0 108.5 0 96.4 0
dano3-5 104.1 0 128.3 0 134.5 0
neos12 28.1 37 31.8 36 6.5 0

neos476283 47.7 1 47.2 1 48 2
qap10 27.8 14 36 20 21.2 3

Table 10: Detailed results for the Hard Class - OFP vs ORFP

In order to analyse the behavior of the algorithms in terms of solution quality, we consider in
Figure 10 the data profiles for the gap percentage obtained by the various algorithms for the
various classes of problems. The plots in Figure 10 give on the y-axis the number of problems
whose gap is smaller or equal than the value given on the x-axis. We can notice that the profiles
of the three algorithms are comparable. For the Easy class the Exp ORFP profiles is slightly
better than the others, while for the Hard Class the Logis ORFP is the best of the three. We
further report in Table 11 some instances where the use of ORFP is beneficial in terms of Gap.
We finally want to remark that there are four instances where at least one version of the ORFP
closes the gap and OFP do not, while the opposite never happens.

OFP Exp ORFP Logis ORFP
opt1217 20 0 17
sp97ar 717 597 66
neos-12 37 36 0

neos-826812 1 1 0
neos-932816 1 0 1
neos-1200887 20 14 5
neos-1228986 18 7 4

qap10 14 20 3

Table 11: Examples of instances where ORFP improves the Gap.

25

0 20 40 60 80 100
10

20

30

40

50

60

70

80
Gap Performance − All

0 20 40 60 80 100
0

10

20

30

40

50
Gap Performance − Easy

0 20 40 60 80 100
5

10

15

20

25
Gap Performance − Medium

0 20 40 60 80 100
3

4

5

6

7

Gap Performance − Hard

OFP

Exp ORFP

Logis ORFP

Figure 10: Profiles of the Gap% - OFP vs ORFP.

As a concluding remark, we would like to point out the fact that Exp ORFP has a larger number
of wins than ORFP and comparable performance in terms of gap, while Logis ORFP has the
same number of wins and good performance in terms of gap (see results for the Hard class).

8.5 Comparison between OFP and Combined ORFP

In the following we report a comparison between the Objective Feasibility Pump (OFP) [1] and
the Combined Objective Reweighted Feasibility Pump where we consider the combination of
the Exp and Logis terms (Exp+Logis ORFP). In order to evaluate the ability of finding a first
feasible solution, we report in Table 12, for each penalty term:

• The number of problems for which no feasible solution has been found (Not found);

• The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

• The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

• The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 12 the Exp+Logis ORFP was not able to find a feasible solution in six
instances more than the OFP. On the other hand it found a feasible solution for all the ten runs
in six instances more than the OFP. The average number of feasible solutions found is similar
for the two algorithms.

The detailed results of the comparison between the Objective Feasibility Pump algorithm and
the Objective Reweighted Feasibility Pump are shown in Tables 27 - 31. The results related to

26

Not found Found at least once Found 10 times Average number of f.s. found
OFP 17 29 107 7.99
Exp+Logis ORFP 23 17 113 8.06

Table 12: Comparison between OFP and Exp+Logis ORFP (Feasible solutions)

the problems for which an integer feasible solution is found in all the ten runs are reported in
Tables 27 - 29. The results related to the problems for which an integer feasible solution is found
in less than ten runs are reported in Tables 30 - 31. The OFP fails to find a feasible solution in
all the ten runs for 46 instances and the Exp+Logis ORFP for 40 instances.

We report in Table 13 the CPU time and the gap with respect to the optimal solution for some
instances where the introduction of the objective function improves the quality of the solution.

FP OFP Exp+Logis RFP Exp+Logis ORFP
Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.15 18 0.10 8930 0.06 18 0.10
dano3-3 73 31.74 0 53.20 13 8.67 0 24.60
dano3-4 73 23.95 0 119.20 15 8.65 0 34.80
dano3-5 72 26.46 0 104.10 16 8.62 0 55.70

neos-476283 160 444.74 1 47.70 33 11.13 3 34.40
neos-780889 216 48.19 0 13.40 193 83.28 0 13.40

qap10 48 1690.54 14 27.80 19 10.64 21 19.40

Table 13: Improvement in the quality of the solution by the introduction of the objective function
in the FP and in the RFP Combined.

Overall, both the OFP and the Exp+Logis ORFP found the optimal solution for 10 instances.
Also in this case we compare ORFP and Comb ORFP in terms of number of wins, and we have
that the OFP has 28 wins, while the Exp+Logis ORFP has 46 wins.

Let us now analyze the behavior of the two algorithms in terms of number of iterations and
computational time by computing the the geometric means on those problems for which a
feasible solution is calculated in all the ten runs. In the calculations of the geometric means
individual values smaller than 1 are replaced by 1. The results in Table 14 indicate that the
Exp+Logis ORFP has a lower geometric mean both in terms of number of iterations and in
terms of CPU time.

OFP Exp+Logis ORFP
Iter Time Iter Time

16.7396 1.8725 11.5181 1.7134

Table 14: Comparison between OFP and Exp+Logis ORFP (Geometric Means)

In order to better assess the differences between the OFP and the Exp+Logis ORFP, we con-
sidered the problems for which an integer feasible solution is found in all the ten runs by the
algorithms in comparison. We divided the problems into three different classes depending on
the CPU time t (seconds) needed by the algorithms to find a feasible solution:

- Easy. Problems for which a feasible solution has been found by the two algorithms in a
time t ≤ 1 (69 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (8 problems);

- Medium. All the problems that are neither Easy nor Hard (25 problems).

27

We report in Figure 11 the results in terms of CPU Time, obtained by the OFP and the
Exp+Logis ORFP on the three classes of problems. We further report the CPU time and Gap
percentage for the instances in the Hard Class in Table 15. We can notice that in the Easy class
the two algorithms have a very similar behavior, while both in the Medium and in the Hard
classes the Exp+Logis ORFP improves the performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
V

al
ue

s

0

2

4

6

8

10

12

14

16

V
al

ue
s

0

50

100

150

200

250

V
al

ue
s

OFPOFPOFP Exp+Logis ORFPExp+Logis ORFPExp+Logis ORFP

Easy Medium Hard

Figure 11: Box plots of the CPU time - OFP vs ORFP Combined.

Problem OFP Exp+Logis ORFP
Time Gap% Time Gap%

air04 23.8 4 39.1 4
dano3mip 275.6 - 181.5 -
dano3-3 53.2 0 24.6 0
dano3-4 119.2 0 34.8 0
dano3-5 104.1 0 55.7 0
neos12 28.1 37 9.3 13

neos476283 47.7 1 34.4 3
qap10 27.8 14 19.4 21

Table 15: Detailed results for the Hard Class - OFP vs Exp+Logis ORFP

In order to analyse the behavior of the algorithms in terms of solution quality, we again consider
in Figure 12 the data profiles for the gap percentage obtained by the two algorithm for the various
classes of problems. Each plot gives the number of instances where a solution was obtained by
a given algorithm within a certain gap percentage. We can notice that the two algorithms are
comparable in all the classes. We further report in Table 16 some instances where the use of
Exp+Logis ORFP is beneficial in terms of Gap.

OFP Exp+Logis ORFP
bc1 304 3

neos-522351 28 4
neos-584851 56 19
neos-829552 1038 140

Table 16: Examples of instances where Exp+Logis ORFP improves the Gap.

As a concluding remark, we would like to point out the fact that Exp+Logis ORFP has a quite
larger number of wins than ORFP, better performance in terms of CPU time and comparable
performance in terms of gap.

28

0 20 40 60 80 100

20

40

60

80

Gap Performance − All

0 20 40 60 80 100
0

10

20

30

40

50

60
Gap Performance − Easy

0 20 40 60 80 100
5

10

15

20

25
Gap Performance − Medium

0 20 40 60 80 100
3

4

5

6

7

Gap Performance − Hard

OFP

Exp+Logis ORFP

Figure 12: Profiles of the Gap% - OFP vs Exp+Logis ORFP.

8.6 Benchmarking Algorithms via Performance Profiles

In order to give a better interpretation of the results generated by the various algorithms we
decided to use performance profiles [16]. We consider a set A of na algorithms, a set P of
np problems and a performance measure mp,a (e.g. in our case, average number of iterations,
average CPU time). We compare the performance on problem p by algorithm a with the best
performance by any algorithm on this problem using the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A} .

Then, we obtain an overall assessment of the performance of the algorithm by defining the
following value

ρa(τ) =
1

np
size{p ∈ P : rp,a ≤ τ},

which represents the probability for algorithm a ∈ A that the performance ratio rp,a is within
a factor τ ∈ R of the best possible ratio. The function ρa represents the distribution function
for the performance ratio. Thus ρa(1) gives the fraction of problems for which the algorithm a
was the most effective, ρa(2) gives the fraction of problems for which the algorithm a is within
a factor of 2 of the best algorithm, and so on.
In Figure 13, we report the performance profiles related to the comparison among FP, Exp RFP
and Logis RFP, in terms of number of iterations (upper left) and CPU time (upper right). It is
clear that Exp RFP and Logis RFP functions have a higher number of wins in terms of number
of iterations and Exp RFP has the highest number of wins in terms of computational time.
Furthermore, the two RFP algorithms are better in terms of robustness.
We further report, in Figure 13, the performance profiles related to the comparison between
FP and the combined version of the RFP obtained using Exp and Logis functions, in terms of
number of iterations (lower left) and CPU time (lower right). If we take a look at the profiles

29

related to the iterations, we can notice that the FP is slightly better in the number of wins,
but the combined RFP is better in terms of robustness. The performance profiles related to the
CPU time clearly show that the combined RFP outperforms the FP both in terms of number
of wins and robustness.
In Figure 14, we report the performance profiles related to the comparison among OFP, Exp
ORFP and Logis ORFP, in terms of number of iterations (upper left) and CPU time (upper
right). The performance profiles related to the number of iterations shows that the Logis ORFP
profile is below the OFP and the Exp ORFP profiles, that are very similar. On the contrary,
the Logis ORFP profile related to the CPU time has the highest number of wins and is slightly
better than the other two in terms of robustness.
We further report, in Figure 14, the performance profiles related to the comparison between
OFP and Exp+Logis ORFP, in terms of number of iterations (lower left) and CPU time (lower
right). We can notice that the Exp+Logis ORFP profile outperforms the OFP profile both in
terms of number of iterations and CPU time.

10
0

10
1

0.7

0.8

0.9

1

RFP − Number of iterations

FP
Exp
Logis

10
0

10
1

0.8

0.85

0.9

0.95

1

RFP − CPU Time

FP
Exp
Logis

10
0

10
1

0.7

0.8

0.9

1

RFP Combined − Number of iterations

FP
Exp+Logis

10
0

10
1

0.75

0.8

0.85

0.9

0.95

1

RFP Combined − CPU Time

FP
Exp+Logis

Figure 13: Performance profiles: FP vs RFP (upper figures); FP vs RFP Combined (lower
figures).

9 Conclusions

In this paper, we focused on the problem of finding a first feasible solution for a 0-1 MIP problem.
We started by interpreting the Feasibility Pump heuristic as a Frank-Wolfe method applied to
a nonsmooth concave merit function. Then we noticed that the reduction of the merit function
used in the FP scheme can correspond to an increase in the number of noninteger variables of
the solution. For this reason, we proposed new concave merit functions that can be included in
the FP scheme having two important properties: they decrease whenever the number of integer
variables increases; if they decrease, then the number of noninteger variables does not increase.

30

10
0

10
1

0.4

0.5

0.6

0.7

0.8

0.9

1

ORFP − Number of iterations

OFP
Exp ORFP
Logis ORFP

10
0

10
1

0.75

0.8

0.85

0.9

0.95

1

ORFP − CPU Time

OFP
Exp ORFP
Logis ORFP

10
0

10
1

0.2

0.4

0.6

0.8

1

ORFP Combined − Number of iterations

OFP
Exp+Logis ORFP

10
0

10
1

0.75

0.8

0.85

0.9

0.95

1

ORFP Combined − CPU Time

OFP
Exp+Logis ORFP

Figure 14: Performance profiles: OFP vs ORFP (upper figures); OFP vs ORFP Combined
(lower figures).

Due to these properties, the functions proposed should speed up the convergence towards inte-
ger feasible points. We reported computational results on a set of 153 0-1 MIP problems. This
numerical experience shows that the version of the Reweighted Feasibility Pump obtained by
combining two of the proposed functions (namely Exp and Logis) compares favorably with the
Feasibility Pump both in its original version and in the enhanced version with the introduction
of the objective function [1]. Furthermore, it highlights that the use of more than one merit
function at time (i.e. parallel framework, combination of functions) can significantly improve
the efficiency of the algorithm.
In [15], we reinterpret the FP for general MIP problems as a Frank-Wolfe method applied to a
suitably chosen function and we extend our approach to this class of problems. Possible improve-
ments of our approach could be accomplished along different lines, for example by replacing the
rounding with a scheme based on constraint propagation like in [19] or with a procedure that
examines rounded solutions along a given line segment as in [3, 9]. In particular the proposed
merit functions could be also used in order to drive the choice of the new rounded point.

Finally, we want to remark that a wider availability of functions for measuring integrality is
important since it can ease the search of feasible solutions for different classes of MIP problems.

10 Appendix A

For convenience of the reader we report the proof of Proposition 4. We recall a general result
concerning the equivalence between an unspecified optimization problem and a parameterized
family of problems.

31

Consider the problems

min f(x) (41)

s.t. x ∈W

min f(x) + ψ(x, ε) (42)

s.t. x ∈ X

We state the following

Theorem 1 Let W and X be compact sets. Let ‖ · ‖ be a suitably chosen norm. We make the
following assumptions.

A1) The function f is bounded on X and there exists an open set A ⊃ W and a real number
L > 0, such that, ∀ x, y ∈ A, f satisfies the following condition:

|f(x)− f(y)| ≤ L‖x− y‖. (43)

The function ψ satisfies the following conditions:

A2) ∀ x, y ∈W and ∀ ε ∈ R+,
ψ(x, ε) = ψ(y, ε).

A3) There exist a value ε̂ and, ∀ z ∈ W , there exists a neighborhood S(z) such that, ∀ x ∈
S(z) ∩ (X \W), and ε ∈]0, ε̂], we have

ψ(x, ε) − ψ(z, ε) ≥ L̂‖x− z‖, (44)

where L̂ > L is chosen as in (43). Furthermore, let S =
⋃
z∈W

S(z), ∃ x̄ /∈ S such that

lim
ε→0

[ψ(x̄, ε) − ψ(z, ε)] = +∞, ∀ z ∈W, (45)

ψ(x, ε) ≥ ψ(x̄, ε), ∀ x ∈ X \ S, ∀ ε > 0. (46)

Then, ∃ ε̃ ∈ R such that, ∀ ε ∈]0, ε̃], Problems (41) and (42) have the same minimum points.

Proof. See [30].

Now we give the proof of the Proposition 4, with

W =
{
x ∈ P : xi ∈ {0, 1}, ∀i ∈ I

}
, X =

{
x ∈ P : 0 ≤ xi ≤ 1, ∀i ∈ I

}
.

Proof of Proposition 4. As we assume that the function f satisfies assumption A1) of Theo-
rem 1, the proof can be derived by showing that every penalty term (24)-(27) satisfies assumption
A2) and A3) of Theorem 1.

Consider the penalty term (24).
Let c be the cardinality of I, for any x ∈W we have

ψ(x, ε) = c · log(ε)
and A2) is satisfied.
We now study the behavior of the function φ(xi), i ∈ I, in a neighborhood of a point zi ∈ {0, 1}.
We distinguish three different cases:

32

1. zi = 0 and 0 < xi < ρ with ρ < 1
2 : We have that φ(xi) = ln(xi + ε) which is continuous

and differentiable for 0 < xi < ρ, so we can use mean value Theorem obtaining that

φ(xi)− φ(zi) =

(
1

x̃i + ε

)
|xi − zi|, (47)

with x̃i ∈ (0, xi). Since x̃i < ρ, we have

φ(xi)− φ(zi) ≥
(

1

ρ+ ε

)
|xi − zi|. (48)

Choosing ρ and ε such that

ρ+ ε ≤ 1

L̂
, (49)

we obtain
φ(xi)− φ(zi) ≥ L̂|xi − zi|. (50)

2. zi = 1 and 1 − ρ < xi < 1 with ρ < 1
2 : We have that φ(xi) = ln(1 − xi + ε) which

is continuous and differentiable for 1 − ρ < xi < 1, so we can use mean value Theorem
obtaining that

φ(xi)− φ(zi) =

(
− 1

1− x̃i + ε

)
(xi − zi) =

(1

1− x̃i + ε

)
|xi − zi|, (51)

with x̃i ∈ (xi, 1). Since ρ <
1
2 and x̃i > 1− ρ we have 1

1−x̃i
> 1

ρ then

φ(xi)− φ(zi) ≥
(

1

ρ+ ε

)
|xi − zi|. (52)

We have again that (50) holds when ρ and ε satisfy (49).

3. zi = xi = 0 or zi = xi = 1: We have φ(xi)− φ(zi) = 0.

We can conclude that, when ρ and ε satisfy (49),

ψ(x, ε) − ψ(z, ε) ≥ L̂
∑
i∈I

|xi − zi| ≥ L̂ sup
i∈I

|xi − zi| (53)

for all z ∈W and all x such that supi∈I |xi − zi| < ρ.

Now we define S(z) = {x ∈ Rn : supi∈I |xi−zi| < ρ} and S =
⋃N

i=1 S(zi) where N is the number
of points z ∈W .
Let x̄ /∈ S be such that ∃j ∈ I : x̄j = ρ (x̄j = 1− ρ) and x̄i ∈ {0, 1} for all i
= j, i ∈ I.
Let {εk} be a sequence such that εk → 0 for k → ∞, we can write for each z ∈W :

lim
k→∞

[ψ(x̄, εk)− ψ(z, εk)] = lim
k→∞

(
[ln(ρ+ εk) + (c− 1) ln(εk)]− c ln(εk)

)
=

lim
k→∞

(
ln(ρ+ εk)− ln(εk)

)
= +∞

and (45) holds.
Then ∀x ∈ X\S, and ∀ε > 0 we have for the monotonicity of the logarithm:

ψ(x, ε) − ψ(x̄, ε) =
∑
i �=j

min{ln(xi + ε), ln(1− xi + ε)} − (c− 1) ln(ε)

+ min{ln(xj̃ + ε), ln(1− xj̃ + ε)} − ln(ρ+ ε) ≥ 0,

where ρ ≤ xj̃ ≤ 1− ρ. Then (46) holds, and Assumption A3) is satisfied.
The proofs of the equivalence between (33) and (34) using the other penalty terms follow by
repeating the same arguments used here. �

33

11 Tables

Here we report, in Tables 17 - 31, the detailed results related to our computational experience.
On the vertical axis of the tables related to the problems for which an integer feasible solution
is found in all the ten runs (Tables 17-19, 22-24 and 27-29) , we have

• the average number of iterations needed to find a solution (Iter),

• the average objective function value of the first integer feasible solution found (Obj),

• the average percentage gap with respect to the best known solution (Gap %),

• the average CPU time (Time).

We report “-” for the percentage gap when there is no best solution available. On the vertical
axis of the tables related to the problems for which an integer feasible solution is found in less
than ten runs (Tables 20, 21, 25, 26, 30, 31), we have

• the number of times an integer feasible solution is found (F.s. found),

• the average number of iterations needed to find a solution (Iter),

• the average CPU time (Time).

In case of failure, we report “-” for both Iter and Time.

References

[1] T. Achterberg, T. Berthold. Improving the feasibility pump. Discrete Optimization, 4,
pp 77–86, 2007.

[2] T. Achterberg, T. Koch, A. Martin. MIPLIB 2003. Operations Research Letters, 34,
pp 361–372, 2006. Problems available at http://miplib.zib.de.

[3] D. Baena, J. Castro. Using the analytic center in the feasibility pump. Operations Re-
search Letters, 39, pp 310-317, 2011.

[4] E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A new heuristic
for pure 0-1 programs. Operations Research, 49(2), pp 207-225, 2001.

[5] E. Balas, C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming. Man-
agement Science, 26(1), pp 86-96, 1980.

[6] E. Balas, S. Schmieta, C. Wallace.Pivot and shifta mixed integer programming heuris-
tic. Discrete Optimization, 1(1), pp 3-12, 2004.

[7] J. Baxter. , Local optima avoidance in depot location. Journal of the Operational Research
Society, 32, pp. 815-819, 1981.

[8] L. Bertacco, M. Fischetti, A. Lodi. A feasibility pump heuristic for general mixed-
integer problems. Discrete Optimization, 4, pp 63–76, 2007.

[9] N.L. Boland, A.C. Eberhard, F.G. Engineer, M. Fischetti, M.W.P. Savels-

bergh, A. Tsoukalas Boosting the Feasibility Pump. Report C-OPT 2012-03, The Uni-
versity of Newcastle, Callaghan, NSW, 2308, Australia, 2012.

34

[10] J. Eckstein, M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer pro-
gramming. Journal of Heuristics, 13, pp 471–503, 2007.

[11] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D.

Laird, J. Lee, A. Lodi, F. Margot, N.Sawaya, A. Waechter. An Algorithmic Frame-
work for Convex Mixed Integer Nonlinear Programs. Discrete Optimization, 5(2), pp 186–204,
2008.

[12] P. Bonami, G. Cornuejols, A. Lodi, F. Margot. A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming, 119, pp 331–352, 2009.

[13] C. D’Ambrosio, A. Frangioni, L. Liberti, A. Lodi. A Storm of Feasibility Pumps
for Nonconvex MINLP. Mathematical Programming, 136(2), pp 375–402, 2012.

[14] E. Danna, E. Rothberg, C. Le Pape. Exploring relation induced neighborhoods to
improve MIP solution. Mathematical Programming 102, 1, pp 71–90, 2005.

[15] M. De Santis, S. Lucidi, F. Rinaldi. Feasibility Pump-Like Heuristics for Mixed Integer
Problems. DIS Technical Report n. 15, 2010.

[16] E. D. Dolan, J. J. Moré. Benchmarking optimization software with performance profile.
Mathematical Programming 91, pp 201–213, 2002.

[17] M. Fischetti, F. Glover, A. Lodi. The Feasibility Pump. Mathematical Programming,
104, pp 91–104, 2005.

[18] M. Fischetti, A. Lodi. Local Branching. Mathematical Programming, 98(1-3), pp 23–47,
2003.

[19] M. Fischetti, D. Salvagnin. Feasibility pump 2.0. Mathematical Programming Com-
putation, 1, pp 201–222, 2009.

[20] F. Glover, M. Laguna. General purpose heuristics for integer programming part I.
Journal of Heuristics, 3, 1997.

[21] F. Glover, M. Laguna. General purpose heuristics for integer programming part II.
Journal of Heuristics, 3, 1997.

[22] F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht,
London, 1997.

[23] F. Glover, A. Løkketangen, D.L. Woodruff. Scatter search to generate diverse MIP
solutions. in: M. Laguna, J. Gonzàlez-Velarde (Eds.), OR Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
Kluwer Academic Publishers, pp. 299-317, 2000.

[24] F.S. Hillier, Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17, pp 600-637, 1969.

[25] F.S. Hillier, R.M. Saltzman., A heuristic ceiling point algorithm for general integer
linear programming. Management Science, 38(2), pp 263-283, 1992.

[26] ILOG, Cplex. http://www.ilog.com/products/cplex.

[27] R. H. Leary. Global optimization on funneling landscapes. J. Global Optim., 18, pp. 367–
383, 2000.

35

[28] A. Løkketangen, F. Glover. , Solving zero/one mixed integer programming problems
using tabu search. European Journal of Operations Research, 106, pp 624-658, 1998.

[29] H.R. Lourenço, O. C. Martin, T. Stülze. , Iterated local search. Handbook of meta-
heuristics - Eds F. W. Glover and G. A. Kochenberger - Kluwer Academic Publishers, Boston,
Dordrecht, London, pp. 321-353, 2003.

[30] S. Lucidi, F. Rinaldi. Exact penalty functions for nonlinear integer programming prob-
lems. Journal of Optimization Theory and Applications, 145, pp 479–488, 2010.

[31] O. L. Mangasarian. Solutions of General Linear Complementarity Problems via Nondif-
ferentiable Concave Minimization. Acta Mathematica Vietnamica, 22(1), pp 199–205, 1997.

[32] O. L. Mangasarian. Machine learning via polyhedral concave minimization. in: Fischer,
H., Riedmueller, B., Schaeffler S. Applied mathematics and parallel computing- Festschrift
for Klaus Ritter, pp 175–188, Physica, Heidelberg, 1996.

[33] W. Murray, K.M. Ng An Algorithm for Nonlinear Optimization Problems with Binary
Variables, Computational Optimization and Applications, Vol. 47, No. 2, pp 257–288, 2010.

[34] F. Rinaldi New results on the equivalence between zero-one programming and continuous
concave programming, Optimization Letters, Vol. 3, No. 3, 377–386, 2009.

[35] F. Rinaldi, F. Schoen, M. Sciandrone. Concave programming for minimizing the
zero-norm over polyhedral sets., Computational Optimization and Applications, vol. 46, pp.
467–486, 2010.

36

Problem FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap% Time Iter Obj Gap% Time

a1c1s1 25.6 21615.71 87.91 2.96 22.7 20365.53 77.04 2.37 15.9 20648.03 79.50 1.67 26.2 20248.53 76.02 2.1 14.7 19736.22 71.57 2.56
aflow30a 19.9 5691.7 391.51 0.07 12 4685.3 304.60 0.05 13.4 4049.8 249.72 0.04 11.3 3431.1 196.30 0.03 14.8 5224.8 351.19 0.05
aflow40b 8.5 5711.9 389.03 0.12 12.8 5897.2 404.90 0.16 11.7 6230.5 433.43 0.14 23.3 5934.3 408.07 0.21 6.7 4911.1 320.47 0.09
cap6000 18.1 -1.734E6 29.23 1.2 21.1 -1.478E6 39.65 1.5 19.2 -1.725E6 29.60 1.01 23.4 -1.608E6 34.37 0.94 15.7 -1.887E6 22.97 1.22
dano3mip 3 1000 - 19.82 1 1000 - 18.92 1 1000 - 15.51 1 1000 - 15.63 2 1000 - 26.64
danoint 113.3 87.15 32.72 2.78 122.4 87.05 32.56 3.69 45.4 85.8 30.66 1.09 151.2 88.85 35.30 2.84 97.7 87.63 33.45 3.35
fast0507 3 179 2.87 97.38 2 185 6.32 98.55 1 190 9.20 85.09 1 192 10.34 86.99 3 185 6.32 103.97
fiber 7.6 1.495E7 3583.32 0.02 7.9 1.509E7 3618.95 0.03 9.2 1.570E7 3767.89 0.03 7.6 1.260E7 3005.05 0.03 7.6 1.547E7 3711.51 0.02
fixnet6 11.4 11727.7 194.44 0.02 114 31150.4 682.08 0.25 78.7 24590.6 517.39 0.17 64.6 23190.4 482.23 0.09 5.4 14731.3 269.85 0.01
glass4 25 1.153E10 860.48 0.05 105.6 1.011E10 742.47 0.22 73.6 1.071E10 792.68 0.15 258.5 1.234E10 928.72 0.26 100.7 9.849E9 720.75 0.21
harp2 188.8 -4.796E7 35.10 1.52 398 -4.827E7 34.68 3.31 431.4 -4.176E7 43.49 3.65 245 -4.635E7 37.28 2.18 360.2 -4.486E7 39.30 3.03
liu 1 8398 - 0.09 1 8398 - 0.09 1 8398 - 0.1 1 8398 - 0.09 1 8398 - 0.1
markshare1 1 292 29100.00 0 1 292 29100.00 0 1 292 29100.00 0 1 292 29100.00 0 1 292 29100.00 0
markshare2 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0
mas74 1 19197.47 62.67 0 1 19197.47 62.67 0 1 19197.47 62.67 0 1 19197.47 62.67 0 1 19197.47 62.67 0
mas76 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0
mkc 3.6 -271.65 51.82 0.1 3.8 -271.85 51.79 0.11 3.7 -271.85 51.79 0.11 3.5 -271.85 51.79 0.09 3.3 -271.65 51.82 0.15
mod011 1 0 100.00 0.07 1 0 100.00 0.07 1 0 100.00 0.1 1.9 3683598.35 106.75 0.14 1 0 100.00 0.07
modglob 1 6.027E8 2811.72 0 1 5.628E8 2619.20 0 1 6.677E8 3125.47 0 1 6.637E8 3106.09 0.01 1 5.987E8 2792.16 0
net12 42 337 57.48 6.79 153.8 337 57.48 21.06 142.2 337 57.48 14.97 113.9 337 57.48 18.53 117.1 337 57.48 18.4
nsrand-ipx 3.6 346416 576.59 0.22 3.2 402048 685.25 0.27 4.1 355872 595.06 0.25 5.1 304112 493.97 0.25 3.1 401408 684.00 0.27
opt1217 1 0 100.00 0.01 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0.01 1 -12 25.00 0.01
pk1 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0
pp08aCUTS 3.4 12982 76.63 0.01 4 13104 78.29 0.01 3.6 11770 60.14 0.01 3.4 12051 63.96 0.01 3.9 12581 71.17 0.01
pp08a 3.1 12810 74.29 0 3.4 13152 78.94 0.01 3 13189 79.44 0 3 13615 85.24 0 5.2 13226 79.95 0.01
qiu 5.6 1539.38 1258.53 0.19 4.8 1524.65 1247.45 0.21 5 1387.35 1144.12 0.19 4.4 669.84 604.12 0.22 4.3 1687.76 1370.21 0.28
set1ch 4.2 104900.2 92.34 0.01 3.9 101702.8 86.48 0.01 33.6 96175.68 76.35 0.03 31.1 92687.93 69.95 0.03 4.6 105014.45 92.55 0.01
seymour 4 471 11.35 2.5 3 480 13.48 2.41 3 482 13.95 1.8 2 495 17.02 1.57 3 471 11.35 2.52
sp97ar 5.2 1.468E9 122.15 5.39 4.5 1.722E9 160.61 6.59 4 8.939E8 35.24 5.65 4 1.766E10 2573.06 4.47 4.7 1.479E9 123.87 6.86
swath 84.8 36527.08 7714.83 7.11 61.3 28614.67 6022.00 5.37 61.9 35450.07 7484.41 5.23 566.8 48160.31 10203.72 36.22 34.3 21903.21 4586.11 3.51
tr12-30 83.7 243560.8 86.50 0.22 154.2 260762.2 99.67 0.45 62.5 260330.9 99.34 0.2 114.1 247401.3 89.44 0.31 114.3 245892.5 88.28 0.3
vpm2 5.8 23.88 73.67 0 4 20.93 52.22 0.01 5 20.65 50.18 0 3.5 19.25 40.00 0 5.3 20.25 47.27 0

Table 17: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
FP vs RFP

Problem FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

22433 8.5 21527.4 0.23 0.06 12.2 21527.5 0.24 0.07 13.2 21509 0.15 0.09 50.8 21550.3 0.34 0.14 7.8 21550.8 0.34 0.07
23588 51.6 8310.4 2.72 0.11 46.8 8314.9 2.78 0.12 392.3 8316.4 2.80 0.8 380.9 8293.7 2.52 0.77 69.4 8325 2.90 0.17
bc1 2.2 12.9 286.42 0.58 2.4 15.34 359.51 0.51 2.9 13.36 300.20 0.46 2.7 15.59 367.00 0.44 2.4 16.24 386.47 0.59
bienst1 11.4 89.92 92.34 0.09 1 68.25 45.99 0.06 1 68.25 45.99 0.07 1 68.25 45.99 0.07 1.3 75.93 62.42 0.1
bienst2 13.3 127.1 132.78 0.12 1 68.25 25.00 0.07 1 68.25 25.00 0.06 1 68.25 25.00 0.08 1 102.22 87.22 0.1
binkar10-1 27.2 609256 8936.46 0.15 26.7 909412 13388.36 0.15 31.4 608918 8931.45 0.17 74.7 1.510E6 22291.32 0.4 29.4 1.010E6 14873.36 0.17
dano3-3 12.5 1000 73.51 31.74 1 1000 73.51 13.29 1 996.08 72.83 16.48 1 758.11 31.54 11.58 1.2 997.24 73.03 17.73
dano3-4 7.8 1000 73.48 23.95 1 1000 73.48 13.61 1 1000 73.48 13.25 1 1000 73.48 13.17 1 974.74 69.10 15.88
dano3-5 9.1 997.67 72.93 26.46 1 1000 73.33 14.59 1 1000 73.33 14.88 1 1000 73.33 14.83 1 1000 73.33 16.52
mcf2 146.7 82.97 26.35 3.67 85.2 85.7 30.51 2.62 100.3 86.5 31.73 2.38 183.3 86.85 32.26 3.65 173.7 82.7 25.94 6.06
mkc1 1 -460.93 24.08 0.12 1 -146.86 75.81 0.08 1 -311.19 48.75 0.15 1 -289.23 52.36 0.07 1 -525.33 13.48 0.12
neos5 1 21 40.00 0 1 21 40.00 0 1 22 46.67 0.01 1 21 40.00 0 1 22 46.67 0.01
neos6 11.8 141.6 70.60 3.5 20 146.8 76.87 4.8 191.3 157.4 89.64 20.42 540.5 158.4 90.84 49.85 34.6 142.2 71.33 6.97
neos13 1 -28.43 70.22 1.29 1 0 100.00 0.72 1 0 100.00 0.64 1 -37.43 60.80 0.75 1 -13.14 86.24 1.27
neos14 5.5 2.157E8 290112 0.03 6.4 2.371E8 318830 0.03 6.4 2.536E8 341091 0.03 5 2.759E8 371095 0.02 5 2.473E8 332615 0.03
neos17 2.6 0.68 353.32 0.04 2.6 0.66 339.99 0.04 2.6 0.61 306.66 0.04 2.6 0.61 306.66 0.04 2.6 0.75 399.99 0.04
neos18 1 36 125.00 0.13 2 34 112.50 0.14 20.6 37.8 136.25 0.7 39 40.5 153.13 1.12 2 34 112.50 0.13
neos-430149 137.7 497.95 779.77 0.79 177.1 499.6 782.69 0.82 423.1 498.66 781.02 1.76 356.3 539.58 853.32 1.42 118.4 516.19 812.00 0.72
neos-476283 3 1056.42 159.97 444.74 1 729.57 79.54 121.23 1 681.38 67.68 116.94 1 630.09 55.06 152.1 1 680.77 67.53 71.75
neos-480878 3 590.7 19.94 0.1 3 624.72 26.84 0.1 3 546.81 11.03 0.08 3 556.93 13.08 0.09 3 610.31 23.92 0.11
neos-494568 2 29 128.71 1.48 1 -74 26.73 2.96 2 -83 17.82 1.45 4.9 238.7 336.34 1.88 1 26 125.74 1.67
neos-504674 85.8 30961.35 751.55 0.25 45.9 29748.56 718.20 0.14 56 29114.83 700.77 0.17 83.8 30126 728.58 0.25 11.3 29898.73 722.33 0.05
neos-504815 82.4 13912.75 505.90 0.2 118.3 15388.38 570.16 0.29 82.1 13813.72 501.59 0.2 158 15177.66 560.98 0.38 164.8 14854.18 546.90 0.4
neos-512201 191.2 5373.11 946.23 0.53 171.8 5165.76 905.85 0.5 210 5248.57 921.98 0.62 160.2 5270.02 926.15 0.48 198.8 5287.04 929.47 0.58
neos-522351 6.4 103262.07 477.17 0.48 4.9 38323.98 114.21 0.34 4.7 32313.14 80.61 0.3 6.4 31111 73.89 0.26 5.9 86648.7 384.31 0.58
neos-525149 1 61 0.00 12.01 1 63 3.28 11.22 1 63 3.28 9.88 1 66 8.20 7.89 1 63 3.28 7.34
neos-538867 60.4 6425 5166.39 0.33 70.6 6072.5 4877.46 0.43 53.8 8814 7124.59 0.23 124.9 9108.5 7365.98 0.5 58.3 6242 5016.39 0.34
neos-538916 38.2 5650 4116.42 0.2 24.9 5955.8 4344.63 0.16 102.4 7938.1 5823.96 0.46 160.6 7922.1 5812.01 0.7 35.8 6139.8 4481.94 0.2
neos-547911 18.4 15.3 17.69 7.81 5.2 15.6 20.00 3.25 12.8 15.8 21.54 3.41 15.6 15.6 20.00 2.39 9.7 14.7 13.08 6.1
neos-555694 9 55.9 203.80 0.35 4 24.8 34.78 0.21 8.5 90.39 391.25 0.33 28.1 106.77 480.27 0.57 66.3 108.52 489.78 1.1
neos-555771 56 130.84 603.44 1.1 17.1 91.99 394.57 0.45 45.8 123.1 561.83 0.87 16.1 95.79 415.00 0.38 169 110.21 492.53 2.64
neos-565815 1 14 0.00 9.12 2 14 0.00 10.13 55 14.7 5.00 24.38 62.2 14.8 5.71 23.44 1 14 0.00 7.32
neos-570431 4.7 27 200.00 0.27 5.4 37.7 318.89 0.32 4.2 14.3 58.89 0.23 5 19.3 114.44 0.17 5 29.7 230.00 0.29
neos-584851 4 -4 63.64 0.04 2.8 -3.9 64.55 0.04 39.9 -3.3 70.00 0.14 87.1 -2.5 77.27 0.31 3.8 -4.8 56.36 0.05
neos-603073 8 47327.85 181.88 0.08 10.4 46853.05 179.05 0.13 5 46611.7 177.61 0.06 5 46550.72 177.25 0.06 9.3 46704.76 178.17 0.11
neos-611838 4 4.849E6 174.90 2.18 3 4.342E6 146.20 1.91 3.4 4.102E6 132.59 2.93 3.5 4.309E6 144.31 2.45 3.4 5043085.61 185.89 2.16
neos-612125 3 4.792E6 159.85 2.81 4.8 4.232E6 129.46 3.64 4.6 4.378E6 137.42 4.26 4.1 4.364E6 136.63 3.17 3 4793407.04 159.89 1.83
neos-612143 3 4.805E6 167.56 2.92 5.2 4.140E6 130.51 2.44 4.1 4.167E6 131.99 1.8 4.2 4.408E6 145.45 3.14 3 4598667.63 156.05 1.9

Table 18: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
FP vs RFP - Part I

37

Problem FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

neos-612162 3.4 4.827E6 172.28 2.93 3.4 4.436E6 150.22 3.16 4.9 4.252E6 139.88 2.71 4.5 4.311E6 143.16 3.46 3 5.167E6 191.42 1.99
neos-655508 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.04
neos-775946 124.1 764.3 4768.15 3.25 126.4 857.61 5362.48 3.26 41.9 714.14 4448.66 1.87 80.8 749.25 4672.29 1.98 98.8 794.52 4960.64 2.47
neos-780889 2 1.082E7 216.28 48.19 2.4 1.104E7 222.67 52.38 2 1.097E7 220.54 50.68 2.8 1.126E7 229.05 63.65 2 1.091E7 218.75 50.17
neos-801834 2 64502 28.02 0.8 1 54872 8.90 0.4 2 61289 21.64 0.36 2 60964 20.99 0.38 2 62990 25.01 0.84
neos-824695 3.7 77 148.39 0.75 3.7 77 148.39 0.8 3.9 77 148.39 0.85 3.7 77 148.39 0.82 4.1 77 148.39 0.82
neos-825075 4 218 180.15 0.06 8 544 300.00 0.1 3 8 102.94 0.06 198.3 903 431.99 0.92 3 218 180.15 0.06
neos-826250 3.1 63 125.00 0.4 3.3 63 125.00 0.44 3.3 63 125.00 0.42 3.3 63 125.00 0.42 3.1 63 125.00 0.38
neos-826812 2.7 83.01 43.10 0.72 2.8 83.01 43.10 0.68 2.7 83.01 43.10 0.66 2.8 83.01 43.10 0.69 2.7 83.01 43.10 0.73
neos-827175 2 121 8.04 1.8 2 121 8.04 2.24 2 121 8.04 2.23 2 121 8.04 2.24 2 121 8.04 1.81
neos-839859 1 9.425E7 860.77 0.2 1 1.317E8 1242.13 0.21 1 5.856E7 496.93 0.2 1 5.856E7 496.93 0.21 1 1.317E8 1242.13 0.21
neos-860300 14.3 7685.3 140.09 3.13 13.7 8203.3 156.27 2.45 25.6 7092.9 121.58 2.03 144.9 9005.7 181.34 4.52 10.7 6677.8 108.62 2.85
neos-886822 2 138398 381.30 0.26 1 178597.5 521.10 0.2 1 28820.5 0.23 0.17 1 28820.5 0.23 0.16 2 178597.5 521.10 0.25
neos-892255 3.6 18.7 33.57 0.15 3.7 18.9 35.00 0.14 3.8 18.8 34.29 0.13 10.8 48.4 245.71 0.33 3.7 18.9 35.00 0.14
neos-906865 2 9105.2 186.78 0.05 2 9910.6 212.14 0.05 2 9910.2 212.13 0.05 2 10714.8 237.47 0.04 2 10712.4 237.40 0.05
neos-955215 2.2 9037.66 1924.11 0.01 3 967.6 116.71 0.01 3 911.58 104.16 0.01 3 897.42 100.99 0.01 3.4 928.7 108.00 0.01
neos-1058477 2.8 3.58 550.91 0.02 2.4 3.76 583.64 0.02 2.8 2.78 405.45 0.02 2.4 3.74 580.00 0.03 3.8 5.4 881.82 0.03
neos-1171448 1 0 100.00 0.6 1 0 100.00 0.5 1 0 100.00 0.53 1 0 100.00 0.45 1 0 100.00 0.49
neos-1200887 1 -38 48.65 0.02 1 -52 29.73 0.02 1 -42 43.24 0.02 1 -38 48.65 0.02 1 -44 40.54 0.02
neos-1211578 1 -51 33.77 0 1 -48 37.66 0.01 1 -44 42.86 0 1 -52 32.47 0 1 -48 37.66 0
neos-1225589 27.2 2.36E10 1815.07 0.05 10.6 2.42E10 1873.41 0.02 29.3 2.30E10 1773.28 0.06 26.2 2.38E10 1832.65 0.05 16.6 2.24E10 1723.08 0.03
neos-1228986 1 -92 25.20 0 1 -80 34.96 0 1 -72 41.46 0.01 1 -70 43.09 0.01 1 -75 39.02 0
neos-1337489 1 -51 33.77 0 1 -48 37.66 0.01 1 -44 42.86 0 1 -52 32.47 0 1 -48 37.66 0
neos-1413153 2 119.12 13.32 0.37 1 119.12 13.32 0.39 1 119.12 13.32 0.38 1 119.12 13.32 0.4 1 119.12 13.32 0.37
neos-1415183 1 425.6 302.53 0.53 1 128.61 21.64 0.46 1 128.61 21.64 0.48 1 128.61 21.64 0.47 1 425.6 302.53 0.58
neos-1437164 23.6 25.9 223.75 0.14 63.8 23.3 191.25 0.35 22.5 22.7 183.75 0.13 42 21 162.50 0.25 9.2 23.5 193.75 0.06
neos-1440447 1 -52 48.00 0.01 1 -56 44.00 0.01 1 -60 40.00 0.01 1 -46 54.00 0.01 1 -60 40.00 0.01
neos-1460265 35.7 15925 18.84 0.18 17.4 15820 18.06 0.11 25.9 15910 18.73 0.15 40.8 15840 18.21 0.21 28.8 15905 18.69 0.16
neos-1480121 2 89.33 107.74 0 2 95.8 122.79 0 2 95.8 122.79 0 2 95.8 122.79 0 2 89.33 107.74 0
neos-1489999 5.8 476.9 34.72 0.05 6.8 483 36.44 0.06 5.1 498.3 40.76 0.05 4.7 487.4 37.68 0.05 6.2 481.5 36.02 0.05
neos-1516309 9 54363.5 51.20 0.13 12.7 53987 50.16 0.17 11.7 53707 49.38 0.15 9.8 54282 50.98 0.13 11.8 53105 47.70 0.15
neos-1595230 3.5 20.4 126.67 0.1 4.1 21.3 136.67 0.1 4.5 20.5 127.78 0.11 4.9 21.8 142.22 0.1 4 20.3 125.56 0.1
neos-1597104 4.6 -7.1 76.33 8.08 4.3 -7.5 75.00 11.1 8.7 -2 93.33 8.98 28.5 -7.5 75.00 30.9 4 -6.5 78.33 8.5
neos-1599274 3 36277.6 13.10 0.17 3 37547.6 17.06 0.17 6 37347.6 16.44 0.14 17.2 52419.12 63.42 0.38 5.3 53258.16 66.04 0.17
neos-1620807 8.8 9.5 58.33 0.02 7.2 9.5 58.33 0.02 10.5 9.8 63.33 0.02 7.8 9.8 63.33 0.02 7 9.1 51.67 0.02
prod1 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0
qap10 516.8 502.4 47.76 1690.54 1 406 19.41 7.45 1 406 19.41 7.91 2 406 19.41 11.95 1 406 19.41 8.74
roy 38.3 5810.25 81.06 0.03 30.3 5887.4 83.47 0.02 17.2 5761.75 79.55 0.02 30.7 5806.61 80.95 0.03 37.2 5590.45 74.21 0.03

Table 19: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
FP vs RFP - Part II

Problem FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

10teams 10 122.40 7.34 10 107.00 6.24 1 - - 0 - - 10 92.30 5.86
air04 10 11.20 12.52 10 4.60 8.13 5 - - 0 - - 10 21.20 19.56
air05 10 2.00 2.42 10 3.00 2.88 10 7.00 4.58 1 - - 10 5.00 3.51
misc07 10 39.60 0.13 10 62.90 0.20 10 490.80 0.96 8 - - 10 46.50 0.16
momentum1 10 474.20 577.99 10 382.40 482.49 5 - - 0 - - 10 450.70 544.05
nw04 10 1.00 0.94 10 1.00 1.79 8 - - 7 - - 10 1.00 1.48
p2756 0 - - 0 - - 0 - - 0 - - 0 - -
protfold 10 360.20 107.67 9 - - 0 - - 0 - - 10 553.50 162.36
t1717 10 18.00 366.80 10 56.40 918.95 5 - - 1 - - 10 24.10 511.38

Table 20: Comparison on MIPLIB problems (feasible solution found in less than ten runs). FP
vs RFP

38

Problem FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis,α = 0.1
F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

aligninq 10 380.10 6.01 10 621.70 9.54 2 - - 0 - - 8 - -
lrn 0 - - 0 - - 0 - - 0 - - 0 - -
neos2 0 - - 0 - - 0 - - 0 - - 0 - -
neos3 0 - - 0 - - 0 - - 0 - - 0 - -
neos11 10 5.30 0.90 10 14.40 1.81 10 111.80 4.56 8 - - 10 14.70 1.76
neos12 10 5.00 7.80 10 5.00 8.02 6 724.00 154.67 0 - - 10 6.00 8.28
neos-583731 0 - - 0 - - 0 - - 0 - - 0 - -
neos-593853 1 - - 10 69.70 0.93 7 - - 0 - - 6 - -
neos-598183 10 91.70 0.87 9 - - 10 71.40 0.65 6 - - 10 83.30 0.78
neos-631694 0 - - 0 - - 0 - - 0 - - 0 - -
neos-709469 4 - - 3 - - 0 - - 0 - - 3 - -
neos-777800 10 13.70 5.19 10 16.90 6.52 10 54.70 12.67 2 - - 10 4.00 1.98
neos-791021 0 - - 0 - - 0 - - 0 - - 0 - -
neos-799711 0 - - 10 83.80 659.80 10 1.30 194.87 10 26.70 198.20 9 - -
neos-799716 0 - - 9 - - 9 - - 7 - - 4 - -
neos-803219 0 - - 0 - - 2 - - 5 - - 0 - -
neos-803220 5 - - 9 - - 10 253.00 1.55 10 183.30 1.15 9 - -
neos-806323 0 - - 0 - - 0 - - 0 - - 0 - -
neos-807639 2 - - 2 - - 1 - - 1 - - 0 - -
neos-807705 0 - - 0 - - 0 - - 2 - - 0 - -
neos-810286 10 139.10 46.72 10 90.30 29.90 3 - - 0 - - 10 10.00 5.77
neos-810326 10 668.10 76.05 6 - - 0 - - 0 - - 9 - -
neos-820879 10 5.00 1.68 10 19.10 4.79 10 47.30 8.69 6 - - 10 11.00 3.86
neos-829552 10 1.00 17.86 10 2.00 17.82 10 33.50 52.66 1 - - 10 1.00 17.46
neos-862348 9 - - 9 - - 10 415.30 4.34 10 259.40 2.95 8 - -
neos-880324 0 - - 0 - - 0 - - 0 - - 0 - -
neos-912015 6 - - 5 - - 0 - - 0 - - 6 - -
neos-932816 2 - - 2 - - 1 - - 0 - - 0 - -
neos-941698 10 29.80 0.80 10 48.80 1.11 10 435.00 5.78 0 - - 10 47.40 1.10
neos-948268 10 5.00 6.36 10 6.00 6.16 10 9.00 9.07 2 - - 10 7.00 7.93
neos-957270 0 - - 0 - - 0 - - 0 - - 0 - -
neos-957389 0 - - 0 - - 0 - - 0 - - 0 - -
neos-1215259 7 - - 5 - - 0 - - 0 - - 8 - -
neos-1281048 10 131.80 1.79 10 338.60 4.60 7 - - 0 - - 10 173.00 2.65
neos-1396125 2 - - 0 - - 5 - - 4 - - 2 - -
neos-1441553 0 - - 0 - - 0 - - 0 - - 0 - -

Table 21: Comparison on COR@L problems (feasible solution found in less than ten runs). FP
vs RFP

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

10teams 122.4 994.4 7.62 7.34 231.9 975.8 5.61 13.09 197.6 1008.6 9.16 9.48 192.4 998 8.01 10.84 201 1007.2 9.00 11.37
a1c1s1 25.6 21615.71 87.91 2.96 30.1 22509.27 95.67 2.2 38 22635.76 96.77 2.74 24.9 23436.21 103.73 2.12 20.8 22357.3 94.35 2.05
aflow30a 19.9 5691.7 391.51 0.07 10.1 3636.3 214.02 0.01 7.5 3309.3 185.78 0.01 8.4 3747.8 223.64 0.02 8.2 4176.3 260.65 0.01
aflow40b 8.5 5711.9 389.03 0.12 6.7 4085.4 249.78 0.04 9.2 4663.1 299.24 0.05 8 4581.2 292.23 0.05 7.2 4962.5 324.87 0.04
air04 11.2 61461.9 9.49 12.52 28.6 69078.2 23.05 65.59 19.3 70144.9 24.95 45.23 9.8 59614.3 6.19 23.25 28.2 68491.4 22.01 70.62
air05 2 32368 22.73 2.42 13.8 36682.5 39.09 16.54 21 36708.8 39.19 24.2 40.7 44456.9 68.56 27.54 3 29948 13.55 6.04
cap6000 18.1 -1.734E6 29.23 1.2 28.8 -1.799E6 26.57 1.01 17.6 -1.756E6 28.34 0.67 8.2 -1.735E6 29.17 0.35 6.2 -2.008E6 18.05 0.29
dano3mip 3 1000.00 - 19.82 1 1000.00 - 10.83 1 1000.00 - 10.17 1 1000.00 - 10.44 1 1000.00 - 10.64
danoint 113.3 87.15 32.72 2.78 173.8 82 24.87 3.4 80.1 83.28 26.82 1.76 180.2 84 27.92 3.6 111 82.1 25.03 2.46
fast0507 3 179 2.87 97.38 1 186 6.90 7.37 1 186 6.90 6.63 1 186 6.90 9.94 3 195 12.07 23.47
fiber 7.6 1.495E7 3583.32 0.02 6.2 9.512E6 2243.29 0.02 6.2 9.513E6 2243.41 0.02 8 1.420E7 3397.05 0.02 7 1.412E7 3379.30 0.02
fixnet6 11.4 11727.7 194.44 0.02 113.7 27806.5 598.13 0.12 143.7 31703.8 695.98 0.15 114.5 29716.3 646.08 0.12 121.9 27972 602.28 0.13
glass4 25 1.153E10 860.48 0.05 76.4 8.157E9 579.76 0.05 107 7.479E9 523.28 0.07 89.4 7.453E9 521.11 0.06 102.7 7.864E9 555.31 0.07
liu 1 8398.00 - 0.09 1 4720.00 - 0.06 1 4720.00 - 0.06 1 4720.00 - 0.06 1 4720.00 - 0.07
markshare1 1 292 29100 0 1 292 29100 0 1 292 29100 0 1 292 29100 0 1 292 29100 0
markshare2 1 160 15900 0 1 160 15900 0 1 160 15900 0 1 160 15900 0 1 160 15900 0
mas74 1 1917.47 83.75 0 1 19197.47 62.67 0 1 19197.47 62.67 0 1 19197.47 62.67 0 1 19197.47 62.67 0
mas76 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0 1 44877.42 12.18 0
misc07 39.6 4236.5 50.77 0.13 75.1 4388.5 56.17 0.1 75.2 4442.5 58.10 0.11 58.9 4251.5 51.30 0.09 67.2 4237 50.78 0.1
mkc 3.6 -271.65 51.82 0.1 3.5 -271.85 51.79 0.1 3.4 -271.85 51.79 0.08 3.5 -271.85 51.79 0.1 3.4 -271.85 51.79 0.1
mod011 1 0 100.00 0.07 1 0 100.00 0.04 1 0 100.00 0.04 1 0 100.00 0.04 1 0 100.00 0.03
modglob 1 6.027E8 2811.72 0 1 6.258E8 2923.21 0 1 5.620E8 2615.18 0 1 5.600E8 2605.54 0 1 6.258E8 2923.21 0
net12 42 337 57.48 6.79 133.2 337 57.48 4.2 109.3 337 57.48 3.32 197.1 337 57.48 5.56 168.8 337 57.48 4.88
nsrand-ipx 3.6 346416 576.59 0.22 4 345600 575.00 0.28 3.2 378336 638.94 0.3 4.2 347168 578.06 0.31 3.2 393680 668.91 0.29
nw04 1 19882 17.91 0.94 5 19657 16.58 25.29 12.8 29484.6 74.86 64.31 11.2 42121.8 149.80 50.59 1 19882 17.91 0.43
opt1217 1 0 100.00 0.01 1 -12 25.00 0.01 1 -12 25.00 0.01 1 -12 25.00 0 1 -12 25.00 0.01
pk1 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0
pp08aCUTS 3.4 12982 76.63 0.01 3.7 12223 66.30 0.01 3.7 12030 63.67 0.01 3.7 12208 66.10 0.01 4.6 12624 71.76 0.01
pp08a 3.1 12810 74.29 0 3 12505 70.14 0 3 12453 69.43 0 3 12439 69.24 0 3.8 12949 76.18 0
qiu 5.6 1539.38 1258.53 0.19 3.8 1390.67 1146.62 0.13 4.3 1491.29 1222.34 0.13 5.1 954.68 818.49 0.13 4.8 1741.11 1410.36 0.13
set1ch 4.2 104900.2 92.34 0.01 6 83983 53.99 0.01 6 83983 53.99 0.01 8.9 83247.7 52.64 0.01 4 84122.05 54.25 0.01
seymour 4 471 11.35 2.5 3 482 13.95 1.05 3 482 13.95 1.07 2 481 13.71 1.06 3 477 12.77 1.12
sp97ar 5.2 1.468E9 122.15 5.39 6 8.768E8 32.65 1.39 4 9.985E8 51.06 1.36 4 9.344E8 41.37 1.4 7 1.606E9 142.99 1.66
swath 84.8 36527.08 7714.83 7.11 69.6 36824.53 7778.47 3.12 69.2 33118.44 6985.57 3.32 64.1 27368.93 5755.48 3.13 61.9 29633.73 6240.03 3.17
t1717 18 201829.70 - 366.8 69.7 512750.40 - 373.76 65.5 525868.20 - 386 59.2 363772.90 - 256.13 52 417769.40 - 427.11
tr12-30 83.7 243560.8 86.50 0.22 55.8 262726.4 101.17 0.09 83.6 265720.4 103.47 0.14 113.2 263093.1 101.46 0.17 98.9 271277.7 107.72 0.15
vpm2 5.8 23.88 73.67 0 6.2 20.38 48.22 0 6.6 19.75 43.64 0 6.2 20.23 47.13 0 6.4 22.1 60.73 0

Table 22: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP

39

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

22433 8.5 21527.4 0.23 0.06 16.4 21540.3 0.29 0.05 12.7 21548.3 0.33 0.04 12.2 21517 0.19 0.04 11.4 21541.8 0.30 0.04
23588 51.6 8310.4 2.72 0.11 95.5 8322.6 2.88 0.14 39.8 8301.8 2.62 0.06 61.9 8287.7 2.44 0.09 35.1 8325 2.90 0.05
bc1 2.2 12.9 286.42 0.58 2.1 9.44 182.77 0.17 2.4 10.28 207.94 0.17 2 10.66 219.32 0.17 2.1 9.93 197.45 0.17
bienst1 11.4 89.92 92.34 0.09 1 83.92 79.51 0.05 1 68.25 45.99 0.06 1 68.25 45.99 0.06 1 68.25 45.99 0.06
bienst2 13.3 127.1 132.78 0.12 1 76.03 39.25 0.05 1 78 42.86 0.05 1 74 35.53 0.06 1 72.42 32.64 0.05
binkar10-1 27.2 609256.29 8936.46 0.15 20.9 408583.99 5960.10 0.05 20.7 508570.6 7443.10 0.05 35.9 508968.41 7449.00 0.08 25.6 608858.49 8930.56 0.06
dano3-3 12.5 1000 73.51 31.74 1 641.91 11.38 8.47 1 623.32 8.15 8.46 1 627.64 8.90 8.48 1 653.48 13.38 8.67
dano3-4 7.8 1000 73.48 23.95 1 651.9 13.09 8.63 1 674.14 16.95 8.51 1 668.04 15.89 8.53 1 665.13 15.39 8.65
dano3-5 9.1 997.67 72.93 26.46 1 691.88 19.93 8.62 1 709.29 22.94 8.72 1 706.27 22.42 8.74 1 670.24 16.17 8.62
mcf2 146.7 82.97 26.35 3.67 118.8 85.7 30.51 2.39 136.3 85.8 30.66 3.03 103.8 83.85 27.69 2.12 115.2 84.45 28.60 2.58
mkc1 1 -460.93 24.08 0.12 1 -566.15 6.75 0.03 1 -566.15 6.75 0.03 1 -566.15 6.75 0.04 1 -566.15 6.75 0.03
neos5 1 21 40.00 0 2 18 20.00 0 1 17 13.33 0 2 17.5 16.67 0 2 18 20.00 0
neos6 11.8 141.6 70.60 3.5 5.3 129 55.42 0.87 23.4 131.8 58.80 2.33 17.5 149.4 80.00 2.06 31.4 142.9 72.17 2.92
neos11 5.3 10 11.11 0.9 6.9 9.1 1.11 0.84 7.8 9 0.00 0.74 8.7 9 0.00 0.77 14.8 10.6 17.78 1.93
neos12 5 20 53.85 7.8 39 19.5 50.00 35.79 20.2 16.2 24.62 10.34 41.7 20.6 58.46 20 4 19 46.15 7.25
neos13 1 -28.43 70.22 1.29 1 -14.95 84.34 0.86 1 -15.04 84.25 0.86 1 -16.47 82.75 0.78 1 -46.34 51.46 0.48
neos14 5.5 2.157E8 290112 0.03 4.7 2.436E8 327631 0.01 5 2.819E8 379148 0.01 5 2.914E8 391898 0.01 5.2 2.655E8 357016 0.01
neos17 2.6 0.68 353.32 0.04 2.6 0.58 286.66 0.03 2.6 0.58 286.66 0.03 2.3 0.54 259.99 0.04 2.8 0.58 286.66 0.03
neos18 1 36 125.00 0.13 7.2 32.9 105.63 0.17 8.3 29.1 81.88 0.17 10 33.3 108.13 0.22 2 34 112.50 0.07
neos-430149 137.7 497.95 779.77 0.79 132.3 438.86 675.37 0.27 219 465.04 721.63 0.39 162.2 522.29 822.77 0.29 174.4 533.29 842.21 0.3
neos-476283 3 1056.42 159.97 444.74 1 523.17 28.75 8.48 1 511.24 25.81 8.37 1 514.88 26.71 8.48 1 541.27 33.20 11.13
neos-480878 3 590.7 19.94 0.1 3.6 542.04 10.06 0.04 3.5 540.16 9.67 0.03 3.6 553.33 12.35 0.04 3.3 562.9 14.29 0.03
neos-494568 2 29 128.71 1.48 2 -82 18.81 0.22 2 -82 18.81 0.22 2 -81 19.80 0.22 1 -72 28.71 0.23
neos-504674 85.8 30961.35 751.55 0.25 124.6 30946.73 751.15 0.15 35 31121.71 755.96 0.06 80.8 31777.31 773.99 0.12 31.1 29473.78 710.64 0.05
neos-504815 82.4 13912.75 505.90 0.2 96.1 13720.27 497.52 0.11 32.9 13982.71 508.94 0.05 103.4 15708.03 584.08 0.13 54.3 13976.53 508.68 0.07
neos-512201 191.2 5373.11 946.23 0.53 157.6 5557.65 982.16 0.19 165.3 5458.2 962.80 0.29 134.1 5407.88 953.00 0.23 193.2 5524.32 975.67 0.24
neos-522351 6.4 103262.07 477.17 0.48 5.3 40010.8 123.64 0.07 5.8 46605.3 160.49 0.08 4.7 30080.06 68.13 0.07 4.7 49141.5 174.67 0.08
neos-525149 1 61 0.00 12.01 1 65 6.56 1.6 1 65 6.56 1.61 1 65 6.56 1.47 1 63 3.28 1.46
neos-538867 60.4 6425 5166.39 0.33 82.2 6830 5498.36 0.23 70.3 5419.5 4342.21 0.19 50.2 5645 4527.05 0.12 69.7 6989.5 5629.10 0.19
neos-538916 38.2 5650 4116.42 0.2 30.7 6109.2 4459.10 0.08 49.3 6398.7 4675.15 0.12 31.7 5846.6 4263.13 0.08 36.3 6430.4 4698.81 0.09
neos-547911 18.4 15.3 17.69 7.81 12.6 15 15.38 1.15 15.7 15 15.38 2.2 11.5 15.4 18.46 2.6 7.3 15.3 17.69 1.7
neos-555694 9 55.9 203.80 0.35 16.2 78.56 326.96 0.18 17.7 87.49 375.49 0.21 17 61.18 232.50 0.21 4 25 35.87 0.09
neos-555771 56 130.84 603.44 1.1 17.6 86.74 366.34 0.2 11.6 104.41 461.34 0.15 16.4 90.83 388.33 0.19 4 43.6 134.41 0.09
neos-565815 1 14 0.00 9.12 8.3 14.5 3.57 2.36 5.2 14.8 5.71 2.22 9.3 15.4 10.00 3.07 5.1 14.2 1.43 2.41
neos-570431 4.7 27 200.00 0.27 4.3 16 77.78 0.12 3.7 15.1 67.78 0.11 3.7 14.8 64.44 0.12 5.5 23.8 164.44 0.16
neos-584851 4 -4 63.64 0.04 9.5 -5.5 50.00 0.04 10.6 -5.2 52.73 0.04 12.3 -6.3 42.73 0.04 2.5 -4.1 62.73 0.03
neos-598183 91.7 48288.78 162.01 0.87 18.2 47013.6 155.09 0.06 218.3 47841.88 159.59 0.46 16.4 47547.14 157.99 0.06 135.1 49824.98 170.35 0.29
neos-603073 8 47327.85 181.88 0.08 5.7 46725.08 178.29 0.02 5.8 46760.97 178.50 0.02 5.5 46171.88 174.99 0.02 38.3 49371.71 194.05 0.09
neos-611838 4 4.849E6 174.90 2.18 6.2 3.730E6 111.48 0.75 5.2 3.646E6 106.68 0.66 5.8 3.811E6 116.07 0.82 3 3.577E6 102.81 0.69
neos-612125 3 4.793E6 159.85 2.81 5.7 4.098E6 122.18 0.97 4.3 3.999E6 116.81 0.82 4.2 3.929E6 113.02 0.7 3.7 4.068E6 120.57 0.93
neos-612143 3 4.805E6 167.56 2.92 5.9 3.838E6 113.72 0.76 5.9 3.849E6 114.31 0.69 3.8 3.911E6 117.78 0.63 4 3.667E6 104.17 0.74
neos-612162 3.4 4.827E6 172.28 2.93 5.8 3.681E6 107.63 0.73 5.9 3.928E6 121.54 0.73 4.2 3.834E6 116.27 0.61 3.1 3.534E6 99.33 0.52
neos-655508 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.03 0 6.302E7 0.00 0.02 0 6.302E7 0.00 0.02 0 6.302E7 0.00 0.03

Table 23: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP - Part I

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

neos-775946 124.1 764.3 4768.15 3.25 14.6 391.98 2396.69 0.5 22 530.29 3277.64 0.61 4.5 531.1 3282.80 0.39 18.8 496.09 3059.81 0.57
neos-777800 13.7 -80 0.00 5.19 4 -80 0.00 1.37 11.3 -80 0.00 5.14 19.9 -80 0.00 9.23 10.2 -80 0.00 6.81
neos-780889 2 1.082E7 216.28 48.19 2.1 1.003E7 193.22 100.65 3.3 1.026E7 199.88 96.59 2 1.018E7 197.47 93.2 2.1 1.003E7 193.29 83.28
neos-801834 2 64502 28.02 0.8 2 55577 10.30 0.37 2 60875 20.82 0.37 2 61233 21.53 0.37 1 54051 7.27 0.38
neos-810286 139.1 3431.9 19.29 46.72 81.3 3435.4 19.41 44.06 74.2 3377.3 17.39 44.79 83.3 3316.1 15.26 42.2 114.1 3485.8 21.16 80.34
neos-820879 5 34433.7 35.20 1.68 10.7 38492.4 51.14 1.32 12.4 37749.1 48.22 1.4 13.5 37945.1 48.99 1.61 6.5 37208.2 46.10 0.98
neos-824695 3.7 77 148.39 0.75 3.8 77 148.39 0.64 3.7 77 148.39 0.63 3.9 77 148.39 0.65 3.9 77 148.39 0.67
neos-825075 4 218 180.15 0.06 9 465 270.96 0.06 4 108 139.71 0.04 3 8 102.94 0.04 6.2 395 245.22 0.04
neos-826250 3.1 63 125.00 0.4 3.2 63 125.00 0.35 3.3 63 125.00 0.38 3.4 63 125.00 0.37 3.4 63 125.00 0.38
neos-826812 2.7 83.01 43.10 0.72 2.7 83.01 43.10 0.59 2.4 83.01 43.10 0.56 2.8 83.01 43.10 0.62 2.7 83.01 43.10 0.62
neos-827175 2 121 8.04 1.8 2 121 8.04 1.12 2 121 8.04 1.12 2 121 8.04 1.13 2 121 8.04 1.14
neos-829552 1 26.69 1050.43 17.86 7 2.91 25.43 24.91 5.2 2.92 25.86 24.53 11.6 42.4 1727.59 32.62 2 6.67 187.50 20.52
neos-839859 1 9.425E7 860.77 0.2 1 5.856E7 496.93 0.18 1 5.856E7 496.93 0.17 1 5.856E7 496.93 0.17 1 1.317E8 1242.13 0.18
neos-860300 14.3 7685.3 140.09 3.13 15.9 7321.6 128.73 0.87 21.6 7044.4 120.07 1.16 17.1 6285.7 96.37 0.93 9.7 8861.7 176.84 0.73
neos-886822 2 138398 381.30 0.26 1 28820.5 0.23 0.17 1 28820.5 0.23 0.16 1 28820.5 0.23 0.16 1 178597.5 521.10 0.27
neos-892255 3.6 18.7 33.57 0.15 3.9 18.9 35.00 0.09 8 45.6 225.71 0.18 3.9 20.6 47.14 0.1 11.5 46.3 230.71 0.25
neos-906865 2 9105.2 186.78 0.05 2 10823.9 240.91 0.03 2 10819.7 240.78 0.03 2 11060.3 248.36 0.03 2 9744.1 206.90 0.03
neos-941698 29.8 22.3 1015.00 0.8 48.4 10 400.00 0.55 98.2 10.4 420.00 1.02 64.5 8.3 315.00 0.73 62.3 10.2 410.00 0.79
neos-948268 5 60 0.00 6.36 13.7 60 0.00 12.52 6 60 0.00 6.28 7 60 0.00 6.52 3 60 0.00 5.44
neos-955215 2.2 9037.66 1924.11 0.01 3 809.42 81.28 0.01 3 809.35 81.27 0.01 3 808.92 81.17 0.01 3.4 1029.15 130.49 0.01
neos-1058477 2.8 3.58 550.91 0.02 2 1.47 167.27 0.01 2.8 1.46 165.45 0.01 3.2 11 1900.00 0.02 4.4 31.25 5581.82 0.02
neos-1171448 1 0 100.00 0.6 1 0 100.00 0.26 1 0 100.00 0.26 1 0 100.00 0.26 1 0 100.00 0.28
neos-1200887 1 -38 48.65 0.02 1 -52 29.73 0.02 1 -52 29.73 0.01 1 -52 29.73 0.01 1 -52 29.73 0.02
neos-1211578 1 -51 33.77 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0
neos-1225589 27.2 2.356E10 1815.07 0.05 43.6 2.524E10 1952.17 0.08 30 2.348E10 1809.29 0.06 51.3 2.716E10 2108.25 0.1 31.4 2.383E10 1837.17 0.06
neos-1228986 1 -92 25.20 0 1 -104 15.45 0 1 -104 15.45 0 1 -104 15.45 0 1 -104 15.45 0
neos-1281048 131.8 173712.9 28803 1.79 243 174774.2 28980 1.9 285.6 183703.9 30466 2.08 167.7 175805.5 29152 1.31 308.4 180675.6 29962 2.25
neos-1337489 1 -51 33.77 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0
neos-1413153 2 119.12 13.32 0.37 1 119.12 13.32 0.35 1 119.12 13.32 0.35 1 119.12 13.32 0.35 1 119.12 13.32 0.36
neos-1415183 1 425.6 302.53 0.53 1 128.61 21.64 0.43 1 128.61 21.64 0.43 1 128.61 21.64 0.43 1 128.61 21.64 0.44
neos-1437164 23.6 25.9 223.75 0.14 37.3 17.6 120.00 0.19 21.1 18.9 136.25 0.11 19.7 19 137.50 0.1 28.7 19.4 142.50 0.15
neos-1440447 1 -52 48.00 0.01 1 -77 23.00 0.01 1 -79 21.00 0 1 -78 22.00 0 1 -78 22.00 0
neos-1460265 35.7 15925 18.84 0.18 175.1 15410 15.00 1.03 91.7 15490 15.60 0.51 108.2 15520 15.82 0.61 143.2 15520 15.82 0.8
neos-1480121 2 89.33 107.74 0 2 95.8 122.79 0 2 95.8 122.79 0 2 95.8 122.79 0 2 96.6 124.65 0
neos-1489999 5.8 476.9 34.72 0.05 6.9 484.3 36.81 0.05 6.3 481.6 36.05 0.05 6.2 488.3 37.94 0.05 6.2 483.5 36.58 0.05
neos-1516309 9 54363.5 51.20 0.13 11.9 54069 50.38 0.12 12.4 52941 47.25 0.13 10.8 52827 46.93 0.12 17.7 53687.5 49.32 0.16
neos-1595230 3.5 20.4 126.67 0.1 3.8 20.5 127.78 0.07 5 21 133.33 0.07 4.7 22.1 145.56 0.07 3.7 20.5 127.78 0.07
neos-1597104 4.6 -7.1 76.33 8.08 8.2 -2.6 91.33 1.07 8.2 -2.6 91.33 1.05 6 -3.4 88.67 1.11 4.6 -6.9 77.00 0.98
neos-1599274 3 36277.6 13.10 0.17 8.6 52367.76 63.26 0.13 9.2 51694.48 61.16 0.14 9.4 51652.8 61.03 0.14 3 37687.6 17.50 0.07
neos-1620807 8.8 9.5 58.33 0.02 10.6 9.7 61.67 0.02 7 9.1 51.67 0.02 9.2 9.7 61.67 0.02 6.9 9.7 61.67 0.01
prod1 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0
qap10 516.8 502.4 47.76 1690.54 1 406 19.41 7.33 1 406 19.41 10.21 1 406 19.41 7.37 1 406 19.41 10.64
roy 38.3 5810.25 81.06 0.03 212 5788.85 80.40 0.08 98.1 5393.15 68.07 0.04 264 5622.95 75.23 0.1 319.8 5878.4 83.19 0.12

Table 24: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP - Part II

40

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

harp2 10 188.80 1.52 10 525.90 4.28 9 - - 9 - - 10 257.40 2.19
momentum1 10 474.20 577.99 9 - - 10 215.80 56.10 9 - - 10 578.20 118.96
p2756 0 - - 0 - - 0 - - 0 - - 0 - -
protfold 10 360.20 107.67 9 - - 10 524.90 89.36 10 361.60 83.31 9 - -

Table 25: Comparison on MIPLIB problems (integer feasible solution found in less than ten
runs). FP vs Combined RFP

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
F.s found Iter Time F.s found Iter Time F.s found Iter Time F.s found Iter Time F.s found Iter Time

aligninq 10 380.10 6.01 10 623.90 3.68 9 - - 8 - - 7 - -
lrn 0 - - 0 - - 0 - - 0 - - 0 - -
neos2 0 - - 0 - - 0 - - 0 - - 0 - -
neos3 0 - - 0 - - 0 - - 0 - - 0 - -
neos-583731 0 - - 0 - - 0 - - 0 - - 0 - -
neos-593853 1 - - 0 - - 0 - - 0 - - 0 - -
neos-631694 0 - - 0 - - 0 - - 0 - - 0 - -
neos-709469 4 - - 3 - - 2 - - 4 - - 7 - -
neos-791021 0 - - 0 - - 0 - - 0 - - 0 - -
neos-799711 0 - - 0 - - 0 - - 0 - - 0 - -
neos-799716 0 - - 0 - - 0 - - 0 - - 0 - -
neos-803219 0 - - 0 - - 0 - - 1 - - 1 - -
neos-803220 5 - - 8 - - 10 258.00 0.53 10 273.70 0.60 10 275.60 0.55
neos-806323 0 - - 0 - - 0 - - 0 - - 0 - -
neos-807639 2 - - 2 - - 2 - - 2 - - 1 - -
neos-807705 0 - - 0 - - 0 - - 0 - - 2 - -
neos-810326 10 668.10 76.05 8 - - 10 773.30 109.01 10 366.50 59.75 9 - -
neos-862348 9 - - 9 - - 10 65.50 0.86 10 180.40 2.15 10 62.80 0.81
neos-880324 0 - - 0 - - 0 - - 0 - - 0 - -
neos-912015 6 - - 7 - - 5 - - 2 - - 2 - -
neos-932816 2 - - 4 - - 0 - - 2 - - 2 - -
neos-957270 0 - - 0 - - 0 - - 0 - - 0 - -
neos-957389 0 - - 0 - - 0 - - 0 - - 0 - -
neos-1215259 7 - - 8 - - 1 - - 5 - - 5 - -
neos-1396125 2 - - 1 - - 0 - - 0 - - 0 - -
neos-1441553 0 - - 0 - - 0 - - 0 - - 0 - -

Table 26: Comparison on COR@L problems (feasible solution found in less than ten runs). FP
vs Combined RFP

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

a1c1s1 119.4 19198.34 67 0.5 33.5 18859.35 64 0.4 50.8 19535.79 70 0.3 50.5 19522.04 70 0.2
aflow30a 0 983.17 15 0.1 0 983.17 15 0 0 983.17 15 0 0 983.17 15 0.1
aflow40b 25.2 3095.8 165 0.3 62.2 4430 279 0.4 75.4 4243.1 263 0.6 35.1 5396.8 362 0.4
air04 21.5 58273.9 4 23.8 20.8 58230.1 4 23.3 18.3 58527.4 4 23 32.6 58250 4 39.1
air05 5 27384 4 2.3 5 27384 4 2.3 11 30127.1 14 7 17.3 29612.4 12 6.5
dano3mip 80.6 821.42 – 275.6 82 836.28 – 282.6 83 777.14 – 273.9 52.6 801.13 – 181.5
fast0507 4 181 4 15.6 4 181 4 15.8 4 199 14 11.3 4 194 11 12
fiber 18 6.339E6 1462 0.2 16.2 4.113E6 913 0.1 17.6 3.989E6 883 0.1 6 1.639E6 304 0
fixnet6 16.2 22614.6 468 0.1 13.8 17547.4 341 0 19.4 18611.2 367 0 11.2 17956.3 351 0.2
markshare1 69 521.1 – 0.1 68.4 438.4 – 0.1 76.4 752.4 – 0 58 561 – 0
markshare2 69.4 1190.4 – 0 71 1203.5 – 0.1 78.5 812.5 – 0.1 57.4 572.6 – 0.1
mas74 112.7 35399.07 200 0.2 110 24219.37 105 0.1 105.6 21041.66 78 0.2 93.8 19578.36 66 0.2
mas76 109 45068.61 13 0.1 110.8 52902.53 32 0.2 103 46238.12 16 0.1 90.2 46604.28 16 0.1
mkc 109.7 -231.1 59 1 111.6 -223.12 60 1.1 40.3 -245.51 56 0.6 46.2 -208.91 63 0.3
mod011 17.5 -4.511E7 17 0.4 19.3 -4.599E7 16 0.4 57.2 -1.547E7 72 0.4 14.5 -4.254E7 22 0.2
modglob 66 2.134E7 3 0.2 62.4 2.138E7 3 0 59.6 2.111E7 2 0.1 41.2 2.132E7 3 0.1
nsrand-ipx 7.3 245888 380 0.6 8 263792 415 0.5 6.8 261920 412 0.5 3.4 242768 374 0.6
nw04 21.6 19283.2 14 4.9 17 21180.2 26 4.3 5.6 19702.4 17 2.6 2 19124 13 2
opt1217 42.9 -12.8 20 0.2 37 -16 0 0.2 53.1 -13.8 14 0.2 23.6 -14 12 0
pk1 57.6 91.2 729 0.1 57.3 126.2 1047 0.1 73 149 1255 0.1 49.2 129 1073 0
pp08aCUTS 10.6 12270 67 0 10.7 12025 64 0.1 22 11050 50 0 8 8879 21 0.1
pp08a 10.8 11428 55 0 10 11020 50 0 23.5 12480 70 0.1 9 9880 34 0
qiu 7.5 167.37 226 0 8 432.57 426 0 18.2 608.86 558 0.2 6.8 160.56 221 0.1
set1ch 25.1 94116.18 73 0.2 27 86727.85 59 0 24.5 89406 64 0.1 11.8 81987.4 50 0
seymour 8 446 5 1.5 8 446 5 1.5 8 454 7 1.4 4 460 9 1.2
sp97ar 7.4 5.399E9 717 2.5 6.9 4.603E9 597 2.6 6 1.099E9 66 2.3 6 1.151E9 74 2.2
tr12-30 29.8 175086.5 34 0 30.6 173209.4 33 0 23.5 195109 49 0.3 15.6 160418.8 23 0.1
vpm2 10 20.5 49 0 12 24.38 77 0 21.9 23.77 73 0.1 10 23 67 0

Table 27: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
OFP vs ORFP

41

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

bc1 8.6 13.49 304 1.5 7.9 9.92 197 1.4 12.8 11.81 253 1.5 4 3.44 3 1.4
bienst1 77.9 61.76 32 0.9 59 57.38 23 0.5 82.4 54.79 17 1.1 47.8 63.76 36 0.5
bienst2 68.9 67.29 23 0.7 64.4 66.42 22 0.7 86.5 73.69 35 1 49 85.28 56 0.5
binkar10-1 1 7935.98 18 0.1 1 7935.98 18 0.1 1 7964.89 18 0.1 2 7976.03 18 0.1
dano3-3 21.7 577.12 0 53.2 26.5 577.21 0 79.3 45.8 577.43 0 104.8 12.1 576.52 0 24.6
dano3-4 36.4 578.53 0 119.2 35.1 578.34 0 108.5 41.5 578.77 0 96.4 16.4 577.25 0 34.8
dano3-5 34.4 579.3 0 104.1 41 579.74 0 128.3 50.1 580.15 1 134.5 21.2 579 0 55.7
mkc1 7 -565.92 7 0.3 10.7 -563.76 7 0.1 7.8 -573.01 6 0.3 6.6 -576.81 5 0
neos5 5 17 13 0 5.9 17 13 0.1 16.7 15.65 4 0.1 6 16 7 0
neos11 11.2 9.9 – 1.6 22.8 10.1 – 2.3 12.2 9.8 – 1.8 5.6 9.6 – 0.7
neos12 57.7 17.8 37 28.1 71.4 17.7 36 31.8 5.8 13 0 6.5 9.6 14.7 13 9.3
neos13 18 -41.04 57 1 17.3 -39.42 59 1.3 16.6 -37.06 61 1.2 5.1 -47.83 50 1.6
neos14 7.2 107870.61 45 0.1 8.8 104252.78 40 0.1 12.9 105913.04 42 0 20.5 101501.98 37 0.1
neos18 15 17.8 11 0.2 18.3 20.1 26 0.1 20.2 18.8 17 0.3 7.4 19.6 23 0.2
neos-476283 25 411.48 1 47.7 24.4 411.97 1 47.2 22.5 413.04 2 48 8.6 416.95 3 34.4
neos-480878 25.8 709.57 44 0.2 13 555.71 13 0.2 28.4 649.13 32 0.2 7.9 549.71 12 0.2
neos-504674 40.9 7155 97 0.1 53.7 10852.61 198 0.3 55.2 7420.4 104 0.2 28 11256.83 210 0.1
neos-504815 43.2 4178 82 0.1 36.9 4471.18 95 0.2 55.8 3960.03 72 0.2 29.2 4379.05 91 0.2
neos-512201 42.6 1316.45 156 0.2 45.2 1223.81 138 0.3 55.8 1359.89 165 0.1 29.1 1408.57 174 0.2
neos-522351 46.6 22851.7 28 0.2 46.8 19611.55 10 0.2 84.8 31042.64 74 0.2 27.7 18589.42 4 0.1
neos-525149 7.3 1460.8 2295 2 10 2261.3 3607 2.1 5.8 1461.9 2297 2 5.5 1860.3 2950 2
neos-547911 10.4 15.6 20 1.8 13.9 15.5 19 1.9 9.9 15.6 20 1.9 6.8 16.2 25 1.6
neos-555694 17.1 24.35 32 0.4 25.7 24.82 35 0.3 17.4 25.73 40 0.2 15.7 30.91 68 0.2
neos-555771 4.2 21.02 13 0.3 4 21.63 16 0.1 2 20.7 11 0.2 2 20.7 11 0.3
neos-565815 6.6 14 0 1 7.6 14 0 1 5.8 14 0 1.1 9.2 14 0 0.9
neos-570431 11 14.8 – 0.2 11 16.4 – 0.2 15.3 15.2 – 0.3 8.8 16 – 0.2
neos-584851 26.6 -4.8 56 0.3 26.5 -7.7 30 0.3 33.6 -8 27 0.5 19.6 -8.9 19 0.2
neos-611838 11 1.777E6 1 0.3 11 1.777E6 1 0.3 42.8 1.875E6 6 0.9 14.5 1.794E6 2 0.4
neos-612125 11 1.854E6 1 0.4 10.5 1.854E6 1 0.3 38 1.889E6 2 0.9 11 1.854E6 1 0.3
neos-612143 11 1.809E6 1 0.2 10.7 1.809E6 1 0.4 43.5 1.862E6 4 0.8 10.3 1.809E6 1 0.3
neos-612162 13.4 1.790E6 1 0.3 11.3 1.786E6 1 0.4 42.1 1.849E6 4 0.8 9.7 1.786E6 1 0.2
neos-655508 0 63015042 0 0.5 0 63015042 0 0.4 0 63015042 0 0.4 0 63015042 0 0.5
neos-777800 24.9 -80 0 14.8 31.5 -80 0 18.8 16.3 -80 0 10.4 20.3 -80 0 8.5
neos-780889 0 3421500 0 13.4 0 3421500 0 13.4 0 3421500 0 13.3 0 3421500 0 13.4
neos-801834 3.8 53732.8 7 0.5 3.8 54664.3 8 0.5 3.6 53770.1 7 0.6 3.6 59861.2 19 0.5

Table 28: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
OFP vs ORFP - Part I

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time Iter Obj Gap % Time

neos-820879 14.9 32762 29 1.3 12.9 32141.7 26 1.1 8.6 34295.3 35 1 14.9 37091.7 46 1.8
neos-824695 12.8 32.2 4 3.9 14.4 33.4 8 4 13.3 33.9 9 4.6 5.1 39.8 28 3.2
neos-825075 15.5 -222 18 0.1 13.8 -152 44 0.1 22.9 -146 46 0.2 13.2 178 165 0.2
neos-826250 4 28 0 1 4 28 0 1 7 30.5 9 1.6 5 34 21 1.3
neos-826812 7.4 58.72 1 2 7.8 58.52 1 1.9 5.9 58.12 0 2.1 5 59.11 2 2
neos-827175 2 112 0 2.1 2 112 0 2.1 6.1 112.3 0 2.8 5.8 112.5 0 2.2
neos-829552 1 26.41 1038 13.2 1 26.41 1038 13.4 1 26.74 1053 9.5 1 5.57 140 7
neos-839859 29.3 2.249E7 129 0.3 28.6 2.073E7 111 0.3 23.9 1.989E7 103 0.3 37.8 4.019E7 310 0.3
neos-860300 22.6 6272.4 96 2.2 26.8 6676.7 109 2.4 22.8 5724.5 79 2.2 11.4 6233.5 95 1.5
neos-886822 114.9 54237.05 89 2.9 114.7 54922.6 91 2.9 116.5 54100.65 88 2.9 92.1 50257.85 75 2.5
neos-892255 12.9 15.6 11 0.3 11.6 14.8 6 0.3 10.8 15.2 9 0.4 6 18 29 0.2
neos-906865 8 5820 83 0.1 8.7 10553.4 232 0.1 12.2 8387.8 164 0.1 5.1 12393.6 290 0
neos-932816 6.7 15475.2 1 2.7 8.1 15376 0 3 5.9 15478.9 1 1.8 2 15378 0 2
neos-948268 8.4 60 0 10.7 9.8 60 0 11.5 4 60 0 7.4 14 60 0 12.2
neos-955215 9 1145.56 157 0.1 6 548.44 23 0.1 12.4 1565.62 251 0.1 5 720.62 61 0.1
neos-1058477 59.6 0.99 81 0.2 61.6 1.05 92 0.1 73.6 1 83 0.2 50.1 0.83 52 0.2
neos-1171448 16.4 -296.49 4 4.6 14.9 -296.19 4 4.5 17.2 -292.96 5 5.2 5.6 -294.8 5 2.8
neos-1200887 13.8 -59.2 20 0.1 13.1 -63.4 14 0.2 18.9 -70.2 5 0.1 8.5 -69 7 0.1
neos-1211578 15.2 -70.2 9 0 17 -66 14 0.1 25 -68 12 0 5 -75.2 2 0.1
neos-1225589 53.6 4.219E10 3328 0.2 53.3 4.077E10 3212 0.2 48.8 4.180E10 3296 0.1 53 4.431E10 3499 0.2
neos-1228986 19.6 -101.4 18 0 16 -114 7 0 28.7 -118.4 4 0.1 11.4 -110.4 10 0.1
neos-1337489 16.8 -69 10 0.1 15 -75 3 0 24.9 -71.3 7 0.1 9.6 -71.7 7 0
neos-1413153 69 127.78 22 0.9 67.2 115.29 10 0.6 67.5 117.04 11 0.9 39.4 117.23 12 0.5
neos-1415183 64.5 124.25 18 1 70.8 116.35 10 1 64.2 117.79 11 1 38.5 118.43 12 0.5
neos-1437164 21.8 36.2 – 0 21.4 40.2 – 0.1 21 32.4 – 0.2 19.6 38.6 – 0.3
neos-1440447 16 -78 22 0 16 -82.8 17 0.1 27.2 -92.8 7 0 10.6 -84.4 16 0
neos-1480121 85.4 52 21 0.1 84.3 56.06 30 0.2 86 65.8 53 0.1 72.6 61.8 44 0.1
neos-1489999 9.1 474.6 34 0 10.7 472.3 33 0 12 464.5 31 0.2 5 527 49 0.4
neos-1516309 9.1 42993.5 20 0.2 11.6 45554.6 27 0.3 11 48341.4 34 0.2 11 48720.6 36 0.2
neos-1595230 10.6 10 – 0.3 10.3 10.3 – 0.3 15.3 10 – 0.3 6.6 10.6 – 0.2
neos-1597104 15.4 -14.5 52 9.8 15.4 -13.2 56 9.8 14.5 -20.7 31 8.6 9.7 -10.7 64 5.9
neos-1599274 10.6 43456.18 35 0.3 9.2 39650.26 24 0.3 8 41632.14 30 0.2 6.4 43108.88 34 0.2
neos-1620807 10.8 6 – 0.1 14.8 6.1 – 0.2 20 6 – 0.2 10.4 6.7 – 0
prod1 21.7 -42.1 25 0.1 16 -45.9 18 0 21 -44 21 0.1 17 -43 23 0
qap10 5.6 386 14 27.8 7.1 408.6 20 36 2.2 350.4 3 21.2 2.3 410.8 21 19.4
roy 12.7 4427.89 38 0.1 10 4696.38 46 0 27 4180.05 30 0 9.7 3883.22 21 0.1

Table 29: Comparison on COR@L problems (integer feasible solution found in all the ten runs).
OFP vs ORFP - Part II

42

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

10teams 8 - - 7 - - 5 - - 4 - -
cap6000 10 39.9 1 9 - - 10 28.8 0.5 10 18.5 0.5
danoint 8 - - 9 - - 9 - - 5 - -
glass4 1 - - 3 - - 3 - - 9 - -
harp2 3 - - 2 - - 2 - - 0 - -
liu 7 - - 5 - - 3 - - 6 - -
misc07 10 92.5 0.2 7 - - 6 - - 7 - -
momentum1 0 - - 0 - - 0 - - 0 - -
net12 9 - - 10 193.3 6 8 - - 7 - -
p2756 0 - - 0 - - 0 - - 0 - -
protfold 5 - - 4 - - 3 - - 6 - -
swath 7 - - 7 - - 6 - - 10 71.1 3.1
t1717 8 - - 8 - - 9 - - 10 61 186.4

Table 30: Comparison on MIPLIB problems (integer feasible solution found in less than ten
runs). OFP vs ORFP

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time F.s. found Iter Time

22433 7 - - 9 - - 9 - - 10 50 0.1
23588 9 - - 8 - - 10 89 0.1 10 110.1 0.2
aligninq 4 - - 7 - - 2 - - 6 - -
lrn 0 - - 0 - - 0 - - 0 - -
mcf2 8 - - 6 - - 9 - - 4 - -
neos2 0 - - 0 - - 0 - - 0 - -
neos3 0 - - 0 - - 0 - - 0 - -
neos6 10 119.8 14.4 8 - - 10 91.6 10.6 10 29.7 2.9
neos17 10 54 0.2 10 54 0.3 10 54 0.2 9 - -
neos-430149 0 - - 0 - - 0 - - 0 - -
neos-494568 9 - - 10 30 0.9 10 45 1.1 10 25.1 0.8
neos-538867 9 - - 8 - - 10 30.3 0.1 10 57.9 0.1
neos-593853 0 - - 0 - - 0 - - 0 - -
neos-598183 2 - - 2 - - 5 - - 8 - -
neos-603073 2 - - 9 - - 10 76 0.3 10 68.1 0.2
neos-631694 0 - - 0 - - 0 - - 0 - -
neos-709469 0 - - 0 - - 3 - - 0 - -
neos-775946 9 - - 10 25.5 0.6 10 26.6 0.7 10 15.4 0.6
neos-791021 0 - - 0 - - 0 - - 0 - -
neos-799711 1 - - 0 - - 0 - - 0 - -
neos-799716 0 - - 0 - - 0 - - 0 - -
neos-803219 10 234 0.4 4 - - 2 - - 10 40.3 0.1
neos-803220 9 - - 9 - - 10 130 0.1 10 26.9 0.1
neos-806323 0 - - 3 - - 0 - - 0 - -
neos-807639 10 74.1 0.5 4 - - 8 - - 3 - -
neos-807705 0 - - 2 - - 0 - - 6 - -
neos-810286 5 - - 6 - - 0 - - 5 - -
neos-810326 1 - - 2 - - 3 - - 1 - -
neos-862348 10 20.2 0.3 9 - - 10 38.5 0.5 9 - -
neos-880324 0 - - 0 - - 0 - - 0 - -
neos-912015 0 - - 1 - - 0 - - 0 - -
neos-941698 10 20.8 0.4 10 22.6 0.3 10 45.3 0.6 8 - -
neos-957270 2 - - 2 - - 2 - - 0 - -
neos-957389 0 - - 1 - - 0 - - 0 - -
neos-1215259 1 - - 1 - - 0 - - 0 - -
neos-1281048 1 - - 0 - - 0 - - 0 - -
neos-1396125 1 - - 0 - - 0 - - 0 - -
neos-1441553 2 - - 0 - - 3 - - 8 - -
neos-1460265 5 - - 3 - - 2 - - 10 22.3 0.3

Table 31: Comparison on COR@L problems (integer feasible solution found in less than ten
runs). OFP vs ORFP

43

