ISSN 2281-4299

e

! ||!||”l

VT

-

-
I |]

_— : - - -
.1 -'--‘.‘" ‘I 2 f .
- ..- -

m I DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONITO RUBERTI

SAPTENZA

UNIVERSITA DI ROMA

A new class of functions for measuring
solution integrality in the Feasibility Pump
approach: Complete Results

Marianna De Santis
Stefano Lucidi
Francesco Rinaldi

Technical Report n. 5, 2013

A new class of functions for measuring solution
integrality in the Feasibility Pump approach:

Complete Results

M. De Santis’, S. Lucidi’, F. Rinaldi*

 Sapienza Universita di Roma
Dipartimento di Ingegneria Informatica Automatica e Gestionale
Via Ariosto, 25 - 00185 Roma - Italy

*Universita di Padova
Dipartimento di Matematica
Via Trieste, 63 35121 Padua - Italy

e-mail (De Santis): mdesantis@dis.uniromal.it
e-mail (Lucidi): stefano.lucidi@Qdis.uniromal.it
e-mail (Rinaldi): rinaldi@math.unipd.it

Abstract

Mixed-Integer optimization is a powerful tool for modeling many optimization problems arising from
real-world applications. Finding a first feasible solution represents the first step for several MIP solvers.
The Feasibility pump is a heuristic for finding feasible solutions to mixed integer linear problems which
is effective even when dealing with hard MIP instances. In this work, we start by interpreting the
Feasibility Pump as a Frank-Wolfe method applied to a nonsmooth concave merit function. Then, we
define a general class of functions that can be included in the Feasibility Pump scheme for measuring
solution integrality and we identify some merit functions belonging to this class. We further extend our
approach by dynamically combining two different merit functions. Finally, we define a new version of
the Feasibility Pump algorithm, which includes the original version of the Feasibility Pump as a special
case, and we present computational results on binary MILP problems showing the effectiveness of our
approach.

Keywords. Mixed integer programming, Concave penalty functions, Frank-Wolfe algorithm,
Feasibility Problem.

MSC. 90C06, 90C10, 90C11, 90C30, 90C59

1 Introduction

Many real-world problems can be modeled as Mixed Integer Programming (MIP) problems,
namely as minimization problems where some (or all) of the variables only assume integer
values. Finding quickly a first feasible solution is crucial for solving this class of problems. In
fact, many local-search approaches for MIP problems such as Local Branching [18], guided dives
and RINS [14] can be used only if a feasible solution is available.
In the literature, several heuristics methods for finding a first feasible solution for a MIP problem
have been proposed (see e.g. [4]-[6], [10], [20]-[23], [25], [28]). Recently, Fischetti, Glover and
Lodi [17] proposed a new heuristic, the well-known Feasibility Pump (FP), that turned out to
be very useful in finding a first feasible solution even when dealing with hard MIP instances.
The FP heuristic is implemented in various MIP solvers such as BONMIN [11].
The basic idea of the FP is that of generating two sequences of points {z¥} and {#*} such
that z¥ is LP-feasible, but may not be integer feasible, and #* is integer, but not necessarily
LP-feasible. To be more specific the algorithm starts with a solution of the LP relaxation z°
and sets ¥ equal to the rounding of z°. Then, at each iteration Z*T! is chosen as the nearest
LP-feasible point in ¢;-norm to ¥, and #**! is obtained as the rounding of Z¥*!. The aim of the
algorithm is to reduce at each iteration the distance between the points of the two sequences,
until the two points are the same and an integer feasible solution is found. Unfortunately, it
can happen that the distance between z**! and #* is greater than zero and #**! = #*, and
the strategy can stall. In order to overcome this drawback, random perturbations and restart
procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted to its further
improvements have been developed. Fischetti, Bertacco and Lodi [8] extended the ideas on which
the FP is based in two different directions: handling MIP problems with both 0-1 and integer
variables, and exploiting the FP information to drive a subsequent enumeration phase. In [1], in
order to improve the quality of the feasible solution found, Achterberg and Berthold consider an
alternative distance function which takes into account the original objective function. In [19],
Fischetti and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation. Recently in [3] and [9] new rounding techniques have been proposed.
They are both based on the idea of replacing rounding with a procedure that examines rounded
solutions along a line segment passing through the LP-feasible solution. The Feasibility Pump
has been further extended to the case of mixed integer nonlinear programming problems in
[12, 13].
In [10], J.Eckstein and M.Nediak noticed that the FP heuristic may be seen as a form of Frank-
Wolfe procedure applied to a nonsmooth merit function which penalizes the violation of the 0-1
constraints. In practice, the Feasibility Pump combines a local algorithm (namely the Frank-
Wolfe algorithm) with a suitably developed perturbing procedure for solving a specific global
optimization problem:

z* = argmin{f(z) : z € P},

where P is the relaxation of the feasible set of the original MIP Problem and f(z) is a function
penalizing the violation of the integrality constraints. Therefore the Feasibility Pump can be
seen as a form of Iterated Local Search or Basin Hopping algorithm (see e.g. [7, 27, 29]).

In this paper, we analyze in deep the relationship between the Feasibility Pump and the Frank-
Wolfe algorithm. In this context, we define a new class of merit functions that can be included
in the basic FP scheme [17]. A reported extended computational experience seems to indicate
that the use of these new merit functions improves the FP efficiency.

The paper is organized as follows. In Section 2 and 3, we give a brief review of the Feasibility
Pump and the Objective Feasibility Pump heuristics. In Section 4, we show the equivalence be-
tween the FP heuristic and the Frank-Wolfe algorithm applied to a nonsmooth merit function.
In Section 5, we define a new class of merit functions for measuring the solution integrality, we

introduce new nonsmooth merit functions and we discuss their properties. We present our algo-
rithm in Section 6. In Section 7, we extend our approach by dynamically combining two different
merit functions. Computational results are shown in Section 8, where we give a detailed perfor-
mance comparison of our algorithm with the FP. Further, we show that using somehow more
than one merit function at time can improve the efficiency of the algorithm. Some conclusions
are drawn in Section 9.

In the following, given a concave function f : R™ — R, we denote by df(x) the set of supergra-
dients of f at the point z, namely

Of(x)={veR" : f(y)— f(z) <v'(y—2), VyeR"}.

2 The Feasibility Pump Heuristic

We consider a MIP problem of the form:

min ¢!z

st. Az > b (MIP)
z;€{0,1}Vjel,

where A € R™" and I C {1,2,...,n} is the set of indices of zero-one variables. Let P =
{x: Az >b,0 < 2; <1,Vj € I} denote the polyhedron of the LP-relaxation of (MIP). The
Feasibility Pump starts from the solution of the LP relaxation problem #° := argmin{c’z :
x € P} and generates two sequences of points ZF and #*: z* is LP-feasible, but may be integer
infeasible; #* is integer, but not necessarily LP-feasible. At each iteration z**! € P is the
nearest point in ¢;-norm to *:

Z*H = argmin A(z, 2%)
zeP
where
Az, 3) = Ja; — 2.
JeI
The point #*T! is obtained as the rounding of Z*T!. The procedure stops if at some index I, !

is integer or, in case of failing, if it reaches a time or iteration limit. In order to avoid stalling
issues and loops, the Feasibility Pump performs a perturbation step. Here we report a brief
outline of the basic scheme:

The Feasibility Pump (FP) - basic version

Initialization: Set k = 0, let 2¥ := argmin{c’x : x € P}

While (not stopping condition) do
Step 1 If (z* is integer) return z*

Step 2 Compute ¥ = round(z")

Step 3 If (cycle detected) perturb(z¥)

Step 4 Compute 7"*+! := argmin{A(z, %) : 2 € P}

Step 5 Update k =k + 1

End While

Now we give a better description of the rounding and the perturbing procedures used respectively
at Step 2 and at Step 3 (See e.g. [8], [17]):

Round: This function transforms a given point Z* into an integer one, #*. The easiest
choice is that of rounding each component a’:? with j € [to the nearest integer, while
leaving the continuous components of the solution unchanged. Formally,

[Zh] ifjel
ik = (1)
k

T otherwise

where [-] represents scalar rounding to the nearest integer.

Perturb: The aim of the perturbation procedure is to avoid cycling and it consists in two
heuristics. To be more specific:

—if i‘? = i‘?“ for all j € I a weak perturbation is performed, namely, a random number

of integer constrained components, chosen as to minimize the increase in the distance
A(zFFL R 1) s flipped.

— If a cycle is detected by comparing the solutions obtained in the last 3 iterations, or
in any case after R iterations, a strong random perturbation is performed. For each
J € I a uniformly random value is generated, p; € [—0.3,0.7] and if

=k ~k
|xj+1 - xj+1| + max{p;,0} > 0.5

the component 5:;“1 is flipped.

Remark 1 The objective function A(x,Z*) discourages the optimal solution of the relazation
from being “too far” from *. In practice, the method tries to force a large number of variables
of 1 to have the same (integer) value as T* (see [17]).

3 The Objective Feasibility Pump

When using a heuristic like the Feasibility Pump on a MIP problem, one of the target we have
is that of finding a high-quality solution, that is we would like to find a feasible point with the
objective function ¢’z as small as possible. In general, since the FP scheme discards the original
objective function of the problem after the first iteration, the quality of the feasible solutions
found by the algorithm often tends to be poor. In order to overcome this drawback, in [1] a
different approach, called Objective Feasibility Pump (OFP), has been developed. The idea
is that of combining the original objective function ¢’z of the problem with the FP objective
function. At each iteration the algorithm gradually reduces the influence of the objective function
and increases the weight of A(x,Z). In this way the OFP, in its first iterations, concentrates
its search on the region of high-quality points. The objective function of the LPs is a convex
combination of the original objective function with the distance function A(x,):
1-6 0 7

Ag(.’ﬂ,.’f) = WA(.’E,.%) + —cCc

where ||A|| = +/|I] and 6 € [0,1]. At each iteration k, the coefficient 6% is decreased by a factor
v <1 (i.e. 681 = vh*). The introduction of the new function further requires a modification
of the cycle detection step. While in the original scheme a cycle is found if the same integer

point is visited twice, this is not the case in the modified scheme, because the objective function
Ay has changed in the meantime. The algorithm therefore stores, at each iteration k, the pair
(i‘k, Hk) and a cycle is detected if there exist two iterations k; and kj;, with k; < k;, such that
ki = 7% and % — 0% < &y, where 8y € [0, 1] is a fixed parameter.

4 The FP heuristic as a Frank-Wolfe algorithm for minimizing
a nonsmooth merit function

In a recent work J.Eckstein and M.Nediak [10] noticed that the feasibility pump heuristic may
be seen as a Frank-Wolfe procedure applied to a nonsmooth merit function. In order to better
understand this equivalence we recall the unitary stepsize Frank-Wolfe method for concave non-
differentiable functions. Let us consider the problem

where P C R" is a non empty polyhedral set that does not contain lines going to infinity in
both directions, f: R™ — R is a concave, non-differentiable function, bounded below on P.
The Frank-Wolfe algorithm with unitary stepsize can be described as follows.

Frank-Wolfe - Unitary Stepsize (FW1) Algorithm
Initialization: Set k =0, let z° € R" be the starting point, compute ¢ € 9f(2°)

While z* ¢ argmin (¢")7z
zeP

Step 1 Compute a vertex solution zF*+1 of

: k\T
min (¢°)" @

Step 2 Compute ¢g"t! € 9f (1), update k = k + 1

End While

The algorithm involves only the solution of linear programming problems, and the following
result, proved in [31], shows that the algorithm generates a finite sequence and that it terminates
at a stationary point 2*, namely a point satisfying the following condition:

(") (@ —2*) >0, VeeP (3)
with g* € 9f (x*).

Proposition 1 The Frank-Wolfe algorithm with unitary stepsize converges to a vertex statio-
nary point of problem (2) in a finite number of iterations.

Now we consider the basic FP heuristic without any perturbation (i.e. without Step 3) and we
show that it can be interpreted as the Frank-Wolfe algorithm with unitary stepsize applied to a
concave, nondifferentiable merit function.

First of all, we can easily see that

Az, i%) = Z xj+ Z (1 —zj).

e Tk Tk
jGI.:cjfo jGI.;Ujfl

At each iteration, the Feasibility Pump for mixed 0-1 problems computes, at Step 2, the rounding
of the solution ¥, thus giving #*. Then, at Step 4, it computes the solution of the LP problem

z** € argmin A(z, #)
st. Az >0 (4)
0<z;<1Vjel

These two operations can be included in the unique step of calculating the solution of the
following LP problem:

min Z ZCj — Z .I'j
jelzh<g jerzh>3

st. Az >b (5)
0<z;<1Vjel.

Since the function
1 ift <

o(t) = (6)

-1 ift>

N

D[

is such that v(t) € Omin{t,1 — ¢}, Problem (5) can be seen as a generic iteration of the Frank
Wolfe method with unitary stepsize applied to the following minimization problem

min Z min{z;,1 — z;}
el

st. Az >b (7)
0<x; <1Viel.

5 New nonsmooth merit functions for the FP approach

As we have seen in the previous section, the basic Feasibility Pump is equivalent to minimizing
a separable nonsmooth function which penalizes the 0-1 infeasibility, namely

flx) = Z min{z;, 1 — z;}. (8)

i€l

When using the Frank Wolfe unitary stepsize algorithm for solving Problem (7), at each iteration,
if z* is not a stationary point, we get a new point 2#*1 such that

(gk)T(xk-H _ .I'k) < 0’
with ¢* € df(x*). Then, from the concavity of the objective function we have
F@F) < fa®) + (@M@ = aF) < f@b), (9)

which means that at each iteration a reduction of the merit function is obtained. Anyway, this
might not correspond to a reduction in the number of variables that violate integrality.

Example 1 Let us consider the following two points

(ko)) a=(uhLo)

Let f be the function defined in (8). It is easy to notice that

fly) < f(x),

but the number of noninteger components of y is greater than the number of noninteger compo-
nents of x.

As the main goal is finding an integer feasible solution, it would be better to use a function
having the following features:

(i) it decreases whenever the number of integer variables increases;
(ii) if it decreases, then the number of noninteger variables does not increase.

A function satisfying these features is the following:

Y(x) =card{z;: i€, x; ¢ {0,1} }. (10)

The function (10) can be rewritten as:

Y(x) = s(min{z;, 1 — z;}) (11)

el
where s : R — R is the step function:

1 ift>0
s(t) =

0 otherwise.

Since the step function is a nonconvex and discontinuous function, minimizing (11) over a
polyhedral set is a very hard problem. In the following we prove a general result to define
approximations of function (11) that are easier to handle from a computational point of view
and guarantee satisfaction of (i) and (ii) when evaluated on the vertices of a polyhedron.

Proposition 2 Let V' C [0,1]" be the set of vertices of a polytope P = {xz: Ax > b, z € [0,1] }.
Let ag and oy, be the following values:

= min!
o gg‘l} (x)

oy = Iin u(x)

where
() = min{z;: i=1,...,n;2; #0} ifx#0
1 if © = 0;

f max{x;:i=1,...,n;2; #1} ifzxFe
u(x)—{l if x =e.
Let ¢ : [0,1]" — R be a separable function
d(w) = p(xs). (12)
el
We assume that ¢ : [0,1] — R satisfies the following:

1)

2) there exists an M > 0 such that

(i) for & € {0,1} and & € [y, an,| we have
p(a) — p(a) < —M; (14)

(ii) for &, & € [oq, | we have

M

-

[p(a) —p(a)] < (15)

Then, for x,y € V:
a) P(x) < P(y) implies ¢(x) < ¢(y);

b) ¢(z) < ¢(y) implies Y(z) < Y(y).
Proof.

a) We consider two points x,y € V such that ¢ (x) < ¥(y). We can define two sets of indices
related to the non-integer components of z and y:

U={ic{l,...n}|icl zd{0,1}})
W:{jE{l,...,n}‘jEI,yj¢{0,1}}.

Then we can write

dx) — dy) =Y o) = Y ely) =

icl jerI
= o)+ Y ela) = > ely) = > el) (16)
ieU 1€I\U JEW JjEN\W
Since ¥ (x) < 9 (y), we have that
Ul < W]

and

I\U| >[I\ W].
Let us first consider the case

W|—1U]=1.

We can assume that there exists an index j such that
WA{J} =U
INO)\ATF =1\ W.

Then we can write

d(x) — d(y) = plaz) — olyr) + Y elag) + Y ola) = Y ely) — > ely;) =

jeUu j%;\jU j]’i";f JjEN\W
= p(z) — o) + > ela) + D wlm) = > ely) — > ely;) =
g < gt <
=p(z7) —@yp) + > (p(z) —o(y;) + > (olx;) — ;) <
JEI\U JEW
J#7 J#T
< olg) —olyp) + Y (elas) — o) + > lela) — o(y))] (17)
JEI\U JEW
J#7 J#T

By using (13) we obtain

o(z) — o(y) < () — o(y;) + Z lo(x;) — (). (18)
i

Now we notice that z; € {0,1}, y; € [ay,] and zj,y; € [oq,] for all j € W\ {7} .
Then, by using (14) and (15), we have

d(x) — dy) < (xz) — olys) + Y lela;) — o(y;)] < =M + (|| — 1)% <0.(19)

JEW
J#7
Hence we have
P(z) < 9(y).
Let us now consider the case
[W|—1|U| > 1.

We can assume that there exists a set J such that
W\ J=U

(INU)\J=T\W.
Then we can write
d(x) — p(y) = _(pla;) — o)) + D o)+ > ola) = > ey) = > o).
jeJ jeu jfé\j[} J]‘EQV}/ jeEN\W
By using the same arguments used before we obtain
d(x) — dy) <Y (play) =)+ D lels) — olys)l- (20)
jeJ JEWNJ

Now we notice that z; € {0,1}, y; € [y,) for all j € J and x;,y; € [0y,] for all
j € W\ J . Then, by using (14) and (15), we have

d(x) — d(y) <Y (play) — o)) + D lela;) —elyy)| <

jeJ FEWNJ
_ - M
§—M\J\+(\I\—|J|);<O. (21)

Once again we have

¢(x) < (y)-

We assume by contradiction that there exist two points z,y € V such that ¢(z) < ¢(y)
and

(@) > Y (y)- (22)

By (22), recalling the first part of the proof, we have that ¢(z) > ¢(y), which contradicts
our initial assumption.

|

Summarizing, if an approximation ¢(z) satisfying the assumptions of Proposition 2 is available,
we can solve, in place of the original FP problem (7), the following problem

min ¢(z) = Y ()
el
st. Az >0 (23)

As the method we use for solving the minimization problem stated above is the Frank-Wolfe
algorithm, which at each step moves from a vertex to another guaranteeing the reduction of
the chosen approximation, we have (by point b) of Proposition 2) that, at each iteration of the
algorithm, the number of the noninteger components of the current solution does not increase.
Taking into account Proposition 2 and the ideas developed in [30, 34], we consider the following
©(-) terms to be used in the objective function of problem (23):

Logarithmic function

¢(t) =min { In(t +¢),In[(1 — t) + €]} (24)
Hyperbolic function
o(t) =min{ — (t+e)?, —[(1 —t)+¢] "} (25)
Exponential function
¢(t) = min {1 — exp(—at),1 — exp(—a(l — t)) } (26)
Logistic function
¢(t) = min {[1 + exp(—at)] 71 [1 + exp(—a(l — t))]_l} (27)

where €, , p > 0. In Fig. 1, we compare the ¢ term related to the FP heuristic with those given
by (24)-(27).

Logistic function with o = 5 Hyperbolic function with € = 0.1

=

Logarithmic function with e = 0.1 Concave function with o= 5

Figure 1: Comparison between the original FP term (dashed line) and the new terms (solid
line).

Now we prove that, for a particular choice of the ¢ term, the assumptions of Proposition 2 are
satisfied.

10

Proposition 3 For the term (24), there exists a value € > 0 such that for any € € (0,£]
assumptions 1) and 2) of Proposition 2 are satisfied.

Proof. It can be easily noticed that when = € {0,1} we have

¢(z) = Ine,
then assumption 1) of Proposition 2 is satisfied.

Now, without any loss of generality, we suppose
ap = min{a;,1 — ay} (28)

and we notice that there exists a value £ > 0 such that for any ¢ € (0, £] the following inequality
holds:

Ine —In(a; +¢) + n(In(1/2 +¢) — In(aoy +¢)) < 0. (29)
As the function ¢(t) is strictly increasing in [0, 3] and strictly decreasing in (3,1] and it is

symmetric with respect to the point ¢t = %, we have for & € {0,1} and & € [ag, ay]

p(a) —p(a) < e(0) — p(a).

Then we set
M = p(a;) — ¢(0) =In(a; +) — Ine, (30)

and (7) in Assumption 2) of Proposition 2 is satisfied.

As the maximum of ¢(t) is attained at ¢ = 3 and due to the structure of function ¢(t), we have
for any choice of &, & € [ay, ay):

(@) — (@) < @(1/2) — p(ar). (31)

Since i7) in Assumption 2) needs to be verified for any choice of &, & € [y, aw], by (31) it is
sufficient to show that

P(1/2) ~ plon) <

By using (30) and (29), we can easily verify that for any ¢ € (0, £], the following inequality holds:

©(0) = wlar) +n(p(1/2) — (ar)) = (32)

=Ine —In(ay+¢) +n(In(1/2 4+ ¢) — In(ay +¢)) < 0.
Then (i7) in Assumption 2) of Proposition 2 is satisfied. O

The result proved in Proposition 3 for the term (24) can also be proved for the terms (25)-(27)
repeating the same arguments, thus all the merit functions (24)-(27) are suitable to penalize the
number of variables that violate the integrality constraints.

We remark that functions (24)-(27) have also another interesting theoretical property: they can
be used in an exact penalty approach like that proposed in [30]. In fact, it is possible to prove
that terms (24)-(27) can be used to transform a MIP problem into an equivalent continuous
problem:

11

Proposition 4 Let f be a Lipschitz continuous function bounded on P. For every penalty term

P(x) = Z p(z:)

el
with ¢ as in (24)-(27) a value € > 0 exists such that, for any e €)0,&], problem
min f(z), st xze€P, z;€{0,1}, Viel (33)

and problem

min f(z) + ¢(z,e), st. xzeP, 0<z; <1, Viel (34)

where
o(x) if ¢ is given by (24)-(25)
qb(xv 5) = 1
B o(x) if ¢ is given by (26)-(27)

have the same minimum points.

Proof. the proof follows the same arguments as in [30]. See Appendix A for further details. O

This result suggests that these new merit functions can be used to define new Feasibility Pump
heuristics that improve the quality of the solution in terms of objective function value like those
proposed in [1] and [10]. In fact, the heuristic proposed in [1] can be seen as a Frank-Wolfe
algorithm applied to problem (34) with the penalty term (8). Furthermore, the restarting rules
used in the Feasibility Pump algorithm can be reinterpreted as techniques for escaping from
noninteger stationary points.

We can also include these functions into an algorithmic framework to determine the minimizer
of a nonlinear programming problem with integer variables (see e.g. [33]). Anyway, the use of
the continuous reformulation of the original mixed integer problem is beyond the scope of this
paper and will be the subject of a future work.

In the next Section we will focus on finding a first feasible solution to a MIP problem. In
particular, we tackle problem (23) by a modified Feasibility Pump approach based on the concave
functions described above.

6 A reweighted version of the Feasibility Pump heuristic

The use of the merit functions (24)-(27) defined in the previous section leads to a new FP scheme
where the £1-norm used for calculating the next LP-feasible point is replaced with a “weighted”
{1-norm of the form

Aw(x,7) =Y wjlz; — &5 = [|W (2 —)|, (35)
JeI
where
W = diag(wy, ..., wy)
and wj, j = 1,...,n are positive weights depending on the merit function ¢ chosen. The main

feature of the method is the use of an infeasibility measure that

- tries to discourage the optimal solution of the relaxation from being far from & (similarly
to the original FP algorithm);

- takes into account, in some way, the information carried by the LP-feasible points obtained
at the previous iterations of the algorithm for speeding up the convergence to 0-1 feasible
points.

12

A possible choice for the weights w;, j = 1,...,n is the following:

wj:|gj\,j:1,...,n,

where g € 9¢(z) and Z is the LP-feasible point obtained at the previous iteration of the algo-
rithm.
Here we report an outline of the algorithm:

Reweighted Feasibility Pump (RFP) - basic version

Initialization: Set k = 0, let 2° := argmin{c’x : x € P}

While (not stopping condition) do
Step 1 If (z* is integer) return z*

Step 2 Compute & = round(z")

Step 3 If (cycle detected) perturb(i*)

Step 4 Compute z"*+! := argmin{||W*(z — ¥)||, : » € P}

Step 5 Update k =k + 1

End While

We assume that the round and perturb procedures are the same as those described in Section 2 for
the original version of the FP heuristic. Anyway, different rounding and perturbing procedures
can be suitably developed.

In particular, the rounding procedure could be replaced with a scheme based on constraint
propagation like that one proposed in [19]. Other possibilities can be inspired by the procedures
recently proposed in [3, 9] examining rounded solutions along suitable line segments.

Following the same reasoning of Section 4, we can reinterpret the reweighted FP heuristic without
perturbation as the unitary stepsize Frank-Wolfe algorithm applied to the merit function ¢. Let
us now consider a generic iteration k of the reweighted FP. At Step 2, the algorithm rounds the
solution Z*, thus giving #*. Then, at Step 4, it computes the solution of the LP problem

Z* € argmin Ay (z, 2)
st. Az >b (36)
0<z;<1Vjel

Similarly to the FP algorithm, these two operations can be included in the unique step of
calculating the solution of the following LP problem:

LR Tk 1
]EI.xj<§]GI.xj2§

st. Ax >0 (37)
0<az;<1Vjel

By setting
k k
w; = |gj|

with g¥ € 9¢(z"*), Problem (37), as we have already said, can be seen as the iteration of the
Frank Wolfe method with unitary stepsize applied to the minimization problem (23).

13

In order to highlight the differences between the ¢;-norm and the weighted ¢1-norm we report
the following example:

Example 2 Consider the MILP problem:

min L (38)
s.t. re P
x € {0,1}3

where P C [0,1]3 is the polyhedron in Fig. 2. Let el = (%, %, %) be the solution of the linear

relazation of (38) and x!' = (0,0,0) be its rounding. The minimization of A(z,z!) = ||z — 27|

Figure 2: Feasible set of Problem 38.

over P leads to z™¥ = (3,3, 3), since |2 — 21|y < ||z — 2T, for all z € P.

Consider now the weighted ¢1-norm obtained using the logarithmic merit function
o(x) = Z min { In(z; +€),In[(1 — x;) + 5]},
el
where € is a small positive value. By minimizing the weighted distance between x and z! over
P, we obtain the point ¥ = (1,0,0). In fact, we have

AI/I/(J:Fa xl) < AW(.T, xI)u

for all x € P. Thus the £1-norm finds a solution which does not satisfy the integrality con-
straints, while the reweighted £1-norm gets an integer feasible solution.

We want to remark that the original Feasibility Pump Algorithm is a special case of the
Reweighted Feasibility Pump obtained by setting W* = I.

We can further use the merit functions (24)-(27) in the OFP approach recalled in Section 3
to obtain a reweighted version of the algorithm, the Objective Reweighted Feasibility Pump
(ORFP). The new objective function of the LPs becomes the following:

1-46 - 0
Awﬂ(:{:,x) = WAW(CC,CC) + HCTCC, (39)

14

where ||Al| = \/[I] and 6 € [0,1]. As in the standard OFP, at each iteration k, the coefficient
6% is decreased by a factor v < 1 (i.e. 98! = vgF).

Anyway, this choice follows exactly the approach proposed in [1] and does not take into account
the fact that the proposed merit functions and the original FP merit function have different
behaviors. Hence, new approaches could be developed to combine those merit functions with
the original objective function (e.g. a convex combination with different coefficients and updating
rules).

7 Combining Two Merit Functions

As we have already said, the main drawback of the FP heuristic is its tendency to stall (i.e. to get
stuck in a point that is not an integer feasible solution). For this reason, a random perturbation
(or a restart) is performed. A good idea might be that of modifying the objective function (in
addition to the random perturbation/restart usually adopted) any time the algorithm stalls.
This modification may help escaping from the last stationary point obtained and speed up the
convergence to an integer feasible solution. A possibility might be that of considering a convex
combination of two different merit functions:

() = Ap1(z) + (1 — N) g2 () (40)

with A € [0, 1], and modifying the A parameter as soon as the algorithm stalls. This is equivalent
to use, in the RFP algorithm:

1) a matrix W* with the following terms:
wh = N|gi|+ (L=)R] j=1,....n
where g;-“ € 0¢1(z%) and hé? € 0go(z%);

2) an updating rule for the A parameter that slightly (significantly) changes the penalty term
anytime a perturbation (restart) is performed.

In Figure 3 we can see the behaviour of a function obtained by combining the exponential and
the logistic function.

8 Numerical Results

In this section we report computational results to compare our version of the FP algorithm with
the original FP described in [17] and the Objective Feasibility Pump described in [1]. The test
set used in our numerical experience consists of 153 instances of 0-1 problems from MIPLIB2003
[2] and COR@L libraries. All the algorithms were implemented in C and we have used ILOG
Cplex [26] as solver of the linear programming problems. All tests have been run on an Intel
Core2 E8500 system (3.16GHz) with 3.25GB of RAM.

We compare the FP with the reweighted version in different scenarios:

1 Randomly generated starting points: for the terms (8), (24)-(27), we solved the
corresponding penalty formulation (23) by means of the Frank-Wolfe algorithm using 1000
randomly generated starting points. The aim of the experiment was to highlight the ability
of each penalty formulation to find an integer feasible solution.

15

0ok - - 08

o6k Ry <N, 4

Figure 3: Behaviour of the function obtained combining exponential and logistic function

2

FP vs RFP: in order to evaluate the effectiveness of the new penalty functions, we
compared the Feasibility Pump algorithm with the Reweighted Feasibility Pump, where
the distance Ay (x, %) is defined using the terms (24)-(27).

FP vs Combined RFP: we made a comparison between the Feasibility Pump algorithm
and the Reweighted Feasibility Pump where the distance Ay (z,Z) is the combination of
two different penalty terms. The aim of the experiment was to show that the combination
of two different functions can somehow improve the RFP algorithm performance.

OFP vs ORFP: we made a comparison between the Objective Feasibility Pump and
the Objective Reweighted Feasibility Pump. In this experiment, the distance Ay g(z, Z)
is the combination of the original objective function of the problem considered and the
Exponential and Logistic penalty terms.

OFP vs Combined ORFP: we made a comparison between the Objective Feasibility
Pump and the Combined Objective Reweighted Feasibility Pump. In this experiment, the
distance Ay g(z,Z) is the combination of the original objective function of the problem
considered and a term given by the combination of the Exponential and Logistic penalty
terms. The aim of the experiment was to show that the combination of the two merit
functions proposed is beneficial also for the Objective Feasibility Pump.

The choice of the merit function parameters is critical for the efficiency of the algorithm. From
one hand, by following Proposition 2, it would be better setting the parameter of a chosen merit
function to a sufficiently small value. On the other hand, when the parameter is very small,
the slope of the graph related to the function ¢ gets very large close to 0 or 1, thus making the
problem, in some cases, hard to be solved. We performed our experiments using:

Penalty term (8) denoted by FP;

Penalty term (24) denoted by Log, with ¢ = 0.1;

(

(

Penalty term (25) denoted by Hyp, with £ = 0.1;

Penalty term (26) denoted by Exp, with o = 0.5;
(

)
)
)
Penalty term (27) denoted by Logis, with a = 0.1.

16

On the basis of our numerical experience, the values of the parameters reported above represent
a good compromise between theory and practice.

In scenarios 2, 3, 4 and 5, we stop the algorithms if an integer solution is found or if the limit
of 1500 iterations is reached. Due to the random effects introduced by perturbations and major
restarts, each problem is tested on a particular penalty function on 10 runs (with different
random seeds).

8.1 Computational results for randomly generated starting points

In this first experiment, we applied the Frank-Wolfe algorithm to solve problem (23) with the
objective functions (8), (24)-(27). The algorithm stops when it finds a stationary point (which
is not necessarily integer feasible). The goal of the experiment was to understand how good
is each function in finding an integer feasible solution. In order to obtain reliable statistics we
used 1000 randomly generated starting points. The results obtained on the MIP problems when
using randomly generated starting points are shown in Figure 4, where we report the box plots
related to the distribution of the number of integer feasible solutions found by each function
(we discarded the problems where no function found an integer feasible solution). On each
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and outliers are
plotted individually.

looor i - - =
s00l —L— o —
800
700
600
500 L
400 [
300f
200+ —
100+ I
o — L L
FP EXP LOG HYP LOGIS

Figure 4: Comparison between the original FP term and the new terms for randomly generated
starting points.

333 333 333

300 300 — 300 — —

250 250 250

200 200 200

150 150 150

100 100 | E— 100 | E— —

| T ! |
—r | | | |
50 L ! 50 | | 50 | |
| | | | | |
| | | | | |
0 L 1 0 1 1 0 L 1
FP FP-EXP-LOGIS EXP FP-EXP-LOGIS LOGIS FP-EXP-LOGIS

Figure 5: Number of integer feasible solutions found in the parallel experiment.

17

We can observe that the results obtained by means of the Exp and the Logis functions, in terms
of number of integer feasible solutions found, are slightly better than those obtained using the
FP. FP, in turn, gives better results than Log and Hyp penalty functions.

This preliminary computational experience seems to show that the functions have a different
behavior in forcing the integrality of the solution. These diversities could be somehow exploited
into a multistart strategy. In particular, we could develop a new framework where the mini-
mization of different functions is carried out in parallel. In order to investigate the effect of the
parallel use of different functions, we applied the Frank-Wolfe algorithm to three merit functions
(using three different randomly generated starting points) and we chose the solution with the
highest number of integer components among the three. We compared this strategy with the
one where we use the same merit function on three different starting points. In Figure 5, we
report the results obtained on 333 repetitions of the parallel experiment, when using for each
repetition:

- the same merit function with three different starting points;
- three different merit functions (FP, Exp and Logis) each one with a different starting point.

We discarded the problems where in both cases no integer feasible solution over the 333 rep-
etitions was found. We can see from Figure 5 that the use of three different merit functions
in parallel outperforms the use of only one merit function in the case of FP and Exp. The
difference in the performances between the use of three different merit functions in parallel and
the use of the Logis merit function is less evident, however the results obtained by the Logis
function have a median of 298.0 and a 25th percentile of 95.5, while the results obtained by
using three different merit functions have a median of 302.5 and a 25th percentile of 98.5. The
results obtained in the parallel experiment suggest that, into a multistart strategy, the use of
different merit functions can help diversifying the local minima computed by the algorithm, thus
increasing the number of integer feasible solutions found.

8.2 Comparison between FP and RFP

In order to evaluate the ability of finding a first feasible solution, we report in Table 1, for each
penalty term:

e The number of problems for which no feasible solution has been found (Not found);

e The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

e The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

e The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 1, FP, Exp and Logis terms have a similar behavior and they are
slightly better than Hyp and Log terms.

In order to show the efficiency in terms of objective function value, we consider the 108 problems
for which an integer feasible solution is found in all the ten runs by all the algorithms and, in
Table 2, we report for each penalty term:

e Number of problems for which the best average o.f. value (average over ten runs) is
obtained (Best Average o.f.);

e Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

18

As we can see by taking a look at Table 2, the Log and Hyp terms give the best performance
in terms of objective function value. Furthermore, Exp and Logis terms are comparable and
perform better than FP term.

Not found | Found at least once | Found 10 times || Average number of f.s. found
FP 16 9 128 8.61
Exp 15 11 127 8.75
Log 18 15 120 8.28
Hyp 27 15 111 7.65
Logis 16 11 126 8.71

Table 1: Comparison between FP and RFP (Feasible solutions).

Best Average o.f. | Best Min o.f.
FP 24 24
Exp 28 27
Log 30 26
Hyp 32 28
Logis 27 25

Table 2: Comparison between FP and RFP (Objective function value)

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the penalty terms (24)-(27) are shown in Tables 17 - 21. The results re-
lated to the problems for which an integer feasible solution is found in all the ten runs are
reported in Tables 17 - 19. The results related to the problems for which an integer feasible
solution is found in less than ten runs are reported in Tables 20 - 21. By taking a look at the
tables, we can notice that the RFP algorithm obtained using the Exp merit function (Exp RFP
algorithm) and the one obtained using the Logis merit function (Logis RFP algorithm) are
competitive with the FP in terms of both number of iterations and CPU time. They are also
better than the RFP algorithm with the Log merit function (Log RFP algorithm) and the one
with the Hyp merit function (Hyp RFP algorithm) that, in addition, have a larger number of
failures. Despite these facts, Log RFP and Hyp RFP algorithms generally give good results in
terms of objective function value. In order to better assess the differences in terms of iterations
and CPU time between FP and the various versions of the RFP algorithm, we report in Table
3 the geometric means for all the algorithms calculated over 108 instances (those problems for
which a feasible solution is found in all the ten runs). In the calculations of the geometric means
individual values smaller than 1 are replaced by 1. The results in Table 3 seem to confirm that
Exp and Logis RFP algorithms are competitive with FP algorithm.

FP Exp, a =0.5 Log, e =0.1 Hyp, e =0.1 | Logis,a = 0.1
Iter Time Tter Time Tter Time Iter Time Tter Time
5.774 1.793 | 4.851 1.683 | 5.684 1.657 | 7.193 1.757 | 4.869 1.678

Table 3: Comparison between FP and RFP (Geometric Means)

In order to better assess the differences between the FP algorithm and the Reweighted FP
algorithm, we considered the 123 problems for which an integer feasible solution is found in all
the ten runs by FP, Exp RFP and Logis RFP algorithms. We divided the problems into three
different classes depending on the CPU time ¢ (seconds) needed by the algorithms to find a
feasible solution:

19

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time ¢t < 1 (76 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (12 problems);

- Medium. All the problems that are neither Easy nor Hard (35 problems).

We report in Figure 6 the results, in terms of CPU time, obtained by the FP, Exp RFP and Logis
RFP algorithms on the three classes of problems. Exp RFP and Logis RFP are comparable with
FP on the Easy and Medium classes, while they outperform it on the Hard class. Once again,
we could develop a new framework where different algorithms are used in parallel. In order to
investigate the effect of the parallel use of different algorithms, we ran three algorithms and we
chose the solution with the lowest CPU time among the three. We report in Figure 7 the results
obtained using:

- 3 runs of the FP algorithm;
- one different algorithm (FP, Exp RFP and Logis RFP) for each run.

By taking a look at the results, we can see that the use of different functions improves the
performance in Medium and Hard classes, while giving comparable results on the Easy class.

Easy Medium Hard

08 + ¥ * 1600

0.7 1400

06 + 14 1200

1000
— +

800

0.5

0.4

| 600
03

¥
T
t
+ e
+ |
|
— |
| 8 ! i
| | . T
| 6 400
0.2
4 200
01 2 : . 0 =
L
0
FP FP EXP

-200

LOGIS

Figure 6: Results in terms of CPU time for the three classes of problems.

+ 18 +

* 700 e
0.7 16 |
|
+ 600 |
0.6 . 14 |
|
05 + 12 500 ‘
+ |
| +
04 s t

03 300

ES

l

| 200

] .

=]

FP-EXP-LOGIS FP FP-EXP-LOGIS FP FP-EXP-LOGIS

)
o i

3 }Dj»““ B
o N & o ®

Figure 7: Results in terms of CPU time for the parallel experiment.

20

8.3 Comparison between FP and combined RFP

In this subsection, we show the effects of combining two different functions. We report the
results obtained combining the following functions:

- Fp term and Log term, denoted by FP+Log;

- Exp term and Log term, denoted by Exp-+Log;

Logis term and Log term, denoted by Logis+Log;
- Exp term and Logis term, denoted by Exp+Logis.

We set ¢1(x) equal to the merit function obtained using the first term and ¢9(z) equal to the
merit function obtained using the second term (See (40)). We start with A = 1 and we reduce
it every time a perturbation occurs. More precisely, we can have two different cases:

- Weak Perturbation Update: N1 = 0.5\F
- Strong Perturbation Update: \Ft1 = 0.1*

When a strong perturbation occurs, it means that the algorithm is stuck in a cycle. Then the
updating rule significantly changes the penalty term, so moving towards the function belonging
to the second class.

In order to evaluate the ability of finding a first feasible solution, we report in Table 4, for each
penalty term:

e The number of problems for which no feasible solution has been found (Not found);

e The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

e The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

e The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 4, All terms have a similar behavior.

In order to show the efficiency in terms of objective function value, we consider the 123 problems
for which an integer feasible solution is found in all the ten runs by all the algorithms and, in
Table 5, we report for each penalty term:

e Number of problems for which the best o.f. value (average over ten runs) is obtained (Best
Average o.f.);

e Number of problems for which the best o.f. value (minimum over ten runs) is obtained
(Best Min o.f.).

As we can see by taking a look at Table 5, the combined terms give better performance in terms
of objective function value than the FP term. Furthermore, Exp+Log combination gives the
best performance.

The detailed results of the comparison between the Feasibility Pump algorithm and the reweighted
version obtained using the combined penalty terms are shown in Tables 22 - 26. The results
related to the problems for which an integer feasible solution is found in all the ten runs are
reported in Tables 22 - 24. The results related to the problems for which an integer feasible

21

Not found | Found at least once | Found 10 times | Average number of f.s. found
FpP 16 9 128 8.61
FP+Log 17 11 125 8.61
Exp+Log 19 6 128 8.55
Logis+Log 17 9 127 8.58
Exp+Logis 16 10 127 8.59

Table 4: Comparison between FP and Combined RFP (Feasible solutions)

Best Average o.f. | Best Min o.f.
FP 19 19
FP+Log 31 30
Exp+Log 35 33
Logis+Log 32 30
Exp+Logis 32 30

Table 5: Comparison between FP and Combined RFP (Objective function value)

solution is found in less than ten runs are reported in Tables 25 - 26. By taking a look at the
tables, we can notice that the Combined RFP algorithm obtained using the Exp and the Logis
merit functions (Exp+Logis RFP algorithm) gives the best performance. Furthermore, all the
versions of the Combined RFP algorithm are competitive with the standard FP algorithm. We
report in Table 6 the geometric means for all the algorithms calculated over 123 instances (those
problems for which a feasible solution is found in all the ten runs). In the calculations of the
geometric means individual values smaller than 1 are replaced by 1. The results in Table 6 seem
to confirm that the Exp+Logis RFP Algorithm is the best among the combined versions of the
RFP algorithm and that all the combined RFP algorithms behave favorably when compared to
the original FP algorithm in terms of CPU time.

FP FP+Log Exp—+Log Logis+Log Exp+Logis
Tter Time Tter Time Tter Time Tter Time Tter Time
6.252 2.034 | 6.474 1.630 | 6.438 1.650 | 6.388 1.663 | 5.765 1.617

Table 6: Comparison between FP and Combined RFP (Geometric Means)

Easy Medium Hard

1600

1400

1200

1000

800

600

400

-200

EXP+LOGIS EXP+LOGIS EXP+LOGIS

Figure 8: Results in terms of CPU time for the three classes of problems.

In order to better assess the differences between the FP algorithm and the Exp+Logis RFP
algorithm, we considered the 124 problems for which an integer feasible solution is found in
all the ten runs by the two algorithms. We divided the problems into three different classes
depending on the CPU time ¢ (seconds) needed by the algorithms to find a feasible solution:

22

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time ¢t < 1 (80 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (12 problems);

- Medium. All the problems that are neither Easy nor Hard (32 problems).

We report in Figure 8 the results, in terms of CPU time, obtained by the FP and Exp+Logis
RFP algorithms on the three classes of problems. As we can see, Exp+Logis RFP improves the
performance in all the classes.

8.4 Comparison between OFP and ORFP

In the following we report a comparison between the Objective Feasibility Pump (OFP) [1]
and the Objective Reweighted Feasibility Pump with the Exp (Exp ORFP) and Logis (Logis
ORFP) terms. In order to evaluate the ability of finding a first feasible solution, we report in
Table 7, for each penalty term:

e The number of problems for which no feasible solution has been found (Not found);

e The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

e The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

e The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 7, OFP, Exp ORFP and Logis ORFP terms have a similar average
number of feasible solutions found. Logis ORFP has the highest number of failures in terms of
number of problems for which no feasible solution has been found, but also the highest number
of problems for which a feasible solution has been found for all the ten runs.

Not found | Found at least once | Found 10 times || Average number of f.s. found
OFP 17 29 107 7.99
Exp ORFP 17 32 104 7.94
Logis ORFP 21 21 111 7.92

Table 7: Comparison between OFP and ORFP (Feasible solutions)

The detailed results of the comparison between the Objective Feasibility Pump algorithm and
the Objective Reweighted Feasibility Pump are shown in Tables 27 - 31. The results related to
the problems for which an integer feasible solution is found in all the ten runs are reported in
Tables 27 - 29. The results related to the problems for which an integer feasible solution is found
in less than ten runs are reported in Tables 30 - 31. The OFP fails to find a feasible solution in
all the ten runs for 46 instances, the Exp ORFP for 49, the Logis ORFP for 42.

The introduction of the objective function generally improves the quality of the feasible solution
found and in some cases we notice a relevant improvement in the percentage gap with respect to
the best known solution. This improvement can sometimes correspond to an improvement in the
computational time, too. We report in Table 8 the CPU time and the gap with respect to the

23

FP OFP Exp RFP Exp ORFP Logis RFP Logis ORFP
Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.2 18 0.1 13388 0.2 18 0.1 14873 0.2 18 0.1
dano3-3 73 31.7 0 53.2 73 13.3 0 79.3 73 17.7 0 104.8
dano3-4 73 23.9 0 119.2 73 13.6 0 108.5 69 15.9 0 96.4
dano3-5 72 26.5 0 104.1 73 14.5 0 128.3 73 16.5 0 134.5
neos-476283 160 444.7 1 47.7 80 121.2 1 47.2 68 71.8 2 48.0
neos-780889 216 48.2 0 13.4 223 52.4 0 13.4 219 50.2 0 13.3
qapl0 48 1690.5 14 27.8 19 7.5 20 36.0 19 8.7 3 21.2

Table 8: Improvement in the quality of the solution by the introduction of the objective function
in the FP and in the RFP.

optimal solution for some instances where the introduction of the objective function improves
the quality of the solution.

Overall, the OFP and the Logis ORFP found the optimal solution for 10 instances, while the
Exp ORFP for 12 instances. Since in this case we are interested in finding the algorithm with
best performance in terms of both CPU time and Gap value, we compare Exp OFP and Logis
OFP with OFP in terms of wins (minimum CPU time and minimum Gap):

- OFP vs Exp ORFP: The OFP has a number of 39 wins against 46 wins of the Exp
ORFP;

- OFP vs Logis ORFP: Both the OFP and the Logis ORFP have 38 wins.

Let us now analyze the behavior of the various algorithms in terms of number of iterations
and computational time. We report in Table 9 the geometric means for all the algorithms
calculated over those problems for which a feasible solution is calculated in all the ten runs. In
the calculations of the geometric means individual values smaller than 1 are replaced by 1. The
results in Table 9 indicate that both the Exp ORFP and the Logis ORFP have a geometric
mean in terms of CPU time slightly lower than the geometric mean of the OFP; while the Logis
ORFP has a geometric mean in terms of number of iterations higher than the other two.

OFP Exp ORFP Logis ORFP
Tter Time Tter Time Tter Time
16.7396 1.8725 | 16.3445 1.8694 | 18.6573 1.8123

Table 9: Comparison between OFP and ORFP (Geometric Means)

In order to better assess the differences between the OFP and the ORFP, we considered the
problems for which an integer feasible solution is found in all the ten runs by the algorithms in
comparison. We divided the problems into three different classes depending on the CPU time ¢
(seconds) needed by the algorithms to find a feasible solution:

- Easy. Problems for which a feasible solution has been found by all the algorithms in a
time ¢t < 1 (66 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (8 problems);

- Medium. All the problems that are neither Easy nor Hard (27 problems).

We report in Figure 9 the results in terms of CPU Time, obtained by the OFP, the Exp ORFP
and the Logis ORFP algorithms for the three classes of problems. We further report the CPU
time and Gap percentage for the instances in the Hard Class in Table 10. We can notice that
on the Easy Class the three algorithms have the same behavior. On the medium class they are

24

comparable, while in the Hard Class the Logis ORFP has the highest median. However looking
at the results in Table 10, it can be seen that the Logis ORFP has the lowest CPU time on 5
instances over 8.

Easy Medium Hard
1 + + + 18 + N + .
09 + + ; . 250
08 + T
14
07 + + + + - 200
0.6 —_ —_ —_ 12 + :
g | | | £ 10 - I 8 150
505 ! ! ! & [- | 5] _
> I I I > | > —
04 | | | 8 | !
100
03 6 I
0 0d iggl
50
01 | | | 2 l;| 1
ol L L L 0 - - L 0 L
OFP Exp Logis OFP Exp Logis OFP Exp Logis

Figure 9: Box plots of the CPU time - OFP vs ORFP.

Problem OFP EXP ORFP | LOGIS ORFP
Time Gap% | Time Gap% | Time Gap%

air04 23.8 4 23.3 4 23 4
dano3mip 275.6 - 282.6 - 273.9 -
dano3-3 53.2 0 79.3 0 104.8 0
dano3-4 119.2 0 108.5 0 96.4 0
dano3-5 104.1 0 128.3 0 134.5 0
neosl12 28.1 37 31.8 36 6.5 0
neosd76283 | 47.7 1 47.2 1 48 2
qapl0 27.8 14 36 20 21.2 3

Table 10: Detailed results for the Hard Class - OFP vs ORFP

In order to analyse the behavior of the algorithms in terms of solution quality, we consider in
Figure 10 the data profiles for the gap percentage obtained by the various algorithms for the
various classes of problems. The plots in Figure 10 give on the y-axis the number of problems
whose gap is smaller or equal than the value given on the x-axis. We can notice that the profiles
of the three algorithms are comparable. For the Easy class the Exp ORFP profiles is slightly
better than the others, while for the Hard Class the Logis ORFP is the best of the three. We
further report in Table 11 some instances where the use of ORFP is beneficial in terms of Gap.
We finally want to remark that there are four instances where at least one version of the ORFP
closes the gap and OFP do not, while the opposite never happens.

OFP | Exp ORFP | Logis ORFP
opt1217 20 0 17
sp97ar 717 597 66
neos-12 37 36 0
neos-826812 1 1 0
neos-932816 1 0 1
neos-1200887 20 14 5
neos-1228986 18 7 4
qapl0 14 20 3

Table 11: Examples of instances where ORFP improves the Gap.

25

Gap Performance - Easy

Gap Performance - All

80 50

701
401
60

50 30

40t 1 20|
30t

10+
201

10 L L L L 0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100

Gap Performance — Medium Gap Performance — Hard

25

OFP

Exp ORFP

Logis ORFP

60 80 100

Figure 10: Profiles of the Gap% - OFP vs ORFP.

As a concluding remark, we would like to point out the fact that Exp ORFP has a larger number
of wins than ORFP and comparable performance in terms of gap, while Logis ORFP has the
same number of wins and good performance in terms of gap (see results for the Hard class).

8.5 Comparison between OFP and Combined ORFP

In the following we report a comparison between the Objective Feasibility Pump (OFP) [1] and
the Combined Objective Reweighted Feasibility Pump where we consider the combination of
the Exp and Logis terms (Exp+Logis ORFP). In order to evaluate the ability of finding a first
feasible solution, we report in Table 12, for each penalty term:

e The number of problems for which no feasible solution has been found (Not found);

e The number of problems for which a feasible solution has been found at least once, but
less than ten times (Found at least once);

e The number of problems for which a feasible solution has been found for all the ten runs
(Found 10 times);

e The average number of feasible solutions found (Average number of f.s. found).

As we can see from Table 12 the Exp+Logis ORFP was not able to find a feasible solution in six
instances more than the OFP. On the other hand it found a feasible solution for all the ten runs
in six instances more than the OFP. The average number of feasible solutions found is similar
for the two algorithms.

The detailed results of the comparison between the Objective Feasibility Pump algorithm and
the Objective Reweighted Feasibility Pump are shown in Tables 27 - 31. The results related to

26

Not found | Found at least once | Found 10 times || Average number of f.s. found
OFP 17 29 107 7.99
Exp+Logis ORFP 23 17 113 8.06

Table 12: Comparison between OFP and Exp+Logis ORFP (Feasible solutions)

the problems for which an integer feasible solution is found in all the ten runs are reported in
Tables 27 - 29. The results related to the problems for which an integer feasible solution is found
in less than ten runs are reported in Tables 30 - 31. The OFP fails to find a feasible solution in
all the ten runs for 46 instances and the Exp+Logis ORFP for 40 instances.

We report in Table 13 the CPU time and the gap with respect to the optimal solution for some
instances where the introduction of the objective function improves the quality of the solution.

FP OFP Exp-+Logis RFP Exp+Logis ORFP

Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.15 18 0.10 8930 0.06 18 0.10
dano3-3 73 31.74 0 53.20 13 8.67 0 24.60
dano3-4 73 23.95 0 119.20 15 8.65 0 34.80
dano3-5 72 26.46 0 104.10 16 8.62 0 55.70
neos-476283 160 444.74 1 47.70 33 11.13 3 34.40
neos-780889 216 48.19 0 13.40 193 83.28 0 13.40
qapl0 48 1690.54 14 27.80 19 10.64 21 19.40

Table 13: Improvement in the quality of the solution by the introduction of the objective function
in the FP and in the RFP Combined.

Overall, both the OFP and the Exp+Logis ORFP found the optimal solution for 10 instances.
Also in this case we compare ORFP and Comb ORFP in terms of number of wins, and we have
that the OFP has 28 wins, while the Exp+Logis ORFP has 46 wins.

Let us now analyze the behavior of the two algorithms in terms of number of iterations and
computational time by computing the the geometric means on those problems for which a
feasible solution is calculated in all the ten runs. In the calculations of the geometric means
individual values smaller than 1 are replaced by 1. The results in Table 14 indicate that the
Exp+Logis ORFP has a lower geometric mean both in terms of number of iterations and in
terms of CPU time.

OFP Exp+Logis ORFP
Iter Time Iter Time
16.7396 1.8725 | 11.5181 1.7134

Table 14: Comparison between OFP and Exp+Logis ORFP (Geometric Means)

In order to better assess the differences between the OFP and the Exp+Logis ORFP, we con-
sidered the problems for which an integer feasible solution is found in all the ten runs by the
algorithms in comparison. We divided the problems into three different classes depending on
the CPU time t (seconds) needed by the algorithms to find a feasible solution:

- Easy. Problems for which a feasible solution has been found by the two algorithms in a
time ¢t < 1 (69 problems);

- Hard. Problems for which a feasible solution has been found by any algorithm in a time
t > 20 (8 problems);

- Medium. All the problems that are neither Easy nor Hard (25 problems).

27

We report in Figure 11 the results in terms of CPU Time, obtained by the OFP and the
Exp+Logis ORFP on the three classes of problems. We further report the CPU time and Gap
percentage for the instances in the Hard Class in Table 15. We can notice that in the Easy class
the two algorithms have a very similar behavior, while both in the Medium and in the Hard
classes the Exp+Logis ORFP improves the performance.

Easy Medium Hard

16

0.9 + + 14 250

0.8
12

0.7 + 200

0.4

Values
o o
o o
Values
.
N o 0 o
Values
= =
a o a
o o o
+

0.3
0.2 E| E| 4 o
0.1 El
0 1 1 1 4
OFP Exp+Logis ORFP 0 OFP Exp+Logis ORFP ° OFP Exp+Logis ORFP

Figure 11: Box plots of the CPU time - OFP vs ORFP Combined.

Problem OFP Exp+Logis ORFP
Time Gap% | Time Gap%

air04 23.8 4 39.1 4
dano3mip 275.6 - 181.5 -
dano3-3 53.2 0 24.6 0
dano3-4 119.2 0 34.8 0
dano3-5 104.1 0 55.7 0
neos12 28.1 37 9.3 13
neos476283 47.7 1 34.4 3
qapl0 27.8 14 19.4 21

Table 15: Detailed results for the Hard Class - OFP vs Exp+Logis ORFP

In order to analyse the behavior of the algorithms in terms of solution quality, we again consider
in Figure 12 the data profiles for the gap percentage obtained by the two algorithm for the various
classes of problems. Each plot gives the number of instances where a solution was obtained by
a given algorithm within a certain gap percentage. We can notice that the two algorithms are
comparable in all the classes. We further report in Table 16 some instances where the use of
Exp+Logis ORFP is beneficial in terms of Gap.

OFP | Exp+Logis ORFP
bcl 304 3
neos-522351 28 4
neos-584851 56 19
neos-829552 1038 140

Table 16: Examples of instances where Exp+Logis ORFP improves the Gap.

As a concluding remark, we would like to point out the fact that Exp+Logis ORFP has a quite
larger number of wins than ORFP, better performance in terms of CPU time and comparable
performance in terms of gap.

28

Gap Performance - All

Gap Performance - Easy

80F w 60
,_/—/_/ 50 —
= =
60+ — 40t _
/ P
/ 30t /

40+

/ 201
20l / 10}

. . . . 0
0 20 40 60 80 100 0 20 40 60 80 100
Gap Performance — Medium Gap Performance - Hard
25 ‘ ‘ ‘ \ ; ; ;
7 J
] /—/_/ 6/
15¢ 1 sl
—— OFP
1or 1 ar Exp+Logis ORFP
5 3
0 20 40 60 80 100 0 20 40 60 80 100

Figure 12: Profiles of the Gap% - OFP vs Exp+Logis ORFP.

8.6 Benchmarking Algorithms via Performance Profiles

In order to give a better interpretation of the results generated by the various algorithms we
decided to use performance profiles [16]. We consider a set A of n, algorithms, a set P of
n, problems and a performance measure my,, (e.g. in our case, average number of iterations,
average CPU time). We compare the performance on problem p by algorithm a with the best
performance by any algorithm on this problem using the following performance ratio

Mpa

Tpa =

a€ A}

min{m,, :

Then, we obtain an overall assessment of the performance of the algorithm by defining the
following value

pa(T) = isize{p €P :rp, <t}

np
which represents the probability for algorithm a € A that the performance ratio r, , is within
a factor 7 € R of the best possible ratio. The function p, represents the distribution function
for the performance ratio. Thus p,(1) gives the fraction of problems for which the algorithm a
was the most effective, p,(2) gives the fraction of problems for which the algorithm a is within
a factor of 2 of the best algorithm, and so on.
In Figure 13, we report the performance profiles related to the comparison among FP, Exp RFP
and Logis RFP, in terms of number of iterations (upper left) and CPU time (upper right). It is
clear that Exp RFP and Logis RFP functions have a higher number of wins in terms of number
of iterations and Exp RFP has the highest number of wins in terms of computational time.
Furthermore, the two RFP algorithms are better in terms of robustness.
We further report, in Figure 13, the performance profiles related to the comparison between
FP and the combined version of the RFP obtained using Exp and Logis functions, in terms of
number of iterations (lower left) and CPU time (lower right). If we take a look at the profiles

29

related to the iterations, we can notice that the FP is slightly better in the number of wins,
but the combined RFP is better in terms of robustness. The performance profiles related to the
CPU time clearly show that the combined RFP outperforms the FP both in terms of number
of wins and robustness.

In Figure 14, we report the performance profiles related to the comparison among OFP, Exp
ORFP and Logis ORFP, in terms of number of iterations (upper left) and CPU time (upper
right). The performance profiles related to the number of iterations shows that the Logis ORFP
profile is below the OFP and the Exp ORFP profiles, that are very similar. On the contrary,
the Logis ORFP profile related to the CPU time has the highest number of wins and is slightly
better than the other two in terms of robustness.

We further report, in Figure 14, the performance profiles related to the comparison between
OFP and Exp+Logis ORFP, in terms of number of iterations (lower left) and CPU time (lower
right). We can notice that the Exp+Logis ORFP profile outperforms the OFP profile both in
terms of number of iterations and CPU time.

RFP — Number of iterations RFP - CPU Time

1 1
0.9f 1 0.95}
0.8¢ 1 0.9+
—FP —FP
0.7 Exp 0.85 Exp
Logis Logis
- 0.8 .
10° 10" 10° 10"
RFP Combined — Number of iterations RFP Combined - CPU Time
1F . 1 . —
0.9
/
0.8
/ —FP —FP
0'7(Exp+Logis | Exp+Logis
5 = 0755 x
10 10 10 10

Figure 13: Performance profiles: FP vs RFP (upper figures); FP vs RFP Combined (lower
figures).

9 Conclusions

In this paper, we focused on the problem of finding a first feasible solution for a 0-1 MIP problem.
We started by interpreting the Feasibility Pump heuristic as a Frank-Wolfe method applied to
a nonsmooth concave merit function. Then we noticed that the reduction of the merit function
used in the FP scheme can correspond to an increase in the number of noninteger variables of
the solution. For this reason, we proposed new concave merit functions that can be included in
the FP scheme having two important properties: they decrease whenever the number of integer
variables increases; if they decrease, then the number of noninteger variables does not increase.

30

ORFP - Number of iterations ORFP - CPU Time

1 .
0.95f
0.9+
0.85
—OFP , —— OFP
Exp ORFP 0.8} Exp'ORFP
Logis ORFP | Logis ORFP
- 0.75 -
10° 10' 10° 10!
ORFP Combined — Number of iterations ORFP Combined - CPU Time
1 : 1
osl 0.95}
0.9+
0.6F
0.85f
0.4r —— OFP 1 08l —— OFP |
Exp+Logis ORFP ' Exp+Logis ORFP
024 - 075)
10 10 10 10

Figure 14: Performance profiles: OFP vs ORFP (upper figures); OFP vs ORFP Combined
(lower figures).

Due to these properties, the functions proposed should speed up the convergence towards inte-
ger feasible points. We reported computational results on a set of 153 0-1 MIP problems. This
numerical experience shows that the version of the Reweighted Feasibility Pump obtained by
combining two of the proposed functions (namely Exp and Logis) compares favorably with the
Feasibility Pump both in its original version and in the enhanced version with the introduction
of the objective function [1]. Furthermore, it highlights that the use of more than one merit
function at time (i.e. parallel framework, combination of functions) can significantly improve
the efficiency of the algorithm.
In [15], we reinterpret the FP for general MIP problems as a Frank-Wolfe method applied to a
suitably chosen function and we extend our approach to this class of problems. Possible improve-
ments of our approach could be accomplished along different lines, for example by replacing the
rounding with a scheme based on constraint propagation like in [19] or with a procedure that
examines rounded solutions along a given line segment as in [3, 9]. In particular the proposed
merit functions could be also used in order to drive the choice of the new rounded point.
Finally, we want to remark that a wider availability of functions for measuring integrality is
important since it can ease the search of feasible solutions for different classes of MIP problems.

10 Appendix A

For convenience of the reader we report the proof of Proposition 4. We recall a general result
concerning the equivalence between an unspecified optimization problem and a parameterized
family of problems.

31

Consider the problems

min f(z) (41)
st. zeW
min - f(z) +¢(z,€) (42)
s.t. reX
We state the following
Theorem 1 Let W and X be compact sets. Let || - || be a suitably chosen norm. We make the

following assumptions.

A1) The function f is bounded on X and there exists an open set A DO W and a real number
L >0, such that, ¥ x,y € A, f satisfies the following condition:

[f (@) = f(y)| < Lljz = yl| (43)

The function v satisfies the following conditions:

A2) Vz,y e W andV e € Ry,
P(z,e) = ¥(y,).

A3) There exist a value € and, ¥ z € W, there exists a neighborhood S(z) such that, ¥ x €
S(z) N (X \ W), and € €]0,€|, we have

Y(z,) = (z,¢) 2 Lllz — 2], (44)
where L > L is chosen as in (43). Furthermore, let S = U S(z), 3T ¢S such that
zeW
m[(z,€) —¥(z,€)] = +o0, VzeW, (45)
e—
Y(x,e) > Y(x,e), YVexeX\S, Ve>0. (46)

Then, 3 € € R such that, ¥ € €]0,&], Problems (41) and (42) have the same minimum points.

Proof. See [30].
Now we give the proof of the Proposition 4, with
W:{xGP:xie{O,l}, WEI}, X:{xEP:ngigl, WGI}.

Proof of Proposition 4. As we assume that the function f satisfies assumption A1) of Theo-
rem 1, the proof can be derived by showing that every penalty term (24)-(27) satisfies assumption
A2) and A3) of Theorem 1.

Consider the penalty term (24).
Let ¢ be the cardinality of I, for any x € W we have

b(a,e) = c- log(e)

and A2) is satisfied.
We now study the behavior of the function ¢(z;), ¢ € I, in a neighborhood of a point z; € {0,1}.
We distinguish three different cases:

32

1. 2 =0and 0 < z; < p with p < 1: We have that ¢(z;) = In(z; + €) which is continuous
and differentiable for 0 < z; < p, so we can use mean value Theorem obtaining that

with Z; € (0, ;). Since Z; < p, we have

qb(xi)—qb(zi)z(!)m—zz-. (48)

Choosing p and ¢ such that
) (49)

we obtain
¢(xi) — ¢(zi) 2 Llw; — 2. (50)
2.2z =1and 1 —p < 2; <1 with p < 3: We have that ¢(z;) = In(1 — 2; + €) which
is continuous and differentiable for 1 — p < z; < 1, so we can use mean value Theorem
obtaining that

_1—.fi-|-5 1—xz;,+¢

B(as) — o(z) = (¥) @)= (gl —al ()

with Z; € (z;,1). Since p < % and Z; > 1 — p we have 1_1, > % then

T

(xi) — d(z) > <$) |z — zil. (52)

We have again that (50) holds when p and e satisfy (49).
3. zi=x;=0o0r z; = x; = 1: We have ¢(z;) — ¢(z;) = 0.
We can conclude that, when p and ¢ satisfy (49),
Y(w,e) —¥(z,6) > LY | — 2] > Lsupla; — 2 (53)
iel el
for all z € W and all « such that sup,c;|z; — 2| < p.
Now we define S(z) = {z € R" : sup;c; |z;— 2| < p} and S = UZ]L S(z;) where N is the number
of points z € W.
Let z ¢ Sbesuchthat 3je€l: z;=p (z; =1—p) and z; € {0,1} for all i # j, i € I.
Let {e*} be a sequence such that ¥ — 0 for k — 0o, we can write for each z € W

lim [¢(Z,e%) — ¥(z,e")] = kli)ngo ([ln(p + ") + (e — 1) In(e")] — cln(sk)> =

k—00

lim <ln(p + &) — ln(sk)> = +o00

k—o0

and (45) holds.
Then Vz € X\S, and Ve > 0 we have for the monotonicity of the logarithm:

Y(z,e) —Y(x,e) = Zmin{ln(mi +e),In(1 —z;+¢)} — (c—1)In(e)
i#]
+ min{ln(z; +¢),In(1 —z;+¢)} —In(p+¢) >0,
where p < 2; <1 — p. Then (46) holds, and Assumption A3) is satisfied.

The proofs of the equivalence between (33) and (34) using the other penalty terms follow by
repeating the same arguments used here. O

33

11 Tables

Here we report, in Tables 17 - 31, the detailed results related to our computational experience.
On the vertical axis of the tables related to the problems for which an integer feasible solution
is found in all the ten runs (Tables 17-19, 22-24 and 27-29) , we have

the average number of iterations needed to find a solution (Iter),

the average objective function value of the first integer feasible solution found (Obj),

the average percentage gap with respect to the best known solution (Gap %),

the average CPU time (Time).

We report “-” for the percentage gap when there is no best solution available. On the vertical
axis of the tables related to the problems for which an integer feasible solution is found in less
than ten runs (Tables 20, 21, 25, 26, 30, 31), we have

e the number of times an integer feasible solution is found (F.s. found),
e the average number of iterations needed to find a solution (Iter),
o the average CPU time (Time).

In case of failure, we report “-” for both Iter and Time.

References

[1] T. ACHTERBERG, T. BERTHOLD. Improving the feasibility pump. Discrete Optimization, 4,
pp 77-86, 2007.

[2] T. ACHTERBERG, T. KoCH, A. MARTIN. MIPLIB 2003. Operations Research Letters, 34,
pp 361-372, 2006. Problems available at http://miplib.zib.de.

[3] D. BAENA, J. CASTRO. Using the analytic center in the feasibility pump. Operations Re-
search Letters, 39, pp 310-317, 2011.

[4] E. BavLas, S. CERIA, M. DAWANDE, F. MARGOT, G. PATAKI. OCTANE: A new heuristic
for pure 0-1 programs. Operations Research, 49(2), pp 207-225, 2001.

[5] E. BaLas, C.H. MARTIN. Pivot-and-complement: A heuristic for 0-1 programming. Man-
agement Science, 26(1), pp 86-96, 1980.

[6] E. BALAs, S. SCHMIETA, C. WALLACE. Pivot and shifta mized integer programming heuris-
tic. Discrete Optimization, 1(1), pp 3-12, 2004.

[7] J. BAXTER. , Local optima avoidance in depot location. Journal of the Operational Research
Society, 32, pp. 815-819, 1981.

[8] L. BErRTACCO, M. FISCHETTI, A. LoDI1. A feasibility pump heuristic for general mized-
integer problems. Discrete Optimization, 4, pp 63-76, 2007.

[9) N.L. BoranDp, A.C. EBERHARD, F.G. ENGINEER, M. FIscHETTI, M.W.P. SAVELS-
BERGH, A. TSOUKALAS Boosting the Feasibility Pump. Report C-OPT 2012-03, The Uni-
versity of Newcastle, Callaghan, NSW, 2308, Australia, 2012.

34

[10] J. ECkSTEIN, M. NEDIAK. Pivot, cut, and dive: a heuristic for 0-1 mized integer pro-
gramming. Journal of Heuristics, 13, pp 471-503, 2007.

[11] P. BonamMmi, L.T. BIEGLER, A.R. CoNN, G. CorNUEJOLS, I.E. GROSSMANN, C.D.
LAIRD, J. LEE, A. Lob1, F. MARGOT, N.SAWAYA, A. WAECHTER. An Algorithmic Frame-
work for Convex Mized Integer Nonlinear Programs. Discrete Optimization, 5(2), pp 186-204,
2008.

[12] P. BoNami, G. CORNUEJOLS, A. Lop1, F. MARGOT. A feasibility pump for mized integer
nonlinear programs. Mathematical Programming, 119, pp 331-352, 2009.

[13] C. D’AMBROSIO, A. FRANGIONI, L. LiBERTI, A. LoD1. A Storm of Feasibility Pumps
for Nonconver MINLP. Mathematical Programming, 136(2), pp 375-402, 2012.

[14] E. DanNA, E. RoTHBERG, C. LE PAPE. Exploring relation induced neighborhoods to
improve MIP solution. Mathematical Programming 102, 1, pp 71-90, 2005.

[15] M. DE SaNTIS, S. Lucipi, F. RINALDL. Feasibility Pump-Like Heuristics for Mized Integer
Problems. DIS Technical Report n. 15, 2010.

[16] E. D. DoLAN, J. J. MORE. Benchmarking optimization software with performance profile.
Mathematical Programming 91, pp 201-213, 2002.

[17] M. FiscHETTI, F. GLOVER, A. LODI. The Feasibility Pump. Mathematical Programming,
104, pp 91104, 2005.

[18] M. FIsCHETTI, A. LoDI. Local Branching. Mathematical Programming, 98(1-3), pp 23-47,
2003.

[19] M. F1sCHETTI, D. SALVAGNIN. Feasibility pump 2.0. Mathematical Programming Com-
putation, 1, pp 201-222, 2009.

[20] F. GLOVER, M. LAGUNA. General purpose heuristics for integer programming part I.
Journal of Heuristics, 3, 1997.

[21] F. GLOVER, M. LAGUNA. General purpose heuristics for integer programming part I1.
Journal of Heuristics, 3, 1997.

[22] F. GLOVER, M. LAGUNA. Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht,
London, 1997.

[23] F. GLOVER, A. LoKKETANGEN, D.L. WOODRUFF. Scatter search to generate diverse MIP
solutions. in: M. Laguna, J. Gonzalez-Velarde (Eds.), OR Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
Kluwer Academic Publishers, pp. 299-317, 2000.

[24] F.S. HILLIER, Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17, pp 600-637, 1969.

[25] F.S. HiLLIER, R.M. SALTZMAN., A heuristic ceiling point algorithm for general integer
linear programming. Management Science, 38(2), pp 263-283, 1992.

[26] ILOG, Cplex. http://www.ilog.com/products/cplex.

[27] R. H. LEARY. Global optimization on funneling landscapes. J. Global Optim., 18, pp. 367—
383, 2000.

35

[28] A. LgKKETANGEN, F. GLOVER. , Solving zero/one mized integer programming problems
using tabu search. Furopean Journal of Operations Research, 106, pp 624-658, 1998.

[29] H.R. LOURENGO, O. C. MARTIN, T. STULZE. , Iterated local search. Handbook of meta-
heuristics - Eds F. W. Glover and G. A. Kochenberger - Kluwer Academic Publishers, Boston,
Dordrecht, London, pp. 321-353, 2003.

[30] S. Lucipi, F. RINALDIL. Ezact penalty functions for nonlinear integer programming prob-
lems. Journal of Optimization Theory and Applications, 145, pp 479-488, 2010.

[31] O. L. MANGASARIAN. Solutions of General Linear Complementarity Problems via Nondif-
ferentiable Concave Minimization. Acta Mathematica Vietnamica, 22(1), pp 199-205, 1997.

[32] O. L. MANGASARIAN. Machine learning via polyhedral concave minimization. in: Fischer,
H., Riedmueller, B., Schaeffler S. Applied mathematics and parallel computing- Festschrift
for Klaus Ritter, pp 175-188, Physica, Heidelberg, 1996.

[33] W. MuRrrAY, K.M. NG An Algorithm for Nonlinear Optimization Problems with Binary
Variables, Computational Optimization and Applications, Vol. 47, No. 2, pp 257288, 2010.

[34] F. RINALDI New results on the equivalence between zero-one programming and continuous
concave programming, Optimization Letters, Vol. 3, No. 3, 377-386, 2009.

[35] F. RINALDI, F. SCHOEN, M. SCIANDRONE. Concave programming for minimizing the
zero-norm, over polyhedral sets., Computational Optimization and Applications, vol. 46, pp.
467-486, 2010.

36

Problem FP Exp, a =05 Log, e =0.1 Hyp.e=0.1 Logis,a = 0.1
Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap% Time | Iter Obj Gap% Time
alclsl 25.6 21615.71 87.91 2.96 | 22.7 20365.53 77.04 237 | 15.9 20648.03 79.50 167 |26.2 2024853 76.02 2.1 147 19736.22 TL.57 2.56
aflow30a 199 5691.7 391.51 0.07 |12 4685.3 304.60 0.05 | 134 40498 249.72 0.04 | 11.3 34311 196.30 0.03 | 14.8 52248 351.19 0.05
aflow40b 8.5 5711.9 389.03 0.12 | 12.8 5897.2 404.90 0.16 | 11.7 6230.5 433.43 0.14 | 23.3 59343 408.07 021 | 6.7 4911.1 320.47 0.09
cap6000 18.1 -1.734E6 29.23 1.2 21.1 -1.478E6 39.65 1.5 19.2 -1.725E6 29.60 1.01 234 -1.608E6 34.37 0.94 15.7 -1.887E6 22.97 1.22
dano3mip 3 1000 - 19.82 | 1 1000 - 1892 | 1 1000 - 1551 | 1 1000 - 15.63 | 2 1000 - 26.64
danoint 113.3 87.15 2.78 | 1224 87.05 32.56 3.69 | 454 858 30.66 1.09 | 151.2 88.85 35.30 2.84 | 97.7 87.63 33.45 3.35
fast0507 3 179 97.38 | 2 185 6.32 98.55 | 1 190 9.20 85.09 | 1 192 10.34 86.99 | 3 185 6.32 103.97
fiber 7.6 1.495E7 0.02 |79 L.509E7 3618.95 0.03 | 9.2 1.570E7 3767.89 0.03 | 7.6 1.260E7 3005.05 0.03 |76 1.547E7 3711.51 0.02
fixnet6 114 117277 0.02 | 114 31150.4 682.08 0.25 | 78.7 24590.6 517.39 017 | 64.6 23190.4 482.23 0.09 269.85 0.01
glassd 25 1.153E10 0.05 | 1056 1.011E10 74247 0.22 73.6 1LO71E10 792.68 0.15 | 2585 1.234E10 928.72 0.26 720.75 0.21
harp2 188.8 -4.7T96E7 1.52 | 398 -4.827E7 34.68 3.31 | 4314 -4.176E7 43.49 3.65 | 245 -4.635E7 37.28 2.18 39.30 3.03
lin 1 8398 - 009 |1 8398 - 0.09 |1 8398 - 0.1 1 8398 - 0.09 - 0.1
marksharel | 1 292 29100.00 0 1 292 29100.00 0 1 292 29100.00 0 1 292 29100.00 0 1 29100.00 0
markshare2 | 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0 1 160 15900.00 0
mas74 1 1919747 62.67 0 1 19197.47 62.67 0 1 1919747 62.67 0 1 19197.47 62.67 0 1 191 62.67 0
mas76 1 4487742 1218 0 1 44877.42 12.18 0 1 4487742 1218 0 1 44877.42 12.18 0 1 4 12.18 0
mke 3.6 -271.65 51.82 0.1 3.8 -271.85 51.79 0.11 3.7 -271.85 5L.79 0.11 3.5 -271.85 51.79 0.09 3.3 271 51.82 0.15
mod011 1 0 100.00 0.07 1 0 100.00 0.07 1 0 100.00 0.1 19 368, 35 106.75 0.14 1 0 100.00 0.07
modglob 1 6.027E8 2811.72 0 1 5.628E8 2619.20 0 1 6.677TE8 312547 0 1 6. 3106.09 0.01 1 5.987E8 2792.16 0
net12 42 3¢ 57.48 6.79 153.8 337 57.48 21.06 | 142.2 337 57.48 14.97 | 113.9 337 57.48 18.53 | 117.1 337 57.48 184
nsrand-ipx 3.6 346416 576.59 0.22 3.2 402048 685.25 0.27 4.1 355872 595.06 0.25 5.1 304112 493.97 0.25 3.1 401408 684.00 0.27
opt1217 1 0 100.00 0.01 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0.01 1 -12 25.00 0.01
pkl 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0 1 36 227.27 0
pp08aCUTS | 3.4 12982 76.63 0.01 4 13104 78.29 0.01 3.6 11770 60.14 0.01 3.4 12051 63.96 0.01 3.9 12581 717 0.01
pp08a 3.1 12810 74.29 0 3.4 13152 78.94 0.01 3 13189 79.44 0 3 13615 85.24 0 5.2 13226 79.95 0.01
qiu 5.6 1539.38 1258.53 0.19 4.8 1524.65 1247.45 0.21 5 1387.35 1144.12 0.19 4.4 669.84 604.12 0.22 4.3 1687.76 1370.21 0.28
4.2 104900.2 92.34 0.01 |39 101702.8 86.48 0.01 | 33.6 96175.68 76.35 0.03 | 3.1 92687.93 69.95 0.03 | 4.6 105014.45 92.55 0.01
4 471 11.35 2.5 3 480 13.48 2.41 3 482 13.95 1.8 2 495 17.02 1.57 3 471 11.35 2.52
52 1.468E9 122.15 539 | 4.5 1.722E9 160.61 6.59 |4 8.939E8 35.24 5.65 |4 1.766E10 2573.06 447 | 4.7 1.479E9 123.87 6.86
84.8 36527.08 7714.83 7.1 61.3 28614.67 6022.00 537 | 61.9 35450.07 T484.41 5.23 | 566.8 48160.31 10203.72 36.22 | 34.3 21903.21 4586.11 3.51
83.7 243560.8 86.50 022 | 1542 260762.2 99.67 0.45 | 62.5 260330.9 99.34 0.2 114.1 247401.3 89.44 0.31 114.3 2458925 88.28 0.3
5.8 23.88 73.67 0 4 20.93 52.22 0.01 5 20.65 50.18 0 3.5 19.25 40.00 0 5.3 20.25 47.27 0

Table 17: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
FP vs RFP

Problem FP Exp, Log, e =0.1 Hyp, ¢ =0.1 Logis,a = 0.1
Iter Obj Gap % Time | Iter Obj Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter ~ Obj Gap % Time
22433 8.5 21527.4 0.23 0.06 122 215275 0.24 0.07 132 21509 0.15 0.09 0.34 014 |78 21550.8 0.34 0.07
23588 51.6 83104 2.72 0.11 46.8 8314.9 2.78 0.12 392.3 8316.4 2.80 0.8 0.77 | 69.4 8325 2.90 0.17
bel 2.2 12.9 286.42 0.58 2.4 15.34 359.51 0.51 2.9 13.36 300.20 0.46 044 |24 16.24 386.47 0.59
bienst1 114 89.92 92.34 0.09 1 68.25 45.99 0.06 1 68.25 45.99 0.07 0.07 | 1.3 75.93 62.42 0.1
bienst2 133 1271 13278 0.12 1 68.25 25.00 0.07 1 68.25 25.00 0.06 0.08 |1 102.22 87.22 0.1
binkar10-1 27.2 609256 8936.46 0.15 26.7 909412 13388.36 0.15 314 608918 8931.45 0.17 0.4 29.4 1.010E6 14873.36 0.17
dano3-3 12.5 1000 73.51 3174 |1 1000 73.51 1329 |1 996.08 72.83 16.48 |1 758.11 11.58 | 1.2 997.24 73.03 17.73
dano3-4 7.8 1000 73.48 23.95 1 1000 73.48 13.61 1 1000 73.48 13.25 1 1000 1317 |1 974.74 15.88
dano3-5 9.1 997.67 72.93 26.46 | 1 1000 Kt 1459 |1 1000 73.33 14.88 |1 1000 14.83 | 1 1000 16.52
mcf2 146.7 8297 26.35 3.67 85.2 85.7 30.51 2.62 100.3 86.5 31.73 2.38 183.3 86.85 3.65 | 173.7 82.7 6.06
mkcl 1 -460.93 24.08 0.12 1 -146.86 75.81 0.08 1 -311.19 48.75 0.15 1 -289.23 007 |1 -525.33 0.12
neosH 1 21 40.00 0 1 21 40.00 0 1 22 46.67 0.01 1 21 0 1 22 0.01
neos6 11.8 141.6 70.60 3.5 20 146.8 76.87 4.8 191.3 1574 89.64 20.42 540.5 158.4 49.85 | 34.6 142.2 6.97
neos13 1 -28.43 70.22 1.29 1 0 100.00 0.72 1 0 100.00 0.64 1 -37.43 0.75 1 -13.14 1.27
neos14 5.5 2.157E8 290112 0.03 6.4 2.371E8 318830 0.03 6.4 2.536E8 341091 0.03 5 2.759E8 0.02 |5 2.473E8 0.03
neos17 2.6 0.68 2 0.04 2.6 0.66 3 9 0.04 2.6 0.61 306.66 0.04 0.04 |26 0.75 0.04
neosl18 1 36 0.13 2 34 112.50 0.14 20.6 37.8 136.25 0.7 112 2 34 0.13
neos-430149 | 137.7 497.95 0.79 177.1 499.6 782.69 0.82 423.1 498.66 781.02 1.76 1.42 | 1184 516.19 0.72
neos-476283 | 3 1056.42 444.74 | 1 729.57 79.54 121.23 | 1 681.38 67.68 116.94 152.1 | 1 680.77 7175
neos-480878 | 3 590.7 0.1 3 624.72 26.84 0.1 3 546.81 11.03 0.08 0.09 |3 610.31 0.11
29 1.48 1 -74 26.73 2.96 2 -83 17.82 1.45 188 |1 26 1.67
5 30961.35 751.55 0.25 45.9 29748.56 718.20 0.14 56 29114.83 700.77 0.17 83.8 30126 0.25 11.3 29898.73 0.05
neos-504815 | 82.4 13912.75 50590 0.2 118.3 15388.38 570.16 0.29 82.1 13813.72 50159 0.2 158 15177.66 560.98 0.38 | 164.8 14854.18 546.90 0.4

neos-512201 | 191.2 5373.11 946.23 0.53 171.8 5165.76 905.85 0.5 210 5248.57 921.98 0.62 160.2 5270.02 926.15 0.48 | 198.8 5287.04 929.47 0.58
neos-522351 | 6.4 103262.07 477.17 0.48 4.9 38323.98 114.21 0.34 4.7 32313.14 80.61 0.3 6.4 31111 73.89 0.26 | 5.9 86648.7 384.31 0.58

61 0.00 12.01 1 63 3.28 11.22 1 63 3.28 9.88 1 66 8.20 7.89 1 63 3.28

6425 5166.39 0.33 70.6 6072.5 4877.46 0.43 53.8 8814 712459 0.23 1249 9108.5 7365.98 0.5 58.3 6242 5016.39 0.34
neos-538916 | 38.2 5650 4116.42 0.2 249 5955.8 4344.63 0.16 1024 7938.1 5823.96 0.46 160.6 7922.1 5812.01 0.7 358 6139.8 4481.94 0.2
neos-547911 | 184 153 17.69 7.81 5.2 15.6 20.00 3.25 128 158 21.54 3.41 156 15.6 20.00 239 |97 14.7 13.08
neos-555694 | 9 55.9 203.80 035 4 24.8 34.78 0.21 8.5 90.39 39125 0.33 281 106.77 480.27 0.57 | 66.3 108.52 489.78

56 130.84 603.44 1.1 17.1 91.99 394.57 0.45 45.8 123.1 561.83 0.87 16.1 95.79 415.00 0.38 169 110.21 492.53

neos-565815 | 1 14 0.00 9.12 2 14 0.00 10.13 55 14.7 5.00 24.38 62.2 14.8 5.71 2344 | 1 14 0.00
neos-570431 | 4.7 27 200.00 0.27 5.4 37.7 318.89 0.32 4.2 14.3 58.89 0.23 5 19.3 114.44 017 |5 29.7 230.00
neos-584851 | 4 -4 63.64 0.04 2.8 -3.9 64.55 0.04 399 -33 70.00 0.14 87.1 -2.5 0.31 | 3.8 -4.8 56.36
neos-603073 | 8 47327.85 181.88 0.08 104 46853.05 179.05 0.13 5 46611.7 177.61 0.06 5 46550.72 0.06 | 9.3 46704.76 178.17 0.11
neos-611838 | 4 4.849E6 174.90 2.18 3 4.342E6 146.20 1.91 3.4 4.102E6 132.59 2.93 3.5 4.309E6 144.31 2.45 34 5043085.61 185.89 2.16
neos-612125 | 3 4.792E6 159.85 2.81 4.8 4.232E6 129.46 3.64 4.6 4.378E6 137.42 4.26 4.1 4.364E6 136.63 3.7 3 4793407.04 159.89 1.83
neos-612143 | 3 4.805E6 167.56 2.92 5.2 4.140E6 130.51 2.44 4.1 4.167E6 131.99 1.8 4.2 4.408E6 145.45 3.14 3 4598667.63 156.05 1.9

Table 18: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
FP vs RFP - Part I

37

Problem FP Exp, a=0.5 Log, c=0.1 Hyp,e=0.1 Logis,a = 0.1

Iter Obj Gap % Time |Tter Obj Gap % Time | Tter Obj Gap % Time | Tter Obj Gap % Time | Iter Obj Gap % Time
Neos612162 | 34 A827E6 17228 203 34 443066 15022 316 | 49 425286 13988 271 |45 431156 143.16 3.46 |3 5.167EG 19142 109
neos-655508 | 0 6.302E7 0.00 0.04 0 6.302E7 0.00 004 |0 6302E7 0.00 004 |0 6.302E7 0.00 004 |0 6302E7 0.00 0.04
neos-775946 | 1241 764.3 4768.15 3.25 1264 857.61 536248 3.26 | 419 71414 444866 1.87 | 80.8 749.25 467229 198 | 988 79452 4960.64 2.47
neos-780889 | 2 L0S2E7 21628 4819 |24 L104E7 22267 5238 |2 1.097E7 22054 50.68 | 2.8 1.126E7 229.05 63.65 | 2 1.091E7 21875 50.17
neos-801834 | 2 64502 2802 0.8 1 54872 8.90 04 |2 61280 2164 036 |2 60964 2099 038 |2 62090 2501 0.84
neos-824695 | 3.7 77 14839 0.75 37 T 14839 08 |39 77 14839 085 |37 77 14839 082 |41 77 14839 0.82
neos-825075 | 4 218 180.15 0.06 8 544 30000 01 |3 8 102,94 0.06 | 198.3 903 43199 092 |3 218 180.15 0.06
neos-826250 | 3.1 63 125.00 0.4 33 63 12500 044 |33 63 12500 042 |33 63 12500 042 |31 63 12500 0.38
neos-826812 | 27 83.01 4310 0.72 28 83.01 4310 068 |27 8301 4310 066 |28 83.01 4310 069 |27 8301 4310 0.73
neos-827175 | 2 121 8.04 1.8 2 121 8.04 224 |2 121 8.04 223 |2 121 8.04 224 |2 121 8.04 1.81
neos-839859 | 1 942557 860.77 0.2 1 L317ES 124213 0.21 |1 5856E7 49693 02 |1 5.856E7 496.93 021 |1 1317E8 124213 0.21
860300 | 143 76853 14009 3.13 137 82033 15627 245 | 256 70929 12158 203 | 1449 90057 18134 452 |10.7 G6677.8 10862 2.85
neos-886822 | 2 138398 381.30 0.26 1 1785975 52110 0.2 |1 288205 0.23 017 |1 288205 0.23 016 |2 1785975 52110 0.25
neos-892255 | 3.6 187 3357 0.15 37 189 3500 014 |38 188 3429 013 | 108 484 4571 033 |37 189 3500 0.14
neos-906865 | 2 91052 186.78 0.05 2 9910.6 21204 005 |2 99102 21213 0.05 |2 107148 23747 004 |2 107124 23740 0.05
neos-955215 | 2.2 9037.66 192411 0.01 3 967.6 1671 001 |3 91158 10416 0.01 |3 89742 10099 001 |34 9287 108.00 0.01
neos-1058477 | 2.8 3.58 550.91 0.02 24 376 583.64 002 |28 278 40545 002 |24 374 580.00 0.03 |38 5.4 881.82 0.03
neos-1171448 | 1 0 100.00 0.6 1 0 10000 05 |1 0 10000 0.53 | 1 0 10000 045 [1 0 100.00 0.49
neos-1200887 | 1 -38 4865 0.02 1 -52 2073 002 |1 -42 4324 002 |1 -38 4865 002 |1 44 1054 0.02
neos-1211578 | 1 51 3377 0 1 48 37.66 001 |1 -44 1286 0 1 52 3247 0 R 3766 0
neos-1225589 | 27.2 2.36E10 1815.07 0.05 106 242B10 187341 002 | 293 230E10 1773.28 0.06 | 262 238E10 183265 0.05 | 166 2.24E10 1723.08 0.03
neos-1228986 | 1 92 2520 0 1 -80 3496 0 [4146 001 |1 70 4300 001 |1 75 3902 0
neos-1337489 | 1 -51 3377 0 1 48 37.66 001 |1 -44 4286 0 1 -52 3247 0 148 37.66 0
neos-1413153 | 2 11912 1332 0.37 1 11902 1332 039 |1 11902 1332 038 |1 1912 1332 04 |1 11902 1332 037
neos-1415183 | 1 4256 30253 053 1 12861 2164 046 |1 12861 2164 048 |1 12861 2164 047 |1 4256 302.53 058
neos-1437164 | 23.6 25.9 20375 0.14 638 233 19125 035 | 225 227 18375 043 |42 21 16250 025 |92 235 193.75 006
neos-1440447 | 1 52 1800 0.01 1 56 4400 001 |1 -60 4000 001 |1 -46 5400 001 |1 -60 4000 0.01
neos-1460265 | 35.7 15925 18.84 0.18 174 15820 1806 0.1 |259 15910 1873 0.5 | 40.8 15840 1821 021 |288 15005 1869 0.16
neos-1480121 | 2 80.33 10774 0 2 95.8 12279 0 2 958 12279 0 2 95.8 12279 0 2 89.33 107.74 0
neos-1489999 | 5.8 4769 3472 0.05 68 483 3644 006 |51 4983 4076 005 |47 4874 3768 0.05 |62 4815 36.02 005
neos-1516309 | 9 54363.5 5120 0.13 127 53987 5016 0.7 | 117 53707 49.38 015 | 9.8 54282 50.98 0.3 | 118 53105 4770 0.15
neos-1595230 | 3.5 20.4 12667 0.1 41 213 13667 01 |45 205 12778 011 |49 218 14222 01 |4 203 12556 0.1
neos-1597104 | 4.6 7.1 76.33 8.08 43 15 7500 111 |87 -2 898 | 285 75 75.00 309 |4 65 7833 85
neos-1599274 | 3 362776 1310 0.17 3 375476 1706 0.7 |6 373476 0.4 | 17.2 5241912 6342 038 |53 5325816 66.04 0.17
neos-1620807 | 8.8 9.5 58.33 0.02 72 95 5833 0.02 | 105 98 002 |78 98 6 002 |7 91 5167 0.02
prodl 1 0 100.00 0 1 0 100.00 0 10 0 1 0 100.00 0 o0 100.00 0
qapl0 5168 5024 4776 1690.54 | 1 406 1941 745 |1 406 791 |2 406 1941 1195 |1 406 1941 874
roy 383 5810.25 8106 0.03 30.3 58874 8347 002 |17.2 576175 002 | 307 5806.61 80.95 003 |37.2 550045 7421 0.03

Table 19: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
FP vs RFP - Part 11

Problem FP Exp, a =0.5 Log, £ =0.1 Hyp, e =0.1 Logis,o = 0.1

F.s. found Iter Time | F.s. found Iter Time | F.s. found Iter Time | F.s. found Iter Time | F.s. found Iter Time
10teams 10 12240 7.34 10 107.00 6.24 1 - - 0 - - 10 92.30 5.86
air04 10 11.20 1252 | 10 4.60 8.13 5 - - 0 - - 10 21.20 19.56
air05 10 2.00 2.42 10 3.00 2.88 10 7.00 458 |1 - - 10 5.00 3.51
misc07 10 39.60 0.13 10 62.90 0.20 10 490.80 0.96 |8 - - 10 46.50 0.16
momentuml | 10 474.20 577.99 | 10 382.40 48249 | 5 - - 0 - - 10 450.70 544.05
nw04 10 1.00 0.94 10 1.00 1.79 8 - - 7 - - 10 1.00 1.48
p2756 0 - - 0 - - 0 - - 0 - - 0 - -
protfold 10 360.20 107.67 | 9 - - 0 - - 0 - - 10 553.50 162.36
t1717 10 18.00 366.80 | 10 56.40 918.95 | 5 - - 1 - - 10 24.10 511.38

Table 20: Comparison on MIPLIB problems (feasible solution found in less than ten runs). FP
vs RFP

38

Problem FP Exp, a=0.5 Log, e =0.1 Hyp,e=0.1 Logis,a = 0.1

F.s. found Iter Time | F.s. found Tter Time | F.s. found Iter Time | F.s. found TIter Time | F.s. found Tter Time
aligning 10 380.10 6.01 10 621.70 9.54 2 - - 0 - - 8 - -
Irn 0 - - 0 - - 0 - - 0 - - 0 - -
neos2 0 - - 0 - - 0 - - 0 - - 0 - -
neos3 0 - - 0 - - 0 - - 0 - - 0 - -
neosll 10 5.30 0.90 10 14.40 1.81 10 111.80 4.56 8 - - 10 14.70 1.76
neos12 10 5.00 7.80 10 5.00 8.02 6 724.00 154.67 | 0 - - 10 6.00 8.28
neos-583731 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-593853 | 1 - - 10 69.70 0.93 7 - - 0 - - 6 - -
neos-598183 | 10 91.70 0.87 |9 - - 10 7140 0.65 6 - - 10 83.30 0.78
neos-631694 0 - - 0 - - 0 - - 0 - - 0 - -
neos-709469 4 - - 3 - - 0 - - 0 - - 3 - -
neos-777800 | 10 13.70 519 | 10 16.90 6.52 10 54.70 12,67 |2 - - 10 4.00 1.98
neos-791021 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-799711 0 - - 10 83.80 659.80 | 10 1.30 194.87 | 10 26.70 198.20 | 9 - -
1neos-799716 | 0 - - 9 - - 9 - - 7 - - 4 - -
neos-803219 | 0 - - 0 - - 2 - - 5 - - 0 - -
neos-803220 | 5 - - 9 - - 10 253.00 1.55 10 183.30 1.15 9 - -
neos-806323 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-807639 2 - - 2 - - 1 - - 1 - - 0 - -
neos-807705 | 0 - - 0 - - 0 - - 2 - - 0 - -
neos-810286 10 139.10 46.72 | 10 90.30 29.90 3 - - 0 - - 10 10.00 5.77
neos-810326 10 668.10 76.05 | 6 - - 0 - - 0 - - 9 - -
neos-820879 10 5.00 1.68 10 19.10 4.79 10 47.30 8.69 6 - - 10 11.00 3.86
neos-829552 | 10 1.00 17.86 | 10 2.00 17.82 | 10 33.50 5266 |1 - - 10 1.00 17.46
neos-862348 | 9 - - 9 - - 10 415.30 4.34 10 259.40 2.95 8 - -
neos-880324 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-912015 6 - - 5 - - 0 - - 0 - - 6 - -
1neos-932816 | 2 - - 2 - - 1 - - 0 - - 0 - -
neos-941698 10 29.80 0.80 10 48.80 1.11 10 435.00 5.78 0 - - 10 47.40 1.10
1neo0s-948268 10 5.00 6.36 10 6.00 6.16 10 9.00 9.07 2 - - 10 7.00 7.93
1neos-957270 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-957389 | 0 - - 0 - - 0 - - 0 - - 0 - -
neos-1215259 | 7 - - 5 - - 0 - - 0 - - 8 - -
neos-1281048 | 10 131.80 1.79 10 338.60 4.60 7 - - 0 - - 10 173.00 2.65
neos-1396125 | 2 - - 0 - - 5 - - 4 - - 2 - -
neos-1441553 | 0 - - 0 - - 0 - - 0 - - 0 - -

Table 21: Comparison on CORQL problems (feasible solution found in less than ten runs). FP
vs RFP

Problem P FP+Log ExptLog Togis+Log ExptLogis
Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time |Iter Obj Gap % Time
TOtcams 1224 9944 762 734 | 2319 9758 561 1309 | 197.6 10086 916 048 | 1924 9908 801 1084 [201 10072 900 137
alelsl 25.6 2161571 87.91 296 |30 2250927 9567 2.2 38 2263576 96.77 274 | 24.9 2343621 10373 212 | 208 223573 9435 2.05
aflow30a 19.9 5691.7 391.51 0.07 10.1 3636.3 214.02 0.01 7.5 185.78 0.01 84 3747.8 223.64 0.02 8.2 4176.3 260.65 0.01
aflow40b 85 57ILO 38903 0.2 |67 40854 24978 0.04 | 9.2 299.24 45812 20223 005 |72 49625 324.87 0.04
air04 1.2 614619 949 1252 | 286 690782 23.05 6559 | 193 24.95 506143 619 2325 | 282 684914 2201 70.62
air05 2 32368 2 3 242 13.8 36682.5 39.09 16.54 21 36708.8 39.19 44456.9 68.56 27.54 3 29948 13.55 6.04
ap6000 181 -L734E6 2923 12 | 288 -L799E6 2657 101 | 17.6 -1.756E6 2834 067 |82 -L735E6 2007 035 |62 -2008E6 1805 0.29
dano3mip | 3 100000 - 1982 | 1 1000.00 - 1083 | 1 1000.00 - 1017 | 1 1000.00 - 1044 | 1 1000.00 - 10.64
danoint 113.3 87.15 32.72 2.78 173.8 82 24.87 34 80.1 83.28 26.82 1.76 180.2 84 27.92 3.6 111 82.1 25.03 2.46
fast0507 3 179 287 9738 | 1 186 6.90 737 |1 186 6.90 .63 | 1 186 690 994 |3 195 1207 2347
fiber 7.6 L495ET 358332 0.02 |62 0.512H6 224320 0.02 |62 9513E6 224341 002 |8 1420E7 3397.05 002 |7 LAI2E7 3379.30 0.02
fixnet6 11.4 11727.7 194.44 0.02 : 27806.5 598.13 0.12 143.7 31703.8 695.98 0.15 114.5 29716.3 646.08 0.12 121.9 27972 602.28 0.13
glassd 25 1.153E10 860.48 0.05 8.157E9 579.76 5! 8 0.07 89.4 521.11 0.06 102.7 7.864E9 555.31 0.07
lin 1 8398.00 - 009 |1 472000 - - 006 | 1 - 006 |1 472000 - 0.07
marksh 1 292 29100 0 1 292 29100 29100 0 1 29100 0 1 292 29100 0
markshare2 | 1 160 15900 0 1 160 15900 15900 0 1 15900 0 1 160 15900 0
masT4 1 191747 8375 0 1 1919747 6267 6267 0 1 62.67 0 1 1919747 6267 0
mas76 1 4487742 1218 0 1 4487742 12.18 1218 0 1 487742 128 0 1 487742 1208 0
misc07 39.6 4236.5 50.77 0.13 75.1 4388.5 56.17 58.10 0.11 58.9 4251.5 51.30 0.09 67.2 42. 50.78 0.1
mke 36 -271.65 5182 0.1 |35 27185 5179 5179 008 |35 27185 5179 0.1 34 27185 5179 0.1
mod011 1 0 10000 0.07 |1 0 100.00 10000 0.04 |1 0 10000 0.04 |1 0 100.00 0.03
modglob 1 6.027E8 2811.72 0 1 6.258E8 2923.21 2615.18 0 1 5.600E8 2605.54 0 1 6.258E8 292321 0
net12 42 337 5748 679 | 133.2 337 57.48 5748 332 | 1971 337 5748 556 | 1688 337 5748 4.88
nsrand-ipx | 3.6 346416 576.59 022 |4 345600 575.00 63394 0.3 |42 347168 57806 031 |32 303680 66891 029
nw04 1 19882 17.91 0.94 5 19657 16.58 74.86 64.31 | 11.2 42121.8 149.80 50.59 1 19882 17.91 0.43
opt1217 1 0 0.01 1 -12 25.00 25.00 0.01 1 -12 25.00 0 1 -12 25.00 0.01
pkl 1 36 0 1 36 227.27 22727 0 1 36 2727 0 1 36 0
ppOSaCUTS | 3.4 12982 001 |37 12223 66.30 12030 63.67 001 |37 12208 66.10 001 |46 12624 0.01
pp08a 3.1 12810 0 3 12505 70.14 12453 69.43 0 3 12439 69.24 0 3.8 12949 76.18 0
qiu 56 1530.38 019 |38 139067 1146.62 1491.29 51 95468 81849 0.3 |48 174L11 141036 0.3
setlch 42 104900.2 001 |6 83983 53.99 83983 89 832477 5264 001 |4 8412205 5425 001
seymour 4 471 2.5 3 482 13.95 482 2 481 13.71 1.06 3 477 12.77 1.12
Sp9Tar 52 1468E9 539 |6 8.768E8 32.65 9.985E8 4 9.344E8 4137 14 7 L60GE9 142.99 1.66
swath 84.8 36527.08 TA1 | 69.6 36824.53 777847 3311844 6985.57 3.32 | 64.1 2736893 575548 3.13 | 619 20633.73 624003 3.17
t1717 18 201829.70 - 366.8 | 69.7 512750.40 - 525868.20 - 386 59.2 363772.90 - 256.13 | 52 417769.40 - 42
tr12-30 83.7 243560.8 8650 0.22 | 558 2627264 10117 2657204 10347 0.4 | 113.2 263093.1 10146 017 | 989 271277.7 107.72
vpm?2 58 2388 73670 62 2038 48.22 19.75 4364 0 62 2023 4713 0 64 221 60.73

Table 22: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP

39

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis

Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time
22433 8.5 215274 0.23 0.06 16.4 21540.3 0.29 0.05 127 21548.3 0.33 0.04 122 21517 0.19 0.04 114 21541.8 0.30 0.04
23588 51.6 8310.4 2.72 0.11 95.5 8322.6 2.88 0.14 | 39.8 8301.8 2.62 0.06 | 61.9 8287.7 2.44 0.09 | 351 8325 2.90 0.05
bel 2.2 12.9 286.42 0.58 2.1 9.44 18277 017 | 24 10.28 20794 017 |2 10.66 219.32 017 | 2.1 9.93 197.45 0.17
bienst1 114 89.92 92.34 0.09 1 83.92 79.51 0.05 1 68.25 45.99 0.06 1 68.25 45.99 0.06 1 68.25 45.99 0.06
bienst2 13.3 127.1 132.78 0.12 1 76.03 39.25 0.05 1 78 42.86 0.05 1 74 35.53 0.06 1 72.42 32.64 0.05
binkar10-1 27.2 609256.29 8936.46 0.15 20.9 408583.99 5960.10 0.05 | 20.7 508570.6 7443.10 0.05 | 359 508968.41 7449.00 0.08 |25.6 608858.49 8930.56 0.06
dano3-3 12.5 1000 73.51 31.74 1 641.91 11.38 847 |1 623.32 8.15 8.46 1 627.64 8.90 8.48 1 653.48 13.38 8.67
dano3-4 7.8 1000 73.48 23.95 1 651.9 13.09 8.63 1 674.14 16.95 8.51 1 668.04 15.89 8.53 1 665.13 15.39 8.65
dano3-5 9.1 997.67 72.93 26.46 1 691.88 19.93 8.62 1 709.29 22.94 8.72 1 706.27 22.42 8.74 1 670.24 16.17 8.62
mef2 146.7 82.97 26.35 3.67 118.8 85.7 30.51 2.39 | 136.3 858 30.66 3.03 103.8 83.85 27.69 212 | 1152 84.45 28.60 2.58
mkel 1 -460.93 24.08 0.12 1 -566.15 6.75 0.03 1 -566.15 6.75 0.03 1 -566.15 6.75 004 |1 -566.15 6.75 0.03
neos5 1 21 40.00 0 2 18 20.00 0 1 17 13.33 0 2 17.5 16.67 0 2 18 20.00 0
neos6 11.8 141.6 70.60 3.5 5.3 129 55.42 0.87 | 234 1318 58.80 2.33 175 149.4 80.00 2.06 | 314 1429 72.17 2.92
neos11 5.3 10 1111 0.9 6.9 L1 084 |78 9 0.00 0.74 | 8.7 9 0.00 0.77 | 148 10.6 17.78 1.93
neos12 5 20 53.85 7.8 39 .5 50.00 35.79 | 20.2 16.2 2 10.34 | 41.7 20.6 58.46 20 4 19 46.15 7.25
neos13 1 -28.43 70.22 1.29 1 4.95 84.34 0.86 1 -15.04 84.25 0.86 1 -16.47 82.75 0.78 1 -46.34 51.46 0.48
neos14 5.5 2.157E8 290112 0.03 4.7 2.436E8 327631 0.01 5 2.819E8 379148 0.01 5 2.914E8 391898 0.01 |52 2.655E8 357016 0.01
neos17 2.6 0.68 353.32 0.04 2.6 0.58 286.66 0.03 | 2.6 0.58 286.66 0.03 | 2.3 0.54 259.99 0.04 |28 0.58 286.66 0.03
neos18 1 36 125.00 0.13 7.2 32.9 10563 0.17 | 8.3 29.1 81.88 0.17 | 10 3 108.13 0.22 |2 34 112,50 0.07
neos-430149 | 137.7 497.95 779.77 0.79 132.3 438.86 675.37 0.27 | 219 465.04 721.63 0.39 162.2 2.29 822.77 029 | 1744 53329 842.21 0.3
neos-476283 | 3 1056.42 159.97 444.74 | 1 523.17 28.75 8.48 1 511.24 25.81 8.37 1 514.88 26.71 8.48 1 541.27 33.20 11.13
neos-480878 | 3 590.7 19.94 0.1 3.6 542.04 10.06 0.04 |35 540.16 9.67 0.03 | 3.6 553.33 12.35 0.04 |33 562.9 14.29 0.03
neos-494568 | 2 29 128.71 1.48 2 -82 18.81 0.22 2 -82 18.81 0.22 2 -81 19.80 0.22 1 =72 28.71 0.23

neos-504674 | 85.8 3096135 751.55 0.25 124.6 30946.73 75115 0.15 | 35 31121.71 755.96 0.06 | 80.8 31777.31 773.99 0.12 | 31.1 29473.78 710.64 0.05
neos-504815 | 82.4 13912.75 505.90 0.2 96.1 1372027 497.52 0.11 | 329 13982.71 508.94 0.05 | 1034 15708.03 584.08 0.13 | 54.3 13976.53 508.68 0.07
neos-512201 | 191.2 5373.11 946.23 0.53 157.6 5557.65 982.16 0.19 | 165.3 5458.2 962.80 029 | 134.1 5407.88 953.00 0.23 | 193.2 5524.32 975.67 0.24

neos-522351 | 6.4 103262.07 477.17 0.48 5.3 40010.8 123.64 0.07 | 5.8 46605.3 16049 0.08 | 4.7 30080.06 68.13 0.07 | 47 49141.5 17467 0.08
1 61 0.00 12.01 1 65 6.56 1.6 1 65 6.56 1.61 1 65 6.56 147 |1 63 3.28 1.46
neos-538867 | 60.4 6425 5166.39 0.33 822 6830 549836 0.23 | 70.3 54195 434221 019 | 50.2 5645 4527.05 0.12 | 69.7 6989.5 5629.10 0.19
neos-538916 | 38.2 5650 4116.42 0.2 30.7 6109.2 4459.10 0.08 | 49.3 6398.7 4675.15 0.12 | 31.7 5846.6 4263.13 0.08 | 36.3 6430.4 4698.81 0.09
neos-547911 | 18.4 15.3 17.69 7.81 12.6 15 15.38 1.15 15.7 15 2.2 11.5 15.4 18.46 2.6 7.3 15.3 17.69 1.7
neos-555694 | 9 55.9 203.80 0.35 16.2 78.56 326.96 0.18 | 17.7 8749 0.21 |17 61.18 232,50 021 |4 25 35.87 0.09
5771 | 56 130.84 603.44 1.1 176 86.74 366.34 0.2 1.6 104.41 0.15 | 16.4 90.83 38833 0.19 |4 43.6 13441 0.09
neos-565815 | 1 14 0.00 9.12 8.3 14.5 3.57 2.36 | 5.2 14.8 222 |93 15.4 10.00 3.07 | 5.1 14.2 1.43 2.41
neos-570431 | 4.7 27 200.00 0.27 4.3 16 77.78 0.12 3.7 15.1 0.11 3.7 14.8 64.44 0.12 5.5 3 164.44 0.16
neos-584851 | 4 -4 63.64 0.04 9.5 -5.5 50.00 0.04 | 106 -5.2 0.04 | 123 -6.3 42.73 0.04 | 2.5 -4.1 62.73 0.03
neos-598183 | 91.7 48288.78 162.01 0.87 18.2 47013.6 155.09 0.06 | 218.3 47841.88 0.46 | 16.4 47547.14 157.99 0.06 | 135.1 49824.98 170.35 0.29
neos-603073 | 8 47327.85 181.88 0.08 5.7 46725.08 17829 0.02 | 5.8 46760.97 0.02 | 5.5 46171.88 . 0.02 | 383 49371.71 194.05 0.09
neos-611838 | 4 4.849E6 174.90 218 6.2 3.730E6 11148 0.75 | 5.2 3.646E6 0.66 | 5.8 3.811E6 116.07 082 |3 3.57TE6 102.81 0.69
neos-612125 | 3 4.793E6 159.85 2.81 5.7 4.098E6 122.18 097 |43 3.999E6 0.82 |42 3.929E6 113.02 0.7 3.7 4.068E6 120.57 0.93

neos-612143 | 3 4.805E6 167.56 2.92 5.9 3.838E6 11372 0.76 | 5.9 3.849E6 0.69 | 3.8 911E6 11778 0.63 |4 3.667E6 10417 0.74
neos-612162 | 3.4 4.827E6 172.28 293 5.8 3.681E6 107.63 0.73 | 5.9 3.928E6 121.54 0.73 | 4.2 3.834E6 11627 0.61 | 3.1 3.534E6 99.33 0.52
neos-655508 | 0 6.302E7 0.00 0.04 0 6.302E7 0.00 0.03 |0 6.302E7 0.00 0.02 |0 6.302E7 0.00 0.02 |0 6.302E7 0.00 0.03

Table 23: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP - Part I

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis
Tter Obj Gap % Time Tter Obj Gap % Time | Iter Obj Gap % Time | Iter ~ Obj Gap % Time | Iter ~ Obj Gap % Time

neos-775946 | 124.1 764.3 476815 3.25 14.6 39198 2396.69 22 530.29 3277.64 0.61 4.5 531.1 3282.80 0.39 18.8 496.09 3059.81 0.57
neos-777800 | 13.7 -80 0.00 5.19 4 -80 0.00 113 -80 0.00 514 [199 -80 0.00 9.23 0.2 -80 0.00 6.81
neos-780889 | 2 1.082E7 216.28 48.19 2.1 LO03E7 193.22 3.3 1026E7 199.88 96.59 | 2 LO0I8E7 19747 93.2 | 2.1 LO03E7 193.29 83.28
neos-801834 | 2 64502 28.02 0.8 2 55577 10.30 2 60875 20.82 037 |2 61233 21.53 037 |1 54051 7.27 0.38
neos-810286 139.1 34319 19.29 46.72 81.3 3435.4 19.41 4.2 3377.3 17.39 44.79 | 83.3 3316.1 15.26 42.2 114.1 34858 21.16 80.34
neos-820879 | 5 34433.7 35.20 1.68 10.7 384924 51.14 124 37749.1 48.22 14 135 37945.1 48.99 161 | 6.5 37208.2 46.10 0.98
neos-824695 | 3.7 ks 148.39 0.75 3.8 7 148.39 3.7 v 148.39 0.63 | 3.9 m 148.39 0.65 | 3.9 7 148.39 0.67
neos-825075 | 4 218 180.15 0.06 9 465 270.96 4 108 13971 0.04 |3 8 10294 0.04 | 6.2 395 245.22 0.04
neos-826250 | 3.1 63 125.00 0.4 3.2 63 125.00 3.3 63 125.00 038 | 3.4 63 125.00 0.37 | 3.4 63 125.00 0.38
neos-826812 | 2.7 83.01 43.10 0.72 2.7 83.01 43.10 24 83.01 43.10 0.56 | 2.8 83.01 0.62 | 2.7 83.01 43.10 0.62
neos-827175 | 2 8.04 18 2 121 8.04 2 121 8.04 112 |2 121 113 |2 121 8.04 114
neos-829552 | 1 1050.43 17.86 7 2.91 25.43 5.2 2.92 25.86 24.53 | 11.6 424 1727.59 3262 | 2 6.67 187.50 20.52

9859 1 860.77 0.2 1 5.856E7 496.93 1 5.856E7 496.93 0.17 |1 5.856E7 496.93 0.17 1 1.317E8 124213 0.18
neos-860300 | 14.3 140.09 3.13 15.9 7321.6 128.73 216 7044.4 12007 1.16 | 17.1 6285.7 96.37 0.93 | 9.7 8861.7 176.84 0.73
neos-886822 | 2 138398 381.30 0.26 1 28820.5 0.23 1 28820.5 0.23 016 |1 28820.5 0.23 0.16 1 178597.5 521.10 0.27
neos-892255 | 3.6 18.7 33.57 0.15 3.9 18.9 35.00 8 45.6 225.71 0.8 | 3.9 20.6 47.14 0.1 115 463 230.71 0.25
neos-906865 | 2 9105.2 186.78 0.05 2 10823.9 240.91 2 10819.7 240.78 0.03 |2 11060.3 248.36 0.03 | 2 9744.1 206.90 0.03
neos-941698 | 29.8 22.3 1015.00 0.8 484 10 400.00 98.2 10.4 420.00 1.02 | 645 83 315.00 0.73 | 62.3 10.2 410.00 0.79
neos-948268 | 5 60 0.00 6.36 13.7 60 0.00 6 60 0.00 6.28 |7 60 0.00 652 |3 60 0.00 5.44
neos-955215 | 2.2 9037.66 1924.11 0.01 3 809.42 81.28 3 809.35 81.27 001 |3 808.92 81.17 0.01 | 3.4 1029.15 130.49 0.01
neos-1058477 | 2.8 3.58 550.91 0.02 2 1.47 167.27 2.8 1.46 165.45 0.01 3.2 11 1900.00 0.02 4.4 31.25 5581.82 0.02
neos-1171448 | 1 0 100.00 0.6 1 0 100.00 1 0 100.00 0.26 |1 0 100.00 0.26 1 0 100.00 0.28
neos-1200887 | 1 -38 48.65 0.02 1 -52 29.73 1 -52 29.73 0.01 1 -52 29.73 0.01 1 -52 29.73 0.02
neos-1211578 | 1 -51 33.77 0 1 -69 10.39 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0
neos-1225589 | 27.2 2. 1815.07 0.05 43.6 2.524E10 19 30 2.348E10 180929 0.06 | 51.3 2.716E10 2108.25 0.1 314 2383E10 1837.17 0.06
neos-1228986 | 1 -92 25.20 0 1 -104 15.45 1 -104 15.45 0 1 -104 15.45 0 1 -104 15.45 0
neos-1281048 | 131.8 173712.9 28803 1.79 243 1747742 28980 1.9 285.6 183703.9 30466 2.08 | 167.7 175805.5 29152 1.31 308.4 180675.6 29962 2.25
neos-1337489 | 1 -51 33.77 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0 1 -69 10.39 0
neos-1413153 | 2 119.12 13.32 0.37 1 119.12 13.32 0.35 1 119.12 13.32 0.35 1 119.12 13.32 0.35 1 119.12 13.32 0.36
neos-1415183 | 1 425.6 302.53 0.53 1 128.61 21.64 0.43 1 128.61 21.64 0.43 1 128.61 21.64 0.43 1 128.61 21.64 0.44
neos-1437164 | 23.6 25.9 223.75 0.14 37.3 17.6 120.00 0.19 21.1 18.9 136.25 0.11 19.7 19 137.50 0.1 28.7 194 142.50 0.15
neos-1440447 | 1 -52 48.00 0.01 1 =77 23.00 0.01 1 -79 21.00 0 1 -78 22.00 0 1 -78 22.00 0
neos-1460265 | 35.7 15925 18.84 0.18 175.1 15410 15.00 1.03 91.7 15490 15.60 0.51 108.2 15520 15.82 0.61 143.2 15520 15.82 0.8
neos-1480121 | 2 89.33 107.74 0 2 95.8 12279 0 2 95.8 12279 0 2 95.8 12279 0 2 96.6 124.65 0
neos-1489999 | 5.8 476.9 34.72 0.05 6.9 484.3 36.81 0.05 6.3 481.6 36.05 0.05 | 6.2 488.3 37.94 0.05 | 6.2 483.5 36.58 0.05
neos-1516309 | 9 54363.5 51.20 0.13 11.9 54069 50.38 0.12 124 52941 47.25 0.13 | 10.8 52827 46.93 0.12 17.7 53687.5 49.32 0.16
neos-1595230 | 3.5 20.4 126.67 0.1 3.8 20.5 127.78 0.07 5 21 133.33 007 | 4.7 22.1 14556 0.07 | 3.7 20.5 127.78 0.07
neos-1597104 | 4.6 -7.1 76.33 8.08 8.2 -2.6 91.33 1.07 8.2 -2.6 91.33 1.05 | 6 -3.4 88.67 L1 4.6 -6.9 77.00 0.98
neos-1599274 | 3 36277.6 13.10 0.17 8.6 52367.76 63.26 0.13 9.2 51694.48 61.16 0.14 | 9.4 51652.8 61.03 0.14 |3 37687.6 17.50 0.07
neos-1620807 | 8.8 9.5 58.33 0.02 106 9.7 61.67 0.02 7 9.1 51.67 0.02 |92 9.7 61.67 0.02 |69 9.7 61.67 0.01
prodl 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0 1 0 100.00 0
qapl0 516.8 502.4 47.76 1690.54 | 1 406 19.41 7.33 1 406 19.41 1021 | 1 406 19.41 7.37 1 406 19.41 10.64
roy 38.3 5810.25 81.06 0.03 212 5788.85 80.40 0.08 98.1 5393.15 68.07 0.04 | 264 5622.95 75.23 0.1 319.8 5878.4 83.19 0.12

Table 24: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
FP vs Combined RFP - Part 11

40

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis

F.s. found Tter Time | F.s. found Iter Time | F.s. found Tter Time | F.s. found Tter Time | F.s. found Iter Time
harp2 10 188.80 1.52 10 525.90 4.28 9 - - 9 - - 10 257.40 2.19
momentuml | 10 474.20 577.99 | 9 - - 10 215.80 56.10 | 9 - - 10 578.20 118.96
p2756 0 - - 0 - - 0 - - 0 - - 0 - -
protfold 10 360.20 107.67 | 9 - - 10 524.90 89.36 | 10 361.60 83.31 |9 - -

Table 25: Comparison on MIPLIB problems (integer feasible solution found in less than ten
runs). FP vs Combined RFP

Problem FP FP+Log Exp+Log Logis+Log Exp+Logis

F.s found TIter Time | F.s found Iter Time | F.s found Iter Time | F.sfound Iter Time | F.s found Iter Time
aligning 10 380.10 6.01 | 10 623.90 3.68 - - 8 - - 7 - -
Irn 0 - -
neos2 0 - -
neos3
neos-583731
neos-593853
neos-631694
neos-709469
neos-791021
neos-799711
neos-799716
neos-803219
neos-803220
neos-806323
neos-807639
neos-807705
neos-810326
neos-862348
neos-880324
neos-912015
neos-932816
neos-957270
neos-957389
neos-1215259
neos-1396125
neos-1441553

o
'
'
'
'
'
'
'
'

(==l -
' ' '
' ' '
'
'
MHOpROOONOOOOO
) '
3
ot
=)
(=}
= '
o
&

o
1=y
>
®
=
1S
0
=
o
IS
a0
3
©w
1
S
o
=3
<
153
S
IS4
©
o
=
©

109.01
0.86

oo

'
'
CoUoZSZSoONOZoOooONOOOoo 0D
= '

&
o
=)
'

oSN OoO VRO NO LMo O
'

(=}
'
'

!
.
= S
')
ot
*
=)
S
! o
I3
&
GoomMNOZZoONO SO0 C RSO0 o0
no
3
«
3
=)
o
=
S

'
'

GO O NN O =
'
'

'
'

O WO ORTOCORONONOODODODWOD OO DO
'
'

[N
'
'
'
'
o o=
'
'
'
'
'
'

'
'
=}
'
'
o
'
'

Table 26: Comparison on CORQL problems (feasible solution found in less than ten runs). FP
vs Combined RFP

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP

Tter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time
alclsl 119.4 19198.34 67 0.5 33.5 18859.35 64 0.4 50.8 19535.79 70 0.3 50.5 19522.04 70 0.2
aflow30a 0 983.17 15 0.1 0 983.17 15 0 0 983.17 15 0 0 983.17 15 0.1
aflow40b 25.2 3095.8 165 0.3 62.2 4430 279 0.4 75.4 4243.1 263 0.6 35.1 5396.8 362 0.4
air04 21.5 58273.9 4 23.8 20.8 58230.1 4 23.3 18.3 58527.4 4 23 32.6 58250 4 39.1
air05 5 27384 4 2.3 5 27384 4 2.3 11 30127.1 14 7 17.3 296124 12 6.5
dano3mip 80.6 821.42 275.6 | 82 836.28 282.6 | 83 777.14 273.9 | 52.6 801.13 181.5
fast0507 4 181 4 15.6 4 181 4 15.8 4 199 14 11.3 4 194 11 12
fiber 18 6.339E6 1462 0.2 16.2 4.113E6 913 0.1 17.6 3.980E6 883 0.1 6 1.639E6 304 0
fixnet6 16.2 22614.6 468 0.1 13.8 17547.4 341 0 19.4 18611.2 367 0 11.2 17956.3 351 0.2
marksharel | 69 521.1 0.1 68.4 4384 0.1 76.4 7524 0 58 561 0
markshare2 | 69.4 1190.4 0 71 1203.5 0.1 78.5 812.5 0.1 57.4 572.6 0.1
mas74 112.7 35399.07 200 0.2 110 24219.37 105 0.1 105.6 21041.66 78 0.2 93.8 19578.36 66 0.2
mas76 109 45068.61 13 0.1 110.8 52902.53 32 0.2 103 46238.12 16 0.1 90.2 46604.28 16 0.1
mke 109.7 -231.1 59 1 111.6 -223.12 60 1.1 40.3 -245.51 56 0.6 46.2 -208.91 63 0.3
mod011 17.5 -4.511E7 17 0.4 19.3 -4.599E7 16 0.4 57.2 -1.547E7 72 0.4 14.5 -4.254E7 22 0.2
modglob 66 2.134E7 3 0.2 62.4 2.138E7 3 0 59.6 2.111E7 2 0.1 41.2 2.132E7 3 0.1
nsrand-ipx 7.3 245888 380 0.6 8 263792 415 0.5 6.8 261920 412 0.5 3.4 242768 374 0.6
nw04 21.6 19283.2 14 4.9 17 21180.2 26 4.3 5.6 19702.4 17 2.6 2 19124 13 2
opt1217 42.9 -12.8 20 0.2 37 -16 0 0.2 53.1 -13.8 14 0.2 23.6 -14 12 0
pkl 57.6 91.2 729 0.1 57.3 126.2 1047 0.1 73 149 1255 0.1 49.2 129 1073 0
pp08aCUTS | 10.6 12270 67 0 10.7 12025 64 0.1 22 11050 50 0 8 8879 21 0.1
pp08a 10.8 11428 55 0 10 11020 50 0 23.5 12480 70 0.1 9 9880 34 0
qiu 7.5 167.37 226 0 8 432.57 426 0 18.2 608.86 558 0.2 6.8 160.56 221 0.1
setlch 25.1 94116.18 73 0.2 27 86727.85 59 0 24.5 89406 64 0.1 11.8 81987.4 50 0
seymour 8 446 5 1.5 8 446 5 15 8 454 7 1.4 4 460 9 1.2
sp9T7ar 74 5.399E9 717 2.5 6.9 4.603E9 597 2.6 6 1.099E9 66 2.3 6 1.151E9 74 2.2
tr12-30 29.8 175086.5 34 0 30.6 173209.4 33 0 23.5 195109 49 0.3 15.6 160418.8 23 0.1
vpm2 10 20.5 49 0 12 24.38 7 0 21.9 23.77 73 0.1 10 23 67 0

Table 27: Comparison on MIPLIB problems (integer feasible solution found in all the ten runs).
OFP vs ORFP

41

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP

Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time
bel 8.6 13.49 304 1.5 7.9 9.92 197 14 12.8 11.81 253 1.5 4 3.44 3 14
bienst1 77.9 61.76 32 0.9 59 57.38 23 0.5 82.4 54.79 17 1.1 47.8 63.76 36 0.5
bienst2 68.9 67.29 23 0.7 64.4 66.42 22 0.7 86.5 73.69 35 1 49 85.28 56 0.5
binkar10-1 1 7935.98 18 0.1 1 7935.98 18 0.1 1 7964.89 18 0.1 2 7976.03 18 0.1
dano3-3 21.7 57712 0 53.2 26.5 577.21 0 79.3 45.8 577.43 0 104.8 | 12.1 576.52 0 24.6
dano3-4 36.4 578.53 0 119.2 | 35.1 578.34 0 108.5 | 41.5 578.77 0 96.4 16.4 577.25 0 34.8
dano3-5 344 579.3 0 104.1 | 41 579.74 0 128.3 | 50.1 580.15 1 134.5 | 21.2 579 0 55.7
mkel 7 -565.92 7 0.3 10.7 -563.76 7 0.1 7.8 -573.01 6 0.3 6.6 -576.81 5 0
neosH 5 17 13 0 5.9 17 13 0.1 16.7 15.65 4 0.1 6 16 7 0
neosl11 11.2 99 - 1.6 22.8 10.1 - 2.3 12.2 9.8 - 1.8 5.6 9.6 - 0.7
neos12 57.7 178 37 28.1 714 177 36 31.8 5.8 13 0 6.5 9.6 14.7 13 9.3
neos13 18 -41.04 57 1 173 -39.42 59 1.3 16.6 -37.06 61 1.2 5.1 -47.83 50 1.6
neosl4 7.2 107870.61 45 0.1 8.8 104252.78 40 0.1 12.9 105913.04 42 0 20.5 101501.98 37 0.1
neos18 15 17.8 11 0.2 18.3 20.1 26 0.1 20.2 188 17 0.3 74 19.6 23 0.2
neos-476283 | 25 411.48 1 47.7 24.4 411.97 1 47.2 22,5 413.04 2 48 8.6 416.95 3 34.4
neos-480878 | 25.8 709.57 44 0.2 13 555.71 13 0.2 28.4 649.13 32 0.2 7.9 549.71 12 0.2
neos-504674 | 40.9 7155 97 0.1 53.7 10852.61 198 0.3 55.2 74204 104 0.2 28 11256.83 210 0.1
neos-504815 | 43.2 4178 82 0.1 36.9 4471.18 95 0.2 55.8 3960.03 72 0.2 29.2 4379.05 91 0.2
neos-512201 | 42.6 1316.45 156 0.2 452 1223.81 138 0.3 55.8 1359.89 165 0.1 29.1 1408.57 174 0.2
neos-522351 | 46.6 22851.7 28 0.2 46.8 19611.55 10 0.2 84.8 31042.64 74 0.2 27.7 18589.42 4 0.1
neos-525149 | 7.3 1460.8 2295 2 10 2261.3 3607 2.1 5.8 1461.9 2297 2 5.5 1860.3 2950 2
neos-547911 | 10.4 15.6 20 1.8 13.9 15.5 19 1.9 9.9 15.6 20 1.9 6.8 16.2 25 1.6
neos-555694 | 17.1 24.35 32 0.4 25.7 24.82 35 0.3 174 25.73 40 0.2 15.7 3091 68 0.2
neos-555771 | 4.2 21.02 13 0.3 4 21.63 16 0.1 2 20.7 11 0.2 2 20.7 11 0.3
neos-565815 | 6.6 14 0 1 7.6 14 0 1 5.8 14 0 1.1 9.2 14 0 0.9
neos-570431 | 11 14.8 0.2 11 16.4 0.2 15.3 15.2 0.3 8.8 16 0.2
neos-584851 | 26.6 -4.8 56 0.3 265 -7.7 30 0.3 33.6 -8 27 0.5 19.6 -89 19 0.2
neos-611838 | 11 1.777E6 1 0.3 11 1.777E6 1 0.3 42.8 1.875E6 6 0.9 14.5 1.794E6 2 0.4
neos-612125 | 11 1.854E6 1 0.4 10.5 1.854E6 1 0.3 38 1.889E6 2 0.9 11 1.854E6 1 0.3
neos-612143 | 11 1.809E6 1 0.2 10.7 1.809E6 1 0.4 43.5 1.862E6 4 0.8 10.3 1.809E6 1 0.3
neos-612162 | 13.4 1.790E6 1 0.3 11.3 1.786E6 1 0.4 42.1 1.849E6 4 0.8 9.7 1.786E6 1 0.2
neos-655508 | 0 63015042 0 0.5 0 63015042 0 0.4 0 63015042 0 0.4 0 63015042 0 0.5
neos-777800 | 24.9 -80 0 14.8 315 -80 0 18.8 16.3 -80 0 10.4 20.3 -80 0 8.5
neos-780889 | 0 3421500 0 134 0 3421500 0 134 0 3421500 0 13.3 0 3421500 0 13.4
neos-801834 | 3.8 53732.8 7 0.5 3.8 54664.3 8 0.5 3.6 53770.1 7 0.6 3.6 59861.2 19 0.5

Table 28: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
OFP vs ORFP - Part I

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time | Iter Obj Gap % Time
1neos-820879 14.9 32762 29 1.3 12.9 32141.7 26 1.1 8.6 34295.3 35 1 14.9 37091.7 46 1.8
neos-824695 12.8 32.2 4 3.9 14.4 334 8 4 13.3 33.9 9 4.6 5.1 39.8 28 3.2
neos-825075 155 -222 18 0.1 13.8 -152 44 0.1 22,9 -146 46 0.2 13.2 178 165 0.2
neos-826250 4 28 0 1 4 28 0 1 7 30.5 9 1.6 5 34 21 1.3
neos-826812 7.4 58.72 1 2 7.8 58.52 1 1.9 5.9 58.12 0 2.1 5 59.11 2 2
neos-827175 2 112 0 2.1 2 112 0 2.1 6.1 112.3 0 2.8 5.8 112.5 0 2.2
neos-829552 1 26.41 1038 13.2 1 26.41 1038 134 1 26.74 1053 9.5 1 5.57 140 7
1neos-839859 29.3 2.249E7 129 0.3 28.6 2.073E7 111 0.3 23.9 1.989E7 103 0.3 37.8 4.019E7 310 0.3
1ne0s-860300 22.6 6272.4 96 2.2 26.8 6676.7 109 24 22.8 5724.5 79 2.2 114 6233.5 95 1.5
neos-886822 114.9 54237.05 89 2.9 114.7 54922.6 91 2.9 116.5 54100.65 88 2.9 92.1 50257.85 75 2.5
neos-892255 12.9 15.6 11 0.3 11.6 14.8 6 0.3 10.8 15.2 9 0.4 6 18 29 0.2
neos-906865 | 8 5820 83 0.1 8.7 10553.4 232 0.1 12.2 8387.8 164 0.1 5.1 12393.6 290 0
neos-932816 | 6.7 15475.2 1 2.7 8.1 15376 0 3 5.9 15478.9 1 1.8 2 15378 0 2
neos-948268 | 8.4 60 0 10.7 9.8 60 0 11.5 4 60 0 74 14 60 0 12.2
neos-955215 | 9 1145.56 157 0.1 6 548.44 23 0.1 12.4 1565.62 251 0.1 5 720.62 61 0.1
1neos-1058477 | 59.6 0.99 81 0.2 61.6 1.05 92 0.1 73.6 1 83 0.2 50.1 0.83 52 0.2
neos-1171448 | 16.4 -296.49 4 4.6 14.9 -296.19 4 4.5 17.2 -292.96 5 5.2 5.6 -294.8 5 2.8
neos-1200887 | 13.8 -59.2 20 0.1 13.1 -63.4 14 0.2 189 -70.2 5 0.1 8.5 -69 7 0.1
neos-1211578 | 15.2 -70.2 9 0 17 -66 14 0.1 25 -68 12 0 5 -75.2 2 0.1
neos-1225589 | 53.6 4.219E10 3328 0.2 53.3 4.077TE10 3212 0.2 48.8 4.180E10 3296 0.1 53 4.431E10 3499 0.2
neos-1228986 | 19.6 -101.4 18 0 16 -114 7 0 28.7 -118.4 4 0.1 114 -110.4 10 0.1
neos-1337489 | 16.8 -69 10 0.1 15 =75 3 0 24.9 -71.3 7 0.1 9.6 =717 7 0
neos-1413153 | 69 127.78 22 0.9 67.2 115.29 10 0.6 67.5 117.04 11 0.9 39.4 117.23 12 0.5
neos-1415183 | 64.5 124.25 18 1 70.8 116.35 10 1 64.2 117.79 11 1 38.5 118.43 12 0.5
neos-1437164 | 21.8 36.2 0 214 40.2 0.1 21 324 0.2 19.6 38.6 0.3
neos-1440447 | 16 -78 22 0 16 -82.8 17 0.1 27.2 -92.8 7 0 10.6 -84.4 16 0
neos-1480121 | 85.4 52 21 0.1 84.3 56.06 30 0.2 86 65.8 53 0.1 726 61.8 44 0.1
neos-1489999 | 9.1 474.6 34 0 10.7 472.3 33 0 12 464.5 31 0.2 5 527 49 0.4
neos-1516309 | 9.1 42993.5 20 0.2 11.6 45554.6 27 0.3 11 48341.4 34 0.2 11 48720.6 36 0.2
neos-1595230 | 10.6 10 - 0.3 10.3 10.3 - 0.3 15.3 10 - 0.3 6.6 10.6 - 0.2
neos-1597104 | 15.4 -14.5 52 9.8 15.4 -13.2 56 9.8 14.5 -20.7 31 8.6 9.7 -10.7 64 5.9
neos-1599274 | 10.6 43456.18 35 0.3 9.2 39650.26 24 0.3 8 41632.14 30 0.2 6.4 43108.88 34 0.2
neos-1620807 | 10.8 6 - 0.1 14.8 6.1 - 0.2 20 6 - 0.2 104 6.7 - 0
prodl 21.7 -421 25 0.1 16 -45.9 18 0 21 -44 21 0.1 17 -43 23 0
qapl0 5.6 386 14 27.8 7.1 408.6 20 36 2.2 350.4 3 21.2 2.3 410.8 21 19.4
Toy 12,7 4427.89 38 0.1 10 4696.38 46 0 27 4180.05 30 0 9.7 3883.22 21 0.1

Table 29: Comparison on CORQL problems (integer feasible solution found in all the ten runs).
OFP vs ORFP - Part 11

42

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
F.s. found Tter Time | F.s. found Iter Time | F.s. found TIter Time | F.s. found Iter Time
10teams 8 - - 7 - - 5 - - 4 - -
cap6000 10 399 1 9 - - 10 28.8 0.5 10 185 0.5
danoint 8 - - 9 - - 9 - - 5 - -
glass4 1 - - 3 - - 3 - - 9 - -
harp2 3 - - 2 - - 2 - - 0 - -
liu 7 - - 5 - - 3 - - 6 - -
misc07 10 92.5 0.2 7 - - 6 - - 7 - -
momentuml1 | 0 - - 0 - - 0 - - 0 - -
net12 9 - - 10 193.3 6 8 - - 7 - -
p2756 0 - - 0 - - 0 - - 0 - -
protfold 5 - - 4 - - 3 - - 6 - -
swath 7 - - 7 - - 6 - - 10 71.1 3.1
t1717 8 - - 8 - - 9 - - 10 61 186.4

Table 30: Comparison on MIPLIB problems (integer feasible solution found in less than ten
runs). OFP vs ORFP

Problem OFP Exp ORFP Logis ORFP Exp+Logis ORFP
F.s. found TIter Time | F.s. found Iter Time | F.s. found Iter Time | F.s. found Iter Time
22433 7 - - 9 - - 9 - - 10 50 0.1
23588 9 - - 8 - - 10 89 0.1 10 110.1 0.2
aligning 4 - - 7 - - 2 - - 6 - -
Irn 0 - - 0 - - 0 - - 0 - -
mcf2 8 - - 6 - - 9 - - 4 - -
neos2 0 - - 0 - - 0 - - 0 - -
neos3 0 - - 0 - - 0 - - 0 - -
neos6 10 119.8 144 | 8 - - 10 91.6 10.6 10 29.7 29
neos17 10 54 0.2 10 54 0.3 10 54 0.2 9 - -
neos-430149 0 - - 0 - - 0 - - 0 - -
neos-494568 | 9 - - 10 30 0.9 10 45 1.1 10 251 0
neos-538867 | 9 - - 8 - - 10 30.3 0.1 10 57.9 0.1
neos-593853 | 0 - - 0 - - 0 - - 0 - -
neos-H98183 2 - - 2 - - 5 - - 8 - -
neos-603073 | 2 - - 9 - - 10 76 0.3 10 68.1 0.2
neos-631694 | 0 - - 0 - - 0 - - 0 - -
neos-709469 | 0 - - 0 - - 3 - - 0 - _
neos-775946 | 9 - - 10 25,5 0.6 10 26.6 0.7 10 154 0.6
neos-791021 0 - - 0 - - 0 - - 0 - -
neos-799711 1 - - 0 - - 0 - - 0 - -
neos-799716 | 0 - - 0 - - 0 - - 0 - -
neos-803219 | 10 234 0.4 4 - - 2 - - 10 40.3 0.1
neos-803220 | 9 - - 9 - - 10 130 0.1 10 269 0.1
neos-806323 | 0 - - 3 - - 0 - - 0 - -
neos-807639 10 74.1 0.5 4 - - 8 - - 3 - _
neos-807705 | 0 - - 2 - - 0 - - 6 - -
neos-810286 | 5 - - 6 - - 0 - - 5 - -
neos-810326 1 - - 2 - - 3 - - 1 - -
neos-862348 | 10 20.2 0.3 9 - - 10 385 0.5 9 - -
neos-880324 | 0 - - 0 - - 0 - - 0 - -
neos-912015 0 - - 1 - - 0 - - 0 - -
neos-941698 | 10 20.8 04 10 226 0.3 10 45.3 0.6 8 - -
neos-957270 2 - - 2 - - 2 - - 0 - _
neos-957389 | 0 - - 1 - - 0 - - 0 - _
neos-1215259 | 1 - - 1 - - 0 - - 0 - -
neos-1281048 | 1 - - 0 - - 0 - - 0 - _
neos-1396125 | 1 - - 0 - - 0 - - 0 - -
neos-1441553 | 2 - - 0 - - 3 - - 8 - -
neos-1460265 | 5 - - 3 - - 2 - - 10 22.3 0.3

Table 31: Comparison on CORQL problems (integer feasible solution found in less than ten
runs). OFP vs ORFP

43

