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ABSTRACT

This paper provides new empirical evidence on the efficiency of Italian airports. Analysing data on
2010 trough conditional efficiency measures, we find that competition affects mostly the frontier of
best performers, whilst airports that are lagging behind are less influenced by it. By applying a
novel two stage approach, we show that competition has an inverse U-shape impact. Finally, the bi-
modal shape of the distribution of pure efficiency indicates the existence of two differently managed

groups of airports.
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1. Introduction

Deregulation of airlines, privatizations of airports and the recent phenomenon of low cost air
transport have questioned the non-competitive nature of the airport business and the natural
monopoly approach to airport regulation (Starkie, 2002): some contributions take the view that
either regulation is no longer required or light-handed (or perhaps "shadow") regulation would
suffice (Starkie, 2005), while the need of case-by-case analysis has been argued in other policy
circles (Forsyth, 2007). Actually, the EU liberalization process — completed in 1997 — has formed a
unique market where cabotage has been allowed (European Commission, 1992ab,c): every
European airline can provide a new route in the European network, i.e. a route having a European
airport both as origin and destination. This has increased the available routes in the network and,
therefore, the numbers of competing routes and competing airports. This is particularly true in the
case of airports located in different metropolitan areas sharing - at least in part - the same catchment
area (e.g. the case of major hub-and-spoke airports as Fiumicino in Rome and Malpensa in Milan,
the airports of Barcelona and Madrid, Brussels and Amsterdam or Brussels and Paris).
Nevertheless, even if they are located in the same metropolitan area and are managed by the same
company (notably, Paris ADP airports, London BAA airports, Rome ADR airports, Milan SEA
Airports), some competitive issues may arise due to possible cross-subsidies and the ensuing

distortions (Oum and Fu, 2008).

Running in parallel to the airline deregulation, many airports were involved into a privatization
process, starting in Europe in 1987 with the privatization of the seven major British airports -
including London Heathrow, Gatwick, and Stansted - sold to the British Airports Authority plc.
(BAA)'. Meanwhile, non-aeronautical revenues have been growing significantly to the point that
they have become the main income source for many airports (Graham, 2009; Morrison, 2009)*:

encouraged by the privatization process, has been also the commercialization of the airport industry.

A positive influence of low-cost carriers’ (LCCs) activity on airport competition is even well

researched (Dresner et al., 1996; Pels et al. 2009): an increasing number of small-medium

! Following this example, the majority stakes of Copenhagen Kastrup International Airport, Vienna International
Airport, Rome’s Leonardo Da Vinci Airport, and 49 per cent of Schiphol Airport, have been sold to private owners
(Oum et al. 2004). In fact, more than 20 countries have completed the sale or lease of airport facilities so far. Some of
them are: Argentina, Australia, Austria, Bahamas, Bolivia, Cambodia, Canada, Chile, China, Colombia, Denmark,
Dominican Republic, Germany, Hungary, Italy, Japan, Malaysia, Mexico, New Zealand, Singapore, South Africa and
Switzerland (Forsyth et al. 2010).

* The global airport benchmarking study by the Air Transport Research Society (ATRS, 2011) reports that non-aviation
revenues, most of which are concession revenues for Asian and European airports, accounted for 40 to 80 per cent of
total revenues for 50 major airports around the world in 2010.
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secondary and regional airports relies on the operations of LCCs which use a business model that

has a relevant cost driver in airport costs and enables LCCs to shop around airports®.

Finally, besides these institutional changes, other sources of increasing competition pressure, as the
development of high-speed rails, interregional bus transportation and transport networks, have been
constituting additional factors influencing competition between airports (OECD, 2009; Pavlyuk,
2012).

These changes, in turn, have led to a much more competitive outlook on the part of airport
managers: airports, many of which have been treated in the past as public service organizations
directly controlled by government administrations, have increasingly been restructured to attract
private investments, search for new sources of revenues and attract the competing full service or
low cost carriers (Starkie, 2002). In this scenario, it is essential for airport managers to improve
daily operations and upgrade operational efficiency relative to other players in the market,
enhancing their standing in a competitive environment (Forsyth et al. 2004). Moreover, it is crucial
both for airport managers and the government to identify the best practices in a range of airport
operations to provide the best services in the most efficient manner (Forsyth, 2003; Gitto and
Mancuso, 2012). Efficiency benchmarking constitute, in this sense, a fundamental issue because of
its implications for the operation of a competitive industry and the ensuing regulatory requirements.
For these reasons, the impact of competition on airports efficiency is of increasing concern for
airports management, policy makers and even municipalities, who require efficient airports for

attracting businesses and tourists into a region (Scotti et al. 2012).

In this paper we aim at assessing the impact of competition on airport efficiency, that is we aim at
evaluating whether airports where the intensity of competition is higher are more efficient than
those where it is lower. We focus on 35 Italian airports observed in 2010. Specifically, departing
from previous studies on the Italian airport system (Abrate and Erbetta, 2010; Barros and Dieke,
2007, 2008; Curi et al., 2010, 2011; Gitto and Mancuso, 2012; Malighetti et al., 2007; Scotti et al.
2012), we use the recently introduced conditional efficiency measures (Daraio and Simar, 2005,
2007a,b; Badin et al. 2012a) which have rapidly developed into a useful tool to explore the impact
of exogenous factors on the performance of Decision Making Units (DMUs) in a nonparametric

framework. This novel approach also provides a measure of inefficiency whitened from the main

* However, their operations may be influenced by the availability of public funds (Francis et Al. 2003; Oum and Fu.
2008). The European Commission has opened investigations on state aids possibly offered to LCCs by some airports
such as Berlin Schoenefeld and Luebeck Blankensee in Germany, and Tampere Pirkkala in Finland. In a recent
judgment, the Court of First Instance overturned the EC's decision that Ryanair received state aid through its contract
with Charleroi airport.
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effect of the environmental factors, such as competition. This allows a ranking of units according to

their pure efficiency, even when facing heterogeneous environmental conditions.

Hence, the contribution of the paper is twofold. On the one hand, we apply for the first time to the
airport industry the recently developed conditional nonparametric approach to evaluate the impact
of competition on efficiency. On the other hand, we provide new empirical evidence on the relation
between competition and efficiency with respect to Italian airports. Indeed, to the best of our
knowledge, Scotti et al. (2012) is the only study which investigates how the intensity of competition
among Italian airports affects their technical efficiency. Using a parametric stochastic approach,
they find that a negative impact of competition exists on technical efficiency of Italian airports.

Thus, research on this issue still seems to lack maturity.

The paper is organized as follows. Section 2 reviews the literature addressing the evaluation of
airport performance and efficiency. In Section 3 we present the data as well as the input and output
variables used in the analysis. Section 4 describes the methodology applied while Section 5

discusses the results. Section 6 contains some concluding remarks.

2. Literature survey

Airports efficiency is of increasing concern and source of debate for both academics and
practitioners. There have been growing numbers of studies using Data Envelopment Analysis
(DEA) to benchmark airport efficiency (Adler et al. 2012; Arocena et Oliveros, 2012; Barros and
Dieke, 2007, 2008; Curi et al., 2010,2011; Gillen and Lall, 1997, 2001; Fernandes and Pacheco,
2002, 2003; Gitto and Mancuso, 2012; Malighetti et al., 2007; Sarkis, 2000; Suzuki et al., 2010;
Wanke, 2012; Yu, 2010). Still others focus on stochastic frontier models (SFA) to analyze airport
efficiency (Abrate and Erbetta, 2010; Barros, 2008a, 2008b; Martin-Cejas, 2002; Pels et al.,
2001,2003; Oum et al., 2008; Scotti et al., 2012). Other papers compare the DEA model with the
SFA model (Hooper and Hensher, 1997; Pels et al., 2001, 2003).

The Italian case has been investigated in the empirical literature. In particular, Barros and Dieke
(2007,2008) applied a Simar and Wilson (2007) two stage procedure and find that hub, private and
north parameters increase efficiency. Works by Malighetti et al. (2007) and Abrate and Erbetta
(2010) extended the findings by Barros and Dieke and pointed out the existence of low levels of
efficiency among Italian airports. Curi et al. (2010) by using a Simar and Wilson (2007) two-stage

approach show that airports with a majority public holding are on average more efficient and the
4



presence of two hubs is source of inefficiency. A bootstrapped DEA procedure is used by Curi et al.
(2011) to estimate technical efficiency of Italian airports and find that the airport dimension does
not allow for operational efficiency advantages; on the other hand, it allows for financial efficiency
advantages for the case of hubs and disadvantages for the case of the smallest airports. Moreover,
the type(s) of concession agreement(s) might be considered as important source of technical
efficiency differentials. Gitto and Mancuso (2012) find that a significant technological regress has
been experienced and highlight the existence of a productivity gap between airports located in the

North-central part of the country and those located in the South.

In this framework, attention to empirical researches of competition as a factor affecting airport
efficiency has not been sufficiently paid. Pavlyuk (2012) provides a critical review of different
approaches to airport benchmarking, focusing on the relationship between spatial competition and
efficiency of airports: despite the fact of a well-developed theory of spatial competition and signs of

its growing effects in the airport industry, he finds a lack of studies devoted to this issue.

Pavlyuk (2009) includes an index of competition based on overlapping catchment areas into a
stochastic frontier model and finds a positive effect of competition pressure on efficiency for a
sample of European airports. Pavlyuk (2010) extends the results with a multi-tier model of
competition and the estimates provide both positive and negative effects depending on a distance
tier. Adler and Liebert (2010) investigate the influence of competition on airport efficiency using a
two stage DEA model. The level of competition is measured as the number of significant airports
within a catchment area and it is found The find competition is a significant factor for results of

different regulation forms.

To the best of our knowledge, Scotti et al. (2012) is the only study which investigates how the
intensity of competition affects the technical efficiency of Italian airports. They suggest an index of
competition between two airports on the base of a share of population living in the overlapped
region of the airports’ catchment areas. Competition is calculated separately for every destination
point and combined into a general competition index using available seats shares as weights.
Moreover, they use dummies regarding ownership and the degree of dominance of the main airline
in a specific airport proxies for competition. Using a multi-output stochastic frontier analysis in a
parametric framework, the authors find that the intensity of competition has a negative impact on

airports’ efficiency from 2005 to 2008.



Departing from previous studies on the Italian airport system, this paper adds to literature as we use,
for the first time, non parametric conditional efficiency measures (Daraio and Simar, 2005, 2007a,b;

Badin et al. 2012a) to evaluate the impact of competing factors on airports’ performance.

3. Data

The Italian system consists of 45 airports open to commercial aviation® (ENAC, 2011). Rome
Fiumicino (FCO) and Milan Malpensa (MPX) are the most important intercontinental hubs, where
traffic exceeds, on average, 10 millions passengers per year. The remaining airports can be
classified as medium sized airports, providing with further long haul and domestic routes, and

regional airports providing a limited number of international and domestic connections.

Management companies of airports open to commercial aviation hold, in many cases, a total
concession agreement: the company gets all of the airport’s revenues for 40 years and is responsible
for the infrastructure maintenance and development. This is the case of the hub airports, Rome
Fiumicino or Milano Malpensa, and some other medium sized airports like Catania Fantanarossa or
Napoli Capodichino. In some other cases, mainly for medium sized airports, management
companies of airports hold a partial concession agreement, where the State collects revenues from
runways and parking - and is responsible for their maintenance and development - while the airport
management company gets revenues from infrastructures involving passenger and freight terminals.
This is the case of airports such as Brescia Montichiari, Trapani or Treviso. Finally, in some cases,
mainly for regional airports like Cuneo Levaldigi or Lamezia T. Sant’Eufemia, a precaria
concession agreement is hold by the airport companies, who manage only the passenger and freight

terminals, receiving only the revenue that is related to commercial activities inside the terminals.

Data related to passengers traffic show a robust growth for Italian airports in 2010 - comparing to
2009 - driven by good results at Rome Fiumicino and Milan Malpensa, in addition to the excellent
results of several medium sized airports such as Bari (+20.3%), Bologna (+15.3%), Brindisi
(+47.2%), Genoa (+13.3%), Lamezia Terme (+16.4%), Trapani (+57.4%) and Treviso (+21%)
(ICCSALI FactBook, 2011). In many cases, the growth has been driven by low-cost airlines: with
respect to previous years, the growth has been addressed in airports other than those which have
historically supported the development of low-cost carriers in Italy, such as Bergamo Orio al Serio,
Pisa and Rome Ciampino. The analysis of traffic statistics with respect to some socio-economic

indicators (Figure 1) shows that there is a great heterogeneity among Italian airports: passengers

* The whole Italian system consists of 113 airports - 11 exclusively open to military services and 102 to civil services.
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traffic is concentrated in the North-Ovest part and in the Centre, where the most important
intercontinental hubs are located but differentiations arise when looking at the number of

passengers per inhabitant, per GDP or per firm located in the area.

= = Insert Figure 1= =

Preliminary considerations about the level of competition among Italian airports arise analyzing the
percentage of competing Available Seats Kilometers (ASKs) and the share of competing routes
(ICCSALI Factbook, 2011). The former represents the number of ASKs - related to the airport’s total
offer - for which there is an alternative route serving any airport in the destination catchment area,
either in terms of same destination airport or in terms of same destination area, served by an
alternative airport. The latter considers airport routes for which at least one alternative route exists
in the airport’s catchment areas - within 100 km of the departure or arrival airport. This number is
expressed as a fraction of the total number of routes offered between the departure catchment area
and the destination catchment area, including any offers of alternative airports that lie entirely

within these areas.

Figures 2 shows data relating to the biggest 35 Italian airports in 2010: the share of competing
routes exceeds 60% in the case of Roma Fiumicino, Venezia Marco Polo, Bologna Marco Polo,

among others, and 90% in the case of Catania Fontanarossa or Cagliari Elmas.

= = Insert Figure 2 = =

The model for Italian airports is estimated using annual data on 35 airports for 2010, consisting of
16 airports located in the northern part of Italy, 7 in the centre and 12 in the southern part including
islands. Small airports have been excluded due to the lack of economic data. Table 1 shows the
characteristic of the airports included in the sample, with respect to the type of concession and the

total offer in terms of passengers, amount of cargo and movements.

==Insert Tablel ==



Traffic and technical airside informations have been collected from ENAC and balance sheets of
airport management companies. The data have been integrated with some statistics on direct and
indirect competition provided by ICCSAI - International Center for Competitive Studies in the
Aviation Industry.

We consider some physical inputs and outputs according to the current literature: Table 2 presents

inputs and outputs analysed in selected previous studies.

==Insert Table 2 ==

Input variables used in this paper includes: airport area (m?), number of runways, total runway area
(m?), number of passenger terminals, total terminal area (m?), terminal area dedicated to passengers
(m?), terminal area dedicated to concession activities (m?), number of gates and number of check-in
counters. With respect to the outputs, three variables have been collected: number of passengers,

amount of cargo (tons) and the number of aircraft movements.

In addition, we include in the analysis a competition factor built on some conditional variables
calculated as competition indices provided by ICCSAI (ICCSAI Factbook, 2011): the percentage of
European GDP in a 100 km range, the percentage of European GDP accessible in one step, the
percentage of European population accessible in one step, the inverse average number of steps
necessary to reach any European airport, the inverse average number of steps necessary to reach any
European airport worldwide, the number of airports in the catchment area, the percentage of

competing ASKs and the share of routes in competition.

Table 3 summarizes and defines all the variables used in this paper, while Table 4 provides some

descriptive statistics.

==Insert Table 3==
== Insert Table 4 ==

4. Methodology



Whitin the nonparametric literature, Data Envelopment Analysis (DEA) has been widely applied
for efficiency estimation and benchmarking’. In this framework, explaining inefficiency by looking
for external or environmental factors has gained an increasing attention in recent frontier analysis

studies.

The performance of economic producers is often affected by external or environmental factors that
may influence the production process - being responsible for differences in the performances of the
Decision Making Units (DMUSs) - but, unlike the inputs and the outputs, are not under the control of
production units: quality indicators, regulatory constraints, type of environment (competitive versus
monopolistic), type of ownership (private-public or domestic-foreign), environmental factors
(conditions of the environment) and so on. Generally speaking, these factors can be included in the
model as exogenous variables and can help explaining the efficiency differentials, as well as

improving pure policy of the evaluated units.

Generally speaking, the nonparametric literature on this topic has been focused on three main
approaches: the one-stage approach, the two-stage approach (including the semi-parametric

bootstrap-based approach) and the conditional nonparametric approach.

The one-stage approach includes in the model the external factors either as freely disposable inputs
or as undesired freely available outputs. The external variables are involved in defining the

attainable set, but without being active in the optimization for the estimation of efficiency scores.

In the two-stage approach, the nonparametric efficiency estimates obtained in a first stage are
regressed in a second stage on covariates interpreted as environmental variables. Most studies using
this approach employed in the second stage estimation either tobit regression or ordinary least

6
squares’.

> Some recent benchmarking references with respect to different industries include Kao and Hung, 2008, Yu and Lin,
2008 and Erbetta and Rappuoli, 2008. Badin et al. (2012b) offer a state of the art review of the contributions that have
been proposed to include environmental variables in nonparametric and robust - to outliers - frontier models and to
analyze and interpret the conditional efficiency scores, capturing their impact on the attainable set and/or on the
distribution of the inefficiency scores.

® The traditional two-stage approach has some serious inconveniences. First, it relies on a separability condition
between the input-output space and the space of the external factors, assuming that these factors have no influence on
the attainable set, affecting only the probability of being more or less efficient, which may not hold in some situations.
Second, the regression in the second stage relies on strong parametric assumptions (e.g., linear model and truncated
normal error term). Moreover, the DEA estimates are by construction biased estimators of the true efficiency scores and
they are serially correlated. Finally, the error term in the second stage is correlated with the regressors, making standard
approaches to inference invalid. Simar and Wilson (2007) developed a semi-parametric bootstrap-based approach to
overcome these problems and also proposed two bootstrap-based algorithms to obtain valid, accurate inference in this
framework.



In the nonparametric conditional approach, conditional efficiency measures are defined and
estimated nonparametrically. The traditional Debreu Farrell efficiency scores are defined in terms
of a nonstandard conditional survival function, therefore smoothing procedures and the estimation
of a bandwidth parameter are required’; the nonparametric estimators of conditional efficiency
measures are further defined by a plug-in rule, providing conditional FDH estimators as in Daraio
and Simar (2005) or conditional DEA estimators, as in Daraio and Simar (2007b). In what concerns
the asymptotic properties of the nonparametric conditional estimators, Jeong et al. (2010) proved
the asymptotic consistency and derived the limiting sampling distribution of the conditional
efficiency estimators. Recently, Badin et al. (2012a) analyze further the conditional efficiency
scores, showing that the external factors can affect the attainable set of the production process
and/or may impact the distribution of the inefficiency scores. They propose a flexible regression of
the conditional efficiencies on the explaining factors which allows to estimate the residuals that may
be interpreted as pure efficiency. It represents a technical efficiency level purified from the impact
of the external or environmental factors and, therefore, it allows a fare ranking of units even when

facing heterogeneous conditions.

In this paper, we apply DEA and conditional DEA (Daraio and Simar, 2007b), with variable returns
to scale (VRS) in an output oriented framework, to assess the efficiency of Italian airports. After
that, the analysis of conditional efficiency scores is carried out for the first time to the airport

industry to assess the impact of competition on airport performance.

4.1 Marginal and conditional efficiency measures: local and global analysis.

Decisions Makings Units (DMUSs) transform resources (inputs) into products or services (outputs),
but esternal or environmental conditions may affect this process. Let X € RE denote the vector of
inputs, Y € ]R?r the vector of outputs and Z € R" the vector of environmental factors that may

influence the process and the productivity patterns.

The effect of Z on the production may either affect the range of achievable values for the couples
(X,Y), including the shape of the boundaries of the attainable set, or it may only affect the

distribution of the inefficiencies inside a set with boundaries not depending on Z (only the

7 See Badin et al. (2010) for more details on a data-driven method for selecting the optimal bandwidth parameters in
this context.
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probability of being more or less far from the efficient frontier may depend on Z), or it can affect

both. Finally, the environmental factors Z may also be completely independent of (X,Y).

Let consider a probability model that generates the variables (X, Y, Z), where P is the support of the

joint distribution of (X, Y, Z).The conditional distribution of (X,Y), given a particular value of Z, is
described by

H(x,y|z) =Prob X< x,Y = y|Z = z), (1)

or any equivalent variation of it (the joint conditional density function or the joint conditional
cumulative distribution function, etc.). The function H(x, y|z) is simply the probability for a DMU
operating at level (x, y) to be dominated by DMUs facing the same environmental conditions Z, i.e.
there exist DMUs that produce more outputs using less inputs with comparable levels of
environmental variables. Given that (Z = z), the range of possible combinations of inputs x outputs,

WZ is the support of H(x,y|z):
¥Z = {(x,y)| x can produce y|Z = z}. (2)

H(x,y) denotes the unconditional probability of being dominated, defined as:

H(X, :V) = fZ H(x' ylz)fZ(Z)er (3)

having support ¥, that is the marginal (or unconditional) attainable set, i.e. which does not depend

on Z, defined as®:
¥ = {(x,y)] x can produce y} = U, ¥~ 4)

As described in Daraio and Simar (2007a), the two measures H(x,y|z) and H(x,y) allow us to
define conditional and marginal efficiency scores that can be estimated by nonparametric methods.
Accordingly, the comparison of the conditional and unconditional efficiency scores can be used to

investigate the impact of Z on the production process.

The literature on efficiency analysis proposes several ways for measuring the distance of a DMU
operating at the level (xojyo) to the efficient boundary of the attainable set. Radial distances

(Farrell, 1957) are the most popular ones and they can be input or output oriented. In particular, in

this paper, we use the output orientation, that is we consider the maximal radial expansion of the

¥ Remember that the joint support of the variables (X,Y,Z) is denoted by P. It is clear that, by construction, for all z€Z,
P*C . If the separability condition holds, the support of (X,Y) is not dependent of Z, equivalently ¥* = for all z€Z.
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outputs to reach the efficient boundary, given the level of the inputs. From Daraio and Simar
(2005), we know that under the assumption of free disposability of the inputs and of the outputs,
these measures can be characterized by an appropriate probability function H(x,y), as defined

above. We have, for the Farrell output measure of efficiency,
A(x0,y0) = sup{A > 0[Sy x(Ayo|X < x) > 0}, 5)

where  Syx(Ay|X < x¢) = Prob(Y = yo|X < x) = H (xo,yo) /H (xO’O) is the (nonstandard)
conditional survival function of Y, nonstandard because the condition is X < x, and not X = x,. If
the DMU is facing environmental factors Z = z,, then Daraio and Simar (2005) define the

conditional Farrell output measure of efficiency as:
A(x0,0120) = sup{A > 0|(xo Ay,) € ¥} (6)
= sup{/l > 0|Syx,z(AVolX < x0,Z = 2) > 0} (7)

where Sy|x z(Ayo|X < x0,Z = zy) = Prob(Y = yo|X < x0,Z = zp) = H(x0.0l20)/H(x00]z) is
the conditional survival function of Y, here we condition on X < x, and Z = z,. The individual
efficiency scores A(xo’yo) and A(xo,y0|zo) have their usual interpretation: they measure the radial
feasible proportionate increase of output a DMU operating at the level (x,y) should perform to
reach the efficient boundary of ¥ and W# respectively. In case the environmental factor Z has an
effect on this boundary, the unconditional measure A(xo’yo) suffers from a lack of economic
sounding, because, facing the external conditions z, this unit may not be able to reach the frontier of
¥, that may be quite different from the relevant one that is of ¥Z#. So, the conditional measure is

more appropriate to evaluate the effort a DMU must exert to be considered efficient.

In order to provide robust measures of efficiencies - robust to extreme data points or outliers - we
also apply partial frontiers and the resulting partial efficiency scores’: while full frontiers are useful
to investigate the local effect of Z on the shift of the efficient frontier, the partial frontiers are useful
to analyse the impact of Z on the distribution of inefficiencies. In this case, we adopt order-a
quantile frontiers, as defined in Daouia and Simar (2007). For any a € (0,1] the order-a output

efficiency score is defined as:

Aa(x0¥o) = sup{d > 0|Sy;x(AyolX < x0) > 1— al. (8)

° A survey and a detailed analysis on robust partial frontier models including, order-m and order-a frontiers, can be
found in Daraio and Simar (2007a).
12



Similarly, by conditioning on Z = z,, the conditional order-a output efficiency score of (xy, V) is

defined as:
Aa(%0,Y0l20) = sup{A > 0[Sy xz(AyolX < x0,Z = z5) > 1 — a}. )

In this framework, a value of o = 0.5, which corresponds to the median frontier, provides

complementary information on the effect of Z on the distribution of the inefficiencies..

Nonparametric estimators of the conditional and unconditional efficiency scores are easy to obtain.
For a DMU operating at level (x,, y,) the estimation of the output efficiency score, i.e. X(xo,yo), is
obtained, in the (Variable Return to Scale) VRS case, by solving the following linear program:

max A
YA

n
s.t. 7\_')/0 < Z YiVi
i=1

n
Xg 2 Z YiXi
=

l

n
Z%‘Zl

i=1
A>0,7,=>0Vi=1..n (10)

Similarly we obtain the estimation of the output condtional efficiency score, i.e.,

X(xo‘yo |ZO), which can be computed solving the linear program'’:

max A
YA

s.t. AYp < Z YiVi
i|z—h<zy,<z+h
Xo = Z YiX;
i|z—h<z,<z+h
vi=1
i|z—h<zy,<z+h

A>0,h>0,y;,20Vi=1..n (11)

12 Note that this provide a local convex attainable set, local in the sense of condtitional on the external factors.
13



The nonparametric partial frontier efficiency estimates are obtained by plugging the estimators §Y| x
and §y|X,Z, ie. §y|X(y0|X < x,) and gylx'z(yolX < xo,Z = z,), in the expressions (8) and (9)
defining the partial efficiency measures. For further details, the reader is referred to Badin et al.

(2012a) for details on all the formulae and their statistical properties.

The local analysis of the individual ratios may also be of interest: the local effect of Z on the
reachable frontier for a unit (x, y) can be measured independently of the inherent inefficiency of the
unit (x,y). Indeed, Ry (x, y|z) = A(x,y|z)/A(x,y) < 1 is the ratio of the radial distances of (x,y)
to the two frontiers. The inherent level of inefficiency of the unit (x,y) has been cleaned off, in the
following sense:

2eeylz) _ Iylaceylsy _ 077 (12)

Ro(x, = = B
ot y12) = 5 = ey = D

where ||y|| is the modulus (Euclidean norm) of y and || y2 || and || y,? Z” are the projections of (x,y)
on the efficient frontiers (unconditional and conditional, respectively), along the ray y and
orthogonally to X. Clearly || y2 || and || y,? o || are both independent of the inherent inefficiency of the
unit (x,y). Hence, the ratio measures the shift of the frontier in the output direction, due to the

particular value of z, along the ray y and for an input level x, whatever being the modulus of y. In

the same fashion we calculate the ratios corresponding to partial score, e.g.

RO,a’(x’ylz) = /’la(x’ylz)/ﬂ'a(xf Y) <1

Consistent estimators of the ratios are directly obtained by plugging the nonparametric estimators of

the efficiency derived as described earlier, i.e. X(xo,yo) and X(xo,y0|zo). So we have Ry (x,y|2) =

A(x, y|2) /A(x, y). 11

4.2 Second-stage regression and pure efficiency

The aim of this section is to estimate the pure efficiency of DMUs through a novel two stage
approach, which allows to purify A(x,y|Z = z) from the impact of Z. Indeed, ranking firms
according to the conditional measures A(x,y|Z = z) can always be done but it is unfair, because

firms face different external conditions that may be easier (or harder) to handle to reach the frontier.

! The reader is referred to Badin et al. (2012a) for further details.
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To avoid this problem, we analyze the average behavior of A(x, y|z) as a function of z, that is we
want to capture the marginal effect of Z on the efficiency scores analyzing the expected value
E(A(X,Y|Z)|Z = z) as a function of z. Then, we use a flexible regression model defining u(z) =
E(A(X,Y|Z)|Z = z) and the variance 02(z) = V(A(X,Y|Z)|Z = z) such that:

AXY|Z =2) =u(2) + 0(2)e (13)

where E(¢|Z = z) = 0 and V(¢|Z = z) = 1. Whereas u(z) measures the average effect of z on the
efficiency, o(z) provides additional information on the dispersion of the efficiency distribution as a
function of z. Several flexible nonparametric estimators of u(z) and a(z) could be applied; the

reader is referred to Badin et al. (2012a) for more details.

Analyzing the residuals, for a particular given unit (x, y, z), we can define the error term & as:

— A(X;Y|Z)—#(Z) (14)

€ a(2)

It can be viewed as the part of the conditional efficiency score not explained by Z. If € and Z do not
show a strong correlation, this quantity can be interpreted as a pure efficiency measure of the unit
(x,y). If € and Z show some correlation, still the quantity defined in (14) can be used as a proxy for
measuring the pure efficiency, since it is the remaining part of the conditional efficiency after
removing the location and scale effect due to Z. Then, € can be used as a measure of pure
efficiency because it depends only upon the managers’ ability and not upon the external factors (Z).
Indeed, this approach allows us to purify the conditional efficiency scores from the effects of Z. In
this way, we are able to compare and rank heterogeneous firms among them because the main
effects of the environmental conditions have been eliminated. In particular, a large value of &
indicates a unit which has poor performance, even after eliminating the main effect of the

environmental factors. A small value, on the contrary, indicates very good managerial performance

of the firm (x, y, z). Extreme (unexpected) values of € would also warn for potential outliers.

5. Results

DEA and conditional DEA with variable returns to scale (VRS) are applied in an output oriented
framework. The model for Italian airports is estimated using annual data on 35 airports for 2010. As
described in Section 3, Table 4 summarizes and defines all the variables used in this paper while

Table 5 provides some descriptive statistics. We then perform a local analysis of competition on
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technical efficiency of Italian airports and a local linear regression of the conditional efficiencies

scores on the competition factor which allows us to estimate the residuals.

5.1. Factors on inputs, outputs and competition variables

Due the dimensionality of the problem (9 inputs, 3 outputs, and 8 environmental factors) with the
limited sample used here (35 units), we first reduce the dimension in the input X output x
environmental factors space by using the methodology suggested in Daraio and Simar (2007a). In
particular, we divide each input by its mean (to be “unit” free) and replace the 9 scaled inputs by
their best (non-centered) linear combination, defined as IF, i.e. Inputs Factor. By doing so, we
check that: (i) we did not lose much information; and (ii) the resulting univariate input factor is
highly correlated with the 9 original inputs. We follow the same procedure with the 3 outputs and

the 8 environmental factors. The results are:

IF = 0,31x; + 0,49x, + 0,36x3 + 0,51x, + 0,23x5 + 0,23x4 + 0,23x; + 0,26xg + 0,29x9 (15)
OF = 0,6y, + 0,47y, + 0,64y; (16)
CF =0,08z; + 0,12z, + 0,11z3 + 0,07z, + 0,09z5 + 0,07z + 0,62z, + 0,752¢ 17)

where OF and CF stand, respectively, for Outputs Factor and Competition Factor. IF explains
88.7% of total inertia of original data, OF explains 88.9% of total inertia of original data, while CF
explains 98.1% of total inertia of original data. To be consistent with previous notation we use, in

what follows, X, Y and Z instead of IF, OF and CF respectively.

5.2. Local analysis of competition on technical efficiency of Italian airports

We are here in an output oriented framework. As stated in Section 4.1, the full frontier ratios
R, (x;,y;|z;) are useful to investigate the local effect of competition on the shift of the efficient
frontier, whilst the partial frontier ratios, ﬁo,a(xi'yilzi)a with @ = 0,5 (corresponding to the

median)'?, are useful to analyse the impact of competition on the distribution of inefficiencies.

12 We computed also the partial frontier ratios with @ = 0,95 to check if some outliers might mask the impact of Z,
and found that even if there are some extreme points they do not affect the detection of the impact of Z.
16



Figure 3 illustrates a three dimensional plot of the full frontier ratios against inputs and competition,
i.e. X and Z, whilst Figure 4 shows a three dimensional plot of the partial frontier ratios against X

and Z.

= = Insert Figure 3 ==
= = Insert Figure 4 = =

Without being able to rotate the three-dimensional figures, we have an idea of what happens
complementing Figures 3 and 4 with their two marginal views. Figure 5 shows the ratios
R, (x;,y:|z:) as a function of the input (top panel) and the competition factor (bottom panel)
respectively, that is they show the marginal effect of inputs and of competition on the efficient full
frontier. Similarly, Figure 6 shows the ratios ﬁo,a (xi,¥;]2;) as a function of X and Z respectively,
that is they show the marginal effect of the input (top panel) and competition factor (bottom panel)

on the distribution of inefficiency with respect to the median frontier.

= = Insert Figure 5 ==

= = Insert Figure 6 = =

By inspecting the three dimensional plots (see Figures 3 and 4), it can be easily seen that the input
factor does not play any role on the full frontier levels nor on the partial frontier levels. This is also
confirmed looking at the marginal effects (see top panels of Figures 5 and 6). On the contrary, the
competition factor Z has a positive impact on the full frontier ratios, i.e. there is an increasing
pattern of the full frontier ratios with increasing competition factor CF (see Figure 5, bottom panel).
The impact is much less severe — but still positive - on the partial frontier ratios and so on the

distribution of inefficiency scores (see Figure 6, bottom panel).

5.3. Second stage analysis on the conditional efficiency scores

According to the procedure described in Section 4.2, we regress the conditional efficiency scores

against the Competition Factor, CF. We only remind here that the nonparametric model is
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AX,Y|Z = z) = u(z) + 0(2)e, where u(z) characterizes the average behavior of the conditional
efficiency as a function of z, and ¢(z) allows some heteroskedasticity. The residual ¢ is supposed
to be not correlated with Z and so can be interpreted as a whitened version of the conditional

efficiency where the influence of Z has been eliminated from A(X,Y|Z = z).

Figure 7 illustrates the results for the full-conditional efficiencies estimates as a function of Z."> We
find that there is a local variable effect of competition (Z) on the average conditional scores. In
particular, it appears that competition has firstly a positive effect and after that a negative effect on

A(X,Y|Z = z), showing an inverse U-shape effect on the technical efficiency of Italian airports.

== Insert Figure 7 ==

The result is emphasized in Figure 8, that presents a zoom of Figure 7.

= = Insert Figure 8 = =

Finally, Figure 9 shows a kernel nonparametric density distribution of estimated pure efficiencies of
Italian airports, &;. These €; represent pure efficiencies and have been computed eliminating the
impact of the competing factor Z from the conditional efficiency score. Thus, it allows us to
compare the performance of airports, facing different competing environments, on the base of their
pure attitude without the influence of the competition environment faced. Interestingly, we observe
a bi-modal distribution of the pure efficiency of Italian airports and a special attention should be

devoted to investigate on its generating process'*.

= = Insert Figure 9 = =

'* The analysis has been done in logs but we obtained a similar shape for the picture in original units.

™ This is beyond the scope of this work.
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It has to be noted that the impact of competition on the conditional efficiency scores has been nicely
whitened: the Pearson correlation between z; and £; is -0.04 and the Spearman rank correlation is -
0.05. Hence, the ranking of Italian airports according to &;, reported in Table 5, is cleaned from the

effect of competition.

==|Insert Table5==

From a managerial point of view, the results reported in Table 5 are of great interest. CondEff is
A(X,Y|Z = z), while PureEff is &. When the conditional efficiency score, CondEff, is one the
airport is efficient given its level of competition; if it is higher than one, the airport could increase
its outputs production given the inputs used and the competition environment faced. On the other
hand, as the pure efficiency score, PureEff, increases, the airport decreases its performance, even
after eliminating the main effects of competition. This depends only upon the managers’ ability,
since it is the remaining part of the conditional efficiency after removing the location and scale

impact of competition.

Table 6 shows some descriptive statistics on CondEff and PureEff, according to three characteristics

of interest that are the effect of localization, type of concession agreement and size.

Strikingly, it appears that the airports located in the South present, on average, the best results in
terms of efficiency when taking into account their level of competition. On the contrary, those
located in the Centre present the worst results. This means that southern airports have an higher
level of technical efficiency since, once purified from the effect of competition, they are able to
combine their inputs (see Table 3) to obtain a higher level of outputs in terms of passengers, cargo
and movements. A suggested interpretation could be that less favorable infrastructure and socio-

economic conditions stimulate airport management to try to maximize their technical efficiency.

== |nsert Table 6 ==

Moreover, big airports (>5 millions of passengers), such as Catania Fontanarossa, Bergamo Orio al

Serio, Roma Fiumicino or Milano Linate, seem to be more efficient given their level of competition.
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On the contrary, small airports (<1 millions of passengers) tend to show the worst performance.
However, the relation between size and efficiency, on average, is not monotone. In facts, small-
medium airports (1< millions of passengers <3) appear to be more efficient that medium-high
airports (3< millions of passengers <5) once purified by the level of competition. A suggested
interpretation could be that small-medium facilities, such as Olbia Costa Smeralda, Alghero Fertilia
or Trapani Birgi, have a touristic vocation so that a deeper specialization might imply higher

technical efficiency.

A total concession agreement also seems to produce a significant increase in airport productivity.
This may be due to the fact that in the case of total concession agreement the service provider -
which is often a privatized company, as ADR in the case of Rome Fiumicino and Roma Ciampino,
or SEA in the case of Milano Malpensa and Milano Linate - is responsible for managing the entire
airport system. As a consequence, in the vast majority of cases this has implied an increase in
investments and a more efficient utilization of the inputs, in order to fully exploit the benefit of
liberalization. Interestingly, Catania Fontanarossa, which shows the highest ranking in term of pure

efficiency, turned out to a total concession agreement in 2007.

6. Concluding remarks

This paper provides new empirical evidence on the efficiency of Italian airports. We apply for the
first time to the airport industry the recently developed conditional nonparametric approach to
analyze the relationship between competition and technical efficiency. In addition, the methodology
adopted allows us to obtain a proxy for measuring the managerial efficiency of airports. Indeed, the
measure of pure efficiency depends only upon the managers’ ability and not upon the competition
faced, since we are able to whiten the conditional efficiency scores. In this way, it is possible to
compare airports between them and to rank those facing different environmental conditions,
because the main effects of these factors have been eliminated. This is certainly one of the most

important contributions of the paper with respect to previous literature.

In particular, we disentangle the impact of competition on the efficient frontier and on the
distribution of inefficiency scores. We find that competition affects mostly the efficient frontier,
whilst airports that are lagging behind are less affected by it. From the two-stage analysis, we
observe that on average the impact of competition on the technical efficiency is firstly positive and,
after a certain threshold, it becomes negative, confirming that competition has an inverse U-shape

impact on technical efficiency. Moreover, when computing the pure efficiency, we find that the
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distribution of Italian airports has a bi-modal shape, pointing out on two groups of differently

managed airports.

Our findings show that airports located in the South present, on average, the best results in terms of
efficiency when taking into account their level of competition. On the contrary, those located in the
Centre present the worst results. A suggested interpretation could be that less favorable
infrastructure and socio-economic conditions stimulate airport management to further improve their
technical efficiency. Moreover, total concession agreements seem to produce a significant increase
in airport productivity. This may be due to the fact that the airport management company is often
privatized and, as a consequence, this has implied an increase in investments and a more efficient
utilization of their resources. Lastly, big airports seem to be more efficient given their level of
competition. On the contrary, small airports tend to show the worst performance. However, the
relation between size and efficiency, on average, is not monotone. A suggested interpretation could
be that small-medium facilities have a touristic vocation so that a deeper specialization might imply
higher technical efficiency. This consideration leads us to put forward a conjecture: the effect of
size on technical efficiency could be mediated by airport specialization. However, a deeper

investigation of this issue is out of the scope of this paper and is left for further developments.

Finally, airports located in the same metropolitan area or managed by the same company show
some remarkable evidence. ADR owned Rome Ciampino appears to be more efficient, given the
level of competition faced, than Rome Fiumicino, managed by the same company. Similarly,
Bergamo Orio al Serio is more efficient than Milano Linate. This can be explained looking at many
regional airports which have increased their traffic by attracting new airlines, and especially LCCs
obtaining a higher utilization of their assets. In the cited examples, data on LCCs dominance, in
terms of percentage of ASKs provided, reach 100% in the case of Rome Ciampino ( 21,7% in the
case of Rome Fiumicino) and 95,4% in the case of Bergamo Orio al Serio ( 5,1% in the case of
Milano Linate) (ICCSAI Factbook, 2011). This may suggest the opportunity of inducing small
airport specialization within the same territorial system. Consequently, it would be interesting to
investigate the impact of low cost carriers’ dominance and size on technical efficiency of airports

and further developments of the work might go along this direction.
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List of Figures

Figure 1

Disaggregation by geographical area of passenger traffic, population, GDP and passengers

per firm in 2010.

35

30 A
25 -
20 -

15 - B Passengers traffic

10 - Population

m GDP
5 .
0 .
04@‘;} g)‘b‘ 0&0 @é&@ Q.OQ‘Q Q&
& R J ¢ RS

& <° 0(3\

~ ~
North-Ovest North-East  North-Centre Centre South Islands

Passengers
Traffic? 29.8 9.6 8.9 30.2 8.3 13.2
Population? 25.8 12.5 14.8 14.8 20.9 11.2
GDP? 30.9 14.5 16.8 15.9 13.5 7.7
Pax/Firm® 26.9 18.2 13.7 59.6 10.9 35.1

Source: Our elaborations on data provided by ENAC - Ente Nazionale Aviazione Civile (National Civil Aviation

Authority).

* Percentage per geographic area

® Index number Italy=100

28



Figure 2
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Figure 2. Percentage of competing ASKs and routes. Source: our elaboration on data from ICCSAI -

International Center for Competitive Studies in the aviation industry.
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Figure 3
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Figure 3. Full frontier ratios against Input Factor (X) and Competition Factor (Z)
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Figure 5

Marginal Effect of X on the Efficient (full) frontier
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Figure 5. Marginal effect of X and Competition Factor (Z) on the full efficient frontier.

Figure 6
Marginal Effect of X on the distribution of inefficiency
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Figure 6. Marginal effect of X and Competition Factor (Z) on the distribution of inefficiency (e = 0.5, i.e.

median of the distribution of efficiencies)
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Figure 7

2nd-stage regression
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Figure 7. Effect of competition index (Z) on conditional efficiencies.
Figure 8
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Figure 8. Effect of Competition Index (Z) on conditional efficiencies: zoom to highlight the inverse U-shape
effect of Z.
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Figure 9

Kernel density of estimated managerial efficiencies
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Figure 9. Nonparametric density of estimated pure efficiencies of Italian airports (year 2010).
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List of Tables
Table 1

Characteristics of Italian airports included in the sample, with respect to traffic, amount of
cargo and number of movements

Total Passengers Amount of cargo  Number of movements
(tons)

Total Concession
4259197.56 34066.61 50775.22

Partial Concession
1665773.25 2918.38 19515.38

Precaria Concession
370958.44 702.67 7256.44

Source: Our elaborations on data provided by ICCSAI — International Center for Competitive Studies in the
Aviation Industry.
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Table 2

Inputs and outputs used in previous literature

Selected previous studies

Input

Output

Abrate and Erbetta (2010)

Labour costs
Soft cost
Runway lenght
Apron size

Total airport area

Number of passengers
Handling revenues
Commercial revenues

Barros and Dieke (2007)

Labour costs

Operational costs excluding labour
costs
Capital invested

Number of planes
Number of passengers

Commercial sales
Amount of cargo
Aeronautical sales

Handling receipts

Barros and Dieke (2008)

Labour costs

Operational costs excluding labour
costs
Capital invested

Number of planes
Number of passengers

Commercial sales
Amount of cargo
Aeronautical sales

Handling receipts

Curi et al. (2010)

Labour costs

Operational costs excluding labour
costs
Capital invested

Number of planes
Number of passengers

Commercial sales
Amount of cargo
Aeronautical sales

Handling receipts

Curi et al. (2011)

Employees
Apron size
Number of runway

Number of movements
Number of passengers
Amount of cargo

Gitto and Mancuso (2012)

Number of movements
Number of passengers
Amount of cargo
Aeronautical revenues
Non-aeronautical revenues

Labor costs
Soft costs
Capital invested

Scotti et al. (2012)

Runway capacity

Number of aircraft parking positions
Terminal area

Number of check-in desks

Number of baggage claims

Number of employees

Yearly numbers of aircraft movements

Passengers movements
Amount of cargo

Wanke (2012)

Airport area

Apron area

Number of runways

Total runway length

Number of aircraft parking spaces

35

Number of landings and take-offs
Number of passengers
Cargo throughput



Terminal Area
Number of parking places
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Table 3

List of inputs, outputs and competition variables.

Variables Code  Definition

Inputs

Airport area (m?) SED  Total airport surface
Number of runways dedicated to the landing and taking-off of

Number of runways NPI planes

Total runways area (m?) API Total runways surface

Number of passenger terminals NTP  Number of terminals excluding those dedicated to cargo
handling

Total terminal area (m?) ATE  Total terminal surface

Terminal area for passengers (m®) APA  Share of terminal area dedicated to passengers movements

Terminal area for concessions (m”) ACO  Share of terminal area dedicated to concession activities

Number of gates NGA  Number of gates in all passengers terminals

Number of check — in NCI Number of check-in counter desks in all passengers temrinals

Outputs

Number of passengers APM  Number of passengers arriving or departing and passengers
stopping temporarily

Amount of cargo (tons) CAR  Amount of cargo in tons

Number of movements ATM  Number of plans that lands and takes-off from the airport

Competition variables

% of EUGDP ina 100 kmrange = PKM  This indicator measures the GDP generated in all European
administrative areas defined at the NUT3 level (Nomenclature of
Territorial Units for Statistics: Local Areas) whose centers lie
within 100 km of the airport, as a share of total European GDP.

% of EU GDP accessible in one PI1 The indicator measures the total GDP of NUT3 administrative

step areas whose centers lie within 100 km of any destination airport
reachable by a non-stop route departing from the airport.

% of EU population accessiblein ~ POP  This indicator measures the total European resident population

one step of NUT3 administrative areas whose centers lie within 100 km
of any destination airport reachable by a non-stop route
departing from the airport.

1/ Average number of steps ISE For a given airport, this index expresses the inverse of the

necessary to reach any European average number of flights necessary to reach any other European

airport airport (considered separately even when serving the same area).

1/ Average number of steps ISM For a given airport, this index expresses the average number of

necessary to reach any airport flights necessary to reach any other airport worldwide

worldwide (considered separately even when serving the same area).

Airports in the catchment area ABU  This is defined as the number of airports within 100 km as the
crow flies from the airport in question

% of ASK in competition ASK  Number of ASK in an airport’s total offer for which there is an
alternative route serving any airport in the destination catchment
area (either in terms of same destination airport or in terms of
same destination area, served by an alternative airport)

Share of routes in competition QRC  This indicator considers airport routes for which at least one

alternative route exists in related catchment areas (within 100 km
of the departure or arrival airport). This number is expressed as a
fraction of the total number of routes offered between the
departure catchment area and the destination catchment area,
including any offers of alternative airports that lie entirely within
these areas.
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Table 4

Descriptive statistics on inputs, outputs and competition variables

Variables  Range Minimum  Maximum Mean Std. Deviation

Inputs

SED 15,736,00 164,000 15,900,000 3,101,828.57 3,012,989.42
NPI 3 1 4 1.37 0.65
API 701,400 50,100 751,500 162,390.66 126,647.13
NTP 3 1 4 1.11 0.53
ATE 317,400 800 318,200 40,269.71 71,554.39
APA 152,216 520 152,736 18,238.31 31,481.25
ACO 47,592 138 47,730 5,369.77 9,619.75
NGA 89 2 91 14.77 19.17
NCI 428 2 430 44.29 82.58
Outputs

APM 36,275,264 62,259 36,337,523 3,899,824.14 6,725,579.64
CAR 432,674 0 432,674 26,238.69 77,968.00
ATM 326,362 2,907 329,269 44,670.43 62,283.49
Conditional variables

PKM 4,3 ,2 4.5 1.75 1.29
PI1 88.30 1.80 90.10 44.84 23.79
POP 90.70 1.70 92.40 41.69 23.89
ABU 4 0 4 1.49 1.29
ASK 100.0 0.00 100.00 50.78 34.19
QRC 99.60 0.00 99.60 34.37 30.55
ISE 0.17 0.34 0.51 0.41 0.04
ISM 0.13 0.25 0.38 0.30 0.02
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Table 5

Conditional efficiency scores (CondEff) and Pure efficiency (PureEff) of Italian airports (year
2010).

DMU NAME PureEff CondEff
OLB Olbia Costa Smeralda -0.806 1.000
CTA Catania Fontanarossa -0.806 1.000
LIN  Milano Linate -0.805 1.000
BGY Bergamo Orio al Serio -0.805 1.000
FLR Firenze Peretola -0.803 1.000
TSF  Treviso -0.798 1.000
CIA Roma Ciampino -0.796 1.000
VBS Brescia Montichiari -0.790 1.000
GOA Genova G. Colombo -0.790 1.000
PSR  Pescara Liberi -0.789 1.000
BRI  Bari Palese -0.789 1.000
AOI  Ancona Falconara -0.789 1.000
PEG Perugia Sant'Egidio -0.788 1.000
BLQ Bologna G. Marconi -0.778 1.000
BZO Bolzano -0.761 1.000
NAP Napoli Capodichino -0.732 1.034
MXP Milano Malpensa -0.725 1.000
VCE Venezia Marco Polo -0.723 1.000
CUF Cuneo Levaldigi -0.698 1.000
FCO Roma Fiumicino -0.580 1.000
VRN Verona -0.104 1.362
CAG Cagliari Elmas 0.004 1.465
AHO Alghero Fertilia 0.658 2.022
SUF Lamezia T. Sant'Eufemia 0.796 2.145
TRS  Trieste Ronchi dei Leg. 0.821 2.167
TPS  Trapani Birgi 0.887 2.259
BDS Brindisi Casale 0.993 2.330
PMO Palermo Punta Raisi 1.078 2.299
REG Reggio Cal. Tito Menniti 1.140 2.348
PSA Pisa Galilei 1.398 2.525
TRN Torino 1.488 2.788
FRL  Forli Luigi Ridolfi 1.891 3.679
RMI Rimini Miramare 2.181 4.245
CRV Crotone N.A* N.A.
PMF Parma N.A ** N.A.

*only two points to estimate the conditional distribution function
**only one point to estimate the conditional distribution function
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Table 6

Comparison with respect to localization, type of concession agreement and size of conditional
efficiency scores (CondEff) and pure efficiency (PureEff) of Italian airports (year 2010,
average value).

Effect PureEff CondEff
Effect of localization
South -0.366 1.283
North -0.093 1.616
Centre 0.286 1.764
Effect of concession agreement
Total -0.296 1.345
Partial Precaria 0.055 1.597
Partial 0.395 2.098
Effect of size
>5 millions -0.744 1.004
1<millions<3 0.017 1.594
3<millions<5 0.132 1.608
< 1 million 0.264 1.930
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