
ISSN 2281-4299 

Privacy protection and AI-based 
pharmaceutical innovation: 
Friends or foes?

Chiara Conti
Anna D’Annunzio
Pierfrancesco Reverberi

Technical Report n. 01, 2025



1 

Privacy protection and AI-based pharmaceutical innovation: Friends or foes? 

Chiara Conti,a Anna D’Annunzio,b Pierfrancesco Reverberia,c

Abstract 

We study private incentives to invest in a targeted treatment for an eligible patient group based on collected 

health data, and compare them with the social optimum. Patients must be compensated for sharing personal 

data, because they incur an idiosyncratic privacy cost and can partially free ride on data-driven health 

innovation. We find that, when (for a given compensation) data collection costs are higher (lower) than 

aggregate privacy costs, the firm underinvests (may overinvest) in the new treatment. Thus, in equilibrium, 

underinvestment arises with uniform compensation to patients, whereas overinvestment may arise with 

personalized compensations. We also find that privacy protection measures can align investment incentives 

with social goals. Then, we consider an alternative scenario where a public agency may provide the firm 

respectively with: (i) free access to all patients’ health data; (ii) access to health data conditional on a lump-

sum payment; (iii) free access to a selected amount of health data. Centralized governance of health data 

removes externalities in personal data sharing. We generally find that this can foster investment in the new 

treatment and improve social welfare. 
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1. Introduction

The potential benefits of artificial intelligence (AI) techniques in the field of healthcare are widely recognized 

as extremely important.1 Indeed, AI models and algorithms support faster drug innovation as well as the design 

of targeted treatments based on patients’ genetic, environmental, and lifestyle features (also called precision 

medicine). By customizing therapies to the unique characteristics of each patient, targeted treatments may 

minimize adverse effects and enhance survival rates in critical health conditions, such as cancer, compared to 

conventional treatments that rely on a standardized approach designed for the “average patient” (World Health 

Organization, 2021). 

 The efficacy of AI systems for pharmaceutical R&D strongly hinges on the availability of a vast amount of 

medical data. Nonetheless, strict rules often govern the collection and use of patients’ health data to develop 

innovative treatments. In Europe, the General Data Protection Regulation (GDPR) has provided individuals 

with control over personal data. The GDPR imposes severe requirements on the handling of health data due to 

its classification as “special category data”. These requirements are intended to protect individual privacy, 

avoid risk of discrimination, ensure trust in healthcare systems, and prevent potential misuses of sensitive data. 

 At the same time, the European Commission (EC) has deemed that lighter requirements to gather and 

employ health data can improve pharmaceutical R&D, which may be hindered if it is too costly to obtain 

consent from each patient to use personal data for medical research. Hence, to encourage health innovation, 

the EC has recently proposed to create a supra-national health data governance system, namely, the European 

Health Data Space (EHDS), where patients’ data can be accessed after permission of a public agency (EC, 

2022). 

In this paper, we study the interplay between data-driven pharmaceutical innovation and privacy regulation. 

We address the following questions. What is the impact of privacy regulation on medical innovation? More 

precisely, does a consent-based regime for patients’ health data collection and use work against the 

development of targeted treatments? Does enhanced privacy protection ultimately benefit patients and society 

1 For instance, roughly 800,000 Americans each year have been estimated to suffer from poor medical decision making. 

AI systems are expected to enhance diagnostic accuracy and disease tracking, improve prediction of patients’ outcomes 

and suggest more effective treatments (see The Economist, The AI doctor will see you…eventually, March 27, 2024, 

https://www.economist.com/leaders/2024/03/27/the-ai-doctor-will-see-youeventually, and MIT Technology Review, 

2018. The Precision Medicine Issue, https://www.technologyreview.com/magazines/the-precision-medicine-issue/). 
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as a whole (when taking into account the effects on incentives to invest in targeted treatments)? Which forms 

of centralized government of patients’ health data, if any, can foster investment in new treatments and improve 

social welfare? 

 We build a theoretical model to analyze incentives of a pharmaceutical firm to develop a targeted treatment 

for an eligible patient group, rather than offer a standard treatment for all patients.2 The new treatment may be 

achieved by investing in a stochastic R&D process whose likelihood of success rises with the total amount of 

health data collected by the firm. Because patients are privacy sensitive, the firm must compensate each of 

them to obtain consent to collect personal data for medical research. 

 We assume that patients in the eligible group may benefit from the targeted treatment (if achieved) even if 

they do not share health data. This creates a free-riding issue due to the public good nature of the new treatment. 

Indeed, eligible patients wish to receive the treatment without incurring privacy costs for sharing data. We also 

assume that patients are more likely to receive the new treatment when they share data than when they refuse 

to share. The reason is that genetic profiles are identified at the time when research is performed for patients 

sharing data, whereas only at a later time for patients not sharing data, possibly through biomarker tests with 

limited precision or accessibility.  

 It is worth noting that the probability to identify eligible patients who do not share data creates a trade-off 

in developing the new treatment. On the one hand, when this probability is low patients have an incentive to 

share data even for a limited compensation. On the other hand, for a given amount of collected data, a lower 

probability to identify eligible patients among those not sharing data reduces the market size for the targeted 

treatment, thereby negatively affecting revenues from the treatment.  

 We assume that drug prices are negotiated with the government, which fully reimburses patients.3 We 

compare equilibrium incentives to invest in the targeted treatment with the social optimum, depending on four 

main factors: i) incremental health benefit of the targeted treatment; ii) eligible patient group size; iii) privacy 

costs for patients; iv) degree of free riding in sharing health data. These factors, in turn, affect the value of 

 
2 Gonzalez et al. (2016) define (radical) “horizontal” drug innovations as advances benefiting a given patient group 

because of lower side effects. They provide several examples of such innovations in the market for statins. 

3 This assumption fits oncological, genetic, and degenerative diseases in national health systems of many EU countries. 
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patients’ compensation for data sharing, and thus the total cost of data collection for the firm, as well as the 

aggregate privacy costs for patients who share health data.  

 In the baseline model, we assume that the firm knows the distribution of privacy costs across patients but 

does not know the idiosyncratic privacy cost of each patient. Thus, she offers a uniform compensation to induce 

patients to share health data. We find that the firm underinvests in the targeted treatment compared to the social 

optimum. More specifically, either the firm does not invest in data collection, thus in the new treatment, when 

it would improve welfare, or she collects a smaller amount of health data than socially optimal, thereby 

reducing the likelihood to obtain the new treatment. 

 We argue that the rationale for this result is that, for a given compensation to patients, total costs of health 

data collection are higher than aggregate privacy costs. It follows that, ceteris paribus, lower data collection 

costs may align private and social incentives to invest in the new treatment. An intuitive way to achieve this 

goal is by adopting privacy protection measures that reduce patients’ perceived costs of sharing health data.  

 We study whether and how this result depends on the information available to the firm. For this purpose, 

we consider the opposite case to the baseline model where the firm knows the privacy cost of each patient 

(e.g., because it can be inferred from individuals’ observable attributes such as general health conditions or 

socio-economic status). In such a case, the firm can offer personalized compensations to patients thereby 

saving on data collection costs, which (for a given compensation to the marginal patient sharing health data) 

become smaller than aggregate privacy costs. We thus find that, compared to the social optimum, the firm may 

overinvest in the targeted treatment if she has strong bargaining power in price negotiation with the 

government. The rationale is that the firm can reap most of the benefits from developing the targeted treatment. 

 Then, we consider an alternative scenario where a central (public) agency controls patients’ health data and 

the use of such data for R&D purposes, while patients are not compensated for sharing data. Centralized 

governance of health data removes externalities in personal data sharing, which determine underinvestment 

with uniform compensation. In this framework, we investigate the effects of several policy measures meant to 

align private and social incentives to invest in the new treatment. 

 First, we assume that the central agency provides the firm with free access to patients’ health data. We find 

that this policy may yield overinvestment in the targeted treatment when the firm’s bargaining power is high 

enough. Indeed, the firm finds it profitable to invest using all patients’ data whereas, from a welfare 
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perspective, it would be optimal to invest using less data, or not to invest at all. Intuitively, overinvestment 

more likely occurs when privacy costs are high. We also find that social welfare improves with free access to 

all patients’ data relative to the baseline model when the total incremental health benefit of the targeted 

treatment is sufficiently high. In addition, free access to health data is more likely to improve welfare when 

patients’ privacy costs are low. 

 Second, we assume that the firm is required to make a lump-sum payment to the central agency to gain 

access to all patients’ health data. Compared to the case where the firm has free access to health data, this 

policy reduces overinvestment in the targeted treatment. Moreover, it makes more likely that social welfare is 

improved relative to the baseline model.  

 Third, we consider a policy granting free access to an amount of health data selected by the agency. We 

show that this policy achieves the first-best outcome when the firm has enough bargaining power, or when the 

total incremental health benefit of the new treatment is sufficiently high. If such benefit takes intermediate 

values, then the agency decides to grant free access to a larger amount of health data than socially optimal to 

induce the firm to invest in the targeted treatment. As a result, social welfare improves relative to the baseline 

model. 

 This paper is organized as follows. Section 2 discusses the literature. Section 3 presents the model. Section 

4 derives the equilibrium. Section 5 analyzes welfare, while Section 6 compares private and social incentives 

to invest in targeted treatments. Section 7 considers the case with personalized compensations. Section 8 

discusses policy measures, and Section 9 concludes. 

 

2. Literature review 

Our paper connects two related strands of literature. The first one considers the interaction between different 

forms of drug price regulation and investment incentives in pharmaceutical R&D (Bardey et al., 2010; 

Gonzalez et al., 2016; Brekke et al., 2023). Specifically, this literature investigates how regulation affects the 

incentives of innovative firms to conduct R&D activities, the intensity of R&D and the types of innovations 

that are brought to the market. 

 The second strand studies the relationship between privacy regulation and product innovation (Conti and 

Reverberi, 2021; Lefouili et al., 2024). It shows that the effects of a consent-based privacy regime on the 
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quality of products and on consumer surplus depend on the strength of the complementarity between personal 

data sharing and product quality. 

 Rhodes and Zhou (2024) introduce a general framework of personalization and privacy choices and apply 

it to (among others) personalized product design. They focus on negative externalities imposed by consumers 

who share personal data on those who do not share. Indeed, they find that firms degrade their product offering 

to non-sharing consumers to extract more surplus from sharing ones through personalized products sold at 

higher prices. Overall, too many consumers share data. 

 Our model includes distinctive features of healthcare markets, such as price negotiation between the firm 

and the government, and considers patients’ compensation for sharing health data. Hence, in contrast to Rhodes 

and Zhou (2024), we find that too much data sharing (and thus overinvestment in the new treatment) may 

occur even with positive externalities across individuals. 

 A very recent paper that analyzes personal data sharing issues in healthcare is Canta et al. (2025). They 

consider a two-sided platform that offers health services to patients and may collect their data to share it with 

innovators for a price. Specifically, they assess the effects of different privacy policies on the incentives to sell 

data and invest. 

 Despite the widespread interest in precision medicine (see, e.g., Stern et al., 2017), the theoretical literature 

on this topic is limited. Antoñanzas et al. (2015) study the incentives of health authorities to use predictive 

biomarkers to inform treatment choices. Brekke et al. (2024) examine how biomarker tests affect both 

competition between existing drugs and the design of health plans. Mougeot and Naegelen (2022) assess the 

impact of price regulation on the viability of precision medicine. Nonetheless, all these papers ignore privacy 

issues related to personal data sharing, which are key to our analysis. On an empirical ground, Miller and 

Tucker (2018) find that patients’ control over data redisclosure, but not an informed consent policy, boosts the 

spread of genetic testing. 

 The paper closest to ours is Conti et al. (2024), which investigates private investment in data-driven drug 

innovation in the limit case of the highest degree of free riding (where eligible patients receive full benefits of 

the targeted treatment even if they do not share personal data). In this paper, we generalize the baseline model 

by parameterizing the degree of free riding. Furthermore, we introduce the case with personalized (instead of 



7 

uniform) compensations. Finally, we explore the rationale and effects of different forms of centralized 

governance of health data.  

 

3. The model 

We consider a therapeutic market where a pharmaceutical firm offers a “one-size-fits-all” treatment to patients. 

The firm can invest in R&D to develop a targeted treatment with a higher health benefit for a group of patients. 

For this purpose, the R&D process requires as input patients’ health data. Such data are not freely available to 

the firm because privacy regulation protects patients by providing them with control over personal data. Thus, 

the firm may have to compensate privacy-sensitive patients to obtain consent to collect personal health data 

for research purposes. 

 We develop a game-theoretic model to study the interaction among patients, the pharmaceutical firm, and 

the government. 

Patients 

There is a unit mass of heterogeneous patients in the therapeutic market. Patients differ across two orthogonal 

dimensions: genetic features and privacy attitudes.  

 As to genetic features, we distinguish two groups of patients. The first is a homogeneous group which 

includes patients who are eligible for the targeted treatment. We assume that the size of this group is 𝛼, with 

0 < 𝛼 < 1. Then, the complementary group has size (1 − 𝛼) and includes the rest of (possibly heterogeneous) 

patients in the therapeutic market who are not eligible for the targeted treatment. We assume that the size 𝛼 of 

the eligible group is common knowledge.4 Thus, patients know the probability of belonging to this group as 

they may be informed by the pharmaceutical firm or the physician. However, individual patients do not know 

ex ante (i.e., before the firm develops the targeted treatment) whether they are part of the eligible group. 

 As to privacy attitudes, there is a continuum of patients’ types with idiosyncratic privacy costs. Each privacy 

type is identified by a privacy cost 𝛽 > 0, which reflects a taste for privacy. This is likely to be correlated with 

 
4 According to data-driven pharmaceutical R&D, the size of the eligible group of patients (to be targeted with a specific 

treatment) can be estimated using past empirical observations, such as responses to standard therapies, and investigating 

networks of available scientific and patients’ data by means of AI techniques. 
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individual characteristics, health conditions, and socio-economic status. We assume that privacy types are 

uniformly distributed over the interval [0, 𝛽̅]. Patients are aware of their privacy types. 

 Each patient has an average health benefit 𝑞0 > 0 from the standard treatment. If the firm invests in R&D 

and the investment is successful, the targeted treatment can provide eligible patients with a health benefit 𝑞𝐻, 

with 𝑞𝐻 > 𝑞0 (e.g., due to lower side effects or higher probability of recovery). We assume that, if a patient 

decides to share health data, then the probability of receiving the targeted treatment is 𝛼 (i.e., the eligible group 

size). Instead, if the patient does not share health data, then she has a lower probability to receive the targeted 

treatment, which is measured as 𝜀𝛼, with 0 < 𝜀 ≤ 1. 

 Parameter 𝜀 can be related, for instance, to the precision of the biomarker test that is developed jointly with 

the targeted treatment to identify eligible patients among those who are not sharing health data. Alternatively, 

it can be interpreted as a discount factor, because eligible patients who do not share data might be able to 

receive the targeted treatment later than eligible patients who share data. 

 Given perceived privacy costs, the firm offers patients a compensation 𝛿 for sharing health data. This may 

occur through monetary payments or health benefits from participation in medical trials. Thus, the utility for a 

patient with privacy type 𝛽 depends on two components: the health benefit for the received treatment (i.e., the 

first term in squared brackets in equation (1) below) and, conditional on data sharing, the privacy surplus, that 

is the difference between the compensation 𝛿 for sharing data and the privacy cost (i.e., the second term in 

squared brackets in (1), which is equal to zero if the patient does not share data). 

 Let 𝜙 be the probability that investment in the targeted treatment is successful. Thus, the expected utility 

for a patient with privacy type 𝛽 is:  

𝐸(𝑈( 𝛿, 𝛽)) = {
[𝜙(𝛼𝑞𝐻 + (1 − 𝛼)𝑞0) + (1 − 𝜙)𝑞0] + [𝛿 − 𝛽] 𝑖𝑓 𝛽 𝑠ℎ𝑎𝑟𝑒𝑠 𝑑𝑎𝑡𝑎

[𝜙(𝛼𝜀𝑞𝐻 + (1 − 𝛼𝜀)𝑞0) + (1 − 𝜙)𝑞0] 𝑖𝑓 𝛽 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠ℎ𝑎𝑟𝑒
      (1) 

Monopolist 

A monopolist offers a “one-size-fits-all” treatment with an average health benefit of 𝑞0 to all patients in the 

therapeutic market. For simplicity, we assume production costs are zero. The firm may invest in project 𝐻, 

which may yield a targeted treatment to the eligible patient group of size 𝛼. For this purpose, the firm needs 

to collect patients’ health data and combine these data with other medical and non-medical information to 
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identify the specific genetic features of the group (for instance, to find out genetic mutations responsible for 

heterogeneity in responses to standard therapies).5 

 We assume that project 𝐻 is stochastic, and the probability of success 𝜙(𝑑): [0,1] → [0,1] increases with 

the amount 𝑑 of patients’ health data (i.e., 𝜙′(𝑑) > 0, with 𝜙(0) = 0 and 𝜙(1) = 1). For simplicity, we 

assume that 𝜙(𝑑) = 𝑑. In turn, the amount of collected data depends on the compensation offered to patients. 

 In the baseline model, we assume that patients’ privacy types 𝛽 are private information, and the firm only 

knows the distribution of values of 𝛽 across patients. Thus, the firm chooses a uniform compensation 𝛿 to be 

offered to each patient to collect the desired amount of health data.6 Hence, the cost of data collection entailed 

by project 𝐻 is 𝑐(𝛿) = 𝛿𝑑. We assume that the total cost for undertaking project 𝐻 is 𝐹 + 𝑐(𝛿), where 𝐹 > 0 

is the R&D cost.  

 It follows that the expected profit from investment in project 𝐻 can be written as: 

 E(Π𝐻) = 𝜙(𝑑(𝛼𝑝𝐻 + (1 − 𝛼)𝑝0) + (1 − 𝑑)(𝜀𝛼𝑝𝐻 + (1 − 𝜀𝛼)𝑝0)) + (1 − 𝜙)𝑝0 − 𝑐(𝛿) − 𝐹  (2) 

where 𝑝𝐻 is the price of the targeted treatment and 𝑝0 is the price of the “one-size-fits-all” treatment.  

 Instead, if the monopolist does not invest in project 𝐻 and thereby offers the standard treatment to all 

patients, then profit is simply Π0 = 𝑝0. 

Government 

Consistent with the relevant literature (see, e.g., Bardey et al., 2010), we assume that, conditional on successful 

innovation, the government negotiates the price of the targeted treatment 𝑝𝐻 with the firm through Nash 

bargaining. On the other hand, we consider the price of the standard treatment 𝑝0 to be exogenous (e.g., because 

it has been negotiated in the past). We also assume that treatments are entirely paid by the government (see 

footnote 3). Hence, the therapeutic market is fully covered. 

Timing 

The timing of the game is as follows: 

1. The monopolist decides whether to undertake project 𝐻. Under project 𝐻, the firm chooses the 

compensation for patients, and thereby how much health data to collect. 

 
5 See, e.g., the case studies reported in Gavan et al. (2018). 

6 In Section 7, we consider the case where the firm has complete information on patients’ privacy types and thereby offers 

personalized compensations. 
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2. Given that the firm has undertaken project 𝐻 and set the compensation for patients, each patient decides 

whether to share personal health data. 

3. If the targeted treatment is achieved, then the firm and the government negotiate the price of the treatment 

through a (generalized) Nash bargaining process.7 

 We solve the game backwards for subgame perfect Nash equilibria. We use superscript * to denote 

equilibrium variables and superscript W to denote the social optimum. Proofs are in the Appendix. 

 

4. Equilibrium 

In this section, we derive the equilibrium of the game, and we study the incentives to invest in project 𝐻. We 

show that these incentives depend essentially on the importance of privacy costs and on the maximum total 

incremental health benefit 𝛼(𝑞𝐻 − 𝑞0) of the targeted treatment, which, in turn, is obtained from the individual 

incremental benefit (𝑞𝐻 − 𝑞0) for the treatment and the size 𝛼 of the eligible group of patients. In the next 

section, we derive the social optimum, which in Section 6 we compare with the equilibrium of the game. 

 In what follows, we make the following assumptions. 

Assumption 𝟏. Let 𝛼(𝑞𝐻 − 𝑞0) <
𝛽̅

2(1−𝜀)
. 

Assumption 𝟐. Let 𝛽̅ > max {𝐹 (1 +
2(1−𝜀)(2−𝜆)

𝜀(1−𝜆)
) ,

2𝐹(2−𝜀)

𝜀
}. 

 Assumption 1 ensures concavity of both welfare and profit functions.8 Assumption 2 ensures that an interior 

solution may exist, thereby excluding that there are only corner solutions in the welfare and profit 

maximization problems. Indeed, if privacy costs are low enough (such that Assumption 2 does not hold) then, 

depending on the fixed R&D cost and on the bargaining power in price negotiation, the firm either uses all 

patients’ health data to invest in project 𝐻 or does not invest at all. The same holds for the government.  

Stage 3. Price negotiation 

 
7 We assume that the price of the targeted treatment is negotiated ex post, namely, after the treatment is achieved, given 

that the firm has invested in R&D and collected health data (so that R&D as well as data collection costs are sunk). This 

timing is widely accepted in the relevant literature (see, e.g., Bardey et al., 2010; Barigozzi and Jelovac, 2020; Matteucci 

and Reverberi, 2017). This is because a pharmaceutical company obtains patent protection and the legal authorization to 

manufacture and sell the drug only after the innovation occurs.  

8 Assumption 1 also rules out the case where all patients are willing to share data without compensation (i.e., for 𝛿 = 0). 
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We assume that in the status quo all patients receive the standard treatment, which is sold at price 𝑝0, with a 

health benefit of 𝑞0. Price negotiation for treatment 𝐻 occurs through a Nash bargaining process where, in the 

absence of an agreement, eligible patients do not receive the new treatment. 

 Given that R&D and data collection costs as well as patients’ privacy surplus are sunk at the price 

negotiation stage, we assume that the government cares about incremental patients’ benefits relative to the 

status quo net of social expenditure. More formally, the government considers Δ𝑊̃ = 𝛼[(𝑞𝐻 − 𝑞0) − (𝑝𝐻 −

𝑝0)][𝑑 + (1 − 𝑑)𝜀]. On the other hand, the firm cares about the incremental profit relative to the status quo, 

namely, ΔΠ = 𝛼(𝑝𝐻 − 𝑝0) [𝑑 + (1 − 𝑑)𝜀].  

 Let 𝜆 > 0 (respectively, (1 − 𝜆) > 0) be the government’s (respectively, firm’s) bargaining power in price 

negotiation. Then, the Nash bargaining problem is: 

max
𝑝𝐻

(Δ𝑊̃)
𝜆

(ΔΠ)1−𝜆, 

which yields the negotiated price for treatment 𝐻:9 

𝑝𝐻 = 𝑝0 + (1 − 𝜆)(𝑞𝐻 − 𝑞0).                                                        (3) 

Stage 2. Data sharing 

We assume that patients do not know ex ante whether they are eligible for the targeted treatment. However, 

they are informed on the probability of receiving the targeted treatment (i.e., 𝛼 if they decide to share health 

data, and 𝜀𝛼 if they do not share). Furthermore, they are aware that the probability of successful innovation in 

the targeted treatment increases proportionally with the total amount of collected health data. 

 Given that the firm undertakes project 𝐻, a patient with privacy type 𝛽 accepts compensation 𝛿 and shares 

personal health data if the expected utility is at least as high as in the alternative case where she does not share 

data. Let 𝜙𝑒 be the expected probability of success of project 𝐻. Formally, the patient with privacy type 𝛽 

decides to share health data if and only if:  

𝜙𝑒{𝛼𝑞𝐻 + (1 − 𝛼)𝑞0} + (1 − 𝜙𝑒){𝑞0} + 𝛿 − 𝛽 ≥ 𝜙𝑒{𝛼𝜀𝑞𝐻 + (1 − 𝛼𝜀)𝑞0} + (1 − 𝜙𝑒){𝑞0}. 

The above inequality simplifies to: 

𝛽 ≤ 𝜙𝑒 {𝛼(1 − 𝜀)(𝑞𝐻 − 𝑞0)} + 𝛿.                                                    (4) 

 
9 We find that the negotiated price 𝑝𝐻  is independent of 𝛼 and 𝜀. The rationale is that, at this stage of the game, the size 

of the market for the targeted treatment, namely, 𝛼[𝑑 + (1 − 𝑑)𝜀] is fixed. 
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 Rearranging (4), we obtain 𝛿 ≥ 𝛽 − 𝜙𝑒 {𝛼(1 − 𝜀)(𝑞𝐻 − 𝑞0)}. Hence, the minimum compensation 𝛿 that 

must be offered to collect health data from a given patient is lower than her privacy cost 𝛽, except for the limit 

case where 𝜀 = 1 (when such a compensation exactly reflects the privacy cost).  

 It follows from (4) that the patient with the highest privacy cost 𝛽̅ shares health data as long as 𝛽̅ ≤

 𝛼(1 − 𝜀)(𝑞𝐻 − 𝑞0) + 𝛿, since 𝜙𝑒 = 1 when all patients share data. In turn, this implies that 𝛿̅ = 𝛽̅ −

𝛼(1 − 𝜀)(𝑞𝐻 − 𝑞0) is the (maximum) compensation the firm is willing to offer to collect data from all 

patients.10 Lower values of 𝛿 make patients with high privacy costs unwilling to share data. 

 Let 𝛽̂ be the privacy type who is indifferent between sharing health data or not. In equilibrium, patients’ 

expectations need to be fulfilled, that is, the expected probability of success of project 𝐻 must be equal to the 

value of the probability function when the amount 𝑑 of collected data is determined by the indifferent patient 

(i.e., the marginal patient who shares data). This implies that 𝜙𝑒 = 𝑑𝑒 =
𝛽̂ 

𝛽̅
. It follows from (4) that 𝛽̂ =

𝛽̂

𝛽̅
{𝛼(1 − 𝜀)(𝑞𝐻 − 𝑞0)} + 𝛿. Hence, under fulfilled expectations, the indifferent privacy type is given by: 

𝛽̂ = 𝛿𝛽̅ 𝛿̅⁄ ,                                                                         (5) 

and patients with privacy types 𝛽 such that 𝛽 ≤ 𝛽̂ decide to share health data. 

 From (5) we find that, for a given 𝛿, 𝛽̂ is decreasing in 𝜀, meaning that a higher probability for patients to 

receive the new treatment without sharing personal data reduces the total amount of collected health data. In 

this set up, the targeted treatment has some features of a public good relative to health data, and this causes a 

free-riding issue, because individual patients would aim at receiving the benefits of the treatment without 

incurring the (privacy) costs of sharing data. In this sense, parameter 𝜀 can be interpreted as patients’ degree 

of free riding on health data sharing. 

Stage 1. Data collection and investment 

In equilibrium, the firm invests in the targeted treatment if the expected profit under project H is at least as 

high as the profit from selling only the standard treatment, that is, 𝐸(Π𝐻) ≥ Π0. This requires the expected 

probability of success of project 𝐻 to be high enough. In turn, this means that the firm should collect a sufficient 

amount of health data (by offering a compensation 𝛿 > 0 to patients).  

 
10 A higher value of 𝛿 than the value for which all patients share health data is neither profitable nor socially optimal. 
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 For a given value of 𝛿 (such that 𝛿 ≤ 𝛿̅), from (5) the probability of success of project 𝐻 is 𝜙 = 𝑑 = 𝛿 𝛿̅⁄ , 

and thereby the cost of data collection is 𝑐(𝛿) = 𝛿2 𝛿̅⁄ . Thus, plugging (3) into (2), the monopolist’s problem 

can be written as: 

max
𝛿

𝐸(Π𝐻) =
𝛿

𝛿̅
𝛼(1 − 𝜆)(𝑞𝐻 − 𝑞0) (

𝛿

𝛿̅
(1 − 𝜀) + 𝜀) −

𝛿2

𝛿̅
+ 𝑝0 − 𝐹,                      (6) 

where the monopolist collects health data if and only if  𝐸(Π𝐻) ≥ Π0, and an interior solution exists as long 

as 0 < 𝛿∗ < 𝛿̅. 

 It is worth noting from (6) that parameter 𝜀 has contrasting effects on incentives to invest in the new 

treatment. On the one hand, (ceteris paribus) low values of 𝜀 limit the degree of  free riding and encourage 

patients to share personal data. Hence, the firm can reduce patients’ compensation to collect health data. On 

the other hand, low values of 𝜀 reduce the size of the market for the targeted treatment, because the firm hardly 

identifies patients who do not share data. Hence, the firm has the incentive to increase the compensation offered 

to patients to mitigate this negative effect. 

 Let 𝐴 ≡ 𝛼(𝑞𝐻 − 𝑞0) be the maximum total incremental health benefit of the targeted treatment. Proposition 

1 determines the conditions for which the firm finds it profitable to offer a compensation to patients for 

collecting health data, thereby investing in project 𝐻. 

Proposition 𝟏. Let 𝐴𝐻 =
−2𝐹(1−𝜀)(2−𝜆)+2√[𝐹(1−𝜀)(2−𝜆)]2+𝐹𝛽̅𝜀2(1−𝜆)2

𝜀2(1−𝜆)2  and 𝐴𝐻  =
2𝛽̅

[𝜀(1−𝜆)+2(1−𝜀)(2−𝜆)]
. We have 

that: 

(i) when 𝐴𝐻 ≤ 𝐴 < 𝐴𝐻  , the firm offers 𝛿∗ =
𝛿̅𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
 to patients, and the amount of collected health 

data for project H is 𝑑∗ =
𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
< 1; 

(ii) when 𝐴 ≥ 𝐴𝐻  , the firm offers 𝛿∗ = 𝛿̅ to patients, and collects all patients’ health data for project H, so 

as 𝑑∗ = 1;  

(iii) when 𝐴 < 𝐴𝐻, investment in project H is not profitable (so as 𝛿∗ = 𝑑∗ = 0). 

 Proposition 1 states that the firm is willing to collect data and invest in R&D if 𝐴 is high enough. Indeed, 

for low values of the total incremental health benefit of the targeted treatment, that is, 𝐴 < 𝐴𝐻, the firm does 

not find it profitable to invest because 𝐸(Π𝐻) < Π0. We find that the critical value 𝐴𝐻 for investment in project 

𝐻 is increasing in 𝛽̅. The higher the value of the upper bound for privacy costs 𝛽̅, the higher the dispersion of 
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privacy concerns across patients and thus the average privacy concern. Hence, when patients are more privacy 

concerned, the targeted treatment is less likely to be developed. Indeed, health data are essential to R&D 

investment, but are costly to collect. 

 Instead, when the total incremental health benefit of the new treatment is very high, that is, 𝐴 ≥ 𝐴𝐻  , the 

firm finds it profitable to compensate patients so as to induce all of them to share health data. As 𝛽̅ increases, 

the compensation 𝛿̅ necessary to induce all patients to share data increases as well, thereby making it more 

difficult for the firm to collect all patients’ data.  

 In the following section, we derive the optimal compensation to patients and incentives to invest in the 

targeted treatment from a welfare perspective, so as to evaluate the desirability of private investment in the 

new treatment from a social point of view. 

5. Welfare 

Social welfare under treatment 𝐻, 𝑊𝐻, depends on patients’ total health benefit from the new treatment 𝑊̂𝐻, 

the fixed R&D cost 𝐹, and aggregate privacy costs 𝑃𝐶. Indeed, the social expenditure and the firm’s revenues 

for treatment 𝑖 (with 𝑖 ∈ {0, 𝐻}) cancel out in the welfare function. The same occurs for the cost of data 

collection for the firm and the total compensation for patients for data sharing under investment in project 𝐻 

(both of these components are zero without investment). Thus, the expected welfare under treatment 𝐻 is 

𝐸(𝑊𝐻) = 𝐸(𝑊̂𝐻) − 𝐹 − 𝑃𝐶. More specifically, we have:  

𝐸(W𝐻) = 𝜙 (𝑑(𝛼(𝑞𝐻) + (1 − 𝛼)(𝑞0)) + (1 − 𝑑)(𝜀𝛼(𝑞𝐻) + (1 − 𝜀𝛼)(𝑞0))) + (1 − 𝜙)(𝑞0) − 𝐹 − ∫ 𝑠
𝛽̂

0

𝑑𝑠 

whereas social welfare under the standard treatment is simply 𝑊0 = 𝑞0. 

 For a given compensation 𝛿, the expected welfare under treatment 𝐻 can be rewritten as: 

𝐸(W𝐻) = 𝜙 (
𝛽̂

𝛽
(𝛼(𝑞𝐻) + (1 − 𝛼)(𝑞0)) + (1 −

𝛽̂

𝛽
) (𝜀𝛼(𝑞𝐻) + (1 − 𝜀𝛼)(𝑞0))) + (1 − 𝜙)(𝑞0) − 𝐹 −

𝛿2𝛽̅

2𝛿̅2. 

 Hence, given that 𝜙 = 𝛽̂ 𝛽⁄ = 𝛿 𝛿̅⁄ , with simple manipulation we find that the optimal 𝛿 solves the 

following problem: 

max
𝛿

𝐸(W𝐻) =
𝛿2

𝛿̅2 (𝐴(1 − 𝜀) −
𝛽̅

2
) +

𝛿

𝛿̅
𝐴𝜀 + 𝑞0 − 𝐹,                           (7) 
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where compensating patients for health data is socially optimal provided that 𝐸(W𝐻 ) ≥ W0, and an interior 

solution exists as long as 0 < 𝛿𝑤 < 𝛿̅. 

 Proposition 2 derives the socially optimal compensation for collecting health data and determines the values 

of the maximum total incremental health benefit of the targeted treatment for which developing project 𝐻 is 

welfare improving. 

Proposition 𝟐. Let 𝐴𝑤 =
−2𝐹(1−𝜀)+√4(𝐹(1−𝜀))2+2𝜀2𝐹𝛽̅

𝜀2  and 𝐴𝑤 =
𝛽̅

(2−𝜀)
. We have that: 

(i) when 𝐴𝑤 ≤ 𝐴 <  𝐴𝑤 , the government would offer 𝛿𝑤 =
𝛿̅𝜀𝐴

𝛽̅−2𝐴(1−𝜀)
 to patients, and the amount of 

collected health data for project H would be 𝑑𝑤 =
𝜀𝐴

𝛽̅−2𝐴(1−𝜀)
< 1; 

(ii) when 𝐴 ≥  𝐴𝑤, the government would offer 𝛿𝑤 = 𝛿̅ to patients and collect all patients’ health data for 

project H, so as 𝑑𝑤 = 1;  

(iii) when 𝐴 < 𝐴𝑤,  project H does not improve welfare (so as 𝛿𝑤 = 𝑑𝑤 = 0). 

 Intuitively, we find that developing project 𝐻 is socially optimal if the total incremental health benefit from 

the new treatment is high enough, that is, 𝐴 ≥ 𝐴𝑤. Note that the critical value 𝐴𝑤 is increasing in 𝛽̅, meaning 

that higher privacy costs reduce the likelihood for targeted treatments to be socially desirable. When 𝐴 is high 

enough (that is, higher than 𝐴𝑤  ), it is socially optimal to collect health data on all patients. 

 

6. Private incentives and social goals 

We now compare private incentives to collect personal health data and invest in project 𝐻 with the social 

optimum. Proposition 3 states that the firm may underinvest in the targeted treatment. More specifically, for 

intermediate values of 𝐴, investment in the new treatment would be socially optimal, but the firm prefers not 

to invest. Then, for higher values of 𝐴, the firm decides to invest but collects a lower amount of health data 

than socially desirable, thereby reducing the probability that investment in the targeted treatment is successful.  

Proposition 𝟑. Private incentives to collect health data and undertake project 𝐻 are too weak. Specifically, 

we have that: 

(i) since 𝐴𝑤 < 𝐴𝐻 then, when 𝐴𝑤 < 𝐴 < 𝐴𝐻, the firm does not invest (i.e., 𝛿∗ = 𝑑∗ = 0), but social welfare 

is higher under treatment 𝐻; 
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(ii) since 𝛿∗ < 𝛿𝑤 ≤ 𝛿̅ then, when 𝐴𝐻 ≤ 𝐴 < 𝐴𝐻  , the amount of health data collected by the firm, and 

thereby the probability of success of project 𝐻, are lower than socially optimal; 

(iii) it never occurs that 𝐸(𝛱𝐻) > 𝛱0 when 𝐸(𝑊𝐻) < 𝑊0. 

 The intuition for this result is that, for a given compensation 𝛿 to patients (or, equivalently, for a given 

amount 𝑑 of collected data), data collection costs are always higher than aggregate privacy costs.11 Formally, 

the firm undertakes project 𝐻 as long as 𝐸(Π𝐻) ≥ Π0. For a given amount of collected data 𝑑, this condition 

can be rewritten as: 

𝑑𝐴(1 − 𝜆)(𝑑(1 − 𝜀) + 𝜀) − 𝛿̅𝑑2 − 𝐹 ≥ 0,                                             (8) 

where Π̂𝐻 ≡ 𝑑𝐴(1 − 𝜆)(𝑑(1 − 𝜀) + 𝜀) are expected incremental revenues from treatment 𝐻 and 𝑐(𝛿) ≡ 𝛿̅𝑑2 

are data collection costs. Instead, project 𝐻 is socially optimal if 𝐸(𝑊𝐻) ≥ 𝑊0, that is:  

𝑑𝐴(𝑑(1 − 𝜀) + 𝜀) −
𝑑2𝛽̅

2
− 𝐹 ≥ 0,                                                      (9) 

where Ŵ𝐻 ≡ 𝑑𝐴(𝑑(1 − 𝜀) + 𝜀) are expected incremental health benefits and 𝑃𝐶 ≡
𝑑2𝛽̅

2
 are aggregate privacy 

costs. From Nash bargaining, it easily follows that Ŵ𝐻 > Π̂𝐻. Hence, by comparing (8) and (9), we find that 

private incentives to achieve treatment 𝐻 are weaker than socially desirable as long as 𝑐(𝛿) > 𝑃𝐶 holds. This 

condition can be written as 𝛿̅𝑑2 > 𝑑2𝛽̅ 2⁄ , that is, 𝛿̅ > 𝛽̅ 2⁄ . In turn, this requires that 𝐴 <
𝛽̅

2(1−𝜀)
, which always 

holds under Assumption 1.12 

 It follows that the cost for collecting patients’ health data to undertake project 𝐻 may be too high for the 

firm, and this reduces private incentives to invest in the targeted treatment relative to the social optimum. In 

other words, high data collection costs induce the firm to invest in treatment 𝐻 for a higher expected benefit 

of the new treatment than socially optimal. Moreover, the compensation for patients is lower, implying that 

less health data are collected. We also find that (𝑐(𝛿) − 𝑃𝐶) is increasing in the degree of free riding 𝜀. 

 
11 Conversely, we find that private incentives to invest in project 𝐻 can be stronger than in the social optimum when the 

firm offers personalized compensations to patients, which significantly reduces data collection costs (see Section 7). 

12 Condition 𝑐(𝛿) > 𝑃𝐶 can be rewritten as 𝛿̅ (
𝛽̂(𝛿)

𝛽̅
) (

𝛿

𝛿̅
) > (

𝛽̂(𝛿)

𝛽̅
)

2

(
𝛽̅

2
), that is, 𝛿 > 𝛽̂(𝛿) 2⁄  (under fulfilled expectations, 

we have 𝑑 = 𝛽̂(𝛿) 𝛽̅⁄ = 𝛿 𝛿̅⁄ ). This means that, to collect a given amount of data 𝑑 = 𝛽̂(𝛿) 𝛽̅⁄ , the firm needs to offer a 

(uniform) compensation higher than the average privacy cost among patients sharing data (the government only cares 

about aggregate privacy costs because the total compensation for patients sharing data cancels out in the welfare function). 
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 We now study how the misalignment between private incentives to invest in the targeted treatment and 

social goals (highlighted in Proposition 3) depends on parameters  𝛽̅ and 𝜀. Consider first the effect of privacy 

costs as measured by 𝛽̅. Let Δ = (𝐴𝐻 − 𝐴𝑤). We find that Δ is increasing in 𝛽̅.13 It follows that a lower value 

of 𝛽̅ reduces the mismatch between private and social incentives to invest in the new treatment. This means 

that reducing privacy costs can mitigate the underinvestment problem and promote data-driven pharmaceutical 

R&D as well as improve social welfare. 

 This objective may be achieved, for instance, by providing patients with more transparent information, and 

by improving privacy policies. Note that these measures do affect privacy costs, but may be implemented 

without limiting the ability to use health data for medical innovation and basically at no cost for the firm. 

Health data protection is also at the heart of recent EU directives that aim at ensuring security of information 

processing environments. Thus, the NIS 2 Directive lays down cybersecurity risk management measures and 

mandates obligations to entities, including those carrying out R&D activities of medicinal products.14 

 Then, we assess how the misalignment between private and social incentives to invest depends on 𝜀,. We 

find that 
𝜕[ 𝐴𝑤]

𝜕𝜀
< 0. Indeed, a higher 𝜀 reduces the lower bound of the total incremental health benefit of 

treatment 𝐻 for it to improve welfare. This is because, in an interior solution for problem (7), a higher 𝜀 

enlarges the market size for treatment 𝐻, so that more patients can benefit from the new treatment.  

 We also find that 
𝜕[𝐴𝐻 ]

𝜕𝜀
> 0. Indeed, the higher the value of 𝜀, the higher the upper bound of the total 

incremental health benefit of treatment 𝐻 for an interior solution for problem (6) to occur. The rationale is 

that, for high values of the total incremental health benefit of treatment 𝐻 (close to the critical value for a 

corner solution 𝐴𝐻  ), the fraction of the market that is affected by 𝜀 is negligible and the free-riding effect 

prevails, thereby reducing the firm’s incentive to collect health data. This makes it less likely for the firm to 

collect all patients’ data to achieve treatment 𝐻. 

 
13 Indeed, 

∂Δ

𝜕𝛽̅
=

2

𝜀(1−𝜆)+2(1−𝜀)(2−𝜆)
−

𝐹

√4𝐹2(1−𝜀)2+2𝐹𝛽̅𝜀2
> 0 when 𝛽̅ >

𝐹[(2(2−𝜆)−𝜀(3−𝜆))2−16(1−𝜀)2]

8𝜀2 , which is satisfied under 

Assumption 2, given that 
2𝐹[2−𝜀]

𝜀
>

𝐹[(2(2−𝜆)−𝜀(3−𝜆))
2

−16(1−𝜀)2]

8𝜀2 . 

14 See https://www.european-health-data-space.com/NIS_2_Training.html. 
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 It follows from above that 
𝜕∆

𝜕𝜀
> 0. Thus, we can conclude that a high value of 𝜀 exacerbates the 

underinvestment problem. 

 

7. Personalized compensation 

In the previous section, we have found that there may be underinvestment in the targeted treatment because of 

excessive costs of data collection. We now investigate how this issue is related to the information on patients’ 

types that is available to the firm. Specifically, we show that data collection costs may be significantly reduced 

when the firm is fully informed on patients’ types. In turn, this may even lead the firm to overinvest in the new 

treatment. 

 Thus, let us assume that the firm knows the privacy type 𝛽 of each patient (e.g., because it can be inferred 

from individuals’ observable attributes, such as general health conditions or socio-economic status). In this 

framework, the monopolist can offer personalized compensations 𝛿(𝛽) to patients, depending on their types. 

In doing so, the firm can save on data collection costs relative to the case where she offers a uniform 

compensation. 

 We hereby replace assumptions 1 and 2 in Section 4 respectively with the following assumptions. 

Assumption 𝟏. 𝒃𝒊𝒔. Let 𝛼(𝑞𝐻 − 𝑞0)< 𝑚𝑖𝑛 {
𝛽̅((2−𝜆)−√(2−𝜆)2−1)

(1−𝜀)
,

𝛽̅

2(1−𝜀)
}. 

Assumption 𝟐. 𝒃𝒊𝒔. Let 𝛽̅ > 𝐹 (
4−𝜀(3−𝜆)−2𝜆+√(2−𝜀)(1−𝜆)(6−5𝜀−𝜆(2−𝜀))

𝜀(1−𝜆)
). 

 These assumptions are symmetric to those in the baseline model. Assumption 1. 𝑏𝑖𝑠 ensures concavity of 

both profit and welfare functions under personalized compensations. Assumption 2. 𝑏𝑖𝑠 ensures that an interior 

solution may exist with a personalized compensation scheme or, equivalently, excludes that there are only 

corner solutions where the firm either uses all patients’ health data to invest in project 𝐻 or does not invest at 

all, and the same holds for the government. 

Private incentives to invest 

In what follows, we solve for a fulfilled-expectation equilibrium. For this purpose, first we find the marginal 

patient 𝛽̂𝑝 who shares personal data, which determines the amount of collected health data and thereby the 

probability of success of project 𝐻. 



19 

 Let 𝛿𝑝 ≡ 𝛿(𝛽̂𝑝) be the compensation that leaves the marginal patient sharing health data with the same net 

benefit as when she does not share data. Let 𝑑𝑝 be the amount of collected health data under personalized 

compensations and 𝜙𝑝
𝑒 be the corresponding expected probability of success of project 𝐻. We thus have that 

𝜙𝑝
𝑒  = 𝑑𝑝

𝑒  = 𝛽̂𝑝 𝛽̅⁄ . Then, following the same steps as in the baseline model (see equations (4) and (5)), we 

obtain that, in a fulfilled-expectation equilibrium, the marginal patient is indifferent between sharing health 

data or not when the following condition holds: 

𝛽̂𝑝 =
𝛽̂𝑝

𝛽̅
𝐴(1 − 𝜀) + 𝛿𝑝. 

 Hence, we find that:  

𝛽̂𝑝 = (𝛿𝑝𝛽̅) 𝛿̅⁄ .                                                                       (10) 

By rearranging (10), we obtain that the compensation for the marginal patient is:  

𝛿𝑝 = 𝛽̂𝑝(𝛿̅ 𝛽̅⁄ ),                                                                 (11) 

with 𝛿𝑝 ≤ 𝛿̅. Patients with privacy types 𝛽 such that 𝛽 < 𝛽̂𝑝 who receive personalized compensations 𝛿(𝛽) 

decide to share health data when the expected benefit is at least as high as if they do not share data. By using 

𝜙𝑝
𝑒 = 𝑑𝑝

𝑒 = 𝛽̂𝑝 𝛽̅⁄ , from (10) we find that this occurs when: 

𝛽 ≤
𝛿𝑝

𝛿̅
𝐴(1 − 𝜀) + 𝛿(𝛽).                                            (12) 

 Since the firm finds it profitable to extract as much surplus as possible from each patient, then she chooses 

the minimum (personalized) compensation 𝛿(𝛽) necessary to induce each patient with privacy type 𝛽 < 𝛽̂𝑝 to 

share health data. From equation (12), we have: 

𝛿(𝛽) = 𝛽 −
𝛿𝑝

𝛿̅
𝐴(1 − 𝜀).                                                    (13) 

 In contrast with a uniform compensation scheme, under personalized compensations each patient who 

shares health data does accept a compensation lower than her privacy cost. However, as with uniform 

compensation, (ceteris paribus) the level of compensation necessary to induce the marginal patient to share 

health data increases with 𝜀. In the limit case where 𝜀 = 1, eligible patients who do not share data are perfectly 

identified ex post (e.g., via a biomarker test). This implies that the compensation for each patient matches her 

privacy cost. 
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 In what follows, we assume that 𝛿(𝛽) ≥ 0. In doing so, we exclude that the firm may receive compensations 

from patients sharing health data. From (12), we can easily obtain that the patient who is indifferent between 

sharing health data or not with zero compensation is 𝛽̃ =
𝛿̂𝑝

𝛿̅
𝐴(1 − 𝜀). Given that 𝛿(𝛽) ≥ 0, patients with 

privacy types 𝛽 ∈ [0, 𝛽̃] are willing to share health data for free.  

 Instead, patients with privacy types 𝛽 ∈ [𝛽̃, 𝛽̂𝑝] decide to share personal data under strictly positive 

compensations and thus concur to determine data collection costs. It follows that the total cost of data collection 

for the firm is:15  

𝑐(𝛿(𝛽)) = ∫
1

𝛽̅
𝑐(𝛿(𝑠))𝑑𝑠

𝛽̂𝑝

𝛽̃

= ∫
1

𝛽̅
{𝑠 −

𝛿𝑝

𝛿̅
𝐴(1 − 𝜀)} 𝑑𝑠

𝛽̂𝑝

𝛽̃

=
𝛿𝑝

2

2𝛽̅
.                          (14) 

 Under personalized compensations, the firm chooses 𝛿𝑝 to maximize expected profit. In turn, this choice 

determines the amount 𝑑𝑝 of collected health data, and thereby the probability of success 𝜙𝑝 of project 𝐻 

(where 𝜙𝑝 = 𝛿𝑝 𝛿̅⁄ ). Thus, the monopolist’s problem in the first stage can be written as: 

max
𝛿̂𝑝

𝐸(Π𝐻) =
𝛿𝑝

𝛿̅
𝐴(1 − 𝜆) (

𝛿̂𝑝

𝛿̅
(1 − 𝜀) + 𝜀) −

𝛿𝑝
2

2𝛽̅
+ 𝑝0 − 𝐹,                (15) 

where the monopolist collects health data if and only if  𝐸(Π𝐻) ≥ Π0, and an interior solution exists as long 

as 0 < 𝛿𝑝 < 𝛿̅. 

 Proposition 4 defines the values of 𝐴 for which the firm finds it profitable to offer personalized 

compensations to patients to collect health data and develop project 𝐻. 

Proposition 𝟒. Let 𝐴𝐻𝑝 =
−2𝛽̅𝐹(1−𝜀)(2−𝜆)+𝛽̅√[2𝐹(1−𝜀)(2−𝜆)]2+2𝐹[𝛽̅𝜀2(1−𝜆)2−2𝐹(1−𝜀)2]

[𝛽̅𝜀2(1−𝜆)2−2𝐹(1−𝜀)2]
 and 𝐴𝐻𝑝 =

𝛽̅[4−3𝜀−𝜆(2−𝜀)]−𝛽̅√(1−𝜆)(2−𝜀)(6−5𝜀−2𝜆+𝜆𝜀)

2(1−𝜀)2 . We have that: 

(i) when 𝐴𝐻𝑝 ≤ 𝐴 < 𝐴𝐻𝑝 , the firm offers 𝛿∗(𝛽) = (𝛽 −
𝛿̂𝑝

∗

𝛿̅
𝐴(1 − 𝜀)) to patients with privacy types 𝛽 ∈

[𝛽̃(𝛿̂𝑝
∗
), 𝛽̂𝑝], whereas privacy types 𝛽 ∈ [0, 𝛽̃(𝛿𝑝

∗
)) do share personal data for free, where 𝛿𝑝

∗
=

 
15 Detailed calculations are available from the authors upon request. 
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𝛿̅𝛽̅𝜀(1−𝜆)𝐴

𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴(1−𝜀)(2−𝜆)
 is the compensation offered to the marginal type sharing data 𝛽̂𝑝. Thus, the 

amount of health data collected for project H is 𝑑𝑝
∗ = 𝛿𝑝

∗
𝛿̅⁄ < 1; 

(ii) when 𝐴 ≥ 𝐴𝐻𝑝 , the firm offers 𝛿∗(𝛽) = 𝛽 − 𝐴(1 − 𝜀) to patients with privacy types 𝛽 ∈ [𝛽̃(𝛿̅), 𝛽̅], 

whereas privacy types 𝛽 ∈ [0, 𝛽̃(𝛿̅)) do share personal data for free. Thus, the firm collects all patients’ 

health data for project H, that is, 𝑑𝑝
∗ = 1; 

(iii) when 𝐴 < 𝐴𝐻𝑝, project H is not profitable. 

 Consistent with the results obtained under uniform compensation (see Section 4), we find that both the 

critical value 𝐴𝐻𝑝 for investment in project 𝐻 in an interior solution and the critical value 𝐴𝐻𝑝 for investment 

in project 𝐻 using all patients’ data are increasing in 𝛽̅. This confirms the result that higher privacy concerns 

reduce the likelihood of developing the targeted treatment. 

Comparison with the social optimum 

In this section, we compare private incentives to invest in the targeted treatment under personalized 

compensations with the social optimum. It is worth noting that the compensation scheme is irrelevant from a 

welfare perspective. Indeed, data collection costs for the firm are exactly equal to benefits from received 

compensations for patients, so that these two terms cancel out in the welfare function. 

 Hence, the socially optimal amount of health data to be collected and the corresponding probability of 

success of project 𝐻, as well as the critical values of the total incremental health benefit of the new treatment 

for it to be socially desirable (see Section 5) are not affected by the compensation scheme.  

 The striking difference under personalized compensations is that, for a given compensation that leaves the 

marginal patient indifferent between sharing health data or not, data collection costs for the firm are lower than 

aggregate privacy costs for patients. Indeed, for a given value of 𝛿𝑝, ∫ 𝑠
𝛽̂𝑝

0
𝑑𝑠 =

𝛿̂𝑝
2

𝛽̅

2𝛿̅2 >
𝛿̂𝑝

2

2𝛽̅
= 𝑐(𝛿) holds.  

 As shown in Section 6, this is a necessary condition to find outcomes of the game where the firm overinvests 

in the targeted treatment. In what follows, we show that this condition may also be sufficient for 

overinvestment as long as the firm has strong bargaining power in price negotiation with the government (i.e., 
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𝜆 is low enough).16 The rationale is that the firm can reap most of the benefits from developing the targeted 

treatment. 

 Let us first consider interior solutions for problems (15) and (7) where both the firm and the government 

choose to collect health data from a fraction of patients. We show that in such a case the firm may collect an 

excessive amount of health data relative to the social optimum (see Lemma 1). 

Lemma 1. Let 0 < 𝑑𝑝
∗ < 1 and 0 < 𝑑𝑤 < 1. Let also 𝐴 =

𝛽̅−𝛽̅√1−𝜆

(1−𝜀)
 and 𝐴 =

𝛽̅+𝛽̅√1−𝜆

(1−𝜀)
. Under personalized 

compensations, we have that 𝑑𝑝
∗ > 𝑑𝑤 as long as 𝐴 < 𝐴 < 𝐴. 

 Then, we can use Lemma 1 to prove the following proposition. 

Proposition 𝟓. Let 𝜆̅ =
3−4𝜀+𝜀2

4−4𝜀+𝜀2. Under personalized compensations, private incentives to collect health data 

and develop project 𝐻 may be too strong. Specifically, this does occur when 0 < 𝜆 < 𝜆̅ ≤ 3 4⁄ , provided that 

𝐴 ∈ 𝐼 ⊆  [𝐴𝐻𝑝,  𝐴𝑤   ]. 

 It is worth noting that a higher degree of free riding in sharing data (i.e., a higher 𝜀) reduces the likelihood 

of overinvestment (namely, 𝜆̅ is decreasing in 𝜀). Indeed, a higher value of 𝜀 makes it more costly to collect a 

given amount of health data, so that the firm needs a stronger bargaining power (and thereby a higher price for 

the new treatment) to find it profitable to develop project 𝐻. 

 

8. Policy implications 

The results obtained in the baseline model highlight a mismatch between private and social incentives to invest 

in targeted treatments (see Section 6). More specifically, under uniform compensation from Proposition 3 we 

find underinvestment by the pharmaceutical firm.  

 In what follows, we discuss policy measures that may align private and social incentives for data-driven 

pharmaceutical innovation. We consider different options for accessing health data where the firm does not 

have to collect personal data directly from patients. In each of the considered cases, we assume that a central 

(public) agency controls health data and that patients are not compensated for sharing personal data with the 

agency. Centralized governance of health data is a means to avoid externalities caused by each patient’s 

 
16 Depending on 𝜆 and 𝐴, underinvestment may occur. Detailed results are available from the authors on request. 



23 

personal data sharing decision, which is a major reason for underinvestment in the targeted treatment under 

uniform compensation. More specifically, in Section 8.1, the agency can provide the firm with free access to 

all patients’ data; in Section 8.2, the firm can access all patients’ data for a lump-sum payment to the agency; 

and finally, in Section 8.3, the agency chooses the amount of data to be made freely available to the firm.  

8.1 Access to data without restrictions 

Let us first consider the case where the central (public) agency can provide the firm with free access to patients’ 

health data. Then, in the absence of data collection costs, the expected profit from the innovative treatment is: 

𝐸(Π𝐻) = 𝑑2𝐴(1 − 𝜆)(1 − 𝜀) + 𝑑𝐴𝜀(1 − 𝜆) + 𝑝0 − 𝐹. 

 Since 𝐸(Π𝐻) is increasing in the amount d of health data, then the firm will access all patients’ data 

whenever they are freely available. Thus, profit from project 𝐻 simplifies to Π𝐻 = 𝐴(1 − 𝜆) + 𝑝0 − 𝐹.17 As 

long as Π𝐻 ≥ Π0, the firm finds it profitable to develop project 𝐻 by using all patients’ data. This occurs when 

𝐴 ≥
𝐹

(1−𝜆)
.18 Since we have that 

𝐹

(1−𝜆)
< 𝐴𝐻 then, as expected, free access to health data increases the likelihood 

of private investment in the new treatment, by reducing the critical value of the total incremental health benefit 

for investment to occur relative to the baseline model. 

 We now compare private incentives to invest in the targeted treatment under this policy option with the 

social optimum. First, note that the socially optimal investment determined in Section 5 is not affected by the 

policy at issue, because total costs of data collection for the firm and the aggregate compensation for patients 

cancel out in the welfare function. Therefore, social welfare maximization leads to 𝑑𝑤 (see Proposition 2).  

 We find that providing the firm with free access to health data may yield overinvestment in the targeted 

treatment when the firm’s bargaining power is sufficiently high. More specifically, the firm may find it 

profitable to invest by using all patients’ data when, from a welfare perspective, it would be optimal to invest 

by using data from a fraction of patients, or not to invest at all. Intuitively, high privacy costs (i.e., a high value 

of 𝛽̅) are more likely to induce overinvestment. Indeed, high privacy costs do not affect private incentives to 

 
17 When all patients’ health data are used (i.e., 𝑑 = 1), Π𝐻 does not depend on 𝜀. 

18 Instead, when 𝐴 <
𝐹

(1−𝜆)
 investment in treatment 𝐻 is totally precluded, since the firm does not invest even if she has 

free access to all patient’s health data. 
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invest (the critical value for investment 
𝐹

(1−𝜆)
 does not depend on 𝛽̅), whereas they reduce social incentives to 

invest. Proposition 6 summarizes the result. 

Proposition 𝟔. A policy granting free access to health data may lead to overinvestment in the new treatment. 

Specifically, if the firm’s bargaining power is high enough, that is, 𝜆 <
𝛽̅−𝐹(2−𝜀)

𝛽̅
≡ 𝜆2 then the firm overinvests 

when 
𝐹

(1−𝜆)
< 𝐴 < 𝐴𝑤 (otherwise, the firm may underinvest). Overinvestment is more likely when privacy costs 

are high (that is, 𝜆2 is increasing in 𝛽̅). 

 We now study whether and when this policy improves social welfare relative to the baseline model. We 

point out that there are two intervals of values of the total incremental health benefit of treatment 𝐻 where 

investment decisions are misaligned. When 
𝐹

(1−𝜆)
< 𝐴 <  𝐴𝐻, the firm invests only when she has free access 

to all patients’ data. Instead, when 𝐴𝐻 < 𝐴 <  𝐴𝐻, in the baseline model the firm invests by collecting a 

fraction of patients’ health data. 

 Proposition 7 states that social welfare is higher (respectively, lower) when the firm has free access to all 

patients’ data than in the baseline model as long as the total incremental health benefit of the targeted treatment 

is sufficiently large (respectively, small). Moreover, free access to health data is less likely to improve welfare 

when patients’ privacy costs are high. 

Proposition 𝟕. Let 𝛽𝑙 =
2𝐹𝜆

1−𝜆
, 𝛽ℎ =

2𝐹(𝜀(2(2−𝜆)−𝜀(1−𝜆)2)+2𝜆)+4𝐹√2𝜀2+4𝜀𝜆+𝜆2−𝜀(2+𝜀)𝜆2

𝜀2(1−𝜆)2 , and 𝐴̃ =

𝛽̅(8−5𝜀−2𝜆+3𝜀𝜆)−𝛽̅√9𝜀2+2(10−7𝜀)𝜀𝜆+(2−3𝜀)2𝜆2

4(1−𝜀)(4−𝜀(1−𝜆)−2𝜆)
. A policy granting the firm free access to health data can improve 

social welfare. Specifically, we have that: 

(i) when 𝑚𝑎𝑥 {
𝐹

(1−𝜆)
,

𝛽̅

2
+ 𝐹} < 𝐴 < 𝐴𝐻, developing project H with free access to all patients’ data improves 

welfare relative to the baseline model where there is no investment, given that 𝛽̅ < 𝛽ℎ; 

(ii) when 𝑚𝑎𝑥 {𝐴𝐻 , 𝐴̃} < 𝐴 <   𝐴𝐻, developing project H with free access to all data improves welfare 

relative to the baseline model where the firm collects only a fraction of patients’ data. For sufficiently 

low values of 𝛽̅, namely 𝛽̅ < 𝛽𝑙 (with 𝛽𝑙 < 𝛽ℎ), the policy never reduces welfare. 

 We conclude that, compared to the baseline model, social welfare can either increase or decrease when the 

firm can freely access all patients’ health data, depending on the total incremental health benefit of the targeted 
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treatment and on patients’ privacy costs. More specifically, a sufficiently low value of 𝛽̅ ensures that the policy 

at issue improves social welfare whenever it induces a different investment choice than in the baseline model. 

8.2 Lump-sum payment for access to health data 

In this section, we assume that the central (public) agency that manages patients’ health data provides the firm 

with access to such data at a price 𝑃 ≥ 0. Thus, the firm makes a lump-sum payment to the agency for a 

centralized access to health data, and then chooses the amount of data to be used for investing in project 𝐻. 

The timing of the game is as follows. 

1. The agency sets the price 𝑃 for access to patients’ health data. 

2. The monopolist observes the price 𝑃 and decides whether to pay to access health data and undertake 

project 𝐻. Under project 𝐻, the firm chooses the amount of data to use for research. 

3. If the targeted treatment is achieved, then the firm and the government negotiate the price of the treatment 

through a (generalized) Nash bargaining process. 

 Stage 3 proceeds as usual. Then, for a given anticipated price 𝑝𝐻 for the targeted treatment, in stage 2 the 

expected profit under project 𝐻 can be written as: 

𝐸(Π𝐻) = 𝑑2𝐴(1 − 𝜆)(1 − 𝜀) + 𝑑𝐴𝜀(1 − 𝜆) + 𝑝0 − 𝑃 − 𝐹, 

with 0 ≤ 𝑑 ≤ 1. Because the expected profit is increasing in d, the firm prefers to access all data for a given 

payment P, so that 𝑑 = 1. Therefore, when deciding whether to pay for access to health data, the firm compares 

the expected profit from project 𝐻 by investing with all patients’ data, that is, 𝐸(Π𝐻) = 𝐴(1 − 𝜆) + 𝑝0 − 𝑃 −

𝐹, with profit in the status quo, that is, Π0 = 𝑝0. Hence, the firm decides to pay 𝑃 and undertake project 𝐻 

with all patients’ data if: 

𝑃 ≤ 𝐴(1 − 𝜆) − 𝐹 = 𝑃̅. 

 This implies that, for any 𝑃 ≥ 0, the firm does not invest when 𝐴 <
𝐹

(1−𝜆)
. In stage 1, the agency anticipates 

that the firm uses all patients’ data under project 𝐻, i.e., 𝑑 = 1. Thus, the expected welfare with investment in 

treatment 𝐻 is 𝐸(𝑊𝐻) = 𝐴 + 𝑞0 −
𝛽̅

2
− 𝐹.19 The agency chooses 𝑃 to maximize welfare, so that it induces the 

 
19 Indeed, the lump-sum payment 𝑃 cancels out in the welfare function. 
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firm to pay for access to data and invest in project 𝐻 (because 𝐸(Π𝐻) ≥ Π0 holds with 𝑑 = 1) when 𝐸(𝑊𝐻) ≥

𝑊0 also holds with 𝑑 = 1. This occurs when 𝐴 ≥
𝛽̅

2
+ 𝐹. 

 Inserting for 𝐴 =
𝛽̅

2
+ 𝐹 in 𝑃̅, we find 𝑃̅ =

𝛽̅

2
(1 − 𝜆) − 𝜆𝐹, that is non-negative when 

𝐹

(1−𝜆)
≤

𝛽̅

2
+ 𝐹. Given 

that 𝑑 = 1, this price for access to data is welfare maximizing because it implies that the firm finds it profitable 

to incur the lump-sum payment and invest in the targeted treatment exactly when 𝐴 ≥
𝛽̅

2
+ 𝐹 ≥

𝐹

(1−𝜆)
 holds. 

Thus, when all patients’ health data are used for project 𝐻, this policy can align private incentives to invest in 

treatment 𝐻 with social goals.20 Nonetheless, the first-best outcome is such that, when 𝐴𝑤 < 𝐴 < 𝐴𝑤, 

investment in treatment 𝐻 should occur with 𝑑𝑤 < 1. By comparing private and social incentives to invest, 

we find that the proposed policy leads to underinvestment when 𝐴𝑤 < 𝐴 <
𝛽̅

2
+ 𝐹, and to overinvestment when 

𝛽̅

2
+ 𝐹 < 𝐴 < 𝐴𝑤. 

 Compared to the baseline model, this policy can be welfare improving as long as the total incremental 

health benefit of the targeted treatment is sufficiently high. Note that the conditions for a welfare improvement 

are the same as in Proposition 7. However, the lump-sum payment for health data avoids the excessive data 

use registered under free access to data when the firm’s bargaining power or privacy costs are high, which 

reduces welfare. Specifically, the lump-sum payment for patients’ data prevents data use as long as 
𝐹

(1−𝜆)
<

𝐴 <
𝛽̅

2
+ 𝐹, where social welfare is higher without investment than with investment in 𝐻 using all patients’ 

data (that occurs under free access to data). 

8.3 Restricted access to health data 

In this section, we consider the case where the central (public) agency grants the firm free access to the amount 

of data that maximizes social welfare under project 𝐻, provided that this improves welfare relative to the status 

quo (that is, 𝐸(W𝐻) ≥ W0) and that such amount of data is large enough to induce the firm to invest in the 

targeted treatment (that is, 𝐸(Π𝐻) ≥ Π0). Given these constraints, the public agency’s problem is:  

 
20 If the firm has low bargaining power (namely, 𝜆 >

𝛽̅

2𝐹+𝛽̅
), then 

𝛽̅

2
+ 𝐹 <

𝐹

(1−𝜆)
 and the policy cannot induce investment 

when 
𝛽̅

2
+ 𝐹 < 𝐴 <

𝐹

(1−𝜆)
. 
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max
𝑑

𝐸(W𝐻) = 𝑑𝛼(𝑞𝐻 − 𝑞0)(𝑑(1 − 𝜀) + 𝜀) + 𝑞0 − 𝑑2
𝛽̅

2
− 𝐹, 

with 0 ≤ 𝑑 ≤ 1. From 𝐸(Π𝐻) ≥ Π0, namely  𝑑2𝐴(1 − 𝜆)(1 − 𝜀) + 𝑑𝐴𝜀(1 − 𝜆) − 𝐹 ≥ 0, we derive a lower 

bound 𝑑𝑚𝑖𝑛 for the amount of health data that is necessary for the firm to invest in project 𝐻. Specifically, we 

obtain that the firm finds it profitable to invest if and only if 𝑑 ≥
−𝐴𝜀(1−𝜆)+√(𝐴)2𝜀2(1−𝜆)2+4𝐹𝐴(1−𝜆)(1−𝜀)

2𝐴(1−𝜆)(1−𝜀)
≡

𝑑𝑚𝑖𝑛. Thus, when 𝑑𝑤 ≥ 𝑑𝑚𝑖𝑛, solving the public agency’s problem leads to achieve the first-best outcome 

(see Proposition 2).21  

 We show that this occurs when the firm has enough bargaining power (i.e., 𝜆 is sufficiently low) or when 

the firm has less bargaining power (i.e., 𝜆 is higher) and the total incremental health benefit of the new 

treatment is sufficiently high. If this benefit takes intermediate values, then the profit constraint is binding in 

equilibrium, and the first best cannot be achieved. Thus, the agency decides whether to grant free access to a 

larger amount of patients’ data than the socially optimal amount thereby inducing the firm to invest in the 

targeted treatment. In such a case, social welfare increases relative to the baseline model. Finally, when the 

firm has weak bargaining power (i.e., 𝜆 is high enough), the first best is achieved by granting the firm access 

to all patients’ data only if the total incremental health benefit of the new treatment is very high (otherwise, 

the policy does not improve welfare). Proposition 8 summarizes the results. 

Proposition 𝟖. Let 𝐴̂ be such that (𝑑𝑚𝑖𝑛|𝐴 = 𝐴̂) = (𝑑𝑤|𝐴 = 𝐴̂) and 𝐴̿ be such that 𝐸(𝑊𝐻|𝑑 = 𝑑𝑚𝑖𝑛(𝐴̿)) =

𝑊0. Then, a policy granting free access to an amount of health data selected by a public agency mitigates the 

underinvestment problem and may improve social welfare, depending on the firm’s bargaining power. More 

specifically: 

i) if  𝜆 ≤
1

2
+ √

𝐹(1−𝜀)2

4𝐹(1−𝜀)2+2𝛽̅𝜀2 ≡ 𝜆1 then the policy achieves first best; 

ii) if 𝜆1 <  𝜆 <
𝛽̅−𝐹(2−𝜀)

𝛽̅
≡ 𝜆2 then the policy achieves first best when 𝐴 ≥ 𝐴̂, with 𝐴̂ ∈ (𝐴𝑤 , 𝐴𝑤). When 

𝐴𝑤 < 𝐴̿ < 𝐴 < 𝐴̂, the policy induces a welfare-improving investment in the new treatment by providing 

the firm with an amount of data 𝑑𝑚𝑖𝑛 > 𝑑𝑤; 

iii) if  𝜆 ≥ 𝜆2 then the policy achieves first best when 𝐴 ≥
𝐹

(1−𝜆)
, otherwise it is not applied. 

 
21 Recall that, since 𝑑𝑤 = 𝛿𝑤 𝛿̅⁄ , then maximizing social welfare with respect to 𝑑 or 𝛿 leads to an equivalent outcome. 
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 To summarize, Proposition 8 finds that the proposed policy mitigates the underinvestment problem because 

it expands both the range of values of the total incremental health benefit of the targeted treatment for which 

investment occurs and the amount of health data used to develop the new treatment. Given that there is 

investment in the new treatment, social welfare is higher under the policy at issue than in the baseline model. 

 

9 Conclusions 

We have studied private incentives to invest in a targeted treatment for an eligible patient group based on 

collected personal health data, and compared them with the social optimum. In our paper, patients must be 

compensated for sharing health data, because they incur privacy costs and can partially free ride on the public 

good nature of data-driven drug innovation. In the baseline model, we have found that the pharmaceutical firm 

underinvests in the targeted treatment. We have shown that this occurs because (for a given compensation to 

patients) total costs of health data collection for the firm are higher than aggregate privacy costs. Therefore, 

privacy protection measures reducing patients’ costs of sharing health data can contribute to align private 

investment incentives with social goals. 

 On the other hand, we have shown that the firm may overinvest when she is fully informed about each 

patient’s privacy cost, so that she can offer a personalized (instead of a uniform) compensation to patients for 

sharing health data. In this case, for a given compensation to the marginal patient sharing data, data collection 

costs are lower than aggregate privacy costs. 

 Overinvestment in the new treatment may also take place in an alternative scenario where health data are 

governed by a central (public) agency and patients are not compensated for sharing data. This particularly 

occurs if the firm is provided with free access to health data for medical research, when the firm’s bargaining 

power in price negotiation is strong enough and with high privacy costs. If the firm has to make a lump-sum 

payment to the agency to access health data, then overinvestment can be mitigated. Compared to the baseline 

model, both policies improve social welfare when the total incremental health benefit of the new treatment is 

high enough (especially if privacy costs are low). 

 Finally, a policy granting free access to an amount of health data selected by the agency achieves the first-

best outcome when the firm has enough bargaining power, or when the total incremental health benefit of the 

new treatment is sufficiently high. If such benefit takes intermediate values, then the agency grants free access 
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to a larger amount of health data than socially optimal to foster investment in the new treatment. In turn, this 

improves social welfare relative to the baseline model. 

 Although it seems very promising, the process of integration of AI tools in health care is far from being 

complete, and the ultimate success of this approach to disease treatment and prevention depends on many 

factors (in primis, easy access to patients’ health data) as well as on the interplay among private organizations 

(pharmaceutical firms and R&D laboratories) and public bodies (governments, health authorities, and 

regulatory agencies), whose incentives and goals are not necessarily aligned. 

 In future work, we may depart from the assumption of full reimbursement of drugs and/or drug price 

negotiation to study whether data-driven pharmaceutical R&D widens social disparities when it implies high 

treatment prices for patients. We may also examine an alternative framework where two independent R&D 

laboratories are engaged to develop the targeted treatment, so as to investigate whether and when (potential) 

competition may improve data-driven pharmaceutical innovation. 
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Appendix 

Proof of Proposition 𝟏.  

From eq. (6), the expected profit under investment in project 𝐻 is: 

𝐸(Π𝐻) =
𝛿

𝛿̅
(1 − 𝜆)𝐴 (

𝛿

𝛿̅
(1 − 𝜀) + 𝜀) −

𝛿2

𝛿̅
+ 𝑝0 − 𝐹 

with 𝛿̅ = 𝛽̅ − 𝐴(1 − 𝜀). Rearranging the above formula, we obtain:  

𝐸(Π𝐻) =
𝛿2

𝛿̅2 (𝐴(2 − 𝜆)(1 − 𝜀) − 𝛽̅) +
𝛿

𝛿̅
𝐴(1 − 𝜆)𝜀 + 𝑝0 − 𝐹. 

 Then, the first order condition (FOC) on 𝐸(Π𝐻) yields:22 

𝛿∗ =
𝛿̅𝜀(1 − 𝜆)𝐴

2 (𝛽̅ − 𝐴(2 − 𝜆)(1 − 𝜀))
. 

The firm undertakes project 𝐻 as long as 𝐸(Π𝐻) ≥ Π0. Solving for [𝐸(Π𝐻) − Π0] =
𝛿2

𝛿̅2 (𝐴(2 − 𝜆)(1 − 𝜀) −

𝛽̅) +
𝛿

𝛿̅
𝐴(1 − 𝜆)𝜀 − 𝐹 = 0 with respect to 𝛿,  we find the following roots: 

𝛿1, 𝛿2 =
𝛿̅𝐴𝜀(1 − 𝜆) ∓ 𝛿̅√(𝐴)2𝜀2(1 − 𝜆)2 − 4 (𝛽̅ − 𝐴(2 − 𝜆)(1 − 𝜀))

2 (𝛽̅ − 𝐴(2 − 𝜆)(1 − 𝜀))
. 

If the argument under square root is non-negative, then it does exist a compensation 𝛿 such that 𝛿1 < 𝛿 < 𝛿2 

for which the firm finds it profitable to invest in project 𝐻. Since 𝐴 > 0, then the square root in the equation 

above is non-negative for 𝐴 ≥
−2𝐹(1−𝜀)(2−𝜆)+2√[𝐹(1−𝜀)(2−𝜆)]2+𝐹𝛽̅𝜀2(1−𝜆)2

𝜀2(1−𝜆)2 ≡ 𝐴𝐻 . If 𝐴 < 𝐴𝐻, then the firm does 

not invest in project 𝐻. If 𝐴 ≥ 𝐴𝐻, then 𝛿∗ =
𝛿̅𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
 maximizes the expected profit from project 𝐻 

as long as 0 <
𝛿̅𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
< 𝛽̅ − (1 − 𝜀)𝐴 = 𝛿̅ holds. This occurs when 𝐴 <

2𝛽̅

[𝜀(1−𝜆)+2(1−𝜀)(2−𝜆)]
≡

 
22 The second order condition (SOC), namely, 𝐴(2 − 𝜆)(1 − 𝜀) − 𝛽̅ < 0, holds under Assumption 1. 
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𝐴𝐻  . Then, there is an interior solution for 𝛿 (i.e. 𝛿∗ < 1) if and only if 𝐴𝐻 ≤ 𝐴 < 𝐴𝐻  , given that 𝐴𝐻  > 𝐴𝐻. 

We find that 𝐴𝐻  > 𝐴𝐻 holds under Assumption 2. 

 If 𝐴 ≥ 𝐴𝐻 , then the compensation that maximizes the expected profit from project 𝐻 is 𝛿∗ = 𝛿̅, and the 

firm collects all patients’ health data. Let us check that, for these values of 𝐴, investment in project 𝐻 is 

profitable. Condition 𝐸(Π𝐻|𝛿 = 𝛿̅ ) ≥ Π0 can be written as 𝐴(2 − 𝜆)(1 − 𝜀) − 𝛽̅ + 𝐴(1 − 𝜆)𝜀 ≥ 𝐹, or: 

𝐴 ≥
𝐹 + 𝛽̅

[(2 − 𝜆)(1 − 𝜀) + (1 − 𝜆)𝜀]
. 

Since, under Assumption 2, 
𝐹+𝛽̅

[(2−𝜆)(1−𝜀)+(1−𝜆)𝜀]
< 𝐴𝐻   holds, then when 𝐴 ≥ 𝐴𝐻   the monopolist undertakes 

project 𝐻 by collecting all patients’ data. ■ 

 

Proof of Proposition 𝟐. 

The FOC on 𝐸(W𝐻) yields 𝛿𝑤 =
𝛿̅𝜀𝐴

𝛽̅−2𝐴(1−𝜀)
.23 The government would undertake project 𝐻 as long as 𝐸(W𝐻) ≥

W0. Solving for [𝐸(W𝐻) − W0] = 0 with respect to 𝛿, we find the following roots: 

𝛿3, 𝛿4 =
𝛿̅𝐴𝜀 ∓ 𝛿̅√(𝐴)2𝜀2 − 2𝐹(𝛽̅ − 2𝐴(1 − 𝜀))

(𝛽̅ − 2𝐴(1 − 𝜀))
. 

If the argument under square root is non-negative, then it does exist a compensation 𝛿 such that 𝛿3 < 𝛿 < 𝛿4 

for which the government would invest in project 𝐻. Since 𝐴 > 0, then this condition holds for 𝐴 ≥

−2𝐹(1−𝜀)+√4[𝐹(1−𝜀)]2+2𝜀2𝐹𝛽̅

𝜀2 ≡ 𝐴𝑤. If 𝐴 < 𝐴𝑤, then the government would not invest in project 𝐻. If 𝐴 ≥ 𝐴𝑤, 

then 𝛿𝑤 =
𝛿̅𝜀𝐴

𝛽̅−2𝐴(1−𝜀)
 maximizes the expected welfare under project 𝐻 as long as 0 ≤ 𝛿𝑤 ≤ 𝛿̅ holds. This 

occurs when 𝐴 ≤
𝛽̅

(2−𝜀)
≡ 𝐴𝑤  . Then, there is an interior solution for 𝛿 if and only if 𝐴𝑤 < 𝐴 < 𝐴𝑤  , given that 

𝐴𝑤  > 𝐴𝑤. We find that 𝐴𝑤  > 𝐴𝑤 holds under Assumption 2.  

 If 𝐴 ≥ 𝐴𝑤  , then the compensation that maximizes the expected welfare under project 𝐻 is 𝛿𝑤 = 𝛿̅, and the 

government would collect all patients’ health data. Let us check that, for these values of 𝐴, investment in 

project 𝐻 does improve welfare. Condition 𝐸(W𝐻|𝛿 = 𝛿̅ ) ≥ W0 implies that 𝐴 > 𝐹 +
𝛽̅

2
 must hold. Since 𝐹 +

 
23 The SOC, namely, 𝐴 < 𝛽̅/(2(1 − 𝜀)), holds under Assumption 1. 
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𝛽̅

2
< 𝐴𝑤   holds under Assumption 2, then collecting all patients’ health data to develop project 𝐻 is socially 

optimal when 𝐴 ≥ 𝐴𝑤  . ∎ 

 

Proof of Proposition 𝟑. 

First, we show that 𝐴𝑤 < 𝐴𝐻 . This inequality can be written as: 

2𝐹(1 − 𝜀)[(2 − 𝜆) − (1 − 𝜆)2] + (1 − 𝜆)2√4(𝐹(1 − 𝜀))
2

+ 2(𝜀)2𝐹𝛽̅

< 2√𝐹2(2 − 𝜆)2(1 − 𝜀)2 + 𝜀2(1 − 𝜆)2𝐹𝛽̅ 

 Then, squaring both sides, we obtain: 

4𝐹2(1 − 𝜀)2[(2 − 𝜆)2 + (1 − 𝜆)4 − 2(2 − 𝜆)(1 − 𝜆)2] + (1 − 𝜆)4 [4(𝐹(1 − 𝜀))
2

+ 2(𝜀)2𝐹𝛽̅]

+ 4𝐹(1 − 𝜀)[(2 − 𝜆) − (1 − 𝜆)2](1 − 𝜆)2√4(𝐹(1 − 𝜀))
2

+ 2(𝜀)2𝐹𝛽̅

< 4[𝐹2(2 − 𝜆)2(1 − 𝜀)2 + 𝜀2(1 − 𝜆)2𝐹𝛽̅] 

or, equivalently: 

2(1 − 𝜀)[(2 − 𝜆) − (1 − 𝜆)2]√4(𝐹(1 − 𝜀))
2

+ 2(𝜀)2𝐹𝛽̅

< 𝜀2𝛽̅[2 − (1 − 𝜆)2] + 4𝐹(1 − 𝜀)2[(2 − 𝜆) − (1 − 𝜆)2] 

 Squaring again both sides, the inequality becomes: 

4(1 − 𝜀)2[(2 − 𝜆)2 + (1 − 𝜆)4 − 2(2 − 𝜆)(1 − 𝜆)2] [4(𝐹(1 − 𝜀))
2

+ 2(𝜀)2𝐹𝛽̅]

< 𝜀4𝛽̅2[4 + (1 − 𝜆)4 − 4(1 − 𝜆)2]

+ 16𝐹2(1 − 𝜀)4[(2 − 𝜆)2 + (1 − 𝜆)4 − 2(2 − 𝜆)(1 − 𝜆)2]

+ 8𝐹(1 − 𝜀)2[(2 − 𝜆) − (1 − 𝜆)2]𝜀2𝛽̅[2 − (1 − 𝜆)2] 

Then, rearranging the terms and further simplifying, we obtain: 

𝜆[8𝐹(1 − 𝜀)2][(1 − 𝜆)2 − (2 − 𝜆)] < 𝜀2𝛽̅[2 − (1 − 𝜆)2]2 

which can be expressed as a quadratic function in 𝜀, that is: 

𝜀2{𝛽̅[2 − (1 − 𝜆)2]2 + 𝜆8𝐹[(2 − 𝜆) − (1 − 𝜆)2]} − 16𝜀𝜆𝐹[(2 − 𝜆) − (1 − 𝜆)2]

+ 𝜆8𝐹[(2 − 𝜆) − (1 − 𝜆)2] > 0 
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This condition holds because the quadratic function in 𝜀 always takes positive values. This is because the 

coefficient of 𝜀2 is positive and the function has no real roots, given that:  

162𝜆2𝐹2[(2 − 𝜆) − (1 − 𝜆)2]2

− 32{𝛽̅[2 − (1 − 𝜆)2]2 + 𝜆8𝐹[(2 − 𝜆) − (1 − 𝜆)2]}𝜆𝐹[(2 − 𝜆) − (1 − 𝜆)2] < 0 

or equivalently: 

−𝛽̅[2 − (1 − 𝜆)2]2𝜆𝐹[(2 − 𝜆) − (1 − 𝜆)2] < 0. 

 Having proved that 𝐴𝑤 < 𝐴𝐻, when  𝐴𝑤 < 𝐴 < 𝐴𝐻 we have underinvestment in the new treatment. Indeed, 

the government would develop project 𝐻 (since 𝐸(𝑊𝐻) > 𝑊0), whereas the firm would only invest in project 

𝐻 if 𝐴 ≥ 𝐴𝐻 (when 𝐸(𝛱𝐻) ≥ 𝛱0). 

 Let us now consider the ordering of private and social critical values for investment in project 𝐻. From 

Assumption 2, we have that 𝐴𝑤 < 𝐴𝑤   and 𝐴𝐻 < 𝐴𝐻  . It can also be easily checked that 𝐴𝑤  < 𝐴𝐻  . It follows 

that there are two alternative orderings of such critical values: 

a) 𝐴𝑤 <  𝐴𝐻 < 𝐴𝑤  < 𝐴𝐻  

b) 𝐴𝑤 < 𝐴𝑤  <  𝐴𝐻 < 𝐴𝐻  

 Consider first case a). In this case, when 𝐴𝐻 < 𝐴 < 𝐴𝑤   there is an interior solution 

where both the firm and the government would invest in the new treatment by collecting health data from a 

fraction of patients (with lowest privacy costs). However, the firm offers a lower compensation to such patients, 

and thereby collects less health data than socially optimal. Indeed, we have that 𝛿∗ < 𝛿𝑤 < 1 when  

𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
<

𝜀𝐴

𝛽̅−2𝛼𝐴(1−𝜀)
, or equivalently 𝐴 <

𝛽̅(1+𝜆)

2(1−𝜀)
. Since 

𝛽̅(1+𝜆)

2(1−𝜀)
>

𝛽̅

(2−𝜀)
= 𝐴𝑤  , then 𝛿∗ < 𝛿𝑊 < 1 

always holds in the relevant range. 

 Instead, when 𝐴𝑤  < 𝐴 < 𝐴𝐻  the firm invests in treatment 𝐻 by collecting health data from patients with 

lowest privacy costs (interior solution), whereas the government would collect all patients’ data by offering 

𝛿 = 𝛿̅ > 𝛿∗ (corner solution). The same reasoning applies under case b) when 𝐴𝐻 < 𝐴 < 𝐴𝐻  . ∎ 

 

Proof of Proposition 𝟒.  

From (15), the FOC on 𝐸(Π𝐻) yields: 
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𝛿𝑝
∗

=
𝛿̅𝛽̅𝜀(1 − 𝜆)𝐴

𝛽̅2 + (𝐴)2(1 − 𝜀)2 − 2𝛽̅𝐴(1 − 𝜀)(2 − 𝜆)
 

and the SOC (i.e., 𝐴 <
𝛽̅[(2−𝜆)−√(2−𝜆)2−1]

(1−𝜀)
) holds under Assumption 1. 𝑏𝑖𝑠. The firm carries out project 𝐻 as 

long as 𝐸(Π𝐻) ≥ Π0. We find that [𝐸(Π𝐻) − Π0] = 𝛿𝑝
2

(
𝐴(1−𝜆)(1−𝜀)

𝛿̅2 −
1

2𝛽̅
) +

𝛿̂𝑝

𝛿̅
𝐴𝜀(1 − 𝜆) − 𝐹, where 

(
𝐴(1−𝜆)(1−𝜀)

𝛿̅2 −
1

2𝛽̅
) < 0 holds under Assumption 1. 𝑏𝑖𝑠. 

 Solving for [𝐸(Π𝐻) − Π0] = 0 with respect to 𝛿, we find the following roots: 

𝛿1𝑝, 𝛿2𝑝 =
𝐴𝛽̅𝛿̅𝜀(1 − 𝜆) ∓ 𝛿̅√(𝐴)2𝛽̅2𝜀2(1 − 𝜆)2 − 2𝐹𝛽̅[𝛿̅2 − 2𝛽̅𝐴(1 − 𝜆)(1 − 𝜀)]

(𝛿̅2 − 2𝛽̅𝐴(1 − 𝜆)(1 − 𝜀))
 

If the argument under square root is non-negative, then it does exist a compensation 𝛿𝑝 such that 𝛿1𝑝 ≤ 𝛿𝑝 ≤

𝛿2𝑝 for which the firm finds it profitable to develop project 𝐻. This condition is satisfied for 𝐴 ≥

−2𝛽̅𝐹(1−𝜀)(2−𝜆)+𝛽̅√[2𝐹(1−𝜀)(2−𝜆)]2+2𝐹[𝛽̅𝜀2(1−𝜆)2−2𝐹(1−𝜀)2]

[𝛽̅𝜀2(1−𝜆)2−2𝐹(1−𝜀)2]
≡ 𝐴𝐻𝑝. If 𝐴 < 𝐴𝐻𝑝 then the firm does not develop 

project 𝐻. If 𝐴 ≥ 𝐴𝐻𝑝 then 𝛿𝑝
∗
 maximizes expected profit from project 𝐻 as long as 0 ≤ 𝛿𝑝

∗
≤ 𝛿̅ holds. 

This occurs when 𝐴 ≤
𝛽̅[4−3𝜀−𝜆(2−𝜀)]−𝛽̅√(1−𝜆)(2−𝜀)(6−5𝜀−2𝜆+𝜆𝜀)

2(1−𝜀)2 ≡ 𝐴𝐻𝑝 . Then, there is an interior solution for 

𝛿𝑝 (i.e., 𝛿𝑝
∗

< 𝛿̅) if and only if 𝐴𝐻𝑝 ≤ 𝐴 < 𝐴𝐻𝑝  (Assumption 2. 𝑏𝑖𝑠 ensures that 𝐴𝐻𝑝 > 𝐴𝐻𝑝). From (10) and 

(13) we easily find that, in an interior solution, the firm offers 𝛿𝛽 = 𝛽 −
𝛿̂𝑝

∗

𝛿̅
𝐴(1 − 𝜀) = 𝛽 −

𝛽̅𝜀(1−𝜀)(1−𝜆)(𝐴)2

𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴(1−𝜀)(2−𝜆)
 to patients with privacy types 𝛽 ∈ [𝛽̃, 𝛽̂𝑝], where 𝛽̃(𝛿̂𝑝

∗
) =

𝛿̂𝑝
∗

𝛿̅
𝐴(1 − 𝜀) =

𝛽̅𝜀(1−𝜀)(1−𝜆)(𝐴)2

𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴)(1−𝜀)(2−𝜆)
 and 𝛽̂𝑝(𝛿𝑝

∗
) =

𝛽̅𝛿̂𝑝
∗∗

𝛿̅
=

𝛽̅2𝜀(1−𝜆)𝐴

𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴(1−𝜀)(2−𝜆)
< 𝛽̅. The amount of 

collected data is 𝑑𝑝
∗ =

𝛿̂𝑝
∗

𝛿̅
< 1. 

 If 𝐴 ≥ 𝐴𝐻𝑝 , then the compensation to the marginal patient that maximizes expected profit from project 𝐻 

is 𝛿𝑝
∗

= 𝛿̅ and the firm collects all patients’ health data. Condition 𝐸(Π𝐻|𝛿 = 𝛿̅) ≥ Π0 can be written as 

𝐴(1 − 𝜆) −
[𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴(1−𝜀)]

2𝛽̅
> 𝐹, or equivalently 𝐴 >

𝛽̅(2−𝜀−𝜆)−√𝛽̅[𝛽̅(3−2𝜀−𝜆)(1−𝜆)−2𝐹(1−𝜀)2]

(1−𝜀)2 , where 

𝛽̅(2−𝜀−𝜆)−√𝛽̅[𝛽̅(3−2𝜀−𝜆)(1−𝜆)−2𝐹(1−𝜀)2]

(1−𝜀)2 < 𝐴𝐻𝑝  under Assumption 2. 𝑏𝑖𝑠. Then, the monopolist decides to 
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collect all patients’ health data and develop project 𝐻 when 𝐴 ≥ 𝐴𝐻𝑝 . From (13), we easily find that, in a 

corner solution, the firm offers 𝛿(𝛽) = 𝛽 − 𝐴(1 − 𝜀) to patients with privacy types 𝛽 ∈ [𝛽̃, 𝛽̅], where 𝛽̃(𝛿̅) =

𝐴(1 − 𝜀)∎ 

 

Proof of Lemma 𝟏. 

It directly follows from comparing 𝑑𝑝
∗ =

𝛽̅𝐴𝜀(1−𝜆)

𝛽̅2+(𝐴)2(1−𝜀)2−2𝛽̅𝐴(1−𝜀)(2−𝜆)
 with 𝑑𝑤 =

𝜀𝐴

𝛽̅−2𝐴(1−𝜀)
. ∎ 

 

Proof of Proposition 𝟓. 

The result follows from comparing 𝑑𝑝
∗  and 𝑑𝑤 based on the ordering of private and social critical values of the 

incremental health benefit of developing project 𝐻. We hereby consider only cases where, under personalized 

compensation, the firm may overinvest in the new treatment (so that 0 < 𝑑𝑝
∗ ≤ 1 and 0 ≤ 𝑑𝑤 < 1). Thus, we 

focus on the interval 𝐴 ∈ [𝐴𝐻𝑝,  𝐴𝑤   ]. 

Consider first the case where 𝐴𝐻𝑝 < 𝐴𝑤. For this to occur, we must have that the firm has strong bargaining 

power, that is, 0 < 𝜆 < 𝜆̃(𝜀), where 𝜆̃(𝜀) is the smallest root of 𝜈(𝜆) = (4 − 6𝜀 + 2𝜀2)λ3 + (14𝜀 − 4𝜀2 −

11)λ2 + (10 − 12𝜀 + 4𝜀2)λ − 3 + 4𝜀 − 𝜀2 = 0. We also must have that privacy costs are low enough, that 

is, 𝛽̅ <
2𝐹(1−𝜀)2(2−(2−𝜆)𝜆(1+2𝜆))+4√𝐹2(1−𝜀)4(1−𝜆)3(1−𝜆2−2𝜆))

𝜀2(2−𝜆)2𝜆2 ≡ 𝑏2. 

In this case, when 𝐴𝐻𝑝 < 𝐴 < 𝐴𝑤, it easily follows that 𝑑𝑝
∗ > 0 = 𝑑𝑤. Then, when 𝐴 > 𝐴𝑤, we have to study 

two alternative orderings of critical values for 𝐴: 

1. if 𝐴𝐻𝑝 < 𝐴𝐻𝑝 < 𝐴𝑤 < 𝐴𝑤 then, when 𝐴𝑤 < 𝐴 < 𝐴𝑤, we have that 𝑑𝑝
∗ = 1 > 𝑑𝑤 > 0. 

2. if 𝐴𝐻𝑝 < 𝐴𝑤 < 𝐴𝐻𝑝 < 𝐴𝑤 then, when 𝐴𝑤 < 𝐴 < 𝐴𝐻𝑝, we need to compare 𝑑𝑝
∗ =

𝛿̂𝑝
∗

𝛿̅
 and 𝑑𝑤 =

𝛿𝑤

𝛿̅
. From 

Lemma 1, 
𝛿̂𝑝

∗

𝛿̅
>

𝛿𝑤

𝛿̅
 when 𝐴 < 𝐴 < 𝐴. We find that, under ordering 2., 𝐴 < 𝐴𝑤 and 𝐴 > 𝐴𝐻𝑝. It follows 

that 
𝛿̂𝑝

∗

𝛿̅
>

𝛿𝑤

𝛿̅
 whenever 𝐴𝑤 < 𝐴 < 𝐴𝐻𝑝. Furthermore, when 𝐴𝐻𝑝 < 𝐴 < 𝐴𝑤 , we easily obtain that 𝑑𝑝

∗ =

1 > 𝑑𝑤 > 0. Therefore, we can conclude that 𝑑𝑝
∗ > 𝑑𝑤 holds as long as 𝐴𝑤 < 𝐴 < 𝐴𝑤. 
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Now, consider the case where 𝐴𝐻𝑝 > 𝐴𝑤. In such a case, there is only one ordering of critical values for 𝐴 

under which the firm may overinvest in data collection and thus in project 𝐻, namely, 𝐴𝑤 < 𝐴𝐻𝑝 < 𝐴𝐻𝑝 <

𝐴𝑤. For this to occur, we must have that 0 < 𝜆 < 𝜆̃(𝜀) and 𝛽̅ > 𝑏2, or alternatively 𝜆̃(𝜀) < 𝜆 < 𝜆̅ =
3−4𝜀+𝜀2

4−4𝜀+𝜀2.  

We find that, under this ordering of critical values, 𝐴 is lower than 𝐴𝐻𝑝 and it can be higher or lower than 𝐴𝐻𝑝, 

whereas 𝛼 > 𝛼𝑤. Hence, 
𝛿̂𝑝

∗

𝛿̅
>

𝛿𝑤

𝛿̅
 holds when 𝑚𝑎𝑥{𝐴𝐻𝑝, 𝐴} < 𝐴 < 𝐴𝐻𝑝. Moreover, when 𝐴𝐻𝑝 < 𝐴 < 𝐴𝑤, 

we easily find that 𝑑𝑝
∗ = 1 > 𝑑𝑤 > 0. 

 Thus, to summarize the results obtained in the considered cases, the firm overinvests in treatment 𝐻 as long 

as 0 < 𝜆 < 𝜆̅ and 𝐴 ∈ 𝐼 ⊆ [𝐴𝐻𝑝,  𝐴𝑤   ]. ∎ 

 

Proof of Proposition 𝟔. 

We compare private and social outcomes by sorting the relevant critical values of the incremental health benefit 

of the new treatment to develop project 𝐻, depending on other parameters. We find that, if 𝜆 >
𝛽̅−𝐹(2−𝜀)

𝛽̅
≡ 𝜆2 

then 𝐴𝑤 <
𝐹

(1−𝜆)
. Hence, there is no overinvestment in treatment 𝐻 because, when private investment occurs, 

it is socially optimal to invest by using all patients’ data. Instead, underinvestment arises when 𝐴 ∈

(𝐴𝑤 ,   
𝐹

(1−𝜆)
 ). 

It follows that overinvestment may arise only if 𝜆 < 𝜆2. We distinguish the following cases: 

(i) if 0 < 1 −
𝐹(1−𝜀)

𝛽̅
−

√𝐹[2𝐹(1−𝜀)2+𝛽̅ 𝜀2]

𝛽̅√2
< 𝜆 < 𝜆2, then we have 𝐴𝑤 <

𝐹

(1−𝜆)
< 𝐴𝑤. Thus, 

underinvestment arises when 𝐴 ∈ (𝐴𝑤 ,
𝐹

(1−𝜆)
), whereas there is overinvestment when 𝐴 ∈

(
𝐹

(1−𝜆)
, 𝐴𝑤) because the firm invests by using too much data as compared to the social optimum (where 

𝑑𝑤 < 1). Otherwise, private incentives and social goals are aligned. 

(ii) if 0 < 𝜆 < 1 −
𝐹(1−𝜀)

𝛽̅
−

√𝐹[2𝐹(1−𝜀)2+𝛽̅ 𝜀2]

𝛽̅√2
, then we have 

𝐹

(1−𝜆)
< 𝐴𝑤 < 𝐴𝑤 . Thus, overinvestment 

arises when 𝐴 ∈ (
𝐹

(1−𝜆)
, 𝐴𝑤). Specifically, when 𝐴 ∈ (

𝐹

(1−𝜆)
, 𝐴𝑤) the firm develops project 𝐻 when 
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it is not socially optimal, whereas when 𝐴 ∈ (𝐴𝑤 , 𝐴𝑤  ) the firm invests by using too much data as 

compared to the social optimum. Otherwise, private incentives and social goals are aligned. 

To conclude, there is overinvestment in treatment 𝐻 when both 𝜆 < 𝜆2 and 
𝐹

(1−𝜆)
< 𝐴 < 𝐴𝑤 hold. Since 𝜆2 is 

increasing in 𝛽̅ then overinvestment is more likely when 𝛽̅ is high. ∎ 

 

Proof of Proposition 𝟕. 

Let us analyze separately the two cases where private incentives to invest in project 𝐻 are misaligned under 

the policy and in the baseline model. In both cases, the firm invests by using all patients’ data whenever they 

are freely available. 

 First, let 
𝐹

(1−𝜆)
< 𝐴 <  𝐴𝐻. Then, there is no investment in the baseline model. Hence, the policy improves 

social welfare if and only if 𝐸(𝑊𝐻|𝑑 = 1) = 𝐴 −
𝛽̅

2
+ 𝑞0 − 𝐹 > 𝑞0 = 𝑊0, that is, 𝐴 >

𝛽̅

2
+ 𝐹. 

 Note that, if 𝛽̅ < 𝛽𝑙 =
2𝐹𝜆

1−𝜆
, then we have 

𝛽̅

2
+ 𝐹 <

𝐹

(1−𝜆)
 and thereby social welfare is always higher under 

the considered policy when 𝐴 ∈ (
𝐹

(1−𝜆)
, 𝐴𝐻). Instead, if 𝛽̅ > 𝛽ℎ =

2𝐹(𝜀(2(2−𝜆)−𝜀(1−𝜆)2)+2𝜆)+4𝐹√2𝜀2+4𝜀𝜆+𝜆2−𝜀(2+𝜀)𝜆2

𝜀2(1−𝜆)2 > 𝛽𝑙 then we have 
𝛽̅

2
+ 𝐹 > 𝐴𝐻 and thereby social 

welfare is always lower under the policy when 𝐴 ∈ (
𝐹

(1−𝜆)
, 𝐴𝐻). Finally, if 𝛽𝑙 < 𝛽̅ < 𝛽ℎ then social welfare 

is higher (respectively, lower) under the policy when 𝐴 ∈ (
𝛽̅

2
+ 𝐹, 𝐴𝐻) (𝐴 ∈ (

𝐹

(1−𝜆)
,

𝛽̅

2
+ 𝐹) ). 

 Now, let 𝐴𝐻 < 𝐴 < 𝐴𝐻. Then, in the baseline model, the firm collects an amount of patients’ data equal to 

𝑑∗ =
𝜀(1−𝜆)𝐴

2(𝛽̅−𝐴(2−𝜆)(1−𝜀))
  (see Proposition 1). Hence, the policy improves social welfare if and only if 

𝐸(𝑊𝐻|𝑑 = 1) > 𝐸(𝑊𝐻|𝑑∗), that is 𝐴 −
𝛽̅

2
>

𝐴2𝜀2(1−𝜆)(𝛽̅(3+𝜆)−2𝐴(1−𝜀)(3−𝜆))

8(𝛽̅−𝐴(1−𝜀)(2−𝜆))
2 , or, 𝐴 >

𝛽̅(8−5𝜀−2𝜆+3𝜀𝜆)−𝛽̅√9𝜀2+2(10−7𝜀)𝜀𝜆+(2−3𝜀)2𝜆2

4(1−𝜀)(4−𝜀(1−𝜆)−2𝜆)
≡ 𝐴̃. 

Since 𝐴̃ < 𝐴𝐻, then social welfare is higher under the policy at issue when the condition 𝑚𝑎𝑥 {𝐴𝐻 , 𝐴̃} < 𝐴 <

  𝐴𝐻 holds. This means that, if 𝐴̃ < 𝐴𝐻 then when 𝐴 ∈ (𝐴𝐻 , 𝐴𝐻) the policy always improves welfare. We find 

that this condition holds when 𝛽̅ < 𝛽̃, with 𝛽̃ =



39 

𝐹(8𝜆+3𝜀2(1−𝜆2)+2𝜀(6−𝜆−𝜆2))+𝐹√(4+𝜀(1−𝜆))
2

(9𝜀2+2(10−7𝜀)𝜀𝜆+(2−3𝜀)2𝜆2)

2𝜀2(1−𝜆)2 . Finally, if 𝛽̅ <  𝛽𝑙 < 𝛽̃ then the 

considered policy never reduces welfare. ∎ 

 

Proof of Proposition 𝟖. 

Let us first exclude the cases where investment in treatment 𝐻 is totally precluded. This occurs when 

developing project 𝐻 is not profitable even if the firm is granted free access to all patients’ data. This means 

that Π𝐻(𝑑 = 1) < Π0 holds, that is, 𝐴 <
𝐹

(1−𝜆)
. Alternatively, this occurs when there is no feasible value of d 

such that 𝐸(𝑊𝐻) ≥  𝑊0, that is, when 𝐴 < 𝐴𝑤. In such a case, the firm is not allowed to access health data. 

 When 𝑑𝑤 ≥ 𝑑𝑚𝑖𝑛 then the agency’s problem is equivalent to the welfare maximization problem in Section 

5. Thus, the agency grants the firm free access to 𝑑𝑤 =
𝛿𝑤

𝛿̅
= 𝑚𝑖𝑛 {

𝜀𝐴

(𝛽̅−2𝐴(1−𝜀))
 , 1}, provided that 𝐴 ≥ 𝐴𝑤. 

 Consider an interior solution of the welfare maximization problem, with 𝑑𝑤 < 1 and 𝐴𝑤 ≤ 𝐴 < 𝐴𝑤. 

Condition 𝑑𝑤 ≥ 𝑑𝑚𝑖𝑛 can be written as: 

Γ ≡ −(𝐴)3𝜀2(1 − 𝜀)(1 − 𝜆) + (𝐴)2(𝛽̅𝜀2(1 − 𝜆) − 4𝐹(1 − 𝜀)2) + (𝐴)4𝛽̅𝐹(1 − 𝜀) − 𝛽̅2𝐹 ≥ 0 

 Since 
𝜕Γ

𝜕𝐴
> 0 in the interval [𝐴𝑤 , 𝐴𝑤], then the sign of Γ can be determined by studying the sign of the 

function evaluated at the boundaries of the interval. We thus find that: 

i) if 0 < 𝜆 ≤
1

2
+ √

𝐹(1−𝜀)2

4𝐹(1−𝜀)2+2𝛽̅𝜀2 ≡ 𝜆1, then (Γ|𝐴 = 𝐴𝑤) ≥ 0, so that 𝑑𝑤 ≥ 𝑑𝑚𝑖𝑛. Since 
𝐹

(1−𝜆)
< 𝐴𝑤, the 

first best is achieved in the whole interval [𝐴𝑤 , 𝐴𝑤].  

ii) if 𝜆1 < 𝜆 <
𝛽̅−𝐹(2−𝜀)

𝛽̅
≡ 𝜆2, then (Γ|𝐴 = 𝐴𝑤) < 0 and (Γ|𝐴 = 𝐴𝑤) > 0. Thus, there is a critical value 

𝐴̂ ∈ (𝐴𝑤 , 𝐴𝑤) such that 𝑑𝑤 = 𝑑𝑚𝑖𝑛 and the first best is achieved when 𝐴̂ ≤ 𝐴 ≤ 𝐴𝑤. Since 
𝐹

(1−𝜆)
 can be 

higher or lower than 𝐴𝑤, then 𝑑 = 𝑑𝑚𝑖𝑛 might solve the agency’s problem when 𝑚𝑎𝑥 {𝐴𝑤 ,
𝐹

(1−𝜆)
} ≤ 𝐴 ≤

𝐴̂. 

iii) if 𝜆 ≥ 𝜆2, then (Γ|𝐴 = 𝐴𝑤) ≤ 0 and 𝑑𝑤 < 𝑑𝑚𝑖𝑛 in the whole interval [𝐴𝑤 , 𝐴𝑤]. Nonetheless, since 

𝐹

(1−𝜆)
> 𝐴𝑤  then 𝑑 = 𝑑𝑚𝑖𝑛 cannot be a solution of the agency’s problem. 
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 Consider now a corner solution where 𝑑𝑤 = 1 and 𝐴 > 𝐴𝑤. We find that, if 𝜆 < 𝜆2 then 
𝐹

(1−𝜆)
< 𝐴𝑤 , so 

that 𝑑𝑤 > 𝑑𝑚𝑖𝑛 and the first best is achieved when 𝐴 > 𝐴𝑤. Instead, if 𝜆 ≥ 𝜆2 then 
𝐹

(1−𝜆)
> 𝐴𝑤, so that 𝑑𝑤 >

𝑑𝑚𝑖𝑛 and the first best is achieved when 𝐴 >
𝐹

(1−𝜆)
. Otherwise, the policy is not applied because it does not 

improve welfare. 

 Now, let 𝜆1 < 𝜆 <
𝛽̅−𝐹(2−𝜀)

𝛽̅
≡ 𝜆2 and 𝑚𝑎𝑥 {𝐴𝑤 ,

𝐹

(1−𝜆)
} ≤ 𝐴 ≤ 𝐴̂ < 𝐴𝑤 . Thus, 𝑑𝑚𝑖𝑛 does solve the 

agency’s problem when 𝐸(𝑊𝐻|𝑑 = 𝑑𝑚𝑖𝑛) ≥ 𝑊0 = 𝑞0. Condition 𝐸(𝑊𝐻|𝑑 = 𝑑𝑚𝑖𝑛) ≥ 𝑊0 can be written as: 

Ζ ≡
𝛽̅𝜀

4(1 − 𝜀)2
(√𝜀2 +

4𝐹(1 − 𝜀)

𝐴(1 − 𝜆)
− 𝜀) −

𝐹(𝛽̅ − 2𝐴(1 − 𝜀)𝜆)

2𝐴(1 − 𝜀)(1 − 𝜆)
> 0 

with Ζ increasing in 𝐴 as long as 𝑚𝑎𝑥 {𝐴𝑤 ,
𝐹

(1−𝜆)
} ≤ 𝐴 ≤ 𝐴𝑤. As above, we study the sign of Ζ evaluated at 

the boundaries of the interval and find that the sign is negative (respectively, positive) at the lower (upper) 

bound. Then, it does exist a critical value 𝐴̿ ∈ [𝑚𝑎𝑥 {𝐴𝑤 ,
𝐹

(1−𝜆)
} , 𝐴𝑤] such that Ζ(𝐴̿) = 0. We find that 𝐴̿ < 𝐴̂. 

Indeed, if 𝐴 = 𝐴̂ then 𝑑𝑤 = 𝑑𝑚𝑖𝑛. Hence, Ζ(𝐴̂) > 0 because 𝐴 > 𝐴𝑤  

ensures that 𝐸(𝑊𝐻|𝑑 = 𝑑𝑤) > 𝑊0. It follows that, when 𝐴̿ ≤ 𝐴 ≤ 𝐴̂, social welfare improves relative to the 

status quo when the firm invests in treatment 𝐻 by using a larger amount of data than the socially optimal 

amount. Instead, when 𝑚𝑎𝑥 {𝐴𝑤 ,
𝐹

(1−𝜆)
} < 𝐴 < 𝐴̿ the agency grants no access to data and there is no 

investment. 

 It is straightforward to show that, under the proposed policy, social welfare is at least as high as in the 

baseline model. Indeed, the condition 𝐸(𝑊𝐻) > 𝑊0 ensures higher welfare when there is investment under the 

policy and no investment in the baseline model. When instead the firm invests by using the suboptimal amount 

of data 𝑑∗ in the baseline model, the policy achieves first best because 𝑑𝑚𝑖𝑛 < 𝑑∗ < 𝑑𝑤 holds. ∎ 

 




