

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

**Conical FDH Estimators of Directional
Distances and Luenberger
Productivity Indices for General
Technologies**

Cinzia Daraio
Simone Di Leo
Léopold Simar

Technical Report n. 01, 2024

CONICAL FDH ESTIMATORS OF DIRECTIONAL DISTANCES AND LUENBERGER PRODUCTIVITY INDICES FOR GENERAL TECHNOLOGIES

CINZIA DARAIO*

daraio@diag.uniroma1.it

SIMONE DI LEO*

dileo@diag.uniroma1.it

LÉOPOLD SIMAR[§]

leopold.simar@uclouvain.be

February 2024

Abstract

In productivity and efficiency analysis, directional distances are very popular, due to their flexibility for choosing the direction to evaluate the distance of Decision Making Units (DMUs) to the efficient frontier of the production set. The theory and the statistical properties of these measures are today well known in various situations. But so far, the way to measure directional distances to the cone spanned by the attainable set has not been analyzed. In this paper we fill this gap and describe how to define and estimate directional distances to this cone, for general technologies, i.e. without imposing convexity. Their statistical properties are also developed. This allows us to measure distances to non-convex attainable set under Constant Returns to Scale (CRS) but also to measure and estimate Luenberger productivity indices and their decompositions for general technologies. The way to make inference on these indices is also described in details. We propose illustrations with some simulated data, as well as, a practical example of inference on Luenberger productivity indices and their decompositions with a well-known real data set.

Key Words: Nonparametric production frontiers, Cone, DEA, FDH, Directional Distances, Luenberger productivity indices

JEL Classification: C1,C14, C13, **Area of Review:** Optimization.

*Department of Computer, Control and Management Engineering A. Ruberti (DIAG), Sapienza University of Rome, via Ariosto 25, 00185, Rome, Italy. The financial support of the Sapienza University of Rome, research award no. RM11916B8853C925 and no. RM12117A8A5DBD18, is gratefully acknowledged.

[§]Institut de Statistique, Biostatistique et Sciences Actuarielles (ISBA), LIDAM, Université Catholique de Louvain, Voie du Roman Pays 20, B 1348 Louvain-la-Neuve, Belgium.

1 The Framework and Our Contribution

In productivity and efficiency analysis, Decision Making Units (DMUs) are benchmarked against a technical efficient frontier, characterized by the optimal combinations of the inputs (resources or factors of production) and the outputs (goods or services produced). Formally, let Ψ denote the production set, i.e. the set of technically feasible combinations of p inputs (x) and q outputs (y). It can be defined as

$$\Psi = \{(x, y) \in \mathbb{R}_+^{p+q} \mid x \text{ can produce } y\}. \quad (1.1)$$

This set shares the usual characteristics coming from economic theory (see e.g. Shephard, 1970). A minimal set of assumptions is that Ψ is closed and freely disposable in the inputs and the outputs. All the inputs and outputs are freely (or strongly) disposable if $(x, y) \in \Psi \Rightarrow (\tilde{x}, \tilde{y}) \in \Psi, \forall \tilde{x} \geq x, \tilde{y} \leq y$. Sometimes, convexity of Ψ is also assumed. In this paper we will focus on more general technologies, i.e. without requiring the convexity of Ψ . See e.g. Kneip et al. (2023) and the references therein for a discussion on why the convexity of the production set may not be an appropriate assumption. The efficient boundary (frontier) of this set is the set of efficient combinations of inputs and outputs

$$\Psi^\partial = \{(x, y) \in \Psi \mid (\gamma^{-1}x, \gamma y) \notin \Psi, \forall \gamma > 1\}. \quad (1.2)$$

Of particular interest for the purpose of defining productivity indices, including Malmquist and Luenberger indices, is the cone $\mathcal{C}(\Psi)$ spanned by Ψ , defined by

$$\mathcal{C}(\Psi) = \{(\tilde{x}, \tilde{y}) \mid \tilde{x} = ax, \tilde{y} = ay, \forall a \in \mathbb{R}_+ \text{ and } \forall (x, y) \in \Psi\}. \quad (1.3)$$

Since Ψ is not necessarily convex, $\mathcal{C}(\Psi)$ is not necessarily convex. In the particular case of Constant Returns to Scale (CRS), we have $\mathcal{C}(\Psi) = \Psi$, for both convex and non-convex cases, but in general $\Psi \subseteq \mathcal{C}(\Psi)$. Note that $\mathcal{C}(\Psi)$ is a cone pointed at zero. Analogous to (1.2), we can define the frontier of the set $\mathcal{C}(\Psi)$ as

$$\mathcal{C}^\partial(\Psi) = \{(x, y) \in \mathcal{C}(\Psi) \mid (\gamma^{-1}x, \gamma y) \notin \mathcal{C}(\Psi), \forall \gamma > 1\}. \quad (1.4)$$

Figure 1 illustrates a case for $q = 1$ and $p = 2$. Here we have one output and two inputs. We observe on the left panel increasing then decreasing returns to scale. The isoquants in the input space (the boundary of the sections) are defined by parts of circles, as illustrated by the contour plots on the floor of both panels of Figure 1. Note that this produces, for this particular example, also non-convex sections. The right panel of Figure 1 could also correspond to a nonconvex production set with CRS, but it is here the cone spanned by a general Ψ like the one displayed in the left panel of Figure 1.

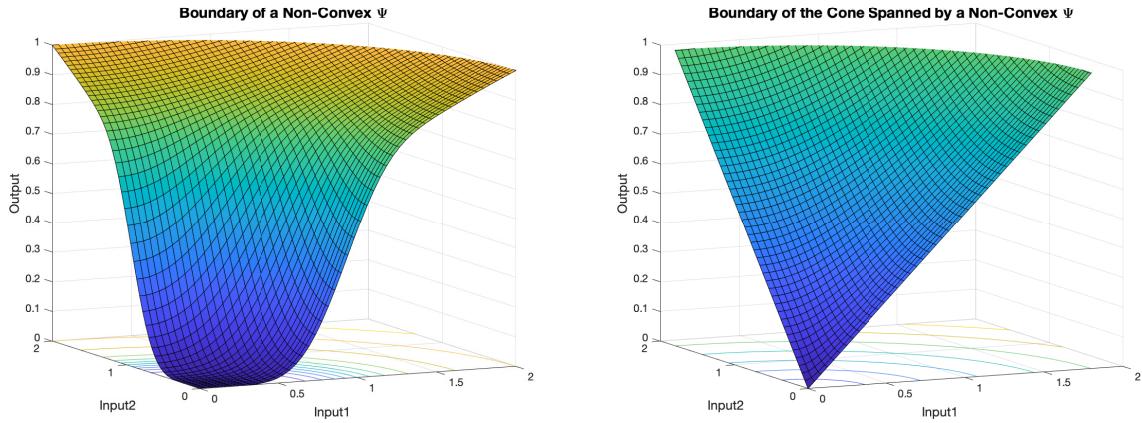


Figure 1: *Boundaries of a non-convex Ψ and of the cone spanned by a non-convex Ψ .* The left panel shows a typical efficient boundary of a non-convex production set Ψ . The right panel displays the shape of $\mathcal{C}(\Psi)$, the cone spanned by this type of set. The contour plots drawn on the floor are the isoquants in the inputs space.

Typically the efficiency of a DMU (x, y) is measured by its distance from the boundary Ψ^δ . The Farrell-Debreu radial distances (input or output oriented) are the most popular (see Debreu, 1951; Farrell, 1957), but in this paper we mainly focus on the very flexible directional distances measures (see Chambers et al., 1998), defined as

$$\delta(x, y) = \delta(x, y; d_x, d_y) := \sup\{\delta \mid (x - \delta d_x, y + \delta d_y) \in \Psi\}, \quad (1.5)$$

where $d_x \in \mathbb{R}_+^p$ and $d_y = \mathbb{R}_+^q$. When possible, and when no ambiguities exist, we will use the simpler notation $\delta(x, y)$ for $\delta(x, y; d_x, d_y)$, when it is understood that the directions have been well specified. Hence, the distance is measured along a path determined by a direction vector $d' = (-d'_x, d'_y)$ in an additive way. Clearly if $(x, y) \in \Psi$, $\delta(x, y) \geq 0$ and if (x, y) lies on the efficient frontier (1.2), $\delta(x, y) = 0$.

It is well-known that for $(x, y) \in \mathbb{R}_+^{p+q}$, the Farrell-Debreu radial measures are particular cases of the directional distances: for the input oriented case, the efficiency score $\theta(x, y) = 1 - \delta(x, y; x, 0_q) \leq 1$ represents the percentage of reduction of each input the unit (x, y) has to perform to reach the efficient frontier. Generally, 0_m denotes a vector of zeros of dimension m . Similarly, the output oriented measure of efficiency is $\lambda(x, y) = 1 + \delta(x, y; 0_p, y) \geq 1$. It represents the percentage of increase of each output to reach the efficient frontier.

There are many possible choices for the direction vector d , it can be specific for each DMU or we can chose, in a more “egalitarian” way, a common direction for all the DMUs. This shows the flexibility of the approach for the evaluation of efficiencies based on directional distance functions, see e.g. Färe et al.(2008) and Daraio and Simar (2016) for more

discussions.

In a similar way, we can define the directional distance from a production plan (x, y) to the boundary of the cone spanned by the production set $\mathcal{C}(\Psi)$

$$\delta_C(x, y) = \delta_C(x, y; d_x, d_y) := \sup\{\delta \mid (x - \delta d_x, y + \delta d_y) \in \mathcal{C}(\Psi)\}. \quad (1.6)$$

This coincides to the directional efficiency measure for (x, y) under a CRS assumption, i.e. if $\mathcal{C}(\Psi) = \Psi$, $\delta_C(x, y) = \delta(x, y)$. More generally, $\Psi \subseteq \mathcal{C}(\Psi)$ and $\delta_C(x, y) \geq \delta(x, y)$ is needed for defining productivity indices in general cases (see below Section 4). Sometimes it will be useful, in the notation, to use the equivalence

$$\delta_C(x, y) = \delta(x, y \mid \mathcal{C}(\Psi)), \quad (1.7)$$

which makes explicit the fact that we use a directional distance to the boundary of $\mathcal{C}(\Psi)$ and not of Ψ .

When data are available on the different units at several time periods, researchers are interested to analyze the change in productivity, and in efficiency, but also to check if technical changes have occurred. All these issues can be analyzed though productivity indices among which the Malmquist Productivity Index (MPI) is very popular (see e.g. Malmquist 1953, Caves et al. 1982 and Färe et al. 1994). Surveys on Malmquist index theory and applications in different sectors are offered in Färe et al. (1998, 2008). The MPI is mainly defined in terms of radial efficiency measures. The statistical inference on the MPI, its aggregations and decompositions has been developed in recent years (see, e.g., Kneip et al. 2021, 2023, Pham et al. 2023) thanks in part to recent results on central limit theorems for efficiency estimators (see Kneip et al. 2015, Simar and Zelenyuk 2018) providing the possibility of assessing the statistical significance and confidence intervals of indices and their components.

The MPI has been extended to Luenberger Productivity Indices (LPI, see Chambers et al., 1996 and Chambers, 2002), to allow for the use of directional distances.

Boussemart et al. (2003) and Epure et al. (2011), using radial (proportional) directional distances notice that the LPI generalizes the MPI, because it allows to investigate situations where simultaneous proportional reduction of inputs and increasing of outputs defines the efficient boundaries. Kevork et al. (2017) develop Shephard's type output directional efficiency measures to analyze European banks and more recently, Pastor et al. (2020) introduce a proportional directional distance function in the MPI and derive a new decomposition of the MPI.

In this paper we make a generalization of the previous literature, since, thanks to our $\delta_C(x, y; d_x, d_y)$ defined above, any directional distance vector d can be used, and estimated, to measure distances of a DMU (x, y) to the boundary of $\mathcal{C}(\Psi)$.

Our Contribution can be summarized as follows. First we define and we estimate directional distances to the boundary of the cone spanned by Ψ , for general (possibly non-convex) production sets and for any vector of directions (d). Boussemart et al. (2003) and Epure et al. (2011) assume convexity and use radial directional distances (i.e. $d_x = x$ and $d_y = y$). Kevork et al. (2017) adopt output directional distances and Pastor et al. (2020) work with proportional directional distances. Hence, to the best of our knowledge, we fill an existing gap in the literature. Second, given our new tools introduced above, we can define and estimate Luenberger Productivity Indices (LPIs) and their various decompositions for general technologies and for any vector of directions. Finally we provide statistical tools to assess the statistical significance of the new distance functions and of the derived productivity indices and their decompositions. We point out that none of the existing studies on this topic have developed statistical inference for directional distances of general technologies and for the LPI and its decompositions. This, too, represents an advance in the existing literature.

The paper is organized as follows. Section 2 introduces the basic properties of $\delta_C(x, y)$, with the various versions one can obtain by selecting particular vectors of directions. Section 3 suggests nonparametric estimators and Section 4 shows how to define and to estimate LPIs under general technologies. The way to conduct inference is detailed in Appendix A. Section 5 illustrates the various tools introduced in the paper with some simulated samples and practical inference on LPIs and its components is illustrated with a real data of the literature. Section 6 concludes the paper.

2 Computation and Properties of $\delta_C(x, y)$

2.1 Basic properties

Before going to see how we can characterize $\delta_C(x, y)$, we reconsider the way to define $\delta(x, y)$ with its equivalent as described in Daraio et al. (2020). For simplicity we assume here that all the elements of d_x and of d_y are strictly positive. It would be easy, but at heavy notational cost, to handle cases where some elements of d are equal to zero, as indicated in Daraio et al. (2020). We will see in Section 2.2 that the cases where $d_x = 0_p$ or the case where $d_y = 0_q$ are easy to handle.

We denote by (x_0, y_0) the point of interest. Directional distances are independent of the units of measurements as described in Färe et al. (2008) and formally proven in Appendix A in Simar and Vanhems (2012). As a consequence, we can rewrite (1.5) as

$$\delta(x_0, y_0; d_x, d_y) = \delta(x_0^*, y_0^*; i_p, i_q), \quad (2.1)$$

with $x_0^* = x_0 \oslash d_x$, $y_0^* = y_0 \oslash d_y$, where \oslash is the Hadamard component-wise division of

vectors, and i_m is the m -vector of ones. Similarly below we will denote $x^* = x \oslash d_x$ and $y^* = y \oslash d_y$. As shown in Daraio et al. (2020), the last equation allows us to rewrite the directional distance as

$$\delta(x_0, y_0; d_x, d_y) = \sup_{(x,y) \in \Psi} \left\{ \min_{\substack{j=1, \dots, p \\ k=1, \dots, q}} [x_{0,j}^* - x_j^*, y_k^* - y_{0,k}^*] \right\}. \quad (2.2)$$

Now we can characterize more easily the distance $\delta_C(x_0, y_0)$. Figure 2 illustrates the idea in the simplest case where $p = q = 1$. The point $A = (x_0, y_0)$ is projected in the direction d on the frontier of $\mathcal{C}(\Psi)$ at $A_g^\partial = x_0 - \delta_C(x_0, y_0)d_x, y_0 + \delta_C(x_0, y_0)d_y$. Clearly by properties of similar triangles we have

$$\delta_C(x_0, y_0) = \sup_{a>0} \left\{ \frac{\delta(ax_0, ay_0)}{a} \mid (ax_0 - \delta(ax_0, ay_0)d_x, ay_0 + \delta(ax_0, ay_0)d_y) \in \Psi \right\}. \quad (2.3)$$

In Figure 2, this supremum is achieved at $a = a_g$, defining the point $a_g A$ on the ray passing through $A = (x_0, y_0)$ and its projection P^∂ on the frontier in the direction d . The latter has coordinates $(a_g x_0 - \delta(a_g x_0, a_g y_0)d_x, a_g y_0 + \delta(a_g x_0, a_g y_0)d_y)$. The distance between the points $a_g A$ and P^∂ , given by $\|(a_g A)P^\partial\|$, is proportional to the distance $\|AA_g^\partial\|$ and the factor of proportionality is given by a_g .

In fact by using the transformations above and (2.2), we have

$$\delta_C(x_0, y_0) = \sup_{a>0} \left\{ \frac{1}{a} \sup_{(x,y) \in \Psi} \left\{ \min_{\substack{j=1, \dots, p \\ k=1, \dots, q}} [ax_{0,j}^* - x_j^*, y_k^* - ay_{0,k}^*] \right\} \right\}. \quad (2.4)$$

We will see below that in various particular cases, we have more explicit solutions of this problem and in particular how these provide, in practice, easy to compute estimators. In particular, it will be useful to notice that if $(x_0, y_0) \in \Psi$, we can find a value for a and a point $(x, y) \in \Psi$ such that the supremum is positive, so we should have $ax_0 \geq x$ and $ay_0 \leq y$ for characterizing the supremum. This provides lower and upper bounds for a_{opt} , the optimal a when $(x_0, y_0) \in \Psi$:

$$\min_{(x,y) \in \Psi} \left\{ \max_{j=1, \dots, p} \frac{x_j}{x_{0,j}} \right\} \leq a_{opt} \leq \max_{(x,y) \in \Psi} \left\{ \min_{k=1, \dots, q} \frac{y_k}{y_{0,k}} \right\}. \quad (2.5)$$

These corresponds (for the case $p = q = 1$) to the two points where the ray aA intersects the frontier of Ψ .

2.2 Particular cases: input and output orientations

The basic property in (2.4) simplifies when we consider “oriented” directional distances, i.e. when either, $d_x = 0_p$ and only $d_y > 0_q$, or, $d_y = 0_q$ and $d_x > 0_p$. In the first case we have

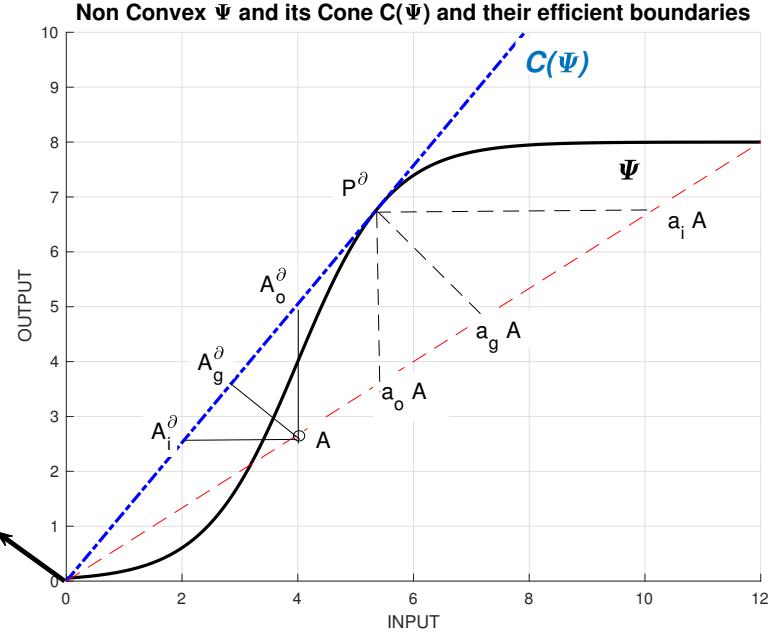


Figure 2: Illustration of a production set and its boundary when $p = q = 1$. The point of interest is $A = (x_0, y_0)$, the solid black line is the efficient boundary of Ψ , the dash-dotted blue is the frontier of the cone $C(\Psi)$ and the dashed red line is the ray passing through A . The arrow from the origin to the NW is the chosen direction $d = (-d_x, d_y)$.

an output orientation, whereas in the second case, we have an input orientation. We first consider the input orientation, in this case, we have

$$\delta^{\text{inp}}(x_0, y_0) = \sup\{\delta \mid (x_0 - \delta d_x, y_0) \in \Psi\}, \quad (2.6)$$

and following Daraio et al. (2020), this can be written as

$$\delta^{\text{inp}}(x_0, y_0) = \sup_{(x, y) \in \Psi, y \geq y_0} \left\{ \min_{j=1, \dots, p} [x_{0,j}^* - x_j^*] \right\}. \quad (2.7)$$

For defining the distance to the boundary of $C(\Psi)$, we still use Figure 2 to illustrate the idea. The point $A = (x_0, y_0)$ is projected in the input direction d_x at $A_i^\partial = x_0 - \delta_C(x_0, y_0) d_x, y_0$. Again by properties of similar triangles, the distance $\|(a_i A)P^\partial\|$ is proportional to the distance $\|AA_i^\partial\|$ and the factor of proportionality is given by a_i which is the value of a that solves the optimization problem

$$\delta_C^{\text{inp}}(x_0, y_0) = \sup_{a > 0} \left\{ \frac{\delta(ax_0, ay_0)}{a} \mid (ax_0 - \delta(ax_0, ay_0) d_x, ay_0) \in \Psi \right\}. \quad (2.8)$$

which, by (2.7), is equivalent to

$$\begin{aligned}\delta_C^{\text{inp}}(x_0, y_0) &= \sup_{a>0} \left\{ \frac{1}{a} \sup_{(x,y) \in \Psi, y \geq ay_0} \left\{ \min_{j=1,\dots,p} [ax_{0,j}^* - x_j^*] \right\} \right\}, \\ &= \sup_{a>0} \left\{ \sup_{(x,y) \in \Psi, y \geq ay_0} \left\{ \min_{j=1,\dots,p} [x_{0,j}^* - a^{-1}x_j^*] \right\} \right\}\end{aligned}\quad (2.9)$$

Now define $\tilde{a}_0^{\text{out}} = \min_{k=1,\dots,q} [y_k/y_{0,k}]$ (note that $\tilde{a}_0^{\text{out}} = \tilde{a}_0^{\text{out}}(x, y, x_0, y_0)$). Clearly we have $\tilde{a}_0^{\text{out}} y_0 \leq y$ while $ay_0 \not\leq y$ for any $a > \tilde{a}_0^{\text{out}}$. Now, $\min_{j=1,\dots,p} [x_{0,j}^* - a^{-1}x_j^*] \leq \min_{j=1,\dots,p} [x_{0,j}^* - (a_0^{\text{out}})^{-1}x_j^*]$ for any $a \leq \tilde{a}_0^{\text{out}}$, so the solution to (2.9) is given for this value of a . Then we have

$$\delta_C^{\text{inp}}(x_0, y_0) = \sup_{(x,y) \in \Psi} \left\{ \frac{1}{\min_{k=1,\dots,q} [y_k/y_{0,k}]} \left\{ \min_{j=1,\dots,p} \left[\min_{k=1,\dots,q} [y_k/y_{0,k}] x_{0,j}^* - x_j^* \right] \right\} \right\}. \quad (2.10)$$

We will see in Section 3 that this expression provides an explicit formula for nonparametric estimators, where the unknown Ψ will be replaced by its Free Disposal Hull (FDH) estimator (see Deprins et al. 1984).

For the output orientation, the argument is very similar. We have

$$\delta^{\text{out}}(x_0, y_0) = \sup \{ \delta \mid (x_0, y_0 - \delta d_y) \in \Psi \}, \quad (2.11)$$

which can be written as (see Daraio et al., 2020)

$$\delta^{\text{out}}(x_0, y_0) = \sup_{(x,y) \in \Psi, x \leq x_0} \left\{ \min_{k=1,\dots,q} [y_k^* - y_{0,k}^*] \right\}. \quad (2.12)$$

Here, in Figure 2, we have to characterize the proportionality between $\|(a_o A)P^\partial\|$ and $\|AA_o^\partial\|$ and the factor of proportionality is given by a_o which is the value of a that solves the optimization problem

$$\delta_C^{\text{out}}(x_0, y_0) = \sup_{a>0} \left\{ \frac{\delta(ax_0, ay_0)}{a} \mid (ax_0, ay_0 + \delta(ax_0, ay_0)d_y) \in \Psi \right\}. \quad (2.13)$$

which, by (2.12), is equivalent to

$$\begin{aligned}\delta_C^{\text{out}}(x_0, y_0) &= \sup_{a>0} \left\{ \frac{1}{a} \sup_{(x,y) \in \Psi, x \leq ax_0} \left\{ \min_{k=1,\dots,q} [y_k^* - ay_{0,k}^*] \right\} \right\}, \\ &= \sup_{a>0} \left\{ \sup_{(x,y) \in \Psi, x \leq ax_0} \left\{ \min_{k=1,\dots,q} [a^{-1}y_k^* - y_{0,k}^*] \right\} \right\}\end{aligned}\quad (2.14)$$

Now define $\tilde{a}_0^{\text{inp}} = \max_{j=1,\dots,p} [x_j/x_{0,j}]$. Clearly we have $\tilde{a}_0^{\text{inp}} x_0 \geq x$ while $ax_0 \not\geq x$ for any $a < \tilde{a}_0^{\text{inp}}$. Now, $\min_{k=1,\dots,q} [a^{-1}y_k^* - y_{0,k}^*] \leq \min_{k=1,\dots,q} [(a_0^{\text{inp}})^{-1}y_k^* - y_{0,k}^*]$ for any $a \geq \tilde{a}_0^{\text{out}}$, so the solution to (2.14) is given for this value of a . Then we have

$$\delta_C^{\text{out}}(x_0, y_0) = \sup_{(x,y) \in \Psi} \left\{ \frac{1}{\max_{j=1,\dots,p} [x_j/x_{0,j}]} \left\{ \min_{k=1,\dots,q} [y_k^* - \max_{j=1,\dots,p} [x_j/x_{0,j}] y_{0,k}^*] \right\} \right\}. \quad (2.15)$$

Again, this expression will provide an explicit formula for nonparametric FDH estimators.

2.3 Radial orientations: proportional directional distances

The particular case of directional distances with radial orientations is often used in practice and all the above expressions for defining $\delta_C(x_0, y_0)$ greatly simplifies. We consider in this section where $d_x = x_0$ and $d_y = y_0$ and we also consider the “pure” input and the “pure” output particular cases. Since these directional distances are specific, we use an adapted notation. Thus we are interested in the directional distance defined as

$$\alpha(x_0, y_0) = \sup\{\alpha \mid ((1 - \alpha)x_0, y_0) \in \Psi\}, \text{ input radial ,} \quad (2.16)$$

$$\beta(x_0, y_0) = \sup\{\beta \mid (x_0, (1 + \beta)y_0) \in \Psi\}, \text{ output radial ,} \quad (2.17)$$

$$\gamma(x_0, y_0) = \sup\{\gamma \mid ((1 - \gamma)x_0, (1 + \gamma)y_0) \in \Psi\}, \text{ general radial} \quad (2.18)$$

and their conical versions where Ψ is replaced by $\mathcal{C}(\Psi)$. For obvious reasons, these distances are often called proportional directional distances; the input radial is sometimes referred as “cost minimization”, the output radial as “revenue maximization” and the general radial as “profit maximization” (see e.g. Boussemart et al., 2003 and Epure et al., 2011). In the one dimensional case ($p = q = 1$), at a scale factor, all directions are radial, so Figure 2 can still be used to illustrate the three measures. In more general multidimensional cases, the radial feature allows us to simplify the calculations.

First, as noted above, the input (output) radial allows to recover the Farrell-Debreu input (output) efficiency scores defined for the conical case in Kneip et al. (2023). We have

$$1 - \alpha_C(x_0, y_0) = \theta_C(x_0, y_0) = \inf_{(x,y) \in \Psi} \frac{\max_{j=1,\dots,p}[x_j/x_{0,j}]}{\min_{k=1,\dots,q}[y_k/y_{0,k}]}, \quad (2.19)$$

$$1 + \beta_C(x_0, y_0) = \lambda_C(x_0, y_0) = \sup_{(x,y) \in \Psi} \frac{\min_{k=1,\dots,q}[y_k/y_{0,k}]}{\max_{j=1,\dots,p}[x_j/x_{0,j}]} \quad (2.20)$$

As shown in the proof of Lemma 3.2 in Kneip et al. (2021), and adapted to possible non-convex Ψ by Lemma 3.1 in Kneip et al. (2023), the three projected points on $\mathcal{C}^\partial(\Psi)$ are on the same ray. This appears as obvious in the case $p = q = 1$ of Figure 2, it is still true but less obvious for multidimensional radial cases. However, it is not true for general directions $d = (-d_x, d_y)$. For the radial cases, it comes from the properties of θ_C and λ_C , we have for any $a, b > 0$ $\lambda_C(ax, y) = a\lambda_C(x, y)$ and $\lambda_C(x, by) = b^{-1}\lambda_C(x, y)$ and since (see Lemma 3.1 of Kneip et al., 2023) $\theta_C(x, y)\lambda_C(x, y) = 1$, we have analog (inverse) properties for $\theta_C(x, y)$.

For the general radial case (not considered in Kneip et al., 2023), the proof is as follows: the point (x_0, y_0) projected on $\mathcal{C}^\partial(\Psi)$ in the direction $(-x_0, y_0)$, is also “output” efficient, so we have

$$\lambda_C((1 - \gamma_C(x_0, y_0))x_0, (1 + \gamma_C(x_0, y_0))y_0) = \frac{1 - \gamma_C(x_0, y_0)}{1 + \gamma_C(x_0, y_0)} \lambda_C(x_0, y_0) = 1$$

So the point with coordinates $((1 - \gamma_C(x_0, y_0))x_0, (1 + \gamma_C(x_0, y_0))y_0)$ can be written as $((1 - \gamma_C(x_0, y_0))x_0, (1 - \gamma_C(x_0, y_0))\lambda_C(x_0, y_0)y_0)$, which in turn has the form $(ax_0, a\lambda_C(x_0, y_0)y_0)$ for some $a > 0$ and it belongs to the efficient ray defined by the radial output measure. The same is true for the efficient ray defined by the radial input measure. To summarize, even in large dimensions, the three frontier points, A_i^∂ , A_g^∂ and A_o^∂ of Figure 2 are on the same ray. So we have the following Lemma.

Lemma 2.1. *When using radial directions we have for any point $(x_0, y_0) \in \mathbb{R}_+^{p+q}$ the relations*

$$(1 - \alpha_C(x_0, y_0))(1 + \beta_C(x_0, y_0)) = 1 \quad (2.21)$$

$$\gamma_C(x_0, y_0) = \frac{\alpha_C(x_0, y_0)\beta_C(x_0, y_0)}{\alpha_C(x_0, y_0) + \beta_C(x_0, y_0)}. \quad (2.22)$$

The first relation is already proven in Kneip et al. (2023). To the best of our knowledge the second relation has never been stated in the literature. We left its proof as an exercise by playing with properties of similar triangles, due to the fact, explained above, that the three projected points are on the same ray (this is crucial, so the Lemma is not valid for general directions). These explicit relations will be useful to simplify the computation of the nonparametric estimators when radial orientations have been chosen.

3 Nonparametric Estimators of $\delta_C(x, y)$

In practice we do not know the attainable set Ψ , but we can estimate this set on the basis of a random sample of n units $\mathcal{X}_n = \{(X_i, Y_i)\}_{i=1}^n$, where X_i is the vector of the observed p inputs and Y_i is the vector of the q outputs, $i = 1, \dots, n$. For general technologies, where we do not impose the convexity of Ψ , we can use the FDH estimator of Ψ , suggested by Deprins et al. (1984). It is the free disposal hull of the cloud of data points

$$\widehat{\Psi}_{FDH} = \{(x, y) \in \mathbb{R}_+^{p+q} \mid y \leq Y_i, x \geq X_i, (X_i, Y_i) \in \mathcal{X}_n\}, \quad (3.1)$$

i.e. the union of all the orthants (positive in the inputs x and negative in the outputs y) having vertex at the observed points. Then, as in Kneip et al. (2023), $\mathcal{C}(\Psi)$ can be estimated by the cone spanned by $\widehat{\Psi}_{FDH}$. We have

$$\mathcal{C}(\widehat{\Psi}_{FDH}) = \{(x, y) \in \mathbb{R}_+^{p+q} \mid (x, y) = (a\tilde{x}, a\tilde{y}) \text{ for some } a \geq 0 \text{ and } (\tilde{x}, \tilde{y}) \in \widehat{\Psi}_{FDH}\} \quad (3.2)$$

Now the FDH estimators of the directional distances are obtained by plugging $\widehat{\Psi}_{FDH}$ in place of Ψ in the definitions given in the preceding section. To be explicit, see e.g. Daraio et al. (2020), we have from (2.2)

$$\widehat{\delta}(x_0, y_0; d_x, d_y) = \max_{i=1, \dots, n} \left\{ \min_{\substack{j=1, \dots, p \\ k=1, \dots, q}} [x_{0,j}^* - X_{i,j}^*, Y_{i,k}^* - y_{0,k}^*] \right\}, \quad (3.3)$$

with the notation $X_i^* = X_i \oslash d_x$ and $Y_i^* = Y_i \oslash d_y$, $i = 1, \dots, n$.

For the Conical FDH (CFDH) estimator of $\delta_C(x_0, y_0; d_x, d_y)$, we have the general formulation from (2.4)

$$\widehat{\delta}_C(x_0, y_0; d_x, d_y) = \sup_{a>0} \left\{ \frac{1}{a} \max_{i=1, \dots, n} \left\{ \min_{\substack{j=1, \dots, p \\ k=1, \dots, q}} [ax_{0,j}^* - X_{i,j}^*, Y_{i,k}^* - ay_{0,k}^*] \right\} \right\}. \quad (3.4)$$

We will see in the next sections how the latter simplifies according to the chosen direction d .

3.1 Radial orientations (proportional directional distances)

As seen in Section 2.3 when $d_x = x_0$ and $d_y = y_0$ the definitions of the directional distance are greatly simplified and due to the radial nature of the directions, some relations can be established between the various versions (input oriented, output oriented, simultaneous input and output orientations). These three versions of directional radial distances were denoted $\alpha_C(x_0, y_0)$, $\beta_C(x_0, y_0)$ and $\gamma_C(x_0, y_0)$ and some useful relations were given in Lemma 2.1. For the input and the output orientations we can use, by (2.19) and (2.20), the results of Kneip et al. (2023). So we obtain the explicit CFDH estimators

$$\widehat{\alpha}_C(x_0, y_0) = 1 - \widehat{\theta}_C(x_0, y_0) = 1 - \min_{i=1, \dots, n} \frac{\max_{j=1, \dots, p} [X_{i,j}/x_{0,j}]}{\min_{k=1, \dots, q} [Y_{i,k}/y_{0,k}]}, \quad (3.5)$$

$$\widehat{\beta}_C(x_0, y_0) = \widehat{\lambda}_C(x_0, y_0) - 1 = \max_{i=1, \dots, n} \frac{\min_{k=1, \dots, q} [Y_{i,k}/y_{0,k}]}{\max_{j=1, \dots, p} [X_{i,j}/x_{0,j}]} - 1, \quad (3.6)$$

which solve explicitly (3.4) for the cases $d = (-x_0, 0_q)$ and $d = (0_p, y_0)$, respectively.

For the general case, where we use both the input and the output radial directions simultaneously, i.e. $d = (-x_0, y_0)$, by Lemma 2.1 we obtain

$$\widehat{\gamma}_C(x_0, y_0) = \frac{\widehat{\alpha}_C(x_0, y_0) \widehat{\beta}_C(x_0, y_0)}{\widehat{\alpha}_C(x_0, y_0) + \widehat{\beta}_C(x_0, y_0)}. \quad (3.7)$$

3.2 General directions

3.2.1 Input and Output oriented cases

Here we consider cases where $d = (-d_x, 0_q)$ and cases where $d = (0_p, d_y)$ for general directions d_x and d_y . In these cases, due to the results of Section 2.2 we obtain again explicit expressions of the FDH estimators. By plugging $\widehat{\Psi}_{FDH}$ in place of Ψ in (2.10) we have the CFDH estimator

$$\widehat{\delta}_C^{\text{inp}}(x_0, y_0) = \max_{i=1, \dots, n} \left\{ \frac{1}{\min_{k=1, \dots, q} [Y_{i,k}/y_{0,k}]} \left\{ \min_{j=1, \dots, p} \left[\min_{k=1, \dots, q} [Y_{i,k}/y_{0,k}] x_{0,j}^* - X_{i,j}^* \right] \right\} \right\}. \quad (3.8)$$

Similarly, for the output orientation we have by (2.15)

$$\widehat{\delta}_C^{\text{out}}(x_0, y_0) = \max_{i=1, \dots, n} \left\{ \frac{1}{\max_{j=1, \dots, p} [X_{i,j}/x_{0,j}]} \left\{ \min_{k=1, \dots, q} [Y_{i,k}^* - \max_{j=1, \dots, p} [X_{i,j}/x_{0,j}] y_{0,k}^*] \right\} \right\}. \quad (3.9)$$

3.2.2 General cases

Here when $d = (-d_x, d_y)$, we cannot avoid the (one dimensional) numerical optimization problem coming from (2.4). By plugging $\widehat{\Psi}_{FDH}$ in place of Ψ we obtain the FDH estimator for this general case

$$\widehat{\delta}_C(x_0, y_0) = \max_{a>0} \left\{ \frac{1}{a} \max_{i=1, \dots, n} \left\{ \min_{\substack{j=1, \dots, p \\ k=1, \dots, q}} [ax_{0,j}^* - X_{i,j}^*, Y_{i,k}^* - ay_{0,k}^*] \right\} \right\}. \quad (3.10)$$

This one-dimensional optimization problem (in a) can easily be solved, but care should be taken to avoid the multiple local maxima in the objective function to maximize, due to the “staircase” shape of the frontier of $\widehat{\Psi}_{FDH}$. Figure 3 displays a typical graph of the objective function, as a function of a in one of the simulated examples used below in Section 5, with $n = 100$ and $p = q = 2$. One way to overcome this difficulty is to compute the objective

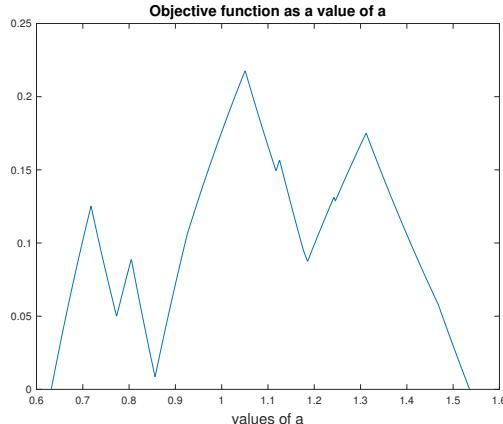


Figure 3: *Typical shape of the objective function as a function of a over a grid of equally spaced $M = 1001$ points, between a_{\min} and a_{\max} defined in (3.11).*

function in a on a fine grid of values of a , $a = a_1, \dots, a_M$, where M could be very large (say, $M = 1000$ or 2000 , the objective function is very fast to compute) in the interval $[a_{\min}, a_{\max}]$. It is indeed easy to show, by using the developments in Section 2.1, that if $(x_0, y_0) \in \widehat{\Psi}_{FDH}$, the optimal value for a must satisfy (2.5) where Ψ is replaced by $\widehat{\Psi}_{FDH}$. So we have

$$a \geq a_{\min} = \min_{i=1, \dots, n} \left\{ \max_{j=1, \dots, p} \frac{X_{i,j}}{x_{0,j}} \right\} \text{ and } a \leq a_{\max} = \max_{i=1, \dots, n} \left\{ \min_{k=1, \dots, q} \frac{Y_{i,k}}{y_{0,k}} \right\}. \quad (3.11)$$

Then we detect the optimal value of a in this grid, say a_k , and then we can search for the maximum of the objective function using any numerical optimizer, searching the maximum of a univariate function with starting value a_k . Note that due to the non-smooth nature of the objective function, simple robust algorithm should be used, e.g. the Nelder-Mead simplex method which does not use derivatives. It should be noticed that if $(x_0, y_0) \notin \widehat{\Psi}_{FDH}$, the bounds in (2.5) are not valid, in this case we only know that $a \in (0, \infty)$.

3.3 Statistical Properties

The statistical properties of directional distances are well known. By Simar and Vanhems (2012) and Simar et al. (2012), we know that the statistical properties of the radial oriented measures can be extended to the directional distances for any directional vector d . By Kneip et al. (2023), these properties have been extended to FDH conical estimators. To summarize, we have for the CFDH estimators of $\delta_C(x_0, y_0)$ and for any direction vector d , as $n \rightarrow \infty$

$$n^\kappa \left(\delta_C(x_0, y_0) - \widehat{\delta}_C(x_0, y_0) \right) \xrightarrow{\mathcal{L}} \text{Weibull}(\eta_{x_0, y_0}), \quad (3.12)$$

where η_{x_0, y_0} is an unknown constant depending on the Data Generating Process (DGP). This result is sufficient to provide valid inference about $\delta_C(x_0, y_0)$ for a given unit (x_0, y_0) using the subsampling methods described by Simar and Wilson (2011). As shown in Kneip et al. (2023) the rate of convergence κ depends on the returns to scale assumed on Ψ : under the CRS assumption ($\Psi = \mathcal{C}(\Psi)$) we have $\kappa = 1/(p + q - 1)$, otherwise, $\kappa = 1/(p + q - 0.5)$. Note the difference with the rate of $\widehat{\delta}(x_0, y_0)$, the traditional FDH estimators of $\delta(x_0, y_0)$, the directional distance to the boundary of Ψ , where as shown by Simar and Vanhems (2012), $\kappa = 1/(p + q)$, under CRS or not. As explained in Simar and Wilson (2011) using the correct rate is crucial for using subsampling techniques, and this rate depends on the chosen estimator and on the assumptions on the shape of Ψ . We will use these results in the next section to provide confidence intervals on the productivity indices and their decompositions.

4 Luenberger Productivity Indices

4.1 Definition

As explained in the literature (see Färe et al. 1985, 1992, 1994, 1998, 2008), the correct definition of the MPI and the LPI requires to use measures of the distance to the boundary of $\mathcal{C}(\Psi)$, the cone spanned by Ψ , which is identical to Ψ if and only if we have CRS (an often assumed hypothesis in this literature, but often rejected by the appropriate test, see

e.g. Kneip et al., 2023). Denote the attainable set at time t by

$$\Psi^t = \{(x, y) \mid x \text{ can produce } y \text{ at time } t\}. \quad (4.1)$$

Consider now two periods t_1 and t_2 . The “input” oriented MPI for a DMU moving from (x^1, y^1) in period 1 to (x^2, y^2) in period 2 is defined as

$$\mathcal{M}^{\text{inp}} = \left(\frac{\theta(x^2, y^2 \mid \mathcal{C}(\Psi^1))}{\theta(x^1, y^1 \mid \mathcal{C}(\Psi^1))} \times \frac{\theta(x^2, y^2 \mid \mathcal{C}(\Psi^2))}{\theta(x^1, y^1 \mid \mathcal{C}(\Psi^2))} \right)^{1/2}. \quad (4.2)$$

The boundaries of $\mathcal{C}(\Psi^1)$ and of $\mathcal{C}(\Psi^2)$ serve as benchmarks against which changes of productivity are measured and the MPI is the geometric mean of these changes. An “output” version is obtained by using rather $\lambda(x^s, y^s \mid \mathcal{C}(\Psi^t))$ in place of the $\theta(x^s, y^s \mid \mathcal{C}(\Psi^t))$, for $s, t = 1, 2$. Note that Kneip et al. (2021, 2023) use also hyperbolic graph measures of efficiency, introduced by Färe et al. (1982). Clearly, $\mathcal{M}^{\text{inp}} > (= \text{ or } <) 1$ when the productivity increases (remains unchanged or decreases) for this DMU between the two periods.

The LPI for the same DMU may be defined as follows (using the notation introduced in (1.7))

$$\mathcal{L} = \frac{1}{2} \left\{ [\delta(x^1, y^1 \mid \mathcal{C}(\Psi^1)) - \delta(x^2, y^2 \mid \mathcal{C}(\Psi^1))] + [\delta(x^1, y^1 \mid \mathcal{C}(\Psi^2)) - \delta(x^2, y^2 \mid \mathcal{C}(\Psi^2))] \right\}, \quad (4.3)$$

with a similar interpretation of the MPI. In particular $\mathcal{L} > (= \text{ or } <) 0$ indicates productivity growth (unchanged or decline) for this DMU between the two periods. It is important to note that in the literature, the CRS assumption is often made for defining this index (i.e. $\mathcal{C}(\Psi^t) = \Psi^t$ in both period, $t = 1, 2$). But in our approach, we do not need this assumption, nor the convexity assumption.

4.2 Decompositions

Several decompositions of the MPIs have been proposed in the literature to investigate the sources of the productivity changes (see e.g. Simar and Wilson, 2019, 2023 and the references therein). As shown e.g. in Epure et al. (2011), similar decompositions can be made for the LPIs. In our general formulation here, in (4.3), which does not assume CRS, we suggest a decomposition similar to the one proposed for MPIs by Simar and Wilson (2023). By simple arithmetic, it is easy to show that we can decompose \mathcal{L} in an additive way as follows

$$\mathcal{L} = \mathcal{E} + \mathcal{T} + \mathcal{S}_1 + \mathcal{S}_2, \quad (4.4)$$

where the elements are defined as follows. Let $w^t = (x^t, y^t)$, $t \in \{1, 2\}$, we have

$$\mathcal{E} = \delta(w^1|\Psi^1) - \delta(w^2|\Psi^2), \quad (4.5)$$

$$\mathcal{T} = \frac{1}{2} \{ [\delta(w^1|\Psi^2) - \delta(w^1|\Psi^1)] + [\delta(w^2|\Psi^2) - \delta(w^2|\Psi^1)] \}, \quad (4.6)$$

$$\mathcal{S}_1 = [\delta(w^1|\mathcal{C}(\Psi^1)) - \delta(w^1|\Psi^1)] - [\delta(w^2|\mathcal{C}(\Psi^2)) - \delta(w^2|\Psi^2)], \quad (4.7)$$

$$\begin{aligned} \mathcal{S}_2 = & \frac{1}{2} \{ [(\delta(w^1|\Psi^1) - \delta(w^1|\mathcal{C}(\Psi^1))) - (\delta(w^1|\Psi^2) - \delta(w^1|\mathcal{C}(\Psi^2)))] \\ & + [(\delta(w^2|\Psi^1) - \delta(w^2|\mathcal{C}(\Psi^1))) - (\delta(w^2|\Psi^2) - \delta(w^2|\mathcal{C}(\Psi^2)))] \}. \end{aligned} \quad (4.8)$$

The interpretation of these elements are the same as in Simar and Wilson (2023) but measured in terms of directional distances. For instance, \mathcal{E} measures a change of efficiency, \mathcal{T} is the mean of two terms, each measuring the shift of the frontier of Ψ^t between the two periods from the perspective of the DMU at time $t = 1, 2$. \mathcal{S}_1 measures the change in scale efficiency of the DMU between the two periods and \mathcal{S}_2 may be viewed as a residual that makes the equality of the right term in (4.4) to the value of \mathcal{L} defined in (4.3). \mathcal{S}_2 can also be interpreted as a change of scale of the technology (see Simar and Wilson, 2023 for discussion and details).

We remark that we use the true possibility sets Ψ^t as reference sets for defining \mathcal{E} and \mathcal{T} as we should. The scale terms \mathcal{S}_1 and \mathcal{S}_2 provide measures of the differences between Ψ^t and $\mathcal{C}(\Psi^t)$. Note again that this does not require convexity of Ψ^t nor the CRS assumptions, but clearly under CRS on both periods, $\mathcal{S}_1 = \mathcal{S}_2 = 0$.

4.3 Estimation and Inference

We consider the data over two time periods: $\{(X_i^1, Y_i^1)\}_{i=1}^{n_1}$ and $\{(X_i^2, Y_i^2)\}_{i=1}^{n_2}$. The estimation and inference about MPIs and its components has been analyzed in Simar and Wilson (2019) and Kneip et al. (2023). We can follow the same route and use the appropriate FDH and CFDH estimators with their properties described in Section 3 to make inference about the LPPIs. These estimators are obtained by plugging the FDH estimator $\widehat{\Psi}_{nt}^t$ in the place of Ψ^t for $t = 1, 2$ in all the expressions above, providing $\widehat{\mathcal{L}}, \widehat{\mathcal{E}}, \widehat{\mathcal{T}}, \widehat{\mathcal{S}}_1$ and $\widehat{\mathcal{S}}_2$.

To simplify the notations suppose that $n_1 = n_2 = n$, we can estimate from the full sample $\mathcal{X}_n = \{(X_i^1, Y_i^1, X_i^2, Y_i^2)\}_{i=1}^n$ the n individual LPPIs, for $i = 1, \dots, n$

$$\widehat{\mathcal{L}}_i = \frac{1}{2} \left\{ [\delta(X_i^1, Y_i^1|\mathcal{C}(\widehat{\Psi}_n^1)) - \delta(X_i^2, Y_i^2|\mathcal{C}(\widehat{\Psi}_n^1))] + [\delta(X_i^1, Y_i^1|\mathcal{C}(\widehat{\Psi}_n^2)) - \delta(X_i^2, Y_i^2|\mathcal{C}(\widehat{\Psi}_n^2))] \right\}, \quad (4.9)$$

where $\delta(X_i^s, Y_i^s|\mathcal{C}(\widehat{\Psi}_n^t))$ are the estimators $\widehat{\delta}_C(\cdot)$ defined in Section 3 with $s, t = 1, 2$. We describe in Appendix A how to make inference on the value of \mathcal{L} (and any of its components in (4.4)) for an individual DMU.

If overall measures of productivity changes and their components are of interest, researchers focus their attention on the geometric mean of MPIs. Here with the more general directional distances measures, we focus more simply, due to the additive nature of the indices, on arithmetic means of the individual indices computed for all DMUs in the sample. For instance, for the LPI we may want to make inference on $\mu_{\mathcal{L}} = \mathbb{E}(\mathcal{L})$ where the expectation is over the whole population of DMUs. Following the arguments in Kneip et al. (2021, 2023), it can be shown that

$$\bar{\mathcal{L}}_n = n^{-1} \sum_{i=1}^n \hat{\mathcal{L}}_i \quad (4.10)$$

can be used to make inference about $\mu_{\mathcal{L}}$, by using an appropriate Central Limit Theorem (CLT). As shown in Appendix A, the adaptation to LPIs, \mathcal{L} and its components appearing in (4.4) is straightforward and even easier due to the additive form of the LPIs. In particular, care should be taken for correcting the inherent bias of the FDH and CFDH estimators (by using Jackknife methods) and, depending on the value of κ , to compute the mean in (4.10) of the estimators over a subsample of observations. We present in Appendix A, all the practical details to make inference on $\mu_{\mathcal{L}}$ and for the mean of any of its components in (4.4). The procedure is illustrated with a real data example in Section 5.2.

5 Illustratives Examples

5.1 A simulated example

We first illustrate the various radial and non-radial estimators following the Model II of Park et al. (2000) which defines a non-convex Ψ with 2 inputs and 2 outputs. This DGP, denoted hereafter as PSW, was also used in Jeong and Simar (2006) and can be defined as follows. We define the function

$$g(x_1, x_2) = 2^{-1.4} x_1^{1.8} x_2^{0.6} \quad (5.1)$$

and select the points of the frontier $(\tilde{y}_1, \tilde{y}_2)$ such that

$$\tilde{y}_1 \tilde{y}_2 = g(x_1, x_2). \quad (5.2)$$

This defined a non-convex Ψ . Now the inputs are simulated according to $X_{i,j} \sim \text{Unif}(1, 2)$ independently for $j = 1, 2$. Then we generate $Y_{i,1}^* \sim \text{Unif}(0.2, 5)$ and define $Y_{i,2}^* = 1/Y_{i,1}^*$, hence the generated frontier points are given by

$$\tilde{Y}_{i,k} = \sqrt{g(X_{i,1}, X_{i,2})} Y_{i,k}^*, \quad \text{for } k = 1, 2. \quad (5.3)$$

The points $(X_{i,1}, X_{i,2}, \tilde{Y}_{i,2}, \tilde{Y}_{i,2})$ are uniformly distributed on the frontier. Finally we generate, as in Park et al. (2000) inefficiencies through radial output inefficiencies producing the simulated data points $(X_{i,1}, X_{i,2}, Y_{i,2}, Y_{i,2})$, where

$$Y_{i,k} = \tilde{Y}_{i,k} \exp(-\xi_i), \text{ for } k = 1, 2, \quad (5.4)$$

with $\xi_i \sim \text{Exp}(3)$, i.e. an exponential with mean 1/3. In the example below we select $n = 200$ and present some results for the first 5 simulated units.

We start with Table 1 where we only use individual radial (proportional) distance vectors, i.e. $d_x = x$ and $d_y = y$. We compute the pure input case, i.e. for measuring the proportional reduction of inputs to reach the boundaries with $d = (-d_x, 0_2)$, the pure output case (proportional increase of outputs) with $d = (0_p, d_y)$, and the more general case where we optimize in both orientations (inputs and outputs) simultaneously with $d = (-d_x, d_y)$. To see the difference between the estimates of the distance of each unit (X_i, Y_i) to the attainable set Ψ and to $\mathcal{C}(\Psi)$, the cone spanned by Ψ , we present in Table 1 for each case the estimates of $\delta(X_i, Y_i)$ and of $\delta_C(X_i, Y_i)$. We observe that these differences may be substantial in several cases, which confirms that we are far from a CRS case (as can be seen from (5.1)–(5.2)). We observe also that, as expected, the chosen orientation plays an important role in measuring efficiencies.

Table 1: PSW example: point estimates of proportional directional distances.

Unit	δ_i^{inp}	$\delta_{C,i}^{\text{inp}}$	δ_i^{out}	$\delta_{C,i}^{\text{out}}$	δ_i^{both}	$\delta_{C,i}^{\text{both}}$
1	0.0042	0.0647	0.0647	0.0692	0.0042	0.0335
2	0.1934	0.3087	0.4444	0.4466	0.0521	0.1825
3	0.2612	0.6070	1.1630	1.5447	0.2612	0.4358
4	0.0000	0.0660	0.0000	0.0707	0.0000	0.0341
5	0.0000	0.1991	0.0000	0.2487	0.0000	0.1106

Table 2 displays the results for the same sample and the same units but by selecting a common distance vector for all the units. We have chosen $d_x = \text{Median}(X)$ and $d_y = \text{Median}(Y)$. As for Table 1, in Table 2 we present the pure input, the pure output, and the case where we use both orientations simultaneously. Again we display the distances to Ψ and to $\mathcal{C}(\Psi)$. We observe similar general pattern as in Table 1. Note however that except for observations lying on the frontiers, the measures of inefficiency depends of the chosen direction vector. This is a well known features of directional distances (see e.g. the discussion in Remark 2.1 in Daraio and Simar, 2016).

Table 2: PSW example: point estimates of directional distances with common direction (median of the sample).

Unit	δ_i^{inp}	$\delta_{C,i}^{\text{inp}}$	δ_i^{out}	$\delta_{C,i}^{\text{out}}$	δ_i^{both}	$\delta_{C,i}^{\text{both}}$
1	0.0042	0.0650	0.0558	0.1338	0.0042	0.0439
2	0.2452	0.3717	0.3737	0.4051	0.0320	0.2244
3	0.2588	0.6443	0.5886	0.8912	0.2473	0.3987
4	0.0000	0.0723	0.0000	0.1017	0.0000	0.0423
5	0.0000	0.1487	0.0000	0.1840	0.0000	0.0822

In order to appreciate the quality of the point estimates with only $n = 200$ in this $p + q = 4$ dimensional space, we compute for the same sample and the same units the 95% confidence intervals of the individual distances to the cone $\mathcal{C}(\Psi)$, by the subsampling techniques described in Simar and Wilson (2011). We use $B = 2000$ bootstrap replications. The results are displayed in Table 3. In some cases these intervals are rather wide indicating that $n = 200$ is not enough large with this dimension: the rate for CFDH is $n^{1/(p+q-0.5)} = n^{2/7}$, far below the parametric rate $n^{1/2}$. In Table 3, the column headed $\delta_{C,i}^{\text{prop}}$ is thus the same as the column headed $\delta_{C,i}^{\text{both}}$ in Table 1 and the column headed $\delta_{C,i}^{\text{median}}$ is the same as the column headed $\delta_{C,i}^{\text{both}}$ in Table 2.

Table 3: PSW example with $n = 200$: bootstrap 95% Confidence Intervals (CIs), left proportional and right common (median) directions. LB stands for Lower Bound and UB for Upper Bound of the intervals.

Unit	$\delta_{C,i}^{\text{prop}}$	LB	UB	$\delta_{C,i}^{\text{median}}$	LB	UB
1	0.0335	0.0335	0.0404	0.0439	0.0439	0.0653
2	0.1825	0.1825	0.2541	0.2244	0.2244	0.3640
3	0.4358	0.4358	0.4696	0.3987	0.3987	0.4653
4	0.0341	0.0341	0.0916	0.0423	0.0423	0.1172
5	0.1106	0.1106	0.1626	0.0822	0.0822	0.1227

Finally, to illustrate the role of the samples size we redo the same exercise with $n = 800$. Since the units in Table 4 are not the same as the one selected for Table 3, we cannot make a comparison unit by unit. However we observe, in general, narrower confidence intervals (by a factor on the average equal to $(800/200)^{2/7} = 1.49$), illustrating the role of n in the asymptotic behavior of the CFDH estimators. The average of the width of the 5 CIs of Table 3, for $n = 200$ is 0.0443 and 0.0686 (for the proportional and common directional

cases, respectively); these values over the 5 (different) units in Table 4, for $n = 800$ are 0.0399 and 0.0330, respectively.

Table 4: PSW example with $n = 800$: bootstrap 95% CIs, left proportional and right common (median) directions. LB stands for Lower Bound and UB for Upper Bound of the intervals.

Unit	δ_i^{prop}	LB	UB	δ_i^{median}	LB	UB
1	0.2095	0.2095	0.2343	0.2063	0.2063	0.2449
2	0.2530	0.2530	0.3065	0.2034	0.2034	0.2211
3	0.0000	0.0000	0.0525	-0.0000	-0.0000	0.0829
4	0.0382	0.0382	0.0590	0.0343	0.0343	0.0447
5	0.3272	0.3272	0.3751	0.1874	0.1874	0.2027

5.2 A real data illustration of LPIs

We illustrate how inference can be conducted on the means of the LPIs and all its components in the population. We use the same real data set used by Simar and Wilson (2019) (hereafter SW2019) where they impose convexity and focus on the MPIs.

The data come from Färe et al. (1992) who examine productivity changes among $n = 42$ Swedish pharmacies over the period 1980–1989. As described in SW2019, the original inputs are (i) labor input for pharmacists; (ii) labor input for technical staff; (iii) building services; and (iv) equipment services. The original outputs are (i) drug deliveries to hospitals; (ii) prescription drugs for outpatient care; (iii) medical appliances for the handicapped; and (iv) over the counter goods. See Färe et al. (1992) for further details. We are grateful to the authors for making the data available. As noticed by SW2019, there are only $n = 42$ observations for each year, so there is no hope to make reasonable inference when working with $p + q = 8$ dimensions. Hopefully the inputs are highly correlated and the 3 last outputs also, so using the method described in details in Chapter 6 of Daraio and Simar (2007), we can reduce the dimensions to one input factor (sharing 95.4% of the total inertia of the moment matrix $X'X$) and two outputs, i.e. the first original output and one output factor for the 3 other outputs (sharing 96.5 % of the total inertia of the corresponding moment matrix). Hence, by doing so we do not lose so much information and as illustrated by Wilson (2018), we can gain a lot of precision in the statistical inference. SW2019 use the same dimension reduction, so we end up with $p = 1$ input and $q = 2$ outputs.

We compute for each of the 9 pair of years from 1980 to 1989 the mean of the LPIs over the 42 pharmacies and we use the CLT described in the Appendix A for checking which

changes are significant at various levels. The results are displayed in Table 5 where we add a final row to indicate the changes in the various indices between the year 1980 and the year 1989.

Table 5: Productivity Change and its components for Swedish pharmacies, 1980–1989 ($p = 1$ and $q = 2$). Each entry is the mean of the changes of the indices over the $n = 42$ pharmacies between the two periods described in the first column. Statistical significant differences from 0 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively.

Period	$\widehat{\mathcal{L}}$	$\widehat{\mathcal{E}}$	$\widehat{\mathcal{T}}$	$\widehat{\mathcal{S}}_1$	$\widehat{\mathcal{S}}_2$
1980-1981	0.0027	0.0201***	-0.0068***	-0.0004	-0.0102
1981-1982	0.0304	-0.0612***	0.1004***	-0.0337***	0.0250***
1982-1983	0.0100	0.0620***	-0.0471***	0.0192	-0.0242**
1983-1984	-0.0282	-0.0081*	-0.0292	-0.0009*	0.0100
1984-1985	0.0159	0.0036	0.0148	0.0195***	-0.0219***
1985-1986	-0.0011	-0.0088**	0.0155***	-0.0086***	0.0009
1986-1987	0.0280***	0.0017	0.0287***	0.0085***	-0.0108***
1987-1988	0.0155***	0.0002	0.0204***	-0.0002	-0.0049
1988-1989	0.0156	0.0025	0.0034	-0.0001	0.0099
1980-1989	0.0974***	0.0118	0.0873***	0.0032	-0.0049

We can compare with the results displayed in Table 2 in SW2019 where they use MPIs, with the following analogs: our \mathcal{L} is the analog of \mathcal{M} , our \mathcal{E} is the analog of \mathcal{E}_2 , our \mathcal{T} is the analog of \mathcal{T}_2 , our \mathcal{S}_1 is the analog of \mathcal{S}_1 and our \mathcal{S}_2 is the analog of \mathcal{S}_3 . SW2019 impose convexity of all the attainable sets and so, use DEA estimators of hyperbolic distances to Ψ^t and to $\mathcal{C}(\Psi^t)$. In our approach we have a less restrictive setup (without imposing convexity and using proportional directional distances) and we observe some differences between the two global pictures.

We can share some major qualitative conclusions as those of in SW2019. We observe a global gain of productivity from 1980 to 1989, but mainly due to gains of technologies and not efficiencies. However, we find some notably differences. We do not observe so many significant productivity changes in one year during the 10 years (we have only 2 significant changes for \mathcal{L} over the 9 pairs, where SW2019 have significant changes for almost all the years), but globally, at the end a highly significant change from 1980 to 1989, which agrees with SW2019. The main reason of these changes are indeed due to the technological progresses during these years and it seems that some years, the significant gain of the technology was even waved out by a significant loss of efficiency (see e.g. the periods 1981–1982 or 1985–1986). The opposite happens in the period 1980–1981. Looking to Table 5 in details

reveals some substantial differences with the approach of SW2019, e.g. they observe a global significant gain of scale efficiency over the period 1980–1989, which is not our case. So, this may question the validity of imposing the convexity of the attainable sets that modify significantly the results. Of course, due to the small number of DMUs ($n = 42$) with a dimension $p + q = 3$, we should remain careful (the rate of convergence is $n^{1/3}$ for the FDH estimators, far below the parametric rate $n^{1/2}$) and avoid definite conclusions from our exercise. Our objective was mainly to illustrate our approach and show that being less restrictive than the existing ones, we may obtain different results and this may be of interest.

6 Conclusions

Directional distances provide a flexible way to measure the distance from a DMU to the efficient frontier of the attainable set in the input-output space, Ψ , in the case of general technologies, i.e. without imposing convexity of Ψ . In this paper we describe how to define and characterize these distances to the boundary of $\mathcal{C}(\Psi)$, the cone spanned by Ψ and we derive nonparametric estimators with their statistical properties. This allows us to define and estimate directional distances under the Constant Returns to Scale (CRS) assumption for general directional vectors and general technologies.

In addition, we are able to define and estimate Luenberger Productivity Indices (LPI) and their decompositions in these general situations to analyze the possible source of changes in productivity. We finally derive Central Limit Theorems (CLTs) allowing statistical inference on these indices making available the statistical tools to assess the significance and the confidence intervals on the LPI and their components.

All this represents a major step forward in the literature, introducing a general and flexible tool for estimating directional distances for general technologies that do not impose convexity. In addition, the application of this tool allows us to estimate Luenberger productivity indices and their decompositions for general technologies. Finally, the development of statistical inference in this context makes available for the first time information on the statistical significance and confidence intervals of LPI and its decompositions.

This approach is very promising and can be used in a variety of application areas. To show how it works in practice, we present an application on simulated data generated based on a classical Data Generating Process from the literature. Finally, an application on real Swedish pharmacy data well known in the literature shows the added value of the proposed approach by providing for the first time estimates on the significance and confidence intervals of LPI and its components.

A Appendix: Inference on LPIs

A.1 Inference on individual \mathcal{L}

Looking to the definition of the LPI for an individual DMU, in (4.3), we see that introducing the notation $z^t = (x^t, y^t)$ for $t = 1, 2$, we could rewrite it as $\mathcal{L}(z^1, z^2 \mid \mathcal{C}(\Psi^1), \mathcal{C}(\Psi^2))$, to explicit the ingredients needed to define the LPI for a DMU moving from z^1 to z^2 between period 1 and 2. The full sample of available observations (we assume $n = n_1 = n_2$) can be written $\mathcal{X}_n = \{(Z_i^1, Z_i^2)\}_{i=1}^n$. For a particular DMU the CFDH estimator provides

$$\widehat{\mathcal{L}}(z^1, z^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2)) = \frac{1}{2} \left\{ [\delta(z^1 \mid \mathcal{C}(\widehat{\Psi}_n^1)) - \delta(z^2 \mid \mathcal{C}(\widehat{\Psi}_n^1))] + [\delta(z^1 \mid \mathcal{C}(\widehat{\Psi}_n^2)) - \delta(z^2 \mid \mathcal{C}(\widehat{\Psi}_n^2))] \right\}, \quad (\text{A.1})$$

where for $t = 1, 2$, $\widehat{\Psi}_n^t$ is the FDH estimator of Ψ^t computed with the sample of period t taken from \mathcal{X}_n , i.e., $\{(Z_i^t)\}_{i=1}^n$.

By applying the theory described in Kneip et al. (2021, 2023) and in Simar and Wilson (2019) we can derive the limiting distribution of $\widehat{\mathcal{L}}$ for a given DMU. Under mild regularity assumptions, and as a direct consequence of (3.12), we have, as $n \rightarrow \infty$,

$$n^\kappa \left(\widehat{\mathcal{L}}(z^1, z^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2)) - \mathcal{L}(z^1, z^2 \mid \mathcal{C}(\Psi^1), \mathcal{C}(\Psi^2)) \right) \xrightarrow{\mathcal{L}} Q_{\mathcal{L}, z^1, z^2}, \quad (\text{A.2})$$

where $Q_{\mathcal{L}, z^1, z^2}$ is a non-degenerate distribution and κ was defined in (3.12). This result is sufficient to enable valid inference about $\mathcal{L}(z^1, z^2 \mid \mathcal{C}(\Psi^1), \mathcal{C}(\Psi^2))$ for a single DMU, using the subsampling methods described in Simar and Wilson (2011).

A.2 Inference on $\mu_{\mathcal{L}} = \mathbb{E}(\mathcal{L})$

We summarize and particularize here for the LPIs, the developments described in Simar and Wilson (2019) for MPIs. Given the sample $\mathcal{X}_n = \{(Z_i^1, Z_i^2)\}_{i=1}^n$, one may obtain n estimates $\widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2))$, $i = 1, \dots, n$. We have

$$\mu_{\mathcal{L}} = \mathbb{E}(\mathcal{L}(Z_i^1, Z_i^2 \mid \mathcal{C}(\Psi^1), \mathcal{C}(\Psi^2))), \quad (\text{A.3})$$

and a natural estimator is given by

$$\widehat{\mu}_{\mathcal{L}, n} = n^{-1} \sum_{i=1}^n \widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2)). \quad (\text{A.4})$$

Due to the inherent bias of FDH estimators, usual Lindberg-Levy CLT cannot be used, without correcting for the bias (see Kneip et al., 2015). In fact, under regularity assumptions described e.g. in Simar and Wilson (2019), we have the following CLT

$$n^{1/2} \left(\widehat{\mu}_{\mathcal{L}, n} - \mu_{\mathcal{L}} - C_{\mathcal{L}} n^{-\kappa} + \xi_{n, \kappa} \right) \xrightarrow{\mathcal{L}} N(0, \sigma_{\mathcal{L}}^2), \quad (\text{A.5})$$

where $\sigma_{\mathcal{L}}^2 = \mathbb{V}(\mathcal{L})$ and the remainder $\xi_{n,\kappa} = o(n^{-\kappa})$. The bias term $C_{\mathcal{L}} n^{-\kappa}$ can be eliminated by adapting a generalized Jackknife method that can be summarized, in our setup, as follows. We randomly split $\mathcal{X}_n = \{(Z_i^1, Z_i^2)\}_{i=1}^n$ into two parts $\mathcal{X}_{m_1}^{(1)}$ and $\mathcal{X}_{m_2}^{(2)}$, with $m_1 = \lfloor n/2 \rfloor$ and $m_2 = n - m_1$ (note that if n is even, $m_1 = m_2$). Then we define the mean over the two subsamples, for $\ell = 1, 2$

$$\widehat{\mu}_{\mathcal{L},m_\ell} = m_\ell^{-1} \sum_{\{i|(Z_i^1, Z_i^2) \in \mathcal{X}_{m_\ell}^{(\ell)}\}} \widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_{m_\ell}^1), \mathcal{C}(\widehat{\Psi}_{m_\ell}^2)), \quad (\text{A.6})$$

where for $t = 1, 2$, $\widehat{\Psi}_{m_\ell}^t$ is the FDH estimator of Ψ^t obtained from the observations for period t in the sample $\mathcal{X}_{m_\ell}^{(\ell)}$. Now we set

$$\widetilde{\mu}_{\mathcal{L},n/2} = \frac{1}{2}(\widehat{\mu}_{\mathcal{L},m_1} + \widehat{\mu}_{\mathcal{L},m_2}). \quad (\text{A.7})$$

Using similar argument as Kneip et al. (2015) we can show that

$$\widehat{B}_{\mathcal{L},n,\kappa} = (2^\kappa - 1)^{-1}(\widetilde{\mu}_{\mathcal{L},n/2} - \widehat{\mu}_{\mathcal{L},n}) = C_{\mathcal{L}} n^{-\kappa} + \tilde{\xi}_{n,\kappa} + o_p(n^{-1/2}), \quad (\text{A.8})$$

where the remainder $\tilde{\xi}_{n,\kappa} = o(n^{-\kappa})$.

To reduce the variance of the bias estimator $\widehat{B}_{\mathcal{L},n,\kappa}$, we can randomly split the original sample \mathcal{X}_n , a large number of times, say K . For each split, $k = 1, \dots, K$, we obtain an estimate $\widehat{B}_{\mathcal{L},n,\kappa,k}$. Then we use as bias estimate

$$\widehat{B}_{\mathcal{L},n,\kappa} = K^{-1} \sum_{k=1}^K \widehat{B}_{\mathcal{L},n,\kappa,k}. \quad (\text{A.9})$$

In practice K should be as large as, say 100. In the CLT described in (A.5), we see that the factor $n^{1/2}$ can still be too large to neglect the remainder, even after the bias correction if $\kappa < 1/2$. This leads to the following Theorem (For the regularity conditions, see e.g. Theorems 4.6 and 4.7 in Kneip et al., 2023, or Theorem 4.4 in Simar and Wilson, 2019),

Theorem A.1. *Under mild regularity conditions, as $n \rightarrow \infty$,*

$$n^{1/2} \left(\widehat{\mu}_{\mathcal{L},n} - \mu_{\mathcal{L}} - \widehat{B}_{\mathcal{L},n,\kappa} + \xi_{n,\kappa} \right) \xrightarrow{\mathcal{L}} N(0, \sigma_{\mathcal{L}}^2), \quad (\text{A.10})$$

provided $\kappa \geq 1/2$. If $\kappa < 1/2$,

$$n^\kappa \left(\widehat{\mu}_{\mathcal{L},n_\kappa} - \mu_{\mathcal{L}} - \widehat{B}_{\mathcal{L},n,\kappa} + \xi_{n,\kappa} \right) \xrightarrow{\mathcal{L}} N(0, \sigma_{\mathcal{L}}^2), \quad (\text{A.11})$$

where $\widehat{\mu}_{\mathcal{L},n_\kappa} = n_\kappa^{-1} \sum_{i=1}^{n_\kappa} \widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2))$, with $n_\kappa = \min(\lfloor n^{2\kappa} \rfloor, n)$.

In fact $\widehat{\mu}_{\mathcal{L},n_\kappa}$ is the average of a random subsample of size $n_\kappa \leq n$ drawn from the full sample $\widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2))$, $i = 1, \dots, n$, where the notation explicits that they are computed with the full sample \mathcal{X}_n . Now it is shown in Kneip et al. (2023) that

$$\widehat{\sigma}_{\mathcal{L},n}^2 = n^{-1} \sum_{i=1}^n [\widehat{\mathcal{L}}(Z_i^1, Z_i^2 \mid \mathcal{C}(\widehat{\Psi}_n^1), \mathcal{C}(\widehat{\Psi}_n^2)) - \widehat{\mu}_{\mathcal{L},n}]^2 \xrightarrow{p} \sigma_{\mathcal{L}}^2. \quad (\text{A.12})$$

The latter can be used to make practical inference about $\mu_{\mathcal{L}}$ by using the quantiles of the standard normal distribution. For instance, if $\kappa \geq 1/2$, an asymptotically correct $(1 - \alpha)$ confidence interval for $\mu_{\mathcal{L}}$ is obtained by

$$\left[\widehat{\mu}_{\mathcal{L},n} - \widehat{B}_{\mathcal{L},n,\kappa} \pm z_{1-\alpha/2} \frac{\widehat{\sigma}_{\mathcal{L},n}}{n^{1/2}} \right], \quad (\text{A.13})$$

where $z_{1-\alpha/2}$ is the $(1 - \alpha/2)$ quantile of the standard normal distribution. When $\kappa < 1/2$ we should rather use the interval

$$\left[\widehat{\mu}_{\mathcal{L},n_\kappa} - \widehat{B}_{\mathcal{L},n,\kappa} \pm z_{1-\alpha/2} \frac{\widehat{\sigma}_{\mathcal{L},n}}{n^\kappa} \right]. \quad (\text{A.14})$$

Remark A.1. As explained in Simar and Wilson (2019) for the case of MPIs, the same reasoning can be applied to any component of the decomposition of the LPI described in (4.4). Note that for \mathcal{L} , the rate κ is the rate of the CFDH estimator (i.e. $1/(p+q-1)$ or $1/(p+q-0.5)$ according we assume CRS or not), but for the other components, the rate κ is always governed by the FDH estimators, i.e. $1/(p+q)$.

References

- [1] Boussemart, J.P., Briec, W., Kerstens, K. and J.C. Poutineau (2003), Luenberger and Malmquist Productivity Indices: Theoretical Comparisons and Empirical Illustration, *Bulletin of Economic Research*, 55:4, 391–405.
- [2] Caves, D.W., L. R. Christensen and W.E. Diewert (1982), The economic theory of index numbers and the measurement of input, output and productivity, *Econometrica*, 50, 436–505.
- [3] Chambers, R. G., Chung, Y. and R. Färe (1996). Benefit and distance functions, *Journal of Economic Theory*, 70, pp. 407–419.
- [4] Chambers, R. G., Y. Chung, and R. Färe (1998), Profit, directional distance functions, and nerlovian efficiency, *Journal of Optimization Theory and Applications*, 98, 351–364.
- [5] Chambers, R.G., 2002. Exact nonradial input, output, and productivity measurement. *Economic Theory*, 20 (4), 751–765.
- [6] Daraio, C. and L. Simar (2007), *Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications*, Springer, New-York.

[7] Daraio, C., Simar L. (2016), Efficiency and benchmarking with directional distances: a data-driven approach, *Journal of the Operational Research Society*, 67 (7), 928-944.

[8] Daraio, C., Simar, L. and P.W. Wilson (2020), Fast and Efficient Computations of Directional Distances Estimators. *Annals of Operations Research*, 288, 805–835.

[9] Debreu, G. (1951), The coefficient of resource utilization, *Econometrica*, 19:3, 273-292.

[10] Deprins, D., Simar, L. and H. Tulkens, (1984), Measuring labor inefficiency in post offices, in *The Performance of Public Enterprises: Concepts and measurements*, M. Marchand, P. Pestieau and H. Tulkens (eds.), Amsterdam : North-Holland , 243–267.

[11] Epure, M., Kerstens, K. and D. Prior (2011), Bank productivity and performance groups: A decomposition approach based upon the Luenberger productivity indicator. *European Journal of Operational Research*, 211, 630–641.

[12] Färe, R., Grosskopf, S. and C.A.K. Lovell (1985), *The Measurement of Efficiency of Production*. Boston, Kluwer-Nijhoff Publishing.

[13] Färe, R., S. Grosskopf, B. Lindgren and P. Roos (1992), Productivity changes in Swedish pharmacies 1980–1989: A non-parametric Malmquistapproach, *Journal of Productivity Analysis*, 3, 85–101.

[14] Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994), Productivity growth, technical progress, and efficiency change in industrialized countries, *American Economic Review*, 84, 66–83.

[15] Färe, R., Grosskopf, S., Roos, P. (1998). Malmquist productivity indexes: a survey of theory and practice. In *Index numbers: Essays in honour of Sten Malmquist* (pp. 127-190). Dordrecht: Springer Netherlands.

[16] Färe, R., S. Grosskopf and D. Margaritis (2008), Efficiency and Productivity: Malmquist and More, in *The Measurement of Productive Efficiency*, 2nd Edition, Harold Fried, C.A. Knox Lovell and Shelton Schmidt, editors, Oxford University Press.

[17] Farrell, M.J. (1957), The measurement of productive efficiency, *Journal of the Royal Statistical Society, A*(120), 253-281.

[18] Jeong, S.O. and L. Simar (2006), Linearly interpolated FDH efficiency score for non-convex frontiers, *Journal of Multivariate Analysis*, 97, 2141–2161.

[19] Kevork, I. S., Pange, J., Tzeremes, P., Tzeremes, N. G. (2017). Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector. *European Journal of Operational Research*, 261(3), 1125–1140.

[20] Kneip, A., Simar, L. and P. W. Wilson (2015), When bias kills the variance: Central Limit Theorems for DEA and FDH efficiency scores, *Econometric Theory*, 31, 394–422.

[21] Kneip, A. , Simar, L. and P.W. Wilson (2021), Inference in Dynamic, Nonparametric Models of Production: Central Limit Theorems for Malmquist Indices. *Econometric Theory*, 37, 537–572.

[22] Kneip, A., Simar, L. and P.W. Wilson (2023), Conical FDH Estimators for Testing Returns to Scale and Making Inference about Change of Productivity, submitted manuscript, UCL.

- [23] Malmquist, S. (1953), Index numbers and indifference surfaces, *Trabajos de Estatística y de Investigación Operativa*, 4, 209–242.
- [24] Pham, M., Simar, L., Zelenyuk, V. (2023). Statistical inference for aggregation of Malmquist productivity indices. *Operations Research*.
- [25] Park, B. Simar, L. and Ch. Weiner (2000), The FDH Estimator for Productivity Efficiency Scores: Asymptotic Properties, *Econometric Theory*, Vol 16, 855–877.
- [26] Pastor, J. T., Lovell, C. K., Aparicio, J. (2020). Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index. *European Journal of Operational Research*, 281(1), 222–230.
- [27] Shephard, R.W. (1970). *Theory of Cost and Production Function*. Princeton University Press, Princeton, New-Jersey.
- [28] Simar, L. and A. Vanhems (2012), Probabilistic Characterization of Directional Distances and their Robust versions, *Journal of Econometrics*, 166, 342–354.
- [29] Simar, L., Vanhems, A. and P. W. Wilson (2012), Statistical inference with DEA estimators of directional distances, *European Journal of Operational Research*, 220, 853–864.
- [30] Simar, L. and P. W. Wilson (2011), Inference by the m out of n bootstrap in nonparametric frontier models. *Journal of Productivity Analysis*, 36, 33–53.
- [31] Simar, L. and P. W. Wilson (2019), Central Limit Theorems and Inference for Sources of Productivity Change Measured by Nonparametric Malmquist Indices, *European Journal of Operational Research*, 277, 756–769.
- [32] Simar, L. and P. W. Wilson (2023), Another Look at Productivity Growth in Industrialized Countries, *Journal of Productivity Analysis*, 60, 257–272.
- [33] Simar, L., Zelenyuk, V. (2018). Central limit theorems for aggregate efficiency. *Operations Research*, 66(1), 137-149.
- [34] Wilson, P. W. (2018), Dimension reduction in nonparametric models of production, *European Journal of Operational Research*, 267, 349–367.