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Abstract

In productivity and efficiency analysis, directional distances are very popular, due to

their flexibility for choosing the direction to evaluate the distance of Decision Making

Units (DMUs) to the efficient frontier of the production set. The theory and the

statistical properties of these measures are today well known in various situations. But

so far, the way to measure directional distances to the cone spanned by the attainable

set has not been analyzed. In this paper we fill this gap and describe how to define

and estimate directional distances to this cone, for general technologies, i.e. without

imposing convexity. Their statistical properties are also developed. This allows us

to measure distances to non-convex attainable set under Constant Returns to Scale

(CRS) but also to measure and estimate Luenberger productivity indices and their

decompositions for general technologies. The way to make inference on these indices

is also described in details. We propose illustrations with some simulated data, as

well as, a practical example of inference on Luenberger productivity indices and their

decompositions with a well-known real data set.
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1 The Framework and Our Contribution

In productivity and efficiency analysis, Decision Making Units (DMUs) are benchmarked

against a technical efficient frontier, characterized by the optimal combinations of the inputs

(resources or factors of production) and the outputs (goods or services produced). Formally,

let Ψ denote the production set, i.e. the set of technically feasible combinations of p inputs

(x) and q outputs (y). It can be defined as

Ψ = {(x, y) ∈ Rp+q+ | x can produce y}. (1.1)

This set shares the usual characteristics coming from economic theory (see e.g. Shephard,

1970). A minimal set of assumptions is that Ψ is closed and freely disposable in the inputs

and the outputs. All the inputs and outputs are freely (or strongly) disposable if (x, y) ∈
Ψ ⇒ (x̃, ỹ) ∈ Ψ, ∀x̃ ≥ x, ỹ ≤ y. Sometimes, convexity of Ψ is also assumed. In this paper

we will focus on more general technologies, i.e. without requiring the convexity of Ψ. See

e.g. Kneip et al. (2023) and the references therein for a discussion on why the convexity of

the production set may not be an appropriate assumption. The efficient boundary (frontier)

of this set is the set of efficient combinations of inputs and outputs

Ψ∂ = {(x, y) ∈ Ψ|(γ−1x, γy) /∈ Ψ,∀γ > 1}. (1.2)

Of particular interest for the purpose of defining productivity indices, including Malmquist

and Luenberger indices, is the cone C(Ψ) spanned by Ψ, defined by

C(Ψ) = {(x̃, ỹ) | x̃ = ax, ỹ = ay,∀a ∈ R+ and ∀(x, y) ∈ Ψ}. (1.3)

Since Ψ is not necessarily convex, C(Ψ) is not necessarily convex. In the particular case of

Constant Returns to Scale (CRS), we have C(Ψ) = Ψ, for both convex and non-convex cases,

but in general Ψ ⊆ C(Ψ). Note that C(Ψ) is a cone pointed at zero. Analogous to (1.2), we

can define the frontier of the set C(Ψ) as

C∂(Ψ) = {(x, y) ∈ C(Ψ)|(γ−1x, γy) /∈ C(Ψ),∀γ > 1}. (1.4)

Figure 1 illustrates a case for q = 1 and p = 2. Here we have one output and two inputs.

We observe on the left panel increasing then decreasing returns to scale. The isoquants in

the input space (the boundary of the sections) are defined by part of circles, as illustrated

by the contour plots on the floor of both panels of Figure 1. Note that this produces, for

this particular example, also non-convex sections. The right panel of Figure 1 could also

correspond to a nonconvex production set with CRS, but it is here the cone spanned by a

general Ψ like the one displayed in the left panel of Figure 1.
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Figure 1: Boundaries of a non-convex Ψ and of the cone spanned by a non-convex Ψ. The

left panel shows a typical efficient boundary of a non-convex production set Ψ. The right

panel displays the shape of C(Ψ), the cone spanned by this type of set. The contour plots

drawn on the floor are the isoquants in the inputs space.

Typically the efficiency of a DMU (x, y) is measured by its distance from the boundary

Ψ∂. The Farrell-Debreu radial distances (input or output oriented) are the most popular

(see Debreu, 1951; Farrell, 1957), but in this paper we mainly focus on the very flexible

directional distances measures (see Chambers et al., 1998), defined as

δ(x, y) = δ(x, y; dx, dy) := sup{δ| (x− δdx, y + δdy) ∈ Ψ}, (1.5)

where dx ∈ Rp+ and dy = Rq+. When possible, and when no ambiguities exist, we will use

the simpler notation δ(x, y) for δ(x, y; dx, dy), when it is understood that the directions have

been well specified. Hence, the distance is measured along a path determined by a direction

vector d′ = (−d′x, d′y) in an additive way. Clearly if (x, y) ∈ Ψ, δ(x, y) ≥ 0 and if (x, y) lies

on the efficient frontier (1.2), δ(x, y) = 0.

It is well-known that for (x, y) ∈ Rp+q+ , the Farrell-Debreu radial measures are particular

cases of the directional distances: for the input oriented case, the efficiency score θ(x, y) =

1−δ(x, y;x, 0q) ≤ 1 represents the percentage of reduction of each input the unit (x, y) has to

perform to reach the efficient frontier. Generally, 0m denotes a vector of zeros of dimension

m. Similarly, the output oriented measure of efficiency is λ(x, y) = 1 + δ(x, y; 0p, y) ≥ 1. It

represents the percentage of increase of each output to reach the efficient frontier.

There are many possible choices for the direction vector d, it can be specific for each

DMU or we can chose, in a more “egalitarian” way, a common direction for all the DMUs.

This shows the flexibility of the approach for the evaluation of efficiencies based on direc-

tional distance functions, see e.g. Färe et al.(2008) and Daraio and Simar (2016) for more
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discussions.

In a similar way, we can define the directional distance from a production plan (x, y) to

the boundary of the cone spanned by the production set C(Ψ)

δC(x, y) = δC(x, y; dx, dy) := sup{δ| (x− δdx, y + δdy) ∈ C(Ψ)}. (1.6)

This coincides to the directional efficiency measure for (x, y) under a CRS assumption, i.e.

if C(Ψ) = Ψ, δC(x, y) = δ(x, y). More generally, Ψ ⊆ C(Ψ) and δC(x, y) ≥ δ(x, y) is needed

for defining productivity indices in general cases (see below Section 4). Sometimes it will be

useful, in the notation, to use the equivalence

δC(x, y) = δ(x, y | C(Ψ)), (1.7)

which makes explicit the fact that we use a directional distance to the boundary of C(Ψ)

and not of Ψ.

When data are available on the different units at several time periods, researchers are

interested to analyze the change in productivity, and in efficiency, but also to check if tech-

nical changes have occurred. All these issues can be analyzed though productivity indices

among which the Malmquist Productivity Index (MPI) is very popular (see e.g. Malmquist

1953, Caves et al. 1982 and Färe et al. 1994). Surveys on Malmquist index theory and

applications in different sectors are offered in Färe et al. (1998, 2008). The MPI is mainly

defined in terms of radial efficiency measures. The statistical inference on the MPI, its ag-

gregations and decompositions has been developed in recent years (see, e.g., Kneip et al.

2021, 2023, Pham et al. 2023) thanks in part to recent results on central limit theorems for

efficiency estimators (see Kneip et al. 2015, Simar and Zelenyuk 2018) providing the pos-

sibility of assessing the statistical significance and confidence intervals of indices and their

components.

The MPI has been extended to Luenberger Productivity Indices (LPI, see Chambers et

al., 1996 and Chambers, 2002), to allow for the use of directional distances.

Boussemart et al. (2003) and Epure et al. (2011), using radial (proportional) directional

distances notice that the LPI generalizes the MPI, because it allows to investigate situations

where simultaneous proportional reduction of inputs and increasing of outputs defines the

efficient boundaries. Kevork et al. (2017) develop Shephard’s type output directional effi-

ciency measures to analyze European banks and more recently, Pastor et al. (2020) introduce

a proportional directional distance function in the MPI and derive a new decomposition of

the MPI.

In this paper we make a generalization of the previous literature, since, thanks to our

δC(x, y; dx, dy) defined above, any directional distance vector d can be used, and estimated,

to measure distances of a DMU (x, y) to the boundary of C(Ψ).
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Our Contribution can be summarized as follows. First we define and we estimate direc-

tional distances to the boundary of the cone spanned by Ψ, for general (possibly non-convex)

production sets and for any vector of directions (d). Boussemart et al. (2003) and Epure et

al. (2011) assume convexity and use radial directional distances (i.e. dx = x and dy = y).

Kevork et al. (2017) adopt output directional distances and Pastor et al. (2020) work with

proportional directional distances. Hence, to the best of our knowledge, we fill an existing

gap in the literature. Second, given our new tools introduced above, we can define and es-

timate Luenberger Productivity Indices (LPIs) and their various decompositions for general

technologies and for any vector of directions. Finally we provide statistical tools to assess the

statistical significance of the new distance functions and of the derived productivity indices

and their decompositions. We point out that none of the existing studies on this topic have

developed statistical inference for directional distances of general technologies and for the

LPI and its decompositions. This, too, represents an advance in the existing literature.

The paper is organized as follows. Section 2 introduces the basic properties of δC(x, y),

with the various versions one can obtain by selecting particular vectors of directions. Section

3 suggests nonparametric estimators and Section 4 shows how to define and to estimate

LPIs under general technologies. The way to conduct inference is detailed in Appendix A.

Section 5 illustrates the various tools introduced in the paper with some simulated samples

and practical inference on LPIs and its components is illustrated with a real data of the

literature. Section 6 concludes the paper.

2 Computation and Properties of δC(x, y)

2.1 Basic properties

Before going to see how we can characterize δC(x, y), we reconsider the way to define δ(x, y)

with its equivalent as described in Daraio et al. (2020). For simplicity we assume here that

all the elements of dx and of dy are strictly positive. It would be easy, but at heavy notational

cost, to handle cases where some elements of d are equal to zero, as indicated in Daraio et

al. (2020). We will see in Section 2.2 that the cases where dx = 0p or the case where dy = 0q

are easy to handle.

We denote by (x0, y0) the point of interest. Directional distances are independent of the

units of measurements as described in Färe et al. (2008) and formally proven in Appendix

A in Simar and Vanhems (2012). As a consequence, we can rewrite (1.5) as

δ(x0, y0; dx, dy) = δ(x?0, y
?
0; ip, iq), (2.1)

with x?0 = x0 � dx, y
?
0 = y0 � dy, where � is the Hadamard component-wise division of
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vectors, and im is the m-vector of ones. Similarly below we will denote x? = x � dx and

y? = y � dy. As shown in Daraio et al. (2020), the last equation allows us to rewrite the

directional distance as

δ(x0, y0; dx, dy) = sup
(x,y)∈Ψ

{
min

j = 1, . . . , p

k = 1, . . . , q

[x?0,j − x?j , y?k − y?0,k]
}
. (2.2)

Now we can characterize more easily the distance δC(x0, y0). Figure 2 illustrates the idea

in the simplest case where p = q = 1. The point A = (x0, y0) is projected in the direction d

on the frontier of C(Ψ) at A∂g = x0 − δC(x0, y0)dx, y0 + δC(x0, y0)dy). Clearly by properties

of similar triangles we have

δC(x0, y0) = sup
a>0

{δ(ax0, ay0)

a
| (ax0 − δ(ax0, ay0)dx, ay0 + δ(ax0, ay0)dy) ∈ Ψ

}
. (2.3)

In Figure 2, this supremum is achieved at a = ag, defining the point agA on the ray passing

through A = (x0, y0) and its projection P ∂ on the frontier in the direction d. The latter has

coordinates (agx0− δ(agx0, agy0)dx, agy0 + δ(agx0, agy0)dy). The distance between the points

agA and P ∂, given by ||(agA)P ∂||, is proportional to the distance ||AA∂g || and the factor of

proportionality is given by ag.

In fact by using the transformations above and (2.2), we have

δC(x0, y0) = sup
a>0

{1

a
sup

(x,y)∈Ψ

{
min

j = 1, . . . , p

k = 1, . . . , q

[ax?0,j − x?j , y?k − ay?0,k]
}}
. (2.4)

We will see below that in various particular cases, we have more explicit solutions of this

problem and in particular how these provide, in practice, easy to compute estimators. In

particular, it will be useful to notice that if (x0, y0) ∈ Ψ, we can find a value for a and a point

(x, y) ∈ Ψ such that the supremum is positive, so we should have ax0 ≥ x and ay0 ≤ y for

characterizing the supremum. This provides lower and upper bounds for aopt, the optimal a

when (x0, y0) ∈ Ψ:

min
(x,y)∈Ψ

{
max
j=1,...,p

xj
x0,j

}
≤ aopt ≤ max

(x,y)∈Ψ

{
min

k=1,...,q

yk
y0,k

}
. (2.5)

These corresponds (for the case p = q = 1) to the two points where the ray aA intersects

the frontier of Ψ.

2.2 Particular cases: input and output orientations

The basic property in (2.4) simplifies when we consider “oriented” directional distances, i.e.

when either, dx = 0p and only dy > 0q, or, dy = 0q and dx > 0p. In the first case we have
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Figure 2: Illustration of a production set and its boundary when p = q = 1. The point of

interest is A = (x0, y0), the solid black line is the efficient boundary of Ψ, the dash-dotted

blue is the frontier of the cone C(Ψ) and the dashed red line is the ray passing through A.

The arrow from the origin to the NW is the chosen direction d = (−dx, dy).

an output orientation, whereas in the second case, we have an input orientation. We first

consider the input orientation, in this case, we have

δinp(x0, y0) = sup{δ| (x0 − δdx, y0) ∈ Ψ}, (2.6)

and following Daraio et al. (2020), this can be written as

δinp(x0, y0) = sup
(x,y)∈Ψ,y≥y0

{
min

j=1,...,p
[x?0,j − x?j ]

}
. (2.7)

For defining the distance to the boundary of C(Ψ), we still use Figure 2 to illustrate the idea.

The point A = (x0, y0) is projected in the input direction dx at A∂i = x0 − δC(x0, y0)dx, y0).

Again by properties of similar triangles, the distance ||(aiA)P ∂|| is proportional to the dis-

tance ||AA∂i || and the factor of proportionality is given by ai which is the value of a that

solves the optimization problem

δinp
C (x0, y0) = sup

a>0

{δ(ax0, ay0)

a
| (ax0 − δ(ax0, ay0)dx, ay0) ∈ Ψ

}
. (2.8)
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which, by (2.7), is equivalent to

δinp
C (x0, y0) = sup

a>0

{1

a
sup

(x,y)∈Ψ,y≥ay0

{
min

j=1,...,p
[ax?0,j − x?j ]

}}
,

= sup
a>0

{
sup

(x,y)∈Ψ,y≥ay0

{
min

j=1,...,p
[x?0,j − a−1x?j ]

}}
(2.9)

Now define ãout
0 = mink=1,...,q[yk/y0,k] (note that ãout

0 = ãout
0 (x, y, x0, y0)). Clearly we have

ãout
0 y0 ≤ y while ay0 � y for any a > ãout

0 . Now, minj=1,...,p[x
?
0,j − a−1x?j ] ≤ minj=1,...,p[x

?
0,j −

(ãout
0 )−1x?j ] for any a ≤ ãout

0 , so the solution to (2.9) is given for this value of a. Then we

have

δinp
C (x0, y0) = sup

(x,y)∈Ψ

{ 1

mink=1,...,q[yk/y0,k]

{
min

j=1,...,p
[ min
k=1,...,q

[yk/y0,k]x
?
0,j − x?j ]

}}
. (2.10)

We will see in Section 3 that this expression provides an explicit formula for nonparametric

estimators, where the unknown Ψ will be replaced by its Free Disposal Hull (FDH) estimator

(see Deprins et al. 1984).

For the output orientation, the argument is very similar. We have

δout(x0, y0) = sup{δ| (x0, y0 − δdy) ∈ Ψ}, (2.11)

which can be written as (see Daraio et al., 2020)

δout(x0, y0) = sup
(x,y)∈Ψ,x≤x0

{
min

k=1,...,q
[y?k − y?0,k]

}
. (2.12)

Here, in Figure 2, we have to characterize the proportionality between ||(aoA)P ∂|| and ||AA∂o ||
and the factor of proportionality is given by ao which is the value of a that solves the

optimization problem

δout
C (x0, y0) = sup

a>0

{δ(ax0, ay0)

a
| (ax0, ay0 + δ(ax0, ay0)dy) ∈ Ψ

}
. (2.13)

which, by (2.12), is equivalent to

δout
C (x0, y0) = sup

a>0

{1

a
sup

(x,y)∈Ψ,x≤ax0

{
min

k=1,...,q
[y?k − ay?0,k]

}}
,

= sup
a>0

{
sup

(x,y)∈Ψ,x≤ax0

{
min

k=1,...,q
[a−1y?k − y?0,k]

}}
(2.14)

Now define ãinp
0 = maxj=1,...,p[xj/x0,j]. Clearly we have ãinp

0 x0 ≥ x while ax0 � x for any

a < ãinp
0 . Now, mink=1,...,q[a

−1y?k − y?0,k] ≤ mink=1,...,q[(ã
inp
0 )−1y?k − y?0,k] for any a ≥ ãout

0 , so

the solution to (2.14) is given for this value of a. Then we have

δout
C (x0, y0) = sup

(x,y)∈Ψ

{ 1

maxj=1,...,p[xj/x0,j]

{
min

k=1,...,q
[y?k − max

j=1,...,p
[xj/x0,j]y

?
0,k]
}}
. (2.15)

Again, this expression will provide an explicit formula for nonparametric FDH estimators.
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2.3 Radial orientations: proportional directional distances

The particular case of directional distances with radial orientations is often used in practice

and all the above expressions for defining δC(x0, y0) greatly simplifies. We consider in this

section where dx = x0 and dy = y0 and we also consider the “pure” input and the “pure”

output particular cases. Since these directional distances are specific, we use an adapted

notation. Thus we are interested in the directional distance defined as

α(x0, y0) = sup{α | ((1− α)x0, y0) ∈ Ψ}, input radial , (2.16)

β(x0, y0) = sup{β | (x0, (1 + β)y0) ∈ Ψ}, output radial , (2.17)

γ(x0, y0) = sup{γ | ((1− γ)x0, (1 + γ)y0) ∈ Ψ}, general radial (2.18)

and their conical versions where Ψ is replaced by C(Ψ). For obvious reasons, these distances

are often called proportional directional distances; the input radial is sometimes referred as

“cost minimization”, the output radial as “revenue maximization” and the general radial as

“profit maximization” (see e.g. Boussemart et al., 2003 and Epure et al., 2011). In the one

dimensional case (p = q = 1), at a scale factor, all directions are radial, so Figure 2 can still

be used to illustrate the three measures. In more general multidimensional cases, the radial

feature allows us to simplify the calculations.

First, as noted above, the input (output) radial allows to recover the Farrell-Debreu input

(output) efficiency scores defined for the conical case in Kneip et al. (2023). We have

1− αC(x0, y0) = θC(x0, y0) = inf
(x,y)∈Ψ

maxj=1,...,p[xj/x0,j]

mink=1,...,q[yk/y0,k]
, (2.19)

1 + βC(x0, y0) = λC(x0, y0) = sup
(x,y)∈Ψ

mink=1,...,q[yk/y0,k]

maxj=1,...,p[xj/x0,j]
(2.20)

As shown in the proof of Lemma 3.2 in Kneip et al. (2021), and adapted to possible non-

convex Ψ by Lemma 3.1 in Kneip et al. (2023), the three projected points on C∂(Ψ) are on

the same ray. This appears as obvious in the case p = q = 1 of Figure 2, it is still true but

less obvious for multidimensional radial cases. However, it is not true for general directions

d = (−dx, dy). For the radial cases, it comes from the properties of θC and λC , we have for

any a, b > 0 λC(ax, y) = aλC(x, y) and λC(x, by) = b−1λC(x, y) and since (see Lemma 3.1 of

Kneip et al., 2023) θC(x, y)λC(x, y) = 1, we have analog (inverse) properties for θC(x, y).

For the general radial case (not considered in Kneip et al., 2023), the proof is as follows:

the point (x0, y0) projected on C∂(Ψ) in the direction (−x0, y0), is also “output” efficient, so

we have

λC((1− γC(x0, y0))x0, (1 + γC(x0, y0))y0) =
1− γC(x0, y0)

1 + γC(x0, y0)
λC(x0, y0) = 1

8



So the point with coordinates ((1− γC(x0, y0))x0, (1 + γC(x0, y0))y0) can be written as ((1−
γC(x0, y0))x0, (1 − γC(x0, y0))λC(x0, y0)y0), which in turn has the form (ax0, aλC(x0, y0)y0)

for some a > 0 and it belongs to the efficient ray defined by the radial output measure. The

same is true for the efficient ray defined by the radial input measure. To summarize, even in

large dimensions, the three frontier points, A∂i , A
∂
g and A∂o of Figure 2 are on the same ray.

So we have the following Lemma.

Lemma 2.1. When using radial directions we have for any point (x0, y0) ∈ Rp+q+ the relations(
1− αC(x0, y0)

)(
1 + βC(x0, y0)

)
= 1 (2.21)

γC(x0, y0) =
αC(x0, y0)βC(x0, y0)

αC(x0, y0) + βC(x0, y0)
. (2.22)

The first relation is already proven in Kneip et al. (2023). To the best of our knowledge

the second relation has never been stated in the literature. We left its proof as an exercise

by playing with properties of similar triangles, due to the fact, explained above, that the

three projected points are on the same ray (this is crucial, so the Lemma is not valid for

general directions). These explicit relations will be useful to simplify the computation of the

nonparametric estimators when radial orientations have been chosen.

3 Nonparametric Estimators of δC(x, y)

In practice we do not know the attainable set Ψ, but we can estimate this set on the basis

of a random sample of n units Xn = {(Xi, Yi)}ni=1, where Xi is the vector of the observed p

inputs and Yi is the vector of the q outputs, i = 1, . . . , n. For general technologies, where we

do not impose the convexity of Ψ, we can use the FDH estimator of Ψ, suggested by Deprins

et al. (1984). It is the free disposal hull of the cloud of data points

Ψ̂FDH = {(x, y) ∈ Rp+q+ | y ≤ Yi, x ≥ Xi, (Xi, Yi) ∈ Xn}, (3.1)

i.e. the union of all the orthants (positive in the inputs x and negative in the outputs y)

having vertex at the observed points. Then, as in Kneip et al. (2023), C(Ψ) can be estimated

by the cone spanned by Ψ̂FDH . We have

C(Ψ̂FDH) = {(x, y) ∈ Rp+q+ | (x, y) = (ax̃, aỹ) for some a ≥ 0 and (x̃, ỹ) ∈ Ψ̂FDH} (3.2)

Now the FDH estimators of the directional distances are obtained by plugging Ψ̂FDH in place

of Ψ in the definitions given in the preceding section. To be explicit, see e.g. Daraio et al.

(2020), we have from (2.2)

δ̂(x0, y0; dx, dy) = max
i=1,...,n

{
min

j = 1, . . . , p

k = 1, . . . , q

[x?0,j −X?
i,j, Y

?
i,k − y?0,k]

}
, (3.3)
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with the notation X?
i = Xi � dx and Y ?

i = Yi � dy, i = 1, . . . , n.

For the Conical FDH (CFDH) estimator of δC(x0, y0; dx, dy), we have the general formu-

lation from (2.4)

δ̂C(x0, y0; dx, dy) = sup
a>0

{1

a
max
i=1,...,n

{
min

j = 1, . . . , p

k = 1, . . . , q

[ax?0,j −X?
i,j, Y

?
i,k − ay?0,k]

}}
. (3.4)

We will see in the next sections how the latter simplifies according to the chosen direction d.

3.1 Radial orientations (proportional directional distances)

As seen in Section 2.3 when dx = x0 and dy = y0 the definitions of the directional distance

are greatly simplified and due to the radial nature of the directions, some relations can be

established between the various versions (input oriented, output oriented, simultaneous input

and output orientations). These three versions of directional radial distances were denoted

αC(x0, y0), βC(x0, y0) and γC(x0, y0) and some useful relations were given in Lemma 2.1. For

the input and the output orientations we can use, by (2.19) and (2.20), the results of Kneip

et al. (2023). So we obtain the explicit CFDH estimators

α̂C(x0, y0) = 1− θ̂C(x0, y0) = 1− min
i=1,...,n

maxj=1,...,p[Xi,j/x0,j]

mink=1,...,q[Yi,k/y0,k]
, (3.5)

β̂C(x0, y0) = λ̂C(x0, y0)− 1 = max
i=1,...,n

mink=1,...,q[Yi,k/y0,k]

maxj=1,...,p[Xi,j/x0,j]
− 1, (3.6)

which solve explicitly (3.4) for the cases d = (−x0, 0q) and d = (0p, y0), respectively.

For the general case, where we use both the input and the output radial directions

simultaneously, i.e. d = (−x0, y0), by Lemma 2.1 we obtain

γ̂C(x0, y0) =
α̂C(x0, y0)β̂C(x0, y0)

α̂C(x0, y0) + β̂C(x0, y0)
. (3.7)

3.2 General directions

3.2.1 Input and Output oriented cases

Here we consider cases where d = (−dx, 0q) and cases where d = (0p, dy) for general directions

dx and dy. In these cases, due to the results of Section 2.2 we obtain again explicit expressions

of the FDH estimators. By plugging Ψ̂FDH in place of Ψ in (2.10) we have the CFDH

estimator

δ̂inp
C (x0, y0) = max

i=1,...,n

{ 1

mink=1,...,q[Yi,k/y0,k]

{
min

j=1,...,p
[ min
k=1,...,q

[Yi,k/y0,k]x
?
0,j −X?

i,j]
}}
. (3.8)
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Similarly, for the output orientation we have by (2.15)

δ̂out
C (x0, y0) = max

i=1,...,n

{ 1

maxj=1,...,p[Xi,j/x0,j]

{
min

k=1,...,q
[Y ?
i,k − max

j=1,...,p
[Xi,j/x0,j]y

?
0,k]
}}
. (3.9)

3.2.2 General cases

Here when d = (−dx, dy), we cannot avoid the (one dimensional) numerical optimization

problem coming from (2.4). By plugging Ψ̂FDH in place of Ψ we obtain the FDH estimator

for this general case

δ̂C(x0, y0) = max
a>0

{1

a
max
i=1,...,n

{
min

j = 1, . . . , p

k = 1, . . . , q

[ax?0,j −X?
i,j, Y

?
i,k − ay?0,k]

}}
. (3.10)

This one-dimensional optimization problem (in a) can easily be solved, but care should be

taken to avoid the multiple local maxima in the objective function to maximize, due to the

“staircase” shape of the frontier of Ψ̂FDH . Figure 3 displays a typical graph of the objective

function, as a function of a in one of the simulated examples used below in Section 5, with

n = 100 and p = q = 2. One way to overcome this difficulty is to compute the objective

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

values of a

0

0.05

0.1

0.15

0.2

0.25
Objective function as a value of a

Figure 3: Typical shape of the objective function as a function of a over a grid of equally

spaced M = 1001 points, between amin and amax defined in (3.11).

function in a on a fine grid of values of a, a = a1, . . . , aM , where M could be very large (say,

M = 1000 or 2000, the objective function is very fast to compute) in the interval [amin, amax].

It is indeed easy to show, by using the developments in Section 2.1, that if (x0, y0) ∈ Ψ̂FDH ,

the optimal value for a must satisfy (2.5) where Ψ is replaced by Ψ̂FDH . So we have

a ≥ amin = min
i=1,...,n

{
max
j=1,...,p

Xi,j

x0,j

}
and a ≤ amax = max

i=1,...,n

{
min

k=1,...,q

Yi,k
y0,k

}
. (3.11)
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Then we detect the optimal value of a in this grid, say ak, and then we can search for the

maximum of the objective function using any numerical optimizer, searching the maximum

of a univariate function with starting value ak. Note that due to the non-smooth nature

of the objective function, simple robust algorithm should be used, e.g. the Nelder-Mead

simplex method wich does not use derivatives. It should be noticed that if (x0, y0) /∈ Ψ̂FDH ,

the bounds in (2.5) are not valid, in this case we only know that a ∈ (0,∞).

3.3 Statistical Properties

The statistical properties of directional distances are well known. By Simar and Vanhems

(2012) and Simar et al. (2012), we know that the statistical properties of the radial oriented

measures can be extended to the directional distances for any directional vector d. By Kneip

et al. (2023), these properties have been extended to FDH conical estimators. To summarize,

we have for the CFDH estimators of δC(x0, y0) and for any direction vector d, as n→∞

nκ
(
δC(x0, y0)− δ̂C(x0, y0)

)
L−→Weibull(ηx0,y0), (3.12)

where ηx0,y0 is an unknown constant depending on the Data Generating Process (DGP). This

result is sufficient to provide valid inference about δC(x0, y0) for a given unit (x0, y0) using

the subsampling methods described by Simar and Wilson (2011). As shown in Kneip et al.

(2023) the rate of convergence κ depends on the returns to scale assumed on Ψ: under the

CRS assumption (Ψ = C(Ψ)) we have κ = 1/(p + q − 1), otherwise, κ = 1/(p + q − 0.5).

Note the difference with the rate of δ̂(x0, y0), the traditional FDH estimators of δ(x0, y0), the

directional distance to the boundary of Ψ, where as shown by Simar and Vanhems (2012),

κ = 1/(p + q), under CRS or not. As explained in Simar and Wilson (2011) using the

correct rate is crucial for using subsampling techniques, and this rate depends on the chosen

estimator and on the assumptions on the shape of Ψ. We will use these results in the next

section to provide confidence intervals on the productivity indices and their decompositions.

4 Luenberger Productivity Indices

4.1 Definition

As explained in the literature (see Färe et al. 1985, 1992, 1994, 1998, 2008), the correct

definition of the MPI and the LPI requires to use measures of the distance to the boundary

of C(Ψ), the cone spanned by Ψ, which is identical to Ψ if and only if we have CRS (an

often assumed hypothesis in this literature, but often rejected by the appropriate test, see

12



e.g. Kneip et al., 2023). Denote the attainable set at time t by

Ψt = {(x, y) | x can produce y at time t}. (4.1)

Consider now two periods t1 and t2. The “input” oriented MPI for a DMU moving from

(x1, y1) in period 1 to (x2, y2) in period 2 is defined as

Minp =

(
θ(x2, y2 | C(Ψ1))

θ(x1, y1 | C(Ψ1))
× θ(x2, y2 | C(Ψ2))

θ(x1, y1 | C(Ψ2))

)1/2

. (4.2)

The boundaries of C(Ψ1) and of C(Ψ2) serve as benchmarks against which changes of pro-

ductivity are measured and the MPI is the geometric mean of these changes. An “output”

version is obtained by using rather λ(xs, ys | C(Ψt)) in place of the θ(xs, ys | C(Ψt)), for

s, t = 1, 2. Note that Kneip et al. (2021, 2023) use also hyperbolic graph measures of effi-

ciency, introduced by Färe et al. (1982). Clearly,Minp > (= or <) 1 when the productivity

increases (remains unchanged or decreases) for this DMU between the two periods.

The LPI for the same DMU may be defined as follows (using the notation introduced in

(1.7))

L =
1

2

{[
δ(x1, y1|C(Ψ1))− δ(x2, y2|C(Ψ1))

]
+
[
δ(x1, y1|C(Ψ2))− δ(x2, y2|C(Ψ2))

]}
, (4.3)

with a similar interpretation of the MPI. In particular L > (= or <) 0 indicates produc-

tivity growth (unchanged or decline) for this DMU between the two periods. It is important

to note that in the literature, the CRS assumption is often made for defining this index (i.e.

C(Ψt) = Ψt in both period, t = 1, 2). But in our appraoch, we do not need this assumption,

nor the convexity assumption.

4.2 Decompositions

Several decompositions of the MPIs have been proposed in the literature to investigate the

sources of the productivity changes (see e.g. Simar and Wilson, 2019, 2023 and the references

therein). As shown e.g. in Epure et al. (2011), similar decompositions can be made for the

LPIs. In our general formulation here, in (4.3), which does not assume CRS, we suggest a

decomposition similar to the one proposed for MPIs by Simar and Wilson (2023). By simple

arithmetic, it is easy to show that we can decompose L in an additive way as follows

L = E + T + S1 + S2, (4.4)
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where the elements are defined as follows. Let wt = (xt, yt), t ∈ {1, 2}, we have

E = δ(w1|Ψ1)− δ(w2|Ψ2), (4.5)

T =
1

2

{[
δ(w1|Ψ2)− δ(w1|Ψ1)

]
+
[
δ(w2|Ψ2)− δ(w2|Ψ1)

]}
, (4.6)

S1 =
[
δ(w1|C(Ψ1))− δ(w1|Ψ1)

]
−
[
δ(w2|C(Ψ2))− δ(w2|Ψ2)

]
, (4.7)

S2 =
1

2

{[(
δ(w1|Ψ1)− δ(w1|C(Ψ1))

)
−
(
δ(w1|Ψ2)− δ(w1|C(Ψ2))

)]
+
[(
δ(w2|Ψ1)− δ(w2|C(Ψ1))

)
−
(
δ(w2|Ψ2)− δ(w2|C(Ψ2))

)]}
. (4.8)

The interpretation of these elements are the same as in Simar and Wilson (2023) but mea-

sured in terms of directional distances. For instance, E measures a change of efficiency, T
is the mean of two terms, each measuring the shift of the frontier of Ψt between the two

periods from the perspective of the DMU at time t = 1, 2. S1 measures the change in scale

efficiency of the DMU between the two periods and S2 may be viewed as a residual that

makes the equality of the right term in (4.4) to the value of L defined in (4.3). S2 can also be

interpreted as a change of scale of the technology (see Simar and Wilson, 2023 for discussion

and details).

We remark that we use the true possibility sets Ψt as reference sets for defining E and

T as we should. The scale terms S1 and S2 provide measures of the differences between Ψt

and C(Ψt). Note again that this does not require convexity of Ψt nor the CRS assumptions,

but clearly under CRS on both periods, S1 = S2 = 0.

4.3 Estimation and Inference

We consider the data over two time periods: {(X1
i , Y

1
i )}n1

i=1 and {(X2
i , Y

2
i )}n2

i=1. The estima-

tion and inference about MPIs and its components has been analyzed in Simar and Wilson

(2019) and Kneip et al. (2023). We can follow the same route and use the appropriate FDH

and CFDH estimators with their properties described in Section 3 to make inference about

the LPIs. These estimators are obtained by plugging the FDH estimator Ψ̂t
nt in the place of

Ψt for t = 1, 2 in all the expressions above, providing L̂, Ê , T̂ , Ŝ1 and Ŝ2.

To simplify the notations suppose that n1 = n2 = n, we can estimate from the full sample

Xn = {(X1
i , Y

1
i , X

2
i , Y

2
i )}ni=1 the n individual LPIs, for i = 1, . . . , n

L̂i =
1

2

{[
δ(X1

i , Y
1
i |C(Ψ̂1

n))− δ(X2
i , Y

2
i |C(Ψ̂1

n))
]

+
[
δ(X1

i , Y
1
i |C(Ψ̂2

n))− δ(X2
i , Y

2
i |C(Ψ̂2

n))
]}
,

(4.9)

where δ(Xs
i , Y

s
i |C(Ψ̂t

n)) are the estimators δ̂C(·) defined in Section 3 with s, t = 1, 2. We

describe in Appendix A how to make inference on the value of L (and any of its components

in (4.4)) for an individual DMU.
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If overall measures of productivity changes and their components are of interest, re-

searchers focus their attention on the geometric mean of MPIs. Here with the more general

directional distances measures, we focus more simply, due to the additive nature of the in-

dices, on arithmetic means of the individual indices computed for all DMUs in the sample.

For instance, for the LPI we may want to make inference on µL = E(L) where the expecta-

tion is over the whole population of DMUs. Following the arguments in Kneip et al. (2021,

2023), it can be shown that

Ln = n−1

n∑
i=1

L̂i (4.10)

can be used to make inference about µL, by using an appropriate Central Limit Theorem

(CLT). As shown in Appendix A, the adaptation to LPIs, L and its components appearing

in (4.4) is straightforward and even easier due to the additive form of the LPIs. In particular,

care should be taken for correcting the inherent bias of the FDH and CFDH estimators (by

using Jackknife methods) and, depending on the value of κ, to compute the mean in (4.10)

of the estimators over a subsample of observations . We present in Appendix A, all the

practical details to make inference on µL and for the mean of any of its components in (4.4).

The procedure is illustrated with a real data example in Section 5.2.

5 Illustratives Examples

5.1 A simulated example

We first illustrate the various radial and non-radial estimators following the Model II of Park

et al. (2000) which defines a non-convex Ψ with 2 inputs and 2 outputs. This DGP, denoted

hereafter as PSW, was also used in Jeong and Simar (2006) and can be defined as follows.

We define the function

g(x1, x2) = 2−1.4x1.8
1 x0.6

2 (5.1)

and select the points of the frontier (ỹ1, ỹ2) such that

ỹ1ỹ2 = g(x1, x2). (5.2)

This defined a non-convex Ψ. Now the inputs are simulated according to Xi,j ∼ Unif(1, 2)

independently for j = 1, 2. Then we generate Y ∗i,1 ∼ Unif(0.2, 5) and define Y ∗i,2 = 1/Y ∗i,1,

hence the generated frontier points are given by

Ỹi,k =
√
g(Xi,1, Xi,2)Y ∗i,k, for k = 1, 2. (5.3)
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The points (Xi,1, Xi,2, Ỹi,2, Ỹi,2) are uniformly distributed on the frontier. Finally we generate,

as in Park et al. (2000) inefficiencies through radial output inefficiencies producing the

simulated data points (Xi,1, Xi,2, Yi,2, Yi,2), where

Yi,k = Ỹi,k exp(−ξi), for k = 1, 2, (5.4)

with ξi ∼ Exp(3), i.e. an exponential with mean 1/3. In the example below we select n = 200

and present some results for the first 5 simulated units.

We start with Table 1 where we only use individual radial (proportional) distance vectors,

i.e. dx = x and dy = y. We compute the pure input case, i.e. for measuring the propor-

tional reduction of inputs to reach the boundaries with d = (−dx, 02), the pure output case

(proportional increase of outputs) with d = (0p, dy), and the more general case where we

optimize in both orientations (inputs and outputs) simultaneously with d = (−dx, dy). To

see the difference between the estimates of the distance of each unit (Xi, Yi) to the attainable

set Ψ and to C(Ψ), the cone spanned by Ψ, we present in Table 1 for each case the estimates

of δ(Xi, Yi) and of δC(Xi, Yi). We observe that these differences may be substantial in several

cases, which confirms that we are far from a CRS case (as can be seen from (5.1)–(5.2)). We

observe also that, as expected, the chosen orientation plays an important role in measuring

efficiencies.

Table 1: PSW example: point estimates of proportional directional distances.

Unit δinp
i δinp

C,i δout
i δout

C,i δboth
i δboth

C,i

1 0.0042 0.0647 0.0647 0.0692 0.0042 0.0335

2 0.1934 0.3087 0.4444 0.4466 0.0521 0.1825

3 0.2612 0.6070 1.1630 1.5447 0.2612 0.4358

4 0.0000 0.0660 0.0000 0.0707 0.0000 0.0341

5 0.0000 0.1991 0.0000 0.2487 0.0000 0.1106

Table 2 displays the results for the same sample and the same units but by selecting

a common distance vector for all the units. We have chosen dx = Median(X) and dy =

Median(Y ). As for Table 1, in Table 2 we present the pure input, the pure output, and

the case where we use both orientations simultaneously. Again we display the distances

to Ψ and to C(Ψ). We observe similar general pattern as in Table 1. Note however that

except for observations lying on the frontiers, the measures of inefficiency depends of the

chosen direction vector. This is a well known features of directional distances (see e.g. the

discussion in Remark 2.1 in Daraio and Simar, 2016).
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Table 2: PSW example: point estimates of directional distances with common direction

(median of the sample).

Unit δinp
i δinp

C,i δout
i δout

C,i δboth
i δboth

C,i

1 0.0042 0.0650 0.0558 0.1338 0.0042 0.0439

2 0.2452 0.3717 0.3737 0.4051 0.0320 0.2244

3 0.2588 0.6443 0.5886 0.8912 0.2473 0.3987

4 0.0000 0.0723 0.0000 0.1017 0.0000 0.0423

5 0.0000 0.1487 0.0000 0.1840 0.0000 0.0822

In order to appreciate the quality of the point estimates with only n = 200 in this

p + q = 4 dimensional space, we compute for the same sample and the same units the

95% confidence intervals of the individual distances to the cone C(Ψ), by the subsampling

techniques described in Simar and Wilson (2011). We use B = 2000 bootstrap replications.

The results are displayed in Table 3. In some cases these intervals are rather wide indicating

that n = 200 is not enough large with this dimension: the rate for CFDH is n1/(p+q−0.5) =

n2/7, far below the parametric rate n1/2. In Table 3, the column headed δprop
C,i is thus the

same as the column headed δboth
C,i in Table 1 and the column headed δmedian

C,i is the same as

the column headed δboth
C,i in Table 2.

Table 3: PSW example with n = 200: bootstrap 95% Confidence Intervals (CIs), left pro-

portional and right common (median) directions. LB stands for Lower Bound and UB for

Upper Bound of the intervals.

Unit δprop
C,i LB UB δmedian

C,i LB UB

1 0.0335 0.0335 0.0404 0.0439 0.0439 0.0653

2 0.1825 0.1825 0.2541 0.2244 0.2244 0.3640

3 0.4358 0.4358 0.4696 0.3987 0.3987 0.4653

4 0.0341 0.0341 0.0916 0.0423 0.0423 0.1172

5 0.1106 0.1106 0.1626 0.0822 0.0822 0.1227

Finally, to illustrate the role of the samples size we redo the same exercise with n = 800.

Since the units in Table 4 are not the same as the one selected for Table 3, we cannot make

a comparison unit by unit. However we observe, in general, narrower confidence intervals

(by a factor on the average equal to (800/200)2/7 = 1.49), illustrating the role of n in the

asymptotic behavior of the CFDH estimators. The average of the width of the 5 CIs of

Table 3, for n = 200 is 0.0443 and 0.0686 (for the proportional and common directional
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cases, respectively); these values over the 5 (different) units in Table 4, for n = 800 are

0.0399 and 0.0330, respectively.

Table 4: PSW example with n = 800: bootstrap 95% CIs, left proportional and right

common (median) directions. LB stands for Lower Bound and UB for Upper Bound of the

intervals.

Unit δprop
i LB UB δmedian

i LB UB

1 0.2095 0.2095 0.2343 0.2063 0.2063 0.2449

2 0.2530 0.2530 0.3065 0.2034 0.2034 0.2211

3 0.0000 0.0000 0.0525 -0.0000 -0.0000 0.0829

4 0.0382 0.0382 0.0590 0.0343 0.0343 0.0447

5 0.3272 0.3272 0.3751 0.1874 0.1874 0.2027

5.2 A real data illustration of LPIs

We illustrate how inference can be conducted on the means of the LPIs and all its components

in the population. We use the same real data set used by Simar and Wilson (2019) (hereafter

SW2019) where they impose convexity and focus on the MPIs.

The data come from Färe et al. (1992) who examine productivity changes among n = 42

Swedish pharmacies over the period 1980–1989. As described in SW2019, the original inputs

are (i) labor input for pharmacists; (ii) labor input for technical staff; (iii) building services;

and (iv) equipment services. The original outputs are (i) drug deliveries to hospitals; (ii)

prescription drugs for outpatient care; (iii) medical appliances for the handicapped; and

(iv) over the counter goods. See Färe et al. (1992) for further details. We are grateful to

the authors for making the data available. As noticed by SW2019, there are only n = 42

observations for each year, so there is no hope to make reasonable inference when working

with p+ q = 8 dimensions. Hopefully the inputs are highly correlated and the 3 last outputs

also, so using the method described in details in Chapter 6 of Daraio and Simar (2007),

we can reduce the dimensions to one input factor (sharing 95.4% of the total inertia of the

moment matrix X ′X) and two outputs, i.e. the first original output and one output factor

for the 3 other outputs (sharing 96.5 % of the total inertia of the corresponding moment

matrix). Hence, by doing so we do not lose so much information and as illustrated by

Wilson (2018), we can gain a lot of precision in the statistical inference. SW2019 use the

same dimension reduction, so we end up with p = 1 input and q = 2 outputs.

We compute for each of the 9 pair of years from 1980 to 1989 the mean of the LPIs over

the 42 pharmacies and we use the CLT described in the Appendix A for checking which
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changes are significant at various levels. The results are displayed in Table 5 where we add

a final row to indicate the changes in the various indices between the year 1980 and the year

1989.

Table 5: Productivity Change and its components for Swedish pharmacies, 1980–1989 (p = 1

and q = 2). Each entry is the mean of the changes of the indices over the n = 42 pharmacies

between the two periods described in the first column. Statistical significant differences from

0 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively.

Period L̂ Ê T̂ Ŝ1 Ŝ2

1980-1981 0.0027 0.0201∗∗∗ -0.0068∗∗∗ -0.0004 -0.0102

1981-1982 0.0304 -0.0612∗∗∗ 0.1004∗∗∗ -0.0337∗∗∗ 0.0250∗∗∗

1982-1983 0.0100 0.0620∗∗∗ -0.0471∗∗∗ 0.0192 -0.0242∗∗

1983-1984 -0.0282 -0.0081∗ -0.0292 -0.0009∗ 0.0100

1984-1985 0.0159 0.0036 0.0148 0.0195∗∗∗ -0.0219∗∗∗

1985-1986 -0.0011 -0.0088∗∗ 0.0155∗∗∗ -0.0086∗∗∗ 0.0009

1986-1987 0.0280∗∗∗ 0.0017 0.0287∗∗∗ 0.0085∗∗∗ -0.0108∗∗∗

1987-1988 0.0155∗∗∗ 0.0002 0.0204∗∗∗ -0.0002 -0.0049

1988-1989 0.0156 0.0025 0.0034 -0.0001 0.0099

1980-1989 0.0974∗∗∗ 0.0118 0.0873∗∗∗ 0.0032 -0.0049

We can compare with the results displayed in Table 2 in SW2019 where they use MPIs,

with the following analogs: our L is the analog of M, our E is the analog of E2, our T is

the analog of T2, our S1 is the analog of S1 and our S2 is the analog of S3. SW2019 impose

convexity of all the attainable sets and so, use DEA estimators of hyperbolic distances to Ψt

and to C(Ψt). In our approach we have a less restrictive setup (without imposing convexity

and using proportional directional distances) and we observe some differences between the

two global pictures.

We can share some major qualitative conclusions as those of in SW2019. We observe a

global gain of productivity from 1980 to 1989, but mainly due to gains of technologies and

not efficiencies. However, we find some notably differences. We do not observe so many

significant productivity changes in one year during the 10 years (we have only 2 signifi-

cant changes for L over the 9 pairs, where SW2019 have significant changes for almost all

the years), but globally, at the end a highly significant change from 1980 to 1989, which

agrees with SW2019. The main reason of these changes are indeed due to the technological

progresses during these years and it seems that some years, the significant gain of the tech-

nology was even waved out by a significant loss of efficiency (see e.g. the periods 1981–1982

or 1985–1986). The opposite happens in the period 1980–1981. Looking to Table 5 in details
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reveals some substantial differences with the approach of SW2019, e.g. they observe a global

significant gain of scale efficiency over the period 1980–1989, which is not our case. So, this

may question the validity of imposing the convexity of the attainable sets that modify signif-

icantly the results. Of course, due to the small number of DMUs (n = 42) with a dimension

p+ q = 3, we should remain careful (the rate of convergence is n1/3 for the FDH estimators,

far below the parametric rate n1/2) and avoid definite conclusions from our exercise. Our

objective was mainly to illustrate our approach and show that being less restrictive than the

existing ones, we may obtain different results and this may be of interest.

6 Conclusions

Directional distances provide a flexible way to measure the distance from a DMU to the

efficient frontier of the attainable set in the input-output space, Ψ, in the case of general

technologies, i.e. without imposing convexity of Ψ. In this paper we describe how to define

and characterize these distances to the boundary of C(Ψ), the cone spanned by Ψ and we

derive nonparametric estimators with their statistical properties. This allows us to define

and estimate directional distances under the Constant Returns to Scale (CRS) assumption

for general directional vectors and general technologies.

In addition, we are able to define and estimate Luenberger Productivity Indices (LPI) and

their decompositions in these general situations to analyze the possible source of changes in

productivity. We finally derive Central Limit Theorems (CLTs) allowing statistical inference

on these indices making available the statistical tools to assess the significance and the

confidence intervals on the LPI and their components.

All this represents a major step forward in the literature, introducing a general and

flexible tool for estimating directional distances for general technologies that do not impose

convexity. In addition, the application of this tool allows us to estimate Luenberger produc-

tivity indices and their decompositions for general technologies. Finally, the development

of statistical inference in this context makes available for the first time information on the

statistical significance and confidence intervals of LPI and its decompositions.

This approach is very promising and can be used in a variety of application areas. To

show how it works in practice, we present an application on simulated data generated based

on a classical Data Generating Process from the literature. Finally, an application on real

Swedish pharmacy data well known in the literature shows the added value of the proposed

approach by providing for the first time estimates on the significance and confidence intervals

of LPI and its components.
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A Appendix: Inference on LPIs

A.1 Inference on individual L

Looking to the definition of the LPI for an individual DMU, in (4.3), we see that introducing

the notation zt = (xt, yt) for t = 1, 2, we could rewrite it as L(z1, z2 | C(Ψ1), C(Ψ2)), to

explicit the ingredients needed to define the LPI for a DMU moving from z1 to z2 between

period 1 and 2. The full sample of available observations (we assume n = n1 = n2) can be

written Xn = {(Z1
i , Z

2
i )}ni=1. For a particular DMU the CFDH estimator provides

L̂(z1, z2 | C(Ψ̂1
n), C(Ψ̂2

n)) =
1

2

{[
δ(z1|C(Ψ̂1

n))− δ(z2|C(Ψ̂1
n))
]

+
[
δ(z1|C(Ψ̂2

n))− δ(z2|C(Ψ̂2
n))
]}
,

(A.1)

where for t = 1, 2, Ψ̂t
n is the FDH estimator of Ψt computed with the sample of period t

taken form Xn, i.e., {(Zt
i )}ni=1.

By applying the theory described in Kneip et al. (2021, 2023) and in Simar and Wilson

(2019) we can derive the limiting distribution of L̂ for a given DMU. Under mild regularity

assumptions, and as a direct consequence of (3.12), we have, as n→∞,

nκ
(
L̂(z1, z2 | C(Ψ̂1

n), C(Ψ̂2
n))− L(z1, z2 | C(Ψ1), C(Ψ2))

)
L−→ QL,z1,z2 , (A.2)

where QL,z1,z2 is a non-degenerate distribution and κ was defined in (3.12). This result is

sufficient to enable valid inference about L(z1, z2 | C(Ψ1), C(Ψ2)) for a single DMU, using

the subsampling methods described in Simar and Wilson (2011).

A.2 Inference on µL = E(L)

We summarize and particularize here for the LPIs, the developments described in Simar and

Wilson (2019) for MPIs. Given the sample Xn = {(Z1
i , Z

2
i )}ni=1, one may obtain n estimates

L̂(Z1
i , Z

2
i | C(Ψ̂1

n), C(Ψ̂2
n)), i = 1, . . . , n. We have

µL = E
(
L(Z1

i , Z
2
i | C(Ψ1), C(Ψ2))

)
, (A.3)

and a natural estimator is given by

µ̂L,n = n−1

n∑
i=1

L̂(Z1
i , Z

2
i | C(Ψ̂1

n), C(Ψ̂2
n)). (A.4)

Due the inherent bias of FDH estimators, usual Lindberg-Levy CLT cannot be used, with-

out correcting for the bias (see Kneip et al., 2015). In fact, under regularity assumptions

described e.g. in Simar and Wilson (2019), we have the following CLT

n1/2
(
µ̂L,n − µL − CLn−κ + ξn,κ

)
L−→ N(0, σ2

L), (A.5)
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where σ2
L = V(L) and the remainder ξn,κ = o(n−κ). The bias term CLn

−κ can be eliminated

by adapting a generalized Jackknife method that can be summarized, in our setup, as follows.

We randomly split Xn = {(Z1
i , Z

2
i )}ni=1 into two parts X (1)

m1 and X (2)
m2 , with m1 = bn/2c and

m2 = n − m1 (note that if n is even, m1 = m2). Then we define the mean over the two

subsamples, for ` = 1, 2

µ̂L,m` = m−1
`

∑
{i|(Z1

i ,Z
2
i ∈X

(`)
m`
}

L̂(Z1
i , Z

2
i | C(Ψ̂1

m`
), C(Ψ̂2

m`
)), (A.6)

where for t = 1, 2, Ψ̂t
m`

is the FDH estimator of Ψt obtained from the observations for period

t in the sample X (`)
m` . Now we set

µ̃L,n/2 =
1

2
(µ̂L,m1 + µ̂L,m2). (A.7)

Using similar argument as Kneip et al. (2015) we can show that

B̂L,n,κ = (2κ − 1)−1(µ̃L,n/2 − µ̂L,n) = CLn
−κ + ξ̃n,κ + op(n

−1/2), (A.8)

where the remainder ξ̃n,κ = o(n−κ).

To reduce the variance of the bias estimator B̂L,n,κ, we can randomly split the original

sample Xn, a large number of times, say K. For each split, k = 1, . . . , K, we obtain an

estimate B̂L,n,κ,k. Then we use as bias estimate

B̂L,n,κ = K−1

K∑
k=1

B̂L,n,κ,k. (A.9)

In practice K should be as large as, say 100. In the CLT described in (A.5), we see that

the factor n1/2 can still be too large to neglect the remainder, even after the bias correction

if κ < 1/2. This leads to the following Theorem (For the regularity conditions, see e.g.

Theorems 4.6 and 4.7 in Kneip et al., 2023, or Theorem 4.4 in Simar and Wilson, 2019),

Theorem A.1. Under mild regularity conditions, as n→∞,

n1/2
(
µ̂L,n − µL − B̂L,n,κ + ξn,κ

)
L−→ N(0, σ2

L), (A.10)

provided κ ≥ 1/2. If κ < 1/2,

nκ
(
µ̂L,nκ − µL − B̂L,n,κ + ξn,κ

)
L−→ N(0, σ2

L), (A.11)

where µ̂L,nκ = n−1
κ

∑nκ
i=1 L̂(Z1

i , Z
2
i | C(Ψ̂1

n), C(Ψ̂2
n)), with nκ = min(bn2κc, n).

22



In fact µ̂L,nκ is the average of a random subsample of size nκ ≤ n drawn from the full

sample L̂(Z1
i , Z

2
i | C(Ψ̂1

n), C(Ψ̂2
n)), i = 1, . . . , n, where the notation explicits that they are

computed with the full sample Xn. Now it is shown in Kneip et al. (2023) that

σ̂2
L,n = n−1

n∑
i=1

[
L̂(Z1

i , Z
2
i | C(Ψ̂1

n), C(Ψ̂2
n))− µ̂L,n

]2 p−→ σ2
L. (A.12)

The latter can be used to make practical inference about µL by using the quantiles of the

standard normal distribution. For instance, if κ ≥ 1/2, an asymptotically correct (1 − α)

confidence interval for µL is obtained by[
µ̂L,n − B̂L,n,κ ± z1−α/2

σ̂L,n
n1/2

]
, (A.13)

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution. When κ < 1/2

we should rather use the interval[
µ̂L,nκ − B̂L,n,κ ± z1−α/2

σ̂L,n
nκ

]
. (A.14)

Remark A.1. As explained in Simar and Wilson (2019) for the case of MPIs, the same

reasoning can be applied to any component of the decomposition of the LPI described in

(4.4). Note that for L, the rate κ is the rate of the CFDH estimator (i.e. 1/(p + q − 1) or

1/(p+ q − 0.5) according we assume CRS or not), but for the other components, the rate κ

is always governed by the FDH estimators, i.e. 1/(p+ q).
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[14] Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994), Productivity growth, technical
progress, and efficiency change in industrialized countries, American Economic Review,
84, 66–83.
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