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Abstract

Liberalization and deregulation have fundamentally changed the energy market in Europe over the last forty
years. In Italy, the retail electricity and gas markets were liberalized in the early 2000’s. In 2016 retail activities
were separated from other market activities. Italy in this sense is the only European country, together with
Portugal, to have completely separated the retail segment from the rest of the industry. This peculiarity of the
Italian market makes it interesting to analyze which operational levers or characteristics could bring advantages
to Italian retail operators in achieving high margins. To do so, we propose two different models for evaluating
cost and commercial efficiencies in achieving a high direct margin. We analyzed 120 retail operators in 2020
in the Italian retail market. By comparing the models, we identified that the groups of operators with higher
revenue volumes can balance the two efficiencies and are more efficient than the others. The results of the
analysis show an effect of size (in terms of revenue) on efficiency in achieving high consumer margins. The
creation of demand aggregators for small operators is suggested to improve small and medium retailers’

efficiency.

Keywords: Energy Retail Market, Electricity Retail Market, benchmarking, order-m, retail

marginality



1 Introduction

Liberalization and deregulation have dramatically changed the energy and natural gas market in Europe over
the past four decades. The liberalization process of the natural gas and energy market in Europe began in the
late 1990s with the electricity (European Parliament and Council, 1996) and natural gas directives (European
Parliament and Council, 1998). The liberalization process of the energy and gas market, and in particular the
liberalization of the retail market, had multiple objectives. The main objectives were the stimulation of a lower
final price given by competitive conditions and better quality and/or more innovation to customers. Various
authors have criticized this view in the past considering the low effects that liberalization has brought.
Defeuilley (2009) criticizes the view of the market as a process driven by entrepreneurship. He identifies the
complexity of the determinants of choice (perceptions and decision-making protocols) and the technological
paradigm of the electricity sector as two underestimated aspects of the retail market liberalization process.
Earlier studies found little or no effect on prices in the liberalized markets (for a review, see Joskow, 2008), or
even an increase in prices for small customers. This conclusion was also underlined by the ECME Consortium
(2010), which found that where competition is allowed, significant benefits are available, but most households
do not take full advantage and the generation portfolio is the main determinant of household price levels.
Despite the criticism of market liberalization in the literature, the process of liberalization in various European

countries (and beyond) has progressed.

In Italy, the retail electricity and gas markets were liberalised by Decree-Law No 79/1999 (also known as
'Decreto Bersani', Italian Parliament, 1999) for the electricity market and Decree-Law No 164/2000 (also
known as 'Decreto Letta', Ministry of Economic Development, 2000) for the gas market. The liberalisation
process has led to a clear division of the market into different industrial levels. This has allowed the creation
of operators with a direct link to final customers, whose main activity is the purchase and sale of energy and
natural gas, but not its distribution or production, the so-called retail market. In 2016, an important milestone
was reached in terms of accounting and brand unbundling (ARERA, 2015) with the separation of retail
activities from other market activities. Italy in this sense is the only European nation, together with Portugal,
to have completely separated the retail segment from the rest of the industry. Despite this, it is worth noting

that the retail market for domestic customers continues to coexist with two markets, a free one and a regulated



one called "maggior tutela" (scheduled to be closed in 2024). The Italian market has become very competitive
in the retail sector over the years. According to the Italia Regulatory Authority for Energy Networks and
Environment  (ARERA)  data, there are about 600 energy retailers in  Italy

(https://www.arera.it/it/dati/mr/mree_ccomm.htm last accessed 16/5/2023) and about 480 natural gas sellers

(https://www.arera.it/it/dati/monitoraggio_retail.htm#consistenza last accessed 16/5/2023). Furthermore, from

January 2020 more than 50% of the active domestic selling points are in the free market
(https://www.arera.it/it/dati/mr/mree_puntiattivi.htm). In addition, many offers proposed to customers can be
seen (more than a thousand offers in the first trimester of 2023) with an intense commercial activity of the
retailers to attract customers. Nevertheless, the market over the years has seen a progressive reduction in its
Herfindahl-Hirschman Index (HHI, Hirschman, 1980) both in the electricity and natural gas retail market. The
only critical competitive dynamic is the domestic electricity market with the HHI in 2023 estimated at 2146,
slightly above the critical threshold of 2000. Nevertheless, the retail market for both gas and energy appear to
have a good competitive structure that is worth analyzing. In this context, the Italian competitive environment
has changed radically, and retailers have implemented new strategies to maintain their market share and attract
new customers. In light of these profound changes, it is interesting to analyze the performance of companies
to understand what differences can be seen in the market between the various operators and whether there are

features that have benefited certain operators more than others.

Extensive research has previously been conducted to analyze one specific aspect of the natural gas and energy
market, such as efficiency, productivity and consumer behavior. For example, in the consumer behavior field
Wieringa et al. (2007) analysed the Dutch market, Yang (2014) the Danish one, Shin et al. (2017) the Japanese
one, Flores et al. (2018) analysed the British market while Fontana et al. (2019) studied the Italian market.
Erdogan et al. (2022) analyse the large-scale electricity consumers in the Turkish market. These various studies
have made the various national authorities also pay attention to consumer behavior in their monitoring
activities. For example, in Italy, the Authority has included a whole section in the monitoring retail report
(ARERA, 2022). In the area of productivity and efficiency analysis, several contributions analyzing can be
found in energy generation field, e.g. Athanassopoulos et al. (1999), Chen et al. (2021), Sengupta & Mukherjee
(2022) and Fleishman et al. (2009). Similarly in natural gas and electricity distribution literature, there are

several contributions such as Erbetta & Rappuoli (2008), Goncharuk & Lo Storto, (2017), Hawdon (2003) in
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the case of gas industry and Hjalmarsson & Veiderpass (1992) or Fersund & Kittelsen (1998) for electricity
distribution. Focusing on the Italian retail case, the research group led by Capece, in several papers analysed
the Italian natural gas retail market (Capece et al., 2008, Capece et al., 2010, Capece et al., 2012) and electricity
(Capece et al., 2013). Capece et al. (2008) analysed the natural gas retail market using the Edgeworth index
method and found that medium-sized companies perform best in terms of profitability and productivity
compared to the ideal company. Large companies, on the other hand, mainly have positive profits due to the
increased mark-up resulting from their bargaining power with suppliers, which allows them to purchase gas at
lower prices. In Capece et al. (2010) the authors identify 4 clusters of operators and note that incumbent
operators perform the least well while specialized operators or those who work purely in the north or are
medium-sized perform better than the others. Similar are also the conclusions of subsequent work (Capece et
al., 2012). Di Pillo et al. (2012) perform a similar analysis as Capece's group did in the Italian natural gas retail
market but consider an extended period (2004-2009), which also allows them to assess the effects of regulatory
decisions in the period of interest. Their main conclusion is that multi-business companies achieved the worst
performance because they failed in their business diversification strategy. In this context, Di Leo et al. (2022)
propose a framework to assess the retail market performance (and its sustainability). To do that, they proposed
to assess the sellers' margins (expressed as the difference between the final selling price and the purchase price

of raw materials).

The main research question in this article is the assessment of the efficiency in reaching high margins of the
retailers using a robust benchmarking methodology and trying to understand which operational levers or

characteristics could bring advantages to Italian retail operators.

To do so, we propose two different robust benchmarking models to evaluate cost and commercial efficiencies
in achieving high direct margin. Unlike what has been proposed in the literature, the methodology used in this
paper measures the relative efficiency of retailers without assuming strong hypotheses and being more robust

to the influence of outliers.

This research paper is organized as follows. Section 2 provides a description of our model for the Italian energy
and gas retail market and the main hypothesis behind the benchmarking carried out. Section 3 describes the

methodology, the models and the dataset used for the analysis. Section 4 illustrates the results considering the



various characteristics of the retailers analyzed and Section 5 concludes the paper providing policy

implications.

2 Modelling the Italian retail market

We analyze the Italian energy and natural gas retail market as a market with perfect competition in the long
run (the gas and energy sales market has been liberalized for more than 10 years). In particular, the conditions
we hypothesized are a large number of operators and buyers, homogeneity of products or services, perfect
information (incentivized as far as possible by ARERA also through information platforms for consumers such
as the offers portal https://www.ilportaleofferte.it/portaleOfferte/), zero transaction costs and free market entry
and exit. According to competition theory, in a competitive market, competition between companies leads to
reduced profits and profit margins. In other words, in a competitive market, companies cannot maintain high
profits in the long run because competition forces companies to reduce prices to attract customers (Waldman

& Jensen, 2016). In this context, the assumptions of our analysis are the following.

By defining the price P, the marginal cost (MC) and the markup ¢, it is possible to summarize the relationships

between energy and gas sellers and their suppliers. These relationships form the basis of the proposed models,

defining in detail the ‘decision levers’ that an operator can move to improve performance.
Given the price of energy P;g purchased from the seller defined as

Pig = MCip + €5
and the price of natural gas P, ; purchased from the seller defined as

Pig = MCi6 + €16
we define the resale price of electricity to the customer P, by the retailer as

Pop = Pip+ &5 = CMyp + €15+ &3¢

and we define the resale price of natural gas to the customer by the seller as

Py = Pig + €6 = CMyg + €16 + &6



Assuming that the seller's main cost for determining the price is exclusively the purchase price of energy and

natural gas we can define the total retailer revenue Ry as:

Rror = Py * Qp + Py * Qg

Where Qf is the amount of energy sold and Qis the amount of gas sold.

The total raw material cost for a single operator can be defined as:

RAW MATERIALS COSTror = P1g * Qp + Pig * Qg

For simplicity we are assuming that the quantity of gas and energy sold to end customers is the same as that

purchased from suppliers. Given the assumptions presented above, we define the direct margin as

Direct Margin = Rpor — RAW MATERIALS COSTror

(P2g * Qg + Py * Qg) — (P * Qg + Py * Q) = (Pzp — Pip)Qp + (P26 — P16) Q6

= &p*Qp + &6 * Qg

which we consider to be the closest possible approximation to the retailer's profit because in the case of resale
activity only we consider fixed costs to be negligible (and distribution and regulatory costs set equal for all).
It goes without saying that, in the case of a free market with perfect competition in long run, P; prices for both
gas and energy will be similar for all operators with margins and mark-ups close to zero. This simplifying
assumption makes it possible to evaluate the performance of the operators by considering only and
intermediation process towards final customers. Figure 1 presents an outline of the relations between the

retailer and the energy and gas suppliers described above.

Fig 1. Summary of the relation between suppliers and retailer

Energy supplier NatUra!gas
supplier
Y

Retailer




3 Methodology: a nonparametric robust benchmarking approach

One of the most known family of approaches for performance measurement is efficiency analysis, which
consists in the estimation of an efficient (or optimal or best benchmarking) frontier against which to compare
the performance of a unit with respect to its comparison set. As described in the seminal paper by Farrell
(1957), an efficiency analysis starts with the estimation of a production or a cost frontier. In the literature, there
are two main approaches for the estimation of an efficient frontier: the non-parametric and the parametric
frontier approaches (for an introduction see e.g., Coelli et al., 2005). Parametric models require the assumption
of a functional form for the production (or cost) frontier and the assumption of a distribution for the
inefficiency. On the other hand, non-parametric models do not assume neither a functional form for the

efficient frontier nor any distribution for the inefficiencies.

For these reasons, nonparametric models are more flexible than parametric ones. Different non-parametric
methods are available in the literature, with the most popular being Data Envelopment Analysis (DEA) and
Free Disposal Hull (FDH). Charnes et al. (1978) introduced the DEA method. The main objective of DEA is
to evaluate the performance of a given sample of units (so called Decision-Making Units, DMU) to operate

close to the efficient boundary of the production set.

DEA is a nonparametric approach, hence does not require prior specification of a functional form for the
production technology and can manage multiple inputs and outputs but it requires the free disposability
(meaning the possibility to destroy goods without costs) and the convexity assumptions. The efficient frontier
estimated with DEA is constructed as a piecewise function over the data through linear programming. A DEA
analysis can be conducted in an input or in an output orientation. An input-oriented DEA aims to analyze,
given the outputs produced by the DMUs, how much the inputs could be contracted to reach the efficient
frontier estimated empirically on the analyzed sample. In an output-oriented DEA, the aim is to maximize the
outputs of each DMU, given the level of inputs used. Free Disposal Hull (FDH), introduced by Deprins et al.
(1984) is a nonparametric frontier approach that assumes only the free disposability and does not impose the

convexity assumption as DEA does.

However, nonparametric methods in efficiency analysis, including DEA and FDH, suffer for the influence of

outliers or errors in the data and of the so-called “curse of dimensionality”, meaning that for having a



meaningful estimation of the efficiency scores it is necessary to have a lot of data (for more details, see e.g.
Daraio and Simar, 2007). This is why we chose a non-parametric and robust methodology called Order-m
efficiency analysis for benchmarking Italian retailer operators in reaching high margins. Cazals et al. (2002)
introduced Order-m efficiency analysis that is a nonparametric approach because it does not make any
assumption about the inefficiency and the functional form of the frontier. In addition to the advantages of
nonparametric approaches, Order-m efficiency scores have nice statistical properties that make them very
attractive for empirical analysis: they are root-n consistent estimators, asymptotically unbiased and

asymptotically normally distributed (see more details in Daraio and Simar, 2007, p. 77).

For its ability of not enveloping all data points, Order-m efficiencies are more robust to outliers and extremes
in the data, and this is another attractive property of this approach. For empirical applications, this property
means that we can avoid one of the more important limitations of the traditional nonparametric estimators,
related to their deterministic nature. In addition, as a consequence of their statistical properties, robust order-
m measures of efficiency do not suffer of the curse of dimensionality shared by most nonparametric estimators
and by the DEA/FDH efficiency estimators. This is a relevant property for empirical analysis since it states
that we can work with samples of moderate size and we do not require large samples to avoid imprecise
estimation (e.g. large confidence intervals). Finally, the value of m could be considered as the number of
potential competitors against which to carry out the benchmarking and also the trigger parameter to set the
desired degree of robustness, i.e. the percentage of high performers of the population we want to exclude in

our more realistic and robust benchmarking comparison (see more details in Daraio and Simar, 2007, p. 78).

An Order-m analysis, in the output orientation, consists in benchmarking a DMU (x, y) against the average
maximal output reached by m peers randomly drawn from the population of DMUs that are producing a level
of output higher or equal to that of the analyzed DMU. When y is univariate the full frontier for an input level

X is defined as:
V(%) = A%, y)y = sup{y|Syx(y|x) > 0}

Then the expected order-m frontier is defined, for a fixed integer value of m = 1 as the expected value of the

maximum of m random variables Y ...Y drawn from the conditional distribution function Y given that X < x.

Its formal definition is:



[ee]

Yn(x) = E[max(Y!, .., Ym)[X < 5] = f (1 -[Fux (v [ 9] dy
0

Its non-parametric estimator can be defined and computed by:

Pmn(¥) = E[max(Y?, .., Ym)|X < x] = f (L-[Fyixn (v | 30]m) dy
0

We carry out an efficiency analysis with output-oriented order-m frontiers and report the results a la Shephard,
that is efficient DMUSs have a score of one while super-efficient units have a score greater than one, and
inefficient units have a score less than one. The analysis is performed on R using the FEAR package version

3.1 (Wilson, 2008).

To summarize, thanks to this robust methodology we can identify efficient operators, analyze best practices,
compare best practices with less efficient ones to investigate existing differences. After that we extend the
analysis considering different factors (e.g. size, vertical integration etc.) to evaluate their influence on the
efficiency of operators in achieving high direct margin. In order to that we consider the classifications of the
operators proposed by Capece et al. (2008). To make a descriptive comparison of the efficiency scores between
more than two groups of classification we use the nonparametric Kruskal-Wallis test for the equality of the
medians (Kruskal & Wallis, 1952). The asymptotic properties of order-m estimators that are root-n consistent,
asymptotically unbiased and asymptotically normally distributed allow us to avoid the statistical

inconsistencies associated with DEA/FDH estimators (see for more details Kneip et al., 2016).

After that, Dunn’s test (Dunn, 1964) was adopted to determine exactly which groups are different after the
results of Kruskal-Wallis test. Dunn’s Test performs pairwise comparisons between each independent group
and tells you which groups are statistically significantly different. In the case of a comparison between two
classification groups, we adopted the Mann-Whitney test (Mann & Whitney, 1947). This method makes it
possible to assess whether two statistical samples come from the same population. The tests are performed
using the R package ggstatsplot (Patil, 2021). More details on the classifications for each operator is reported

in the Section 3.2.



3.1 Data

To have as homogeneous a context as possible, the operators considered are only those who, according to the

authority's listing and according to their economic activity (using the ATECO code of 2017) only carry out

energy and/or natural gas retail activities in Italy We selected comparable and homogeneous operators. Starting

from the official list of the Italian energy and gas authority (ARERA) of operators (available at

https://www.arera.it/ModuliDinamiciPortale/elencooperatori/elencoOperatoriHome) and integrating the

balance sheet data of 2020 from the database “Analisi informatizzata delle aziende italiane” (AIDA, 2023)

(last date accessed 20/04/2023) we examined for our work 120 energy and natural gas retail operators. For

these operators we obtained data on:

Raw material costs in 2020.

Total Revenue, Added Value (VA), Earnings Before Interests Taxes Depreciation and Amortization
(EBITDA) in 2020.

Direct Margin in 2020.

Kilowatt per hour (kWh) consumed by customers in 2020.

Cubic meters (m?) of natural gas consumed by customers in 2020.

Profit/Losses at the end of 2020.

We also classified the operators similarly to what was proposed by Capece et al. (2008). Each retailer was

classified in:

Business classification ("Double business" or "Only energy"). The classification is based on the
energy and/or natural gas sold by an operator in 2020. This is a proxy to consider the “horizontal
integration” of an operator in both the energy and natural gas retail market.

Size classification by 2020 total revenue quartiles, dividing the operators into large (if revenues
greater than 8703056), medium-large (if revenues greater than 2665873), medium-small (if revenues

greater than 579354), and small for the others.



e Society classification. This classification is based on belonging to a corporate group or not according
to what is reported in the ARERA national registry. This classification is a proxy for the “vertical
integration” of operators.

¢ Time classification, dividing between operators entered in the market after 2016 (pos¢ unbundling)
and pre 2016 (pre unbundling). This classification and a proxy for the assessment of ‘incumbents’ in

the market.

In the dataset there is a high number of the double business operator, 96, and 24 are only electricity retailers
(also called specialized operators). There are also 25 operators that are part of a corporate group and 95 not

belonging to a corporate group. In Table 1 we reported the number of operators also for the other classification

group.

Tab. 1 Different types of classification of the operators analyzed

Number of
Classification type Classification description operators
Bel ing t t 25
Society classification eonging _O 4 corporate group
Not belonging to a corporate group 95
. e Double Business 96
Business classification
Only Energy 24
. T After 2016 61
Time classification
Pre 2016 59
Large 30
Size Classification Large-Medium 30
Small 31
Small-Medium 29

3.2 Specification of the Models

Based on this data and the assumption explained in section 2, we propose two models: one to assess cost

efficiency and the other to assess commercial efficiency.

The cost efficiency model aims to assess which operators, for the same raw material cost, manage to have a
higher margin. That is, they manage to sell at a higher P,r and/or P price than their competitors by working

on the two possible levers, i.e., markups €, and &5, and the raw material supply price Py and P;;.



On the contrary, the commercial model aims to assess which operators, for the same quantities sold, manage
to have a higher margin. That is, they manage to sell at a higher P¢ and/or P»g price than their competitors for
the same quantities sold Q@ and Q. In this case, the strategy adopted on the supply price side is not affected.
The exclusion of the procurement cost optimization strategies only allows an evaluation relative to the quantity

sold.

There are limitations on these assumptions that are made in our model. The first relates to an 'aggregate view'
of both the energy and gas market without considering differences between the type of energy purchased (e.g.,
renewables only, mix or fossil fuels only) and the end customer to whom the P, price is being applied (e.g.
domestic gas customer or low voltage domestic energy customer). These assumptions are derived from the
limited unbundling of operators' annual financial statements which, by their nature, only allow for an
aggregated view of operators' operations. Another assumption that limits the proposed models concerns the
quantities sold and purchased of natural gas and energy. For simplicity's sake, the two Q's are considered equal

over the period considered since natural gas and energy are not easily stored by sellers.

Therefore, the first model (the cost efficiency model) considers as input in the cost of raw materials (X, above)
and as output in the direct margin (Y above). The model is output oriented. The second model, the commercial
efficiency model, we use as input the number of m* of natural gas consumed (X¢, above) and the kWh
consumed by customers (X;, above) in 2020. As output, the use of direct margin (Y) is proposed as in the
previous model. In both models, the data were divided by the standard deviation to reduce the different
magnitude of the variables considered'. In Table 2 we reported the descriptive statistics of the data used in the

models.

' We added 1 to the value of cubic meters (m?) sold for greater discriminating power in the case of operators who do not
sell gas.



Tab. 2 Descriptive statistics on the variables used in the analysis

o [ [ [ m [

Minimum 1056 0 8678 587
First quartile 414571 28778 1339912 95143
Median 1718871| 487001| 5729321 517876
Mean 7897059| 3603785| 28106493| 1889356
Third quartile 6912813| 2321846| 18315715| 1544940
Maximum 84890569 | 71451154 | 427962632| 29238794
sot:\:;::izdn 15768410 9428332| 68803054| 4249359

4 Results and discussion

4.1. Results of the Cost efficiency model

The first step in carrying out an order m analysis concerns the choice of m. Following a simulation for m=1 to
m=120, we selected m= 90 given the balance between super-efficient and efficient, which in our case shows 4
efficient units (about 3.3%) and 23 super-efficient units (19.2%). Figure 2 shows a bimodal distribution of the
efficiency scores of this first model with a group of units concentrated toward the frontier and another spread

toward the lowest values of efficiency.



Histogram and density of order m (m=90) cost efficiency scores
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Fig. 1 Histogram and distribution (in red) of the cost efficiency scores

To understand the results, we focus our attention on the Super-efficient operators (i.e. operators with an
efficiency greater than 1, hence called Super-efficient group) and the lowest-efficient operators (hence called
Lowest-efficient group), so that best practices or characteristics can be identified. Analyzing the Super-
efficient group (23 operators) and the 23 operators in the lowest-efficient group (the same number as the super-
efficient group) we found differences between the best performers and the worst performers in margin creation

at the same raw material cost.

As shown in Table 3 the super-efficient units have a X, with a median of 956000 Euros (raw material costs)
for a median Y of 643000 Euros. In contrast, the lowest-efficient group have a median 0f 4235354 and 370557.3
Y. A remarkable difference in the results obtained even when considering the minimum and maximum (both
input and output) employed by the less efficient operators. This difference can also be easily seen in Figure 3,
which shows the first quartile, median and third quartile values of raw material cost and direct margin of both

groups.



Fig. 3 Cost efficiency model: visualization of descriptive statistics of super-efficient and
lowest-efficient operators.

The red lines represent the Lowest-efficient group, the blue lines represent the super-efficient
group. The points represent the median, the upper bars represent the third quartile, the lower
bars represent the first quantile.
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In the super-efficient group, we do not notice any influences related to belonging or not belonging to one of
the proposed classifications. We have, according to the classification by business, 16 Double business
operators and 7 only energy retailers. According to the size classification, 6 are large, 4 are large-medium, 4
are small-medium and 9 are small-medium. According to the classification by group, 17 are not part of a
corporate while 6 are in a corporate group and according to the time classification, 16 are incumbent operators
(after 2016) and 7 are historical operators (Pre 2016). They also turn out to be all operators in profit except
one. Almost the same can be said for the lowest efficient operators. In detail, in the lowest efficient group we

have 21 double business and 2 only energy. For the size classification, 4 are large, 10 are medium-large, 6 are



medium-small and 3 are small. Three operators are in a corporate group and 20 are not in a corporate group; 7

are after 2016 and 16 are pre 2016.

Tab. 3 Cost efficiency model: Descriptive statistics of the input and output used in the

comparison of the Super-Efficient Group vs the Lowest-efficient group

Mean Standard Minimum | First Median | Third Max
Deviation quartile quartile
Super-efficient group
X. | 12210506 22151230 41139 126683 956000 6145257 | 66400442
Y 3644375 6687520 20057 92318 643000 4831830 | 29238794
Lowest -efficient group
X. | 4372376 4235354 54362 1166400 | 2885378 | 6069710 | 15151062
Y 466942 370557.3 3543 152170 433791 723697 1244495

After analyzing the best practices, we analyze at macro level all the operators to assess whether the
characteristics of the operators can influence the efficiency score. It is worth emphasizing that the robust
frontier methodology used is not conditioning the data-generating process on the characteristics considered.
The Mann-Whitney test results shows that there is a significant difference between operators by business class
(p-value=0.02) with specialized operators on average more efficient than double business operators (the
median of cost efficiency for the double business operators is 0.52; for the only energy operators the median
is 0.94). There is a significant difference in efficiencies in time groups (p value 0.04) with after 2016 operators
on average more efficient than the old ones (median of 0.65 for the after 2016 vs 0.48 for the pre 2016). There
is also a slightly significant difference in efficiencies in size groups as shown in Figure 4 (p value approximate
to 0.05) but no significant differences between groups are reported. No others significant differences are noted

for classes by corporate group.



Fig. 4 Comparison of cost efficiencies between size classes. Large (in green), Large-Medium (in
orange), Small (in blue), Small-Medium (in pink). For each class, the boxplot, violin plot and
median of the efficiencies are presented. The dots represent the efficiency scores of the
operators and the red dot is the median. The first row of the figure shows the result of the
Kruskal-Wallis test, the p value, the confidence interval and the number of operators analyzed
(120).
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4.2. Results of the Commercial efficiency model

As in the previous case we need to select m. Following the simulation for m equals 1 to m equals 120, the
choice of m fell to 90 to have some discriminant power for the identification of over efficient unit. With m=90
there are 3 efficient units (about 2.5% of the total) and 9 super-efficient units (7.5% of the total). The results

of the commercial model are different in distribution from the previous model, as shown in Figure 5.



Fig. 5 Histogram and distribution (in red) of the commercial efficiency scores
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The distribution of the commercial efficiency scores shows a strong presence of operators with low efficiencies
close to 0-0.1. This strong concentration points to widespread commercial inefficiency on the part of operators.

As shown in Table 4 the super-efficient group have a median of 7825619 X, ; 204587 X; and 6268115 Y. In
contrast, the lowest-efficient group have a median of 836.9 X, (i.e. no gas consumed/sold to the customers),
415713 X,,, and 23758 Y. This difference can also be easily seen in Figure 6, which shows the first quartile,

median and third quartile values of X; , X;, and Y for both groups.



Fig. 6 Cost efficiency model: visualization of descriptive statistics of super-efficient and
lowest-efficient operators. The red lines represent the lowest efficient operators, the blue
lines represent the super-efficient operators. The points represent the median, the upper bars
represent the third quartile, the lower bars represent the first quartile.
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A notable difference in the results obtained even when considering the minimum and maximum (both input
and output) used by the lowest-efficient group (Table 4). In terms of characteristics, the super-efficient
operators are 7 double business and 2 only energy; 7 large and 2 small; 2 are in a corporate group and 7 are
not in a corporate group. Moreover, there are 6 historical operators (pre-2016) and 3 incumbent operators (after
2016). Considering their ability to make a final profit, only 2 operators are loss-making. Of these latter, one
has high positive EBITDA and VA, indicating that financial activities weighed heavily on their ability to make
a profit. The super-efficient group have a very high VA and EBITDA compared to the worst (VA 4878681 vs
2341; EBITDA 2889152 vs 2338). Their median profit is also much higher than that of less efficient operators

(520506 Euros vs 1416 Euros).



Tab. 4 Commercial efficiency model: Descriptive statistics of the input and output used

in the comparison of the Super-Efficient Group vs the Lowest-efficient group

Mean Standard Minimum | First Median Third Max
Deviation quartile quartile
Super-efficient group
Xe, 21403012 26693758 1 16881 | 7825619 31775420 | 71451155
Xe, | 131219177 135944149 174874 204587 | 77473738 | 212104107 | 365529399
Y 10821582 9926885 3543 6268115 | 7497013 11585260 | 29238794
Lowest-efficient group
Xe, 45940,2 63540,64 1 1 836.9 92284 157025.4
Xe, 651483 741208.1 258666 342507 415713 535533 2608188
Y 26829 8919.248 16822 20523 23758 36593 39468

As a feature, it is worth noting that the units with the lowest efficiency are all small; 4 of them are loss-making,
with negative EBITDA, indicating how these operators have problems in the day-to-day running of their
businesses. Regarding the others classification of the lowest efficient group, there are 5 double business
operators and 4 only energy retailers; 2 are part of a corporate group and 7 are not in a corporate group; 6 are
pre 2016 operators and 3 are after 2016 operators. The analysis of best practices thus shows how the size of
the operators plays a very important role compared to other classifications to have a high commercial

efficiency.

Expanding the focus of the analysis to all 120 retailers we identify significant differences between operators
with similar characteristics using the Kruskal-Wallis test. Test results are presented in Figure 6 and indicate a
significant difference between the dimensional class with a p-value of 1.17e-14. Significant differences
between the groups are also identified by the Dunn’s test. Large operators have higher efficiencies than the
other groups. Also, the large medium operators are more efficient then the small and small medium operators.
The Mann-Whitney test identifies a significant difference in efficiency between pre-2016 and after 2016
operators (P-value 4.45e-04) with pre-2016 operators more efficient than after 2016 operators (median
efficiency 0.22 vs. 0.06). No differences are identified by the tests between different businesses and between
operators in a corporate group or not. From the results of the tests, we can understand that historicity or

incumbency in the market and the size of revenues affect commercial efficiency.
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Fig. 7 Comparison of commercial efficiencies by size classes of the operators. Large (in
green), Large-Medium (in orange), Small (in blue), Small-Medium (in pink). For each class,
the boxplot, violin plot and median of the efficiencies are presented. The dots represent the
efficiency scores of the operators and the red dot is the median. The first part of the figure
shows the result of the Kruskal-Wallis test, the p value, the confidence interval and the number
of observations (120). The lines between the boxplots represent significant differences between
the groups identified by Dunn's test (Bonferroni-adjusted)

4.3. Discussion

The two efficiency scores obtained from the proposed models can be used together to see which operators are
simultaneously efficient on raw material costs (i.e., higher margin for the same raw material costs) and volume
sold (i.e., higher margin for the same volume sold). It is difficult, however, to rely on a single model to
understand which players are very efficient or which characteristics may influence the market. Analyzing the
market one-dimensionally could lead to an incomplete and distorted view, as also suggested by Capece et al.
(2008). Therefore, it is possible to combine the two model results together to assess which operators are
efficient and which are not from a commercial and cost perspective. Between the two efficiency scores there
is no strong Spearman correlation (0.312). Figure 6 shows the efficiency scores of the two models. On the x-
axis we have the cost efficiency score, and, on the y-axis, we have the commercial efficiency score. The points
correspond to the intersection of these two efficiencies for each operator analyzed. We have divided Figure 6
into four quadrants: the North-East quadrant identifies efficient operators in both models; the North-West

quadrant identifies commercial efficient but not cost efficient operators; the south-east quadrant identifies cost



efficient but not commercial efficient operators; finally, the south-west quadrant identifies inefficient operators
in both models. We assessed whether the classification adopted influences the two efficiencies and it turns out
that only size has an influence. In Figure 6, the colors represent an operator's belonging to the size classification
we adopted: in red the large operators, in green the small operators, in blue the medium-small operators and in
pink the medium-large operators. A comparison of the two scores shows that most operators are oriented
toward being more cost-efficient than commercial-efficient. It can be seen from Figure 6 that operators
classified as large manage to balance commercial and cost efficiency better than the others. Large operators
balance both efficiencies well and are very present in the North-East quadrant of Figure 6. As the size
decreases, the operators fail to balance the efficiencies and always lean towards cost efficiency over

commercial efficiency. Figure 6 shows the details of this analysis.



Fig. 6 Scatter plot of cost and commercial efficiencies of Italian retail operators. Each
point represents cost and commercial efficiency of an operator. The points correspond to the
intersection of these two efficiencies for each operator analysed. We have divided the graph
into four quadrants: the north-east quadrant identifies cost efficient operators in both models;
the north-west quadrant identifies commercial efficient operators but not cost efficient
operators, the south-east quadrant identifies cost efficient but not commercial efficient
operators, finally, the south-west quadrant identifies inefficient operators in both models The
colours in the graph represent the size classification of the operator. The lines for dividing
into quadrants are positioned at 0.5.
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5 Conclusion and policy implications

This article responds to the research question on the characteristics that can influence the efficiency in reaching
high direct margin of the Italian energy and natural gas retailers. Two robust benchmarking models for
evaluating cost and commercial efficiency in achieving high direct margin were developed. The use of the
robust benchmarking methodology allowed us to evaluate some of the aspects of performance evaluation

expressed by Thanassoulis (2001):



1) identification of good operational practices (i.e. the best performer) both for individual models
and by comparing models together.
ii) an analysis of the most productive operational scale, comparing the results of efficiencies in

individual models and comparing them subsequently.

We found out that the specialization, incumbent status, and the dimension of the retailer influences the cost
efficiency. For commercial efficiency, it is influenced by dimension and incumbent status in the market. The
results are partially in agreement with the research of Capece et al. (2008; 2010). We agree that the efficiency
in achieving large margins depends on the size (in terms of total revenues), specialization and incumbent status
of the retailers. Contrary to the conclusions of previous studies, business group operators do not seem to affect
the achievement of the efficiency. These results therefore show that the long work to separate retail activities
between different operators has avoided advantages for vertically integrated companies. The relevance of size

is highlighted in both models by considering analyses of super-efficient operators.

The focus on size is further emphasised by comparing the results of the two models (see Figure 6). This
comparison allows us to identify 4 quadrants. In these quadrants, the operators with high commercial and cost
efficiencies are the large operators. It is also noticeable that small and medium-sized operators suffer from
competition of large operators preluding being cost-efficient more than commercially efficient. A similar
problem in the Italian context has already been identified by Stagnaro et al. (2020) which identified improper
behaviors by large operators in Italy. This behavior may limit the expansion of small operators and

consequently also limit their efficiency by not being able to increase their sales volume.

Based on our findings, our policy proposal is to promote a strengthening of small and small-medium retailers
and incentive for joint purchase of energy or natural gas for small/small-medium operators to increase their
scale and efficiency. In Italy, to contribute to the strengthening of retailers, a barrier to entry for operators has
been decided by the Ministry of Business and Enterprise (MISE). The MISE has decided to set up a list of

electricity retailers (https:/www.mase.gov.it/pagina/elenco-venditori-energia-elettrica-eve), requiring a

minimum share capital of 100000 euro for registration. Parallel to these efforts, the aggregation of demand
through a demand aggregator (e.g. through the creation of consortia) could represent an opportunity for small

and medium-sized retailers in the electricity sector to gain advantages in the purchase of raw materials. This


https://www.mase.gov.it/pagina/elenco-venditori-energia-elettrica-eve

intermediation instrument would bring together the purchasing needs of several operators, allowing them to

benefit from economies of scale and more advantageous contractual conditions when negotiating with energy

and gas suppliers. Aggregating demand through an aggregator offers numerous advantages to small operators:

a)

b)

d)

Greater bargaining power: A demand aggregator can negotiate wholesale contracts with suppliers
representing a group of small players. Demand aggregation enables small sellers to obtain more
favorable purchasing conditions through increased bargaining power.

Simplified access to the wholesale market: The aggregator can simplify the process of access to the
wholesale market for small sellers by removing administrative barriers and minimum participation
requirements that might be difficult for individual traders to meet.

Cost reduction: Demand aggregation allows operational costs to be shared among participants, thus
reducing individual costs for small sellers.

Risk mitigation: Through demand aggregation, small sellers can mitigate the risk associated with the
supply of energy or natural gas. An aggregator can diversify sources of supply and ensure a reliable

supply to participating operators.

To stimulate demand aggregation of small operators, regulators and policy makers can take measures such as:

Creation of a regulatory framework that encourages the participation of demand aggregators and
establishes clear rules for their operation.

Promoting information and awareness among small retailers on the opportunity and benefits of
demand aggregation.

Support financially or provide tax incentives for demand aggregators that cater for small sellers.
Promote the creation of digital platforms or portals that facilitate demand aggregation and simplify the

negotiation and contracting process.

Another option could be the mergers of small companies with each other (e.g., through mergers or

acquisitions). The increase in scale due to this type of operations would benefit the new entrant, who would

have both more bargaining power on the raw material purchasing side and a larger market share, which would

mitigate the effects of misbehavior by larger competing operators. Further growth opportunities could also

come from commercial innovation in the side of offers to customers. Offering additional services, for the same



price, can lead to better market positioning and customer attractiveness as also emphasized in the framework
proposed by Di Leo et al. (2022). This could involve also offering energy contracts with flexible options or
incentive programs for the gradual adoption of environmentally friendly technologies. Some operators have
already started to do this, as can be seen on the Platform “Portale Offerte” provided by ARERA

(https://www.ilportaleofferte.it/portaleOfferte/).

Although the results lead us to emphasize the beneficial effect of size, it is important to recognize that small
operators can distinguish themselves in the crowded and competitive Italian market through customer loyalty
having a direct and personalized contact with users thanks to a commercial network of agents. This aspect
cannot be overlooked because it can be both a significant competitive advantage and disadvantage for small
operators. An increase in the size of these operators could be hampered by this type of customer relationship.
Maintaining a network of agents establishing direct contact with customers may entail higher costs than
operators relying on other means such as a centralized call center. Furthermore, the agent network may be
effective at a local or regional level but can become problematic when it comes to expanding nationwide.
Therefore, although size remains the main factor influencing efficiency in achieving high direct margins, it is
essential to also consider the importance of customer retention through direct contact for smaller operators.
This topic, together with the discussion on commercial innovation, goes beyond the scope of this article,
however, but offers an interesting cue for further research on business innovation and competitive strategies

of small operators.

As shown in Section 2, there are simplifying assumptions we have made in modelling this market. As possible
future developments, the assumptions made can be developed further and other more complex models can be
proposed. Furthermore, the models developed do not consider the differences between different customers and
between different businesses. A possible development could be modelling by type of customer (domestic or
non-domestic, etc.) or by individual business. In this case, to develop such models, it is necessary to have

separate accounting data to have the necessary details for modelling and robust benchmarking analysis.


https://www.ilportaleofferte.it/portaleOfferte/
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