
Route Recommendations to Business
Travelers Exploiting Crowd-Sourced Data

Thomas Collerton
Andrea Marrella
Massimo Mecella
Tiziana Catarci

Technical Report n. 7, 2017

ISSN 2281-4299

Route Recommendations to Business Travelers
Exploiting Crowd-Sourced Data

Thomas Collerton, Andrea Marrella, Massimo Mecella, and Tiziana Catarci

Sapienza Università di Roma, Italy
collerton.1674085@studenti.uniroma1.it

{marrella,mecella,catarci}@diag.uniroma1.it

Abstract. Business travellers are those people who attend work-related meet-
ings and in their few hours of spare time would like to see the best that the host
city can offer in terms of cultural activities and sightseeings. In this work we
present a complex architecture, consisting of mobile applications and back-end
server components, which supports such a type of users in recommending pos-
sible routes within their constraints. The three main contributions are (i) a set of
machine learning algorithms that can be used to detect a queuing state of a user
with a high degree of accuracy, (ii) how to determine user’s positioning, and (iii)
how to practically realize a planner providing a reasonably good enough route
plan within a handful of seconds. Preliminary tests demonstrate that the single
components of the proposed architecture are feasible and provide good results.

1 Introduction

In recent years, a category of tourism has gained popularity, known as “business
tourism”, i.e., people who attend work-related meetings away from their hometown
and in their few hours of spare time would like to see the best that the host city can
offer in terms of cultural activities and sightseeings, such as monuments and museums
[14]. This kind of tourism has been also fueled by the presence of emerging forms
of social and technological developments that rely on sensors, big data and new ways
of connectivity and exchange of information (e.g., IoT, RFID, social networks, etc.),
which allow to supply business travelers with better mobility, location-based interactive
services and, consequently, faster decision support [7].

The data and information intensity of business tourism has led many researchers to
investigate intelligent ways to exploit ICT technologies for unlocking the power of data
in order to provide more enjoyable and customized tourism experiences [21,6,22]. As
a matter of fact, today’s personal devices such as smartphones and tablets are almost
ubiquitous, and provide arrays of sensors and antennas which can be exploited to de-
termine various information about the user, such as her/his position and whether s/he is
moving or standing still, like in a queue.

So far, ICT research in business tourism mainly provides ad-hoc case studies of ex-
isting initiatives [20,18,16] and is mostly concerned with the development of location-
based technologies for tracking users’ position within the cultural area (e.g., iBeacon
sensors) and of mobile applications enabling travelers to share their personal experi-
ences on social networks to help other travelers in their decision making process [7].

Keywords: planning ; crowd-sourced data ; cultural heritage ; smart
tourism

In this paper, we aim at presenting a general-purpose software framework called
NEPTIS PLANNER, which is part of the much broader NEPTIS project [12] that focuses
on developing ICT-based solutions for augmented fruition and intelligent exploration
of cultural heritage. NEPTIS PLANNER offers business travelers with personalized and
automatically generated routes to efficiently visit a cultural area. It is able to manage
the interconnection, synchronization and concerted use of different IoT technologies
for extracting crowd-sourced data from fellow tourists (e.g., to identify the waiting time
to visit a specific attraction). NEPTIS PLANNER leverages on automated planning tech-
niques [5] to reason over such data and on the traveler’s preferences (e.g., the maximum
available time to visit a cultural area) in order to generate on-the-fly a personalized route
within the cultural area that respects the traveler’s needs.

The rest of the paper is organized as follows. In Section 2 we provide an overview
of the approach and architecture of the proposed system, whereas Section 3 and Section
4 present the main contributions of this work, i.e., how it is possible to detect queuing
and visiting times with minimal user intervention, and how to solve a planning prob-
lem allowing the computation of a recommended route for a small and medium sized
museum in a reasonable time frame, which is vital given the mobile context. Section 5
concludes the paper by discussing possible future extension of the work.

2 System overview

NEPTIS PLANNER realizes an architecture whose purpose is to provide a business trav-
eler with a route to a set of cultural areas (e.g., museums, churches, monuments, etc.)
in her/his surroundings given her/his current position and other inputs, such as a time
constraint, that is how much time s/he is willing to spend for a cultural tour of the area
s/he is currently in, or a list of attractions s/he would like to visit.

The system is thought for being used by two main actors:

– the curator, that is the user responsible for the insertion, update and deletion of
information about open cultural areas. For example, in the case of open air mon-
uments, relevant information is their names and coordinate locations, while for
closed museums it is relevant to know their topology (i.e., how rooms are con-
nected between each others) and their available attractions;

– the tourist, that is the user/traveler who can request the compilation of a route plan
within the cultural area through an application installed on her/his smartphone.

The client side of the system is provided by the tourist’s mobile application (cur-
rently realized in Android), while the curator interacts with the system through a Web
application. The back-end is a Node.JS server, responsible for handling requests from
the clients via two sets of APIs, one for each actor. Alongside the server there is the plan-
ner component responsible for the creation of route plans, preceded by a pre-processing
module which translates raw data into input files for the planner. The persistence layer
has a relational database holding data inserted by the curator, as well as users’ and cu-
rators’ login credentials, and a data warehouse containing time intervals data coming
from the tourists’ smartphones. Figure 1 shows the basic workflow of the system:

Fig. 1. NEPTIS PLANNER workflow diagram

1. The curator inserts or updates information about the cultural area s/he is respon-
sible for. For example, this includes the list of rooms and the attractions within
their premises in the case of a closed museum, or the list of monuments and their
coordinates in the case of an open air museum;

2. Data are stored into the relational database;
3. The tourist mobile application accesses these data in order to guide the tourist using

it in the compilation of her/his request;
4. When the tourist finally completes the above step, the system feeds the needed data

(both from the data warehouse and the user input) to the pre-processing module,
which encodes the request for the subsequent stage;

5. The resulting files are then fed to a planning system (i.e., the planner) which will
compute a cultural route plan that satisfies the constraints inserted by the tourist;

6. The output of the planning system is then sent back to the tourist, who will then
start her/his own tour;

7. While the tourist is following her/his personal route plan, her/his smartphone sends
updates about the time intervals needed to clear a queue or to visit an attraction;
these (crowd-sourced) information is then sent to the data warehouse.

3 Crowd-sourcing

In order for the system to work, data about visiting times and queues are needed. In a
previous iteration of the prototype, the tourist had to insert such pieces of information

manually, which is not ideal, since it’s a cumbersome task that can be easily forgotten
and can distract the tourist from the enjoyment of the attractions s/he is visiting. In
addition, the values inserted in the system can only be rough estimates rather than exact
time intervals. We therefore set out to find a way to automatize the collection of data,
possibly reducing user manual inputs to zero.

In the following, we will split the automatized crowd-sourcing data collection aspect
in two parts: (i) queuing recognition; (ii) indoor and outdoor localization.
Queue recognition. Queuing can be an important time factor, especially in big muse-
ums where only the ticket purchase queue can last several minutes, if not hours. Al-
though not common, some attractions can also have a lengthy waiting time before they
can be fully experienced by the tourist, such as the Mona Lisa painting in the Louvre in
Paris or the Sistine Chapel in the Vatican Museums in Rome. We define a user to be in
a “queuing state” when s/he is either standing still or having brief bursts of movement
lasting a few seconds. We take into account actions such as taking the smartphone out
of the pocket or purse, taking pictures of the surroundings and similar small movements
as part of the queuing state. In order to test whether implementations worked, the GPS
sensor included in the smartphone has been used as control and tests have been run in
open fields, away from potential sources of disruption for the satellite signal. Given a
certain time window ∆t and a chosen threshold value of walking speed vt, we say that
a user has walked during ∆t if has moved more than vt ·∆t meters.

The research literature on movement recognition is gaining a lot of momentum in
the past few years, mainly due to the ever growing presence of devices such as smart-
phones and tablets, which pack several hardware sensors such as accelerometers, gyro-
scopes, magnetic compasses, etc. However, despite their popularity, the Android plat-
form does not provide a good library for such a task; the only interface that comes close
to our target is the Android Activity Recognition API1, which is supposedly capable of
guessing whether the user is walking, running or is in a car, with the help from sensors
and usage data collected by Google. However, for now tests returned lackluster results.

Therefore we chose to implement and test the approach given by Ravi in [13]: given
the signals of all the three axis of the accelerometer, we sample them with a sampling
frequency of 50 Hz (or 1 sample every 20 milliseconds), and store the samples in a
sliding window of size 256, which gives us a time interval of 5.12 seconds. For each
of these windows, we compute their average, their standard deviation and their energy,
defined as 1

|w|
∑
|f |2, where |w| is the window size and f is a frequency value of the

Fourier-transformed signal, obtained via the Fast Fourier Transform algorithm imple-
mented in the Apache Commons Math Java library2. The extracted data are then used
by a machine learning classifier included in the Weka data mining tool3. Table 1 shows
the chosen algorithms and their respective degrees of accuracy with regards to the GPS
signal control.

We tested some of the algorithms described in [13], both on their own and combined
with others. Tests have been executed on a Google Nexus 5X and a Huwaei Honor 7.

1 cf. developers.google.com/android/reference/com/google/android/
gms/location/ActivityRecognitionApi

2 cf. http://commons.apache.org/proper/commons-math/
3 cf. http://www.cs.waikato.ac.nz/ml/weka/

Generally speaking, tests proved that this approach is effective and yields very good lev-
els of accuracy for all used algorithms. However classifiers such as k-NN, decision tree
and decision tables on their own had issues at detecting actions such taking the smart-
phone out of the pocket while standing, misclassifying it as a walking movement, which
brings their accuracy rate between 75 and 81%. An odd combination of them, such as
the one shown in the table, alongside a majority voting decision mechanism, manages
to improve the detection rate up to 90%, while the neural network, implemented by the
MultiLayerPerceptron class in Weka, achieved the best accuracy levels. In any
case, in order to minimize the rate of false positives and negatives, we do not take into
account the single sample window, but rather we pick a dynamic queue of five consec-
utive windows and determine the final outcome by choosing the classification decided
by the majority.

ALGORITHM ACCURACY (%)

Neural Network 96

k-NN (15 neighbours) 80

k-NN (20 neighbours) 78

Decision tree (C4.5) 81

Decision tables 77

SVM 75

k-NN (15)
Decision tree (C4.5) 90
Decision tables

Table 1. Used classifiers and their accuracy degree

Localization. Queuing is not the only time consuming activity to take into account,
but also the time needed to move between the available monuments as well as to visit
them completely, or their single attractions. We describe two different scenarios, which
involve outdoor and indoor localization respectively.

Let’s assume a user is visiting an outdoor only area, such as Piazza di Spagna in
Rome. The area contains attractions such as the Barcaccia fountain, the staircase and
the facade of Trinità dei Monti. We say that the user has begun her/his visit when s/he
gets near the monument and that s/he is over when s/he moves away from it. To achieve
this target, we implemented a geofencing algorithm which uses the Android localiza-
tion service via the GPS sensor. Each monument is associated with a latitude-longitude
coordinate and a radius value, therefore the user is considered to be in the visiting state
when her/his distance from given coordinates is lower than the radius and vice versa.

Now let’s assume that the user is in a closed environment such as a museum, where
the satellite signal can be barely reached, if at all, since it requires a line-of-sight con-

ROOM ACCURACY (%)

A1 96,67
A2 94,55
A3 96,96
A4 96,00
A5 97,14
A6 96,29
A7 97,14

Table 2. The rooms and their detected accuracy

nection. The analyzed literature on the subject of indoor tracking and localization fo-
cuses on three methods:

– image recognition, where the position of the device can be guessed from its camera.
A detailed study can be found in [1] and a basic implementation in the context of
cultural heritage is described in [15], however the proposed method requires the
user to have more or less the smartphone in her/his hands and potentially on the
upright position, which can get rather uncomfortable;

– analysis of sensors’ data such as accelerometers and magnetic compass [10]; we
tested very briefly this method, however the sensors in the tested smartphones were
not precise enough and users’ actions can be random enough to generate enough
noise to make the readings even less precise;

– RSS (Radio Signal Strength) of multiple WiFi signals from various access points,
which allows a classification based upon the triangulation of these signals [8]. This
requires a training set of all the interested areas.

We approached the latter case, because it requires the least amount of input from the
user and, provided that the location has some WiFi access points, can provide inter-
esting results. We tested this approach with FIND4, an open-source software which
implements a server that stores RSS fingerprints and classifies incoming beacons with
a Naive Bayes or SVM algorithm. We used the ground floor of our department as a
test bed, treating the area in front of the seven available rooms as a wall with exposed
paintings, both in a crowded and almost empty corridor. The device used for this test is
a Google Nexus 5X. Table 2 shows the detection accuracy for each of the rooms. All the
tested rooms have been detected with an accuracy exceeding 95% with the exception of
room A2, which is slightly lower due to it being very close to room A1, which was our
target threshold, and therefore we can consider FIND a suitable tool for our target.

4 On the synthesis of route plans

Given the time intervals data received from the smartphones of the users visiting a
cultural area C, the target is to provide a business traveler that wants to visit C with

4 cf. http://www.internalpositioning.com/

Fig. 2. A sketch of the floor plan of the local civic museum of Bracciano.

a route plan R that can be completed in the minimum time required to maximize the
traveler’s needs and preferences.

The problem can be represented through a directed graph G(V,E), which holds
information about the topology of C. We call such a graph a topology graph. Each node
v ∈ V represents a single distinguishable zone of C (e.g., if C is a museum, zones
correspond to museum’s rooms), i.e., a cluster of attractions belonging to v. There is a
special “dummy” node labeled as “Entry/Exit” that defines the entry/exit point of C.

Edges of G are of two kinds, Econn and Eatt, with Econn ∪Eatt = E and Econn ∩
Eatt = ∅. Each edge ex ∈ Econn is used to represent a physical connection (be it a
corridor, a door, a staircase) between two different nodes vi, vj ∈ V , and is labeled
with the estimated time tconnx

required to move between them. On the other hand, any
edge ey ∈ Eatt that insists on the same node v ∈ V (i.e., a loop edge) represents the
visit of a single attraction located in v. Loop edges ey are labeled with a certain score
wy , which is calculated taking into consideration the average rating rty given by the
users to the attraction and the time needed to visit it (i.e. tqueuey + tvisity).

The rating of an attraction can assume values in the {1,5,10} domain, while the
times are expressed in minutes. We assume that if an attraction has a long queue or visit
time, then its visit is considered more important than some other which has perhaps the
same rating. Consequently, we calculate wy such that wy = rty · (1

tqueuey+tvisity
·100).

In this way, it follows that the smaller the value of wy , the more relevant is the visit of
the attraction labeled with wy .

As a running example, Figure 2 shows the floor plan of the local civic museum of
Bracciano, a town north of Rome which has been used for some tests of this work,
and the left-hand part of Figure 3 shows its graph representation. Notice that in the
running example each node has one loop edge, each representing an attraction in that
zone (labelled for simplicity as a0, a1, a2, a3, a4).

Given the above model, the problem can be defined as finding a path in the topol-
ogy graph that minimizes the total score of visited attractions and the time for moving
between different zones. This allows — consequently — to minimize the overall time
required to a business tourist for a satisfactory visit of C. This problem is known in
literature as the ORIENTEERING PROBLEM, a variant of the Traveling Salesman Prob-
lem (TSP) where the objective function is to maximize or minimize the total value
associated to each node of the graph.

The problem is known to be NP-hard, as well as APX-hard, and some heuristic and
approximation algorithms, described in [19], [2] and [4] have been studied, even if no
efficient implementations, to the best of our knowledge, are available.

In order to tackle this issue and generate quality route plans in a reasonable time,
we decided to adopt techniques coming from the automated planning field, which is a
branch of Artificial Intelligence (AI) that aims to the realization of automated systems
for the synthesis of organized sequences of real-world activities [5]. To this aim, in the
following sections we first show some preliminaries on automated planning necessary
to understand the rest of the paper, and then we present our solution to encode the
problem of synthesizing a route plan as a planning problem in AI, which can be solved
by state-of-the-art planners. Finally, we discuss some experiments performed through
two state-of-the-art planners that demonstrate the versatility of our approach and its
feasibility in realistic settings.

Basics of automated planning. Automated planning operates on explicit representa-
tions of states and actions. The Planning Domain Definition Language (PDDL) [11] is
a de-facto standard to formulate a planning problem P = 〈I,GL,PD〉, where I is the
initial state of the world, GL is the desired goal state, and PD is the planning domain.

A planning domain PD is built from a set of propositions describing the state of
the world and a set of actions Ω that can be executed in the domain. An action schema
a ∈ Ω is of the form a = 〈Para,Prea,Eff a〉, where Para is the list of input parameters
for a, Prea defines the preconditions under which a can be executed, and Eff a specifies
the effects of a on the state of the world. Both preconditions and effects are stated
in terms of the propositions in PD. Propositions can be represented through boolean
predicates and fluents. In the remainder of the paper, we remain consistent with PDDL
terminology [11,3]: a predicate is a boolean property of the world and fluents are used to
express numeric properties, such as the actions’ cost. Both the values of predicates and
fluents can change as result of the execution of actions. PDDL includes also the ability
of typing the parameters that appear in actions and constraining the types of arguments
to predicates and fluents.

There exist several forms of planning in the AI literature. In this paper, we focus on
planning techniques characterized by fully observable, static and deterministic domains,
i.e., we rely on the classical planning assumption of a “perfect world description” [23].
Concretely, this implies that: (i) any planning action only provides deterministic and
observable effects; (ii) a complete knowledge of the initial state I is available.

A solution to a planning problem is a sequence of actions—a plan—whose execu-
tion brings from initial state I to some state that satisfy goal GL. The plan is said to be
optimal if it minimizes the sum of action costs. Automated planning has made huge ad-

Entry/Exit

A D

B - C

E

t0,A

t0,D

tA,D

a0
tD,B

tD,E

a3

a2a1

a4 v0

v1

v2

Fig. 3. The museum’s floor plan graph remodeled for the planning problem.

vances in the last twenty years, leading to solvers able to create plans with thousands of
actions for problems described by hundreds of propositions. In this work, we represent
planning domains and problems making use of the STRIPS fragment of PDDL 2.1 [3],
enhanced with the numeric features provided by the “level 2” of the same language.
Such features are used to keep track of the costs of planning actions and to synthesize
plans satisfying pre-specified metrics.

Encoding as a planning problem. In order to encode the problem of synthesizing a
route plan as a planning problem in PDDL, in addition to the topology graph we made
use of a second graph containing as many nodes as are the number of attractions that
the traveler would like to visit (cf. the right-hand part of Figure 3). We call such a graph
a visit graph, and its use is devoted to avoid the generation of route plans containing
empty lists of attractions.

In the planning domain PD, we provide two abstract types called attraction and
node. The first captures the attractions involved in the loop edges of the topology graph.
The second is used to identify the nodes of the topology graph (through the sub-type
topology node) and of the visit graph (through the sub-type visit node). To capture
the structure of the topology/visit graph and to monitor their evolution, we defined four
domain propositions as boolean predicates in PD

5:

– (cur node ?n - node) holds if n is the current node of a topology/visit graph.
– (edge ?n1 - node ?n2 - node) holds if there exists an edge from two differ-

ent nodes n1 to n2 of a topology/visit graph.
– (visited ?a - attraction) holds if the attraction a is visited.
– (at ?a - attraction ?n - topology node) indicates that the attraction a

is located in a zone represented by the node n.

5 Variables are distinguished by a “?” character at front, and the dash “-” is used to assign types
to the variables.

Furthermore, we define three numeric fluents in PD: (i) (move-cost ?n1 -

topology node ?n2 - topology node) records the time required to move from
n1 to n2; (ii) (visit-cost ?a - attraction) reflects the score associated to the
visit of the attraction a; (iii) (total-cost) keeps track of the overall cost of the route
plan under construction.

In the planning problem P , we first define a finite set of constants required to prop-
erly ground all the domain propositions defined in PD. In our case, constants will cor-
respond to the nodes and attractions instances involved in the topology/visit graph. Sec-
ondly, we define the initial state of P to capture the exact structure of the topology/visit
graph. This includes the specification of the current nodes of the graphs (in I , the cur-
rent nodes of the topology and of the visit graph are “Entry/Exit” and v0, resp.) and of
all the existing edges that connect two different nodes of the graphs. Furthermore, in I
the exact location of any attraction is specified, while it is assumed that no attraction
has been yet visited. Thirdly, we define the goal condition GL as the conjunction of
the final nodes of the two graphs. The final node of the topology graph is (again) “En-
try/Exit”, while the final node of the visit graph depends by the number of attractions
that the traveler aims to visit; in our running example, it is v2 (cf. Figure 3).

The plan to reach GL from I is constituted by a sequence of planning actions that
allow to perform movements between nodes in the two graphs and to eventually reach
the final nodes. Specifically, in PD we provide two planning actions that allow: (i) to
move between two nodes of the topology graph, or (ii) to visit an attraction (not yet
visited) of the topology graph; the latter allows also to move forward in the visit graph.

(:action move
:parameters(?n1 - topology_node ?n2 - topology_node)
:precondition (and (cur_node ?n1) (edge ?n1 ?n2))
:effect (and (not (cur_node ?n1)) (cur_node ?n2)

(increase (total-cost) (move-cost ?n1 ?n2))))

(:action visit
:parameters(?a1 - attraction ?s1 - topology_node

?v1 - visit_node ?v2 - visit_node)
:precondition (and (cur_node ?n1) (at ?a1 ?n1) (not (visited ?a1))

(cur_node ?v1) (edge ?v1 ?v2))
:effect (and (not (cur_node ?v1)) (cur_node ?v2) (visited ?a1)

(increase (total-cost) (visit-cost ?a1))))

Readers should finally notice that the execution of the move (or visit) action
makes total cost of the route plan increases of a value equal to (move-cost) (or
(visit-cost)). Since our purpose is to minimize the total cost of the generated
route plan, the planning problem also contains the following specification: (:metric
minimize (total-cost)).

Preliminary validation. The approach has been positively assessed using automat-
ically generated PDDL files that describe problems of growing complexity. We per-
formed our experiments with a machine equipped with an Intel Core i7-4770S CPU
3.10GHz Quad Core and 16GB RAM. The ideal target was to compute optimal routes,

i.e., route plans that allow a traveler to minimize the time required for a visit by maxi-
mizing its quality (in terms of the ratings of the visited attractions).

To this aim, we performed experiments by making use of of the SymBA*-2 [17]
planning system (winner of the sequential optimizing track at the 2014 International
Planning Competition), which performs a bidirectional A* search to find optimal plans.

However, since automated planning is known to be PSPACE-complete and opti-
mal algorithms can take a major toll on computation time [5], we decided to run further
experiments using a sub-optimal heuristic based on FF (that is, forward chaining heuris-
tic, see http://www.fast-downward.org/Doc/Heuristic) running on the
Fast Downward planning system [9], in order to return near-optimal solutions (i.e., so-
lutions with less quality than optimal ones) in a shorter time.

To have a sense of the scalability with respect to the size of the problem, we gen-
erated PDDL files representing topology graphs of growing complexity. Specifically,
topology graphs used for the experiments have the following properties:

– a number of nodes varying from 10 to 30;
– each node can host from 1 to 15 attractions;
– each node can be connected just to another node (like in a single link chain), or it

has 50%-30% chance of being connected to two-three other nodes.

In addition, we customized the number of attractions to be visited in the visit graph
and those that must be necessarily included in the route, as follows: (i) from 5 to 50
attractions; (ii) from 0 to 5 randomly chosen “must visit” attractions6.

Figure 4 shows the computation time comparison between the two planning algo-
rithms on four selected problems, specifically those which describe a graph with 10
nodes, 5 to 25 selected visits and a variable number of attractions that have been se-
lected as a “must visit”. For each problem, we wanted to monitor the performances of
the planning systems given the number of attractions (on the x axis) and the complexity
of the modeled area (that is, the number of connections for each node, one plot for each
kind of connection; therefore each algorithm has three plots associated with it).

Tests show that FF manages to maintain a stable performance and stay below 3
seconds, while SymBA*-2 has a more random pattern and can take 100 times longer
than FF. SymBA*-2 tends to have an exponential growth as the number of attractions
and nodes increase. Even in the case of larger domains, such as the ones shown in table
3, FF can come up with a solution in less than 30 seconds, which is the target maximum
wait time which we would like to achieve.

Figure 5 shows the total score of the selected attractions for the same problems;
while SymBA*-2, which is based upon an optimal A* algorithm, always returns the best
result, FF is never far off from it, managing to even get the exact same value. Therefore
we can say that, between FF and SymBA*-2, the earlier is the more appealing solution.

The reader should notice that the power of a planning-based approach is also linked
to its versatility. Starting from a PDDL encoding, the approach allows one to plug in
new planning algorithms at basically no cost. In the future we can improve the perfor-
mance even further if a better planner will be released.

6 Must visit attractions are specific attractions that a user explicitly asks to visit and that must
appear in the generated route plan.

ROOMS ATTRACTIONS VISIT TIME (SECONDS)

15 75 25 1,08

20 140 25 2,27

20 220 15 3,40

30 150 25 2,33

30 330 25 7,28

Table 3. Execution times for some of the executed tests

10 30 50 70 90 110 130 150

103

104

Number of attractions.

To
ta

ls
ol

ut
io

n
tim

e
(m

ill
is

ec
on

ds
)

10 nodes, 5 visits, 0 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

10 30 50 70 90 110 130 150

103

104

105

Number of attractions.

To
ta

ls
ol

ut
io

n
tim

e
(m

ill
is

ec
on

ds
)

10 nodes, 10 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

30 50 70 90 110 130 150

103

104

105

Number of attractions.

To
ta

ls
ol

ut
io

n
tim

e
(m

ill
is

ec
on

ds
)

10 nodes, 15 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

30 50 70 90 110 130 150

103

104

105

106

Number of attractions.

To
ta

ls
ol

ut
io

n
tim

e
(m

ill
is

ec
on

ds
)

10 nodes, 25 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

Fig. 4. Comparison of computation times between FF and SymBA*-2

5 Concluding remarks

In this work we have shown that a set of machine learning algorithms can be used to
detect a queuing state of a user with a high degree of accuracy, a software such as FIND
can determine the user’s positioning within a room and a planning system can provide
a reasonably good enough route plan within a handful of seconds, all of this in order to
support tourists with time constraints (such as business travellers).

Thus far, preliminary tests have demonstrated that the single components of our
architecture are feasible and provide good results. Validation tests (with a large number
of users) on the integrated system have not yet been performed, and will be carried

10 30 50 70 90 110 130 150
0

50

100

150

200

250

300

Number of attractions.

To
ta

ls
co

re
of

th
e

so
lu

tio
n.

10 nodes, 5 visits, 0 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

10 30 50 70 90 110 130 150
0

100

200

300

400

500

600

700

800

Number of attractions.

To
ta

ls
co

re
of

th
e

so
lu

tio
n

10 nodes, 10 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

30 50 70 90 110 130 150
0

100

200

300

400

500

600

700

800

Number of attractions.

To
ta

ls
co

re
of

th
e

so
lu

tio
n

10 nodes, 15 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

30 50 70 90 110 130 150
0

200

400

600

800

1,000

1,200

1,400

Number of attractions.

To
ta

ls
co

re
of

th
e

so
lu

tio
n

10 nodes, 25 visits, 3 must

FD - 1 conn

FD - 2 conn

FD - 3 conn

SymBA*-2 - 1 conn

SymBA*-2 - 2 conn

SymBA*-2 - 3 conn

Fig. 5. Comparison of the quality of the solutions obtained by FF and SymBA*-2

out during the 2nd half of 2017, in the context of the NEPTIS project this work is part
of. However we are confident that the completed system will provide good enough
results for it to be usable within its defined use cases. Given also the ever growing
computational power of personal mobile devices and accuracy of their sensors, new
detection and localization techniques will be able to improve the accuracy levels that
we tested, thus making the framework even more precise.

References

1. Aicardi, I., Dabove, P., Lingua, A.M., Piras, M.: Sensors integration for smartphone navi-
gation: performances and future challenges. In: ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences. vol. XL-3, pp. 9–16. K.
Schindler and N. Paparoditis (2014)

2. Archetti, C., Speranza, M.G., Vigo, D.: Chapter 10: Vehicle Routing Problems with Profits,
pp. 273–297 (2014)

3. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains. J. Artif. Intell. Res. (JAIR) 20(1), 61–124 (2003)

4. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algorithmic ap-
proaches for solving tourist trip design problems. Journal of Heuristics 20(3) (2014)

5. Geffner, H., Bonet, B.: A concise introduction to models and methods for automated plan-
ning. Synthesis Lectures on Artificial Intelligence and Machine Learning 8(1), 1–141 (2013)

6. Gretzel, U.: Intelligent systems in tourism: A social science perspective. Annals of Tourism
Research 38(3), 757–779 (2011)

7. Gretzel, U., Sigala, M., Xiang, Z., Koo, C.: Smart tourism: foundations and developments.
Electronic Markets 25(3), 179–188 (2015)

8. Hatami, A., Pahlavan, K.: A comparative performance evaluation of rss-based positioning al-
gorithms used in wlan networks. In: IEEE Wireless Communications and Networking Con-
ference, 2005. vol. 4, pp. 2331–2337 Vol. 4 (March 2005)

9. Helmert, M.: The Fast Downward Planning System. J. Artif. Intell. Res.(JAIR) 26 (2006)
10. Jin, Y., Toh, H.S., Soh, W.S., Wong, W.C.: A robust dead-reckoning pedestrian tracking sys-

tem with low cost sensors. In: 2011 IEEE International Conference on Pervasive Computing
and Communications (PerCom). pp. 222–230 (March 2011)

11. McDermott, D., Ghallab, M., Howe, A., Knoblock, C.A., Ram, A., Veloso, M., Weld, D.S.,
Wilkins, D.E.: PDDL—The planning domain definition language. Tech. Rep. DCS TR-1165,
Yale Center for Computational Vision and Control, New Haven, Connecticut (1998)

12. di Palermo, U.: Neptis. Soluzioni ICT per la fruizione e l’esplorazione “aumentata” di beni
culturali (2015)

13. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerom-
eter data. In: Proceedings of the 17th Conference on Innovative Applications of Artificial
Intelligence - Volume 3. pp. 1541–1546. IAAI’05, AAAI Press (2005)

14. Robinson, P.: Tourism: The key concepts. Routledge (2012)
15. Rubino, I., Barberis, C., Xhembulla, J., Malnati, G.: Integrating a Location-Based Mobile

Game in the Museum Visit: Evaluating Visitors&Rsquo; Behaviour and Learning. J. Comput.
Cult. Herit. 8(3), 15:1–15:18 (May 2015)

16. Sigala, M., Chalkiti, K.: Investigating the exploitation of web 2.0 for knowledge management
in the Greek tourism industry: An utilisation–importance analysis. Computers in Human
Behavior 30, 800–812 (2014)

17. Torralba, A., Alcazar, V., Borrajo, D., Kissmann, P., Edelkamp, S.: Symba: A symbolic bidi-
rectional planner. In: International Planning Competition. pp. 105–108 (2014)

18. Tu, Q., Liu, A.: Framework of smart tourism research and related progress in China. In: Inter-
national Conference on Management and Engineering (CME 2014). pp. 140–146. DEStech
Publications, Inc (2014)

19. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey.
European Journal of Operational Research 209(1), 1 – 10 (2011)

20. Venturini, A., Ricci, F.: Applying Trip@dvice Recommendation Technology to
www.visiteurope.com. Frontiers in Artificial Intelligence and Applications 141, 607 (2006)

21. Werthner, H.: Intelligent systems in travel and tourism. IJCAI 2003: 18th International Joint
Conference on Artificial Intelligence (2002)

22. Werthner, H., Alzua-Sorzabal, A., Cantoni, L., Dickinger, A., Gretzel, U., Jannach, D., Nei-
dhardt, J., Pröll, B., Ricci, F., Scaglione, M., et al.: Future research issues in it and tourism.
Information Technology & Tourism 15(1), 1–15 (2015)

23. Wilkins, D.E.: Practical planning: extending the classical AI planning paradigm. Morgan
Kaufmann (1988)

