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Abstract

In state of the art Software Transactional Memory (STM) systems, threads carry out the execution of transactions
as non-interruptible tasks. Hence a thread can react to the injection of a higher priority transactional task and take
care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm
shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can
start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal
in an application-transparent manner, by only relying on innovative operating system facilities we include in our
preemptive STM architecture. With our approach we are able to reevaluate CPU assignment across transactions
along a same thread with period of the order of few tens of microseconds. This is mandatory for an effective
priority management architecture given the typically finer-grain nature of in-memory transactions compared to their
counterpart in database systems. We integrated our preemptive STM architecture within the TinySTM package, and
released it as open source. We also provide the results of an experimental assessment of our proposal based on
running a port of the TPC-C benchmark to the STM environment.
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I. INTRODUCTION

Transactional Memory (TM) is the raising paradigm for the management of shared-data accesses on multi-core
machines. It allows programmers to mark code blocks as transactions, which are then handled, in terms of actual
memory operations, by some underlying TM layer. The latter is in charge of guaranteeing isolation and atomicity
while executing those code blocks, say all or nothing execution semantic. This allows achieving similar or better
level of performance than fine-grain hand-made locking. Anyhow, TM jointly guarantees much higher transparency
to the programmer since she is fully relieved from the burden of hand-coding synchronization operations.

Nowadays various TM implementations exist, including the ones natively embedded in modern processors via
specific hardware support, so called Hardware-TM (HTM) [1]. However, the most diffused implementations are still
based on software support, known as Software-TM (STM) [18]. These provide the advantages of not requiring any
specific hardware technology. Further they bypass several important limitations of current HTM implementations,
such as their impossibility to commit a transaction that undergoes a user/kernel mode switch or whose write set
exceeds the size of the L1 cache!.

Despite the offered advantages, STM environments are still doomed to improvements, particularly for what
concerns the management of differentiated transaction priority levels. This is a crucial aspect when relying on STM
technology at the back-end tier of business-oriented data management systems. We recall that such a way of using
STM adheres to the general paradigm of relying on in-memory transactions to synchronize concurrent accesses to
application data, which has been already shown to be successful thanks to the advent of NoSQL data management
systems—see, e.g., the Infinispan [14] data layer natively coupled with JBoss.

The difficulty in handling differentiated priority levels in STM systems comes out since it is generally not
convenient to run TM applications with a number of threads exceeding the number of available CPU cores, mostly
because they show a CPU-bound execution profile. In fact, in-memory transactions make scarce usage of blocking
Operating System services, like I/O system calls. Therefore, the dynamic spawning of a new thread as a reaction
to the arrival of some high priority request to run an in-memory transaction might be inviable, both because of the
overhead for the spawn operation and because it would lead to the scenario where multiple threads compete for
CPU-usage, which has been shown to be likely adverse to TM applications [10] (*). On the other hand, resorting to
a static pool of threads for processing higher priority requests, each one bound to a given CPU-core, might give rise
to CPU under-utilization along execution phases which do not show the presence of such higher priority requests.
Consequently, in their common implementations, TM systems simply delay the processing of an incoming high
priority request up to the point in time where some thread ends its last started transaction, and is therefore able to
run the routine in charge of verifying the presence of the new standing request.

We note that, even if a signaling mechanism were used to notify the materialization of a standing request, such
as Posix user-defined signals, the time-granularity for the signal delivery to the destination thread would be still
bound to the conventional operating system timer-interrupt interval, thus resulting not fully adequate for promptly
dispatching high priority transactional requests. This aspect is also linked to the finer-grain nature of TM transactions
(compared to their counterpart in database systems), which is originated, among other, from the absence of I/O
interactions along the in-memory transaction lifetime. In more detail, a conventional time-interrupt interval (typically
ranging from 1 to 4 milliseconds on most operating systems’ configurations, such as Linux ones) would still delay
too much the activation of the signal handler able to detect the presence of the standing high priority transactional
request.

In this article we cope with the above problem by presenting the design and implementation of a preemptive STM
environment to be run on top of Linux/x86 systems. The core component in our software architecture is an ad-hoc
timer management Linux module, which allows for (periodical) control flow variations along any running thread
with no intervention by the chain of kernel-level mechanisms used for supporting Posix signals, hence leading to
minimal run-time overhead. Also, the period can be set to be of the order of tens of microseconds, thus enabling a
thread that has already dispatched a low priority in-memory transaction to promptly switch to the execution of some
standing higher priority one. Clearly, we also manage differentiated execution contexts within the STM layer so that
the transaction context switched off the CPU is not aborted. Rather it will be eventually resumed (along the original
thread or another one running the STM application) so that its outcome will be only determined by possible data
conflicts, as typical of the STM paradigm. Overall, in our approach we promptly nest the execution of the higher
priority transaction along an already active thread, with no need to rely on additional threads, thus preventing at all

' Off-the-shelf HTM implementations keep the write set of transaction temporarily buffered at the cache level, and flush it to lower levels
in the memory hierarchy only upon a successful commit. On the other hand, transactional updates, are squashed if an interrupt is received
by the CPU-core running the transactional code block, which gives rise to the abort of the transaction.

% Assigning higher CPU scheduling priority at the Operating System level to threads running higher priority transactions would be a means
to alleviate such a problem, but not a definitive for managing thread competition for CPU usage. Also, it might lead to starvation phenomena
of lower priority transactions uncontrollable by the STM layer.



the aforementioned problems related to CPU competition by multiple threads in TM systems. Still, we avoid CPU
under-utilization that would be caused by statically assigning specific threads to process higher priority requests,
since in our architecture each threads can be in charge of processing whichever in-memory transaction at any time
instant (either a new standing one with higher priority or a previously context-switched one).

Great attention in our design is put on the data structures and logic for carrying out the check on the presence of
standing higher priority requests upon the occurrence of a control flow variation along a thread. This enables us to
provide a preemptive STM architecture with minimal overhead at the side of both kernel (via the aforementioned
lightweight timer-interrupt handling) and user space software.

We note that our proposal does not create any bias in terms of CPU assignment across threads (including kernel-
level threads) running on top of the Linux system. In fact, the fine-grain timer-interrupt mechanism we adopt for
threads running the STM application does not alter the original operating system planning in terms of overall
CPU time to be assigned to the different threads. It only allows an original tick destined to those threads to be
partitioned into subintervals, at whose end a control flow variation leading control to a higher priority transaction, if
any, may occur. This prevents impairing fairness when running our preemptive STM system on top of a multi-user
conventional platform.

We have integrated our implementation with the open source TinySTM package [11], and we have released it as
open source as well. In this article we also report the results of an experimental study of our proposal based on a
port of the TPC-C benchmark to STM.

The remainder of this article is structured as follows. In Section II we discuss related work. Our preemptive
STM architecture is presented in Section III. Experimental data are provided in Section IV.

II. RELATED WORK

TM is a field of very active research. A lot of studies have been carried out, which are aimed at providing
optimizations and innovative strategies for the design and development of TM systems. One major research trend
has been the one of reducing as much as possible the incidence of transaction aborts. Along this path, several
approaches have been based on so called transaction scheduling policies [3], [7], [22], which control whether
some standing transaction can be admitted to the processing stage, or need to be delayed for a while, because of
a high likelihood of conflicts with already running transactions. A few of these techniques [8] rely on migrating
transactions to queues managed by different threads, so as to increase the likelihood that transactions accessing
overlapping data sets are serialized (being posted on the same queue), thus not interfering with each other. An
alternative approach to the reduction of the incidence of rollback has been the one of adopting thread scheduling
policies [6], [9], [15]-[17]. Unlike transaction scheduling, thread scheduling policies do not delay the processing
of standing transactions. Rather, they aim at (dynamically) determining the well suited level of parallelism of the
TM-based application, say the one that avoids thrashing due to excessive transaction aborts caused by oversized
thread-level concurrency. With some of these techniques, threads are dynamically paused or resumed depending on
the workload profile, which determines whether transactions are more prone to access the same data, which yelds
to higher conflict (hence abort) rate.

Other techniques have been oriented to the optimization of the strategy for managing contention across concurrent
transactions [5], [21]. Some of these approaches also enable the run-time adaptation of the contention strategy to the
workload profile [5]. The orthogonal issue of mapping threads to CPU-cores in TM applications for performance
optimization has been addressed in [2].

Our work is orthogonal to all the above approaches since none of them copes with transaction priorities, and
with the possibility to timely pass control to higher priority transactions along an already running thread. We also
note that the above approaches could be ideally combined with our one.

The only work we are aware of which discriminates between transaction priorities in TM systems is the one
in [13]. Here the authors cope with quality of service in STM applications, and introduce an approach where
transactions that are subject to deadlines, and experience abort retries due to conflicts, tend to execute more
conservatively (e.g. by eager locking data) while approaching to their deadlines. Implicitly this proposal enables
a dynamic increase of the priority of transactions running closer to their deadlines, since eager locks will lead
conflicting transactions other than these ones to abort. In any case, this work does not make systematic use of
preemption in order to enable the timely processing of higher priority transactions along the threads running the
TM application, which is instead the fulcrum of our work.

User Level Threads (ULT) [19] is the historical technology enabling time inter-lived execution of different code
blocks along a same thread, just like we do in our preemptive STM architecture. However, ULT is not application
transparent since the programmer needs to inject calls to the ULT API at specific points of the application code,
exactly in order to determine the control flow variation to a different code block along the thread invoking the API.



on_contextN Stack area

Request

e

I

|

Socket pool // data/state !
\
» \ cPU back

\
\
\

snapshot

/~

Priority queue

Pool of contexts

Fig. 1. Basic architectural organization.

Our approach is instead fully transparent, so that the programmer of the STM application does not need to care
about the management of transaction priorities and control flow variations. She only needs to code the data access
logic, while the actual passage of control to higher priority transactional requests is achieved in our architecture
via actions performed by the run-time environment. Also, given that preemption of lower priority transactions (in
favor of higher priority ones) takes place on the basis of fine-grain hardware timer-interrupts, we also avoid at all
context switch delays that would be potentially experienced in some hypothetical architecture based on ULT in
scenarios where the lower priority transaction currently running along a thread does not timely reach the point of
the call to the ULT APL

Finally, we remark again that our work copes with the need for managing differentiated transaction priority levels
in a scenario where, dynamically spawning higher priority threads for processing these transactions is not viable.
This is because of both the overhead/latency for the spawn operation (which typically does not pay off because
of the relatively fine-grain nature of in-memory transactions in common TM applications) and CPU competition
that adversely affects performance when running TM systems with more threads than CPU-cores [10]. Also, as
we already discussed in the introduction, reserving CPU-cores for running threads bound higher priority requests
does not pay off in execution phases where no high priority request is issued. With our approach we can always
run with a number of threads not exceeding the available CPU-cores, by timely passing control to standing higher
priority requests along these threads, thus avoiding at all the above mentioned problems.

III. THE PREEEMPTIVE STM ARCHITECTURE
A. Overview

As hinted, we target Linux/x86 systems, and we base our preemptive STM architecture on a few standard facilities
offered by Linux, plus additional kernel and user space facilities we have developed. In Figure 1 we show a high
level schematization of our preemptive STM architecture, which is targeted at back-end STM environments.

A classical socket pool is handled in order to receive requests for executing data manipulations transactionally,
which come in from some front-end system. Upon its receipt, a request is placed into a priority queue, by associating
it with the corresponding priority level. With no loss of generality we assume the priority level is explicitly marked
within the transactional request, together with the function to be run by the STM environment for serving the
request, and its input parameters.

Given that a dispatched transactional request could be preempted and paused in favor of a higher priority request
to be timely processed along a same thread, we need to manage an individual CPU/stack context for each transaction.
A default initial context needs therefore to be associated with each incoming transactional request that is inserted into
the priority queue. To set up a pool of contexts to be used for this association, we exploit Posix user-defined signals,
with the SA_ONSTACK option for the handler. In more detail, we issue NUM_CONTEXTS signal instances at startup
of the STM environment in order to activate the handler the same number of times. At each activation, the handler
makes a snapshot the CPU/stack context into a proper data structure, which we name transaction_context.
All the set up instances of this data structure go into the pool of contexts to be associated with incoming transactional
requests.

When associating a transaction context to an incoming request, the transaction_context data structure is
also used to keep track of the priority information for the transaction, the function to be run and its parameters,
as well as information on what happened along the transaction lifetime (such as the number of times it has
been preempted and context switched off the CPU in favor of a higher priority transactional request). As it will
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be discussed, this information will be exploited in order to dynamically change the actual priority of a request
according to a feedback scheme aimed at improving performance. When a transaction ends its processing phase,
the context it is using is released to the original pool in order for a subsequent incoming transactional request to
reuse the same stack area, in a fresh incarnation of its content.

The value of NUM_CONTEXTS is a configurable parameter in our architecture, and determines the maximum
number of transactions that are admitted to the processing stage. When no context is available from pool, incoming
transactional requests are not migrated to the priority queue. This migration is resumed as soon as the termination of
already active transactions will lead to releasing contexts to the pool. Clearly, our architecture is intentionally devised
in order to manage more contexts than worker threads processing transactional requests, since transactions can be
preempted (hence paused) and then resumed. Therefore NUM_CONTEXTS should be set to a value significantly
greater that the number of worker threads selected for running the STM application.

The job of receiving requests from sockets and inserting them into the priority queue is done via dedicated
threads, whose execution profile is clearly I/O bound, thus not interfering in significant manner with the worker
threads in charge of actually serving the transactional requests posted to the priority queue (even in scenarios where
the total amount of threads—workers vs request receivers—exceeds the number of available CPU-cores). Overall,
request insertion into the priority queue takes place off the critical path of the worker threads running the STM
based application logic. This enables to find the most up-to-date state of the priority queue every time a fine-grain
periodical control flow variation occurs along any worker thread to verify the need to pass control to some standing
higher-priority request.

As we show in Figure 2, such periodical control flow variation is based on fine-grain timer-interrupts (with period
of the order of tens of microseconds), which are managed at low cost by the Linux module we have developed,
whose details will be presented in Section III-B. These interrupts are issued exclusively towards worker threads,
and lead to the activation of a user space module we refer to as preemption_check (), which implements the
preemption management policies at the core of our STM environment.

If preemption_check () determines that a different transaction needs to take control of the CPU-core, the
currently processed transaction is preempted, and its context is enqueued again within the priority queue, while
the context of the higher priority transactional request is installed so that the worker thread can start processing
it. As soon as a worker thread ends the processing phase of its current transaction, it releases the no more in use
context to the pool, and then queries the queueing data structure in order to take care of activating, or resuming
in case of a previous preemption, the transaction that currently stands at the highest level of priority, if any. This
is what happens to T; in the example in Figure 2, which is preempted in favor of T along a worker thread, and
then resumed (in this case along the same thread) after T; ends.

B. Kernel Support for Fine-grain Timer-interrupts

x86 processors are equipped with a per CPU-core programmable timer device known as LAPIC-timer. At startup,
Linux configures the LAPIC-timer to generate periodic interrupts according to the frequency established by the
CONFIG_HZ parameter defined at kernel compile time. Classical interrupt periods range from 1 to 4 milliseconds,
which is reflected to values of CONFIG_HZ ranging from 1000 to 250.

To achieve the possibility to deliver finer-grain timer-interrupts to the worker threads, we have developed a Linux
module offering support for a special device file called dev_extra_tick. A worker thread can register itself as
one to be hit by fine grain-interrupts—which we also refer to as extra-ticks—issuing as simple 1oct1 call towards
the device file. Registration means that the thread identifier (as seen by the kernel, not by the pthread library, since
the two are typically different), is registered into a fast access hash table, which is installed as part of the kernel
module data structures implementing the special device file driver.
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The portions of the whole Linux kernel architecture that need to know whether some thread is registered and
needs to be hit by extra-ticks are: (i) the kernel scheduler, and (ii) the top-half (say the very early handling logic)
of the timer-interrupt. The external module implementing the driver of the dev_extra_tick device file is also
in charge of redefining the actual behavior of the kernel scheduler and of the top-half of the timer-interrupt, thus
making them able to manage extra-ticks. This is achieved via dynamic patching, which allows avoiding at all kernel
recompilation.

To dynamically patch the kernel schedule () function, we retrieve the memory position of the corresponding
machine instructions block from the system map and we inject into this routine an execution flow variation such
that control goes to a schedule_hook () routine offered by the external module right before schedule ()
would execute its finalization part (e.g. stack realignment and return). A scheme of this patching approach is
shown in Figure 3, where we show how the schedule () function will never return, rather it will pass control to
schedule_hook () so that the final part of the scheduling process is under the control of our external module.
In the end, the schedule_hook () function will simply execute the same return actions originally planned by
the kernel schedule () function. However, patching the original scheduler in this way allows the hook to take
control when the decision about what thread needs to take control of the CPU-core? is already finalized. As a
consequence, the hook is able to check whether the thread is a registered one by consulting the aforementioned
fast access hash table implementing the registration record. In the positive case the thread needs to be extra-ticked
and schedule_hook () executes the following additional steps:

A) It changes the LAPIC-timer period by scaling it on the basis of a configuration parameter supported by our
kernel module. The scaling factor is what determines the length of the extra-tick interval.

B) It records in a per CPU-core entry of a proper control table (still managed by the module) that the current
CPU-core is working in extra-tick mode.

C) It records in a proper per registered-thread entry of a control table (again managed by the module) a counter
of extra-ticks not yet consumed by such a thread within the current time quantum assigned by the Operating
System.

The information recorded in point B is exploited for reverting the LAPIC-timer configuration to the original one.
This happens when the scheduler passes control to a thread that is not registered into dev_extra_tick, while
the last running thread was a registered one. In this case, the control record associated with the CPU-core is reset
in order to reflect that the CPU-core is no longer operating in extra-tick mode. Note that this approach works also
in scenarios where the thread registered within the dev_extra_tick device file looses control of the CPU-core
because of a passage into a sleep state (e.g. for an I/O interaction). Overall the above scheme allows restoring the
LAPIC-timer configuration to the original one each time a non-registered thread is (re)scheduled independently of
any state-transition of registered (hence extra-ticked) threads in the operating system state diagram.

As for dynamic patching the LAPIC-timer interrupt management logic, we have still exploited the system map
to locate the launcher code block of the top-half handler in the kernel memory image, and then we patched it
by replacing the call to the original top-half with one to a top-half hook function offered by the external module
that we have developed, which therefore fully replaces the original top-half procedure. This top-half hook is in
charge of executing the same identical basic actions as those executed by the original top-half procedure (such as
acknowledging the accepted interrupt). However, it discriminates if the interrupted thread is a dev_extra_tick
registered one (namely, one subject to extra-tick management), and in the positive case it executes the following
actions:

31t has actually already taken control of the CPU-core, since we are returning from the scheduling process.
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(1) It decreases the extra-tick counter associated with the thread (as pointed out, this is the counter that is set
upon the reschedule of any thread registered on the dev_extra_tick device file).

(ii) If the counter reaches the value zero, then it means that a whole time quantum has expired. In this case, the
top-half hook calls the actual kernel function used to update kernel-level timing information. This mimics the
behavior of the original top-half manager execution path, given that it would trigger the timing information
update function exactly at the end of each planned time quantum.

(iii)) The top-half hook changes the Instruction Pointer (IP) kept by the processor image registered into the system
stack upon interrupt acceptance, so that the interrupted thread will gain control in a proper machine code
block upon the restore of that image onto the CPU-core (namely, when returning from LAPIC-timer interrupt).
Consequently, the top-half hook also changes the application-level stack layout of the thread by adding a
program-counter return value that will allow that code block to exactly return control to the instruction
interrupted by the extra-tick (namely, the original IP value logged into the CPU-context snapshot on the
system stack). This is done by exploiting the Stack Pointer (SP) value from the logged CPU-context, which
then is also modified in order to reflect the insertion of a new element at the top of the user level stack. A
schematization of the performed operations is provided in Figure 4.

(iv) Finally, in case the extra-tick counter of the thread registered within the dev_extra_tick device file reached
the value zero—see point (ii)—the thread is again filled with the number of extra-ticks (say N) it is allowed
to receive in the next time quantum.

In our preemptive STM environment, the address of the code block that will take control thanks to the instruction
pointer variation in point (iii) represents the aforementioned preemption_check () function implementing the
logic for managing transaction priorities and triggering preemption and context switches (see Section III-C). This
address is posted to the kernel when calling the same ioct1 system call that is used for registering the thread in
the dev_extra_tick device file as one to be extra-ticked.

C. Data Structures and Policies for Priority Management

The priority queue we include in our preemptive STM environment includes a couple of lists (active, standing)
for each of the managed priority levels. The standing list keeps all the context associated with transactions having a
given priority, whose execution has not yet been started. In other words, the transactional contexts kept by standing
are those associated with already delivered transactions, which have not yet been admitted to the processing stage
along any worker thread. Conversely, the active list keeps track of all the contexts associated with transactional
requests at that priority level, which have already been started by some worker thread, and have then been context
switched off the CPU (i.e., they have been preempted). Within the same priority level, the CPU assignment favors
transactions within the active list, so that elements within the standng list, if any, are considered for CPU-dispatch
only if the active list is currently empty. The policy for managing each of the two lists is First-In-First-Out (FIFO),
so that the oldest transaction in the list is always selected for CPU-dispatch before the others. Overall, the priority
level is logically seen as the concatenation of the two corresponding lists, which is managed according to a
CPU assignment scheme where a transactional request 1" € active is seen as preceding any transactional request
T’ € standing. Figure 5 provides a graphical representation of such an organization, where the requests kept by
the active list are those to be considered hot. In fact they are resumed for processing by the worker threads prior
to considering any other request kept by the standing list, namely the cold requests.

A compact bitmap is used to determine whether any given priority level has at least one element within the
corresponding (active, standing) lists. Hence, as soon as one worker thread accesses the priority queue for
determining what is the highest priority level that currently keeps some request to be started (a cold one) or
resumed (a hot one), such determination takes place via fast bit-wise instructions.

The separation between hot and cold requests within a given priority level, with hot requests favored over cold
ones, has been exploited precisely to kept into account the peculiarities of in-memory transactions handled by
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common STM layers. More in detail, when a transaction has already been started, the longer the length of the time
interval for reaching the commit phase, the higher the likelihood of conflict materialization with some concurrent
transaction. Specifically, delaying the finalization of an already started transaction—because of a context switch off
the CPU—Ileads to a stretch of the so-called transaction vulnerability window [13], which in turn may lead to an
increase of the likelihood of transaction abort, a phenomenon adverse to performance. Keeping the already started
transactions as hot records within the active list, and favoring them over the cold transactions kept by the standing
list, exactly contrasts the stretch of the vulnerability window. Recall that any transaction within the standing list
has not yet been started by any worker thread, so that delaying its activation in favor of hot ones has no effect in
terms of stretch of its vulnerability window.

On the other hand, a stretch of the vulnerability window of an already started transaction can also be caused by
repeated context switches off the CPU caused by the presence of higher priority requests within the priority queue
upon running the preemption_check () module along the thread. To cope with such an orthogonal problem,
we have devised a feedback mechanism such that the actual priority level of an already started transaction (which is
anyhow a hot one) is dynamically modified at run-time. In particular, for each already started transaction we keep
track of the number of times it has been context switched off the CPU (namely preempted), in favor of a higher
priority transaction. We denote the counter of the context switches suffered by a transaction 7" as Cr. As soon as
the value of Cr reaches a threshold that we denote as (4., then the transaction is migrated to the highest-priority
level, so that no further delays caused by preemptions will be induced on it. Clearly, the responsiveness of such a
feedback mechanism depends on the value of C),,., since larger values of this parameter will tend not to promote
the priority of the transaction along its lifetime. As an extreme, Cj,q, — o0 leads transaction 7' to always reside
at its original priority level, independently of the number of suffered preemptions. Conversely, setting Cy,q, to the
minimum value 1 would lead any transaction to reach the maximum priority level right after its first preemption.
This, in its turn, would lead to flatten the actual priorities of already started (say hot) transactions to the same
value, with consequent scarce possibility to discriminate what transaction should actually be processed before the
others according to the original priority the transactional requests had upon their delivery.

To keep dynamic priorities more aligned to the original transaction priorities along time, larger values of Ci, gz
should be selected. On the other hand, we also devised and implemented a variant of the aforementioned dynamic
priority assignment mechanism where at each increment of Cr leading the value of this counter to still comply
with the inequality Cr < Cjq2, We promote anyhow the priority of transaction 7" by one level. This lazy priority
promoting scheme has the potential to tackle the stretch of the vulnerability window of an already started transaction,
while still not favoring the flattening of the active transactions’ priorities to the maximum priority level admitted
in the system. Indicating with Pr the current priority of transaction 7°, which initially corresponds to the priority
level originally assigned to the transactional request, the variation of the priority Pr upon preempting transaction
T, with consequent increment of the counter Cr, takes place according to the following scheme:

j { min(Pr + 1, Pyae) if Cr < Chgs 1

Pox otherwise

where we denote with P,,,, the maximum admitted priority level within the priority management scheme.

D. Safe Execution within the STM Layer

One important final aspect to consider relates to how the extra-ticks delivered to threads needs to be handled in
case they are received while the target thread is currently executing some function offered by the STM environment
or the standard library, rather than native application code. This might be the case when the thread runs the commit
statement for the transaction it is currently processing, as well as classical TM_read and TM_write services,
which map read/write operations on shared data by the application code to transactional (all or nothing) versions.
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Given that these functions might execute critical actions, such as locking data (as an example several SMT
implementations rely on the commit-time-locking algorithm [4] which exactly locks data in the transaction write set
for atomically installing all the newer versions upon a successful finalization), preempting the transaction execution
while one of these functions is in progress may hamper both performance and correctness. In other words, we need
to leave these functions execute as non-preemptable tasks.

In order to achieve this objective, we have adopted the following strategy. Each worker thread keeps a PREEMPTABLE
flag on Thread Local Storage (TLS), indicating the state of execution of the thread itself. The flag is set to false
each time one of the above functions is invoked by the applications code, and is reset to the value true upon
returning from the function. This is achieved transparently in our implementation via the reliance of wrappers
that are interposed between the application and the STM/standard-library at complile/link time. If an extra-tick is
delivered to a thread when the flag is set to false, then the preemption_check () function whose activation is
triggered by the dev_extra_tick device file logic simply returns. This allows running all the aforementioned
functions without any risk of preempting them.

The drawback of this approach is that the delivery of an extra-tick to the worker thread is somehow lost, in terms
of its potential for promptly passing control to some higher-priority transaction. To cope with this aspect, we added a
second per-thread flag, still kept on TLS, named STANDING_TICK, which is set to true by premption_check ()
exactly when an extra-tick is delivered to a thread having PREEMPTABLE set to false. STANDING_TICK is checked
by the wrapper of any non-preemptable function right upon the function return. If it is found to be set to true,
then the wrapper resets it and invokes the preemption_check () function, which this time will actually run the
preemption policy we presented in Section III-C. In other words, if needed we shift the management of preemptions
(ideally triggered periodically by the extra-ticks) along the time axis at the earliest point in time such that no critical
action is still in place along the worker thread.

A schematization of this behavior is provided in Figure 6. The arrival of the extra-tick at wall-clock-time ¢;
triggers the execution of preemption_check (). However, given that the PREEMPTABLE flag is found set
to false because the worker thread previously entered the execution of TM_write (), preempton_check ()
simply sets the STANDING_TICK flag to true and then returns. Later, upon returning from TM_write (), the
wrapper resets the flag and calls premption_check () for actual checks on the need for preempting the current
transaction.

A minor variation has been put in place to comply with external libraries (e.g. 1ib.SO.xx libraries) that may
rely on the usage of the stack red-zone, which could not be allowed to be recompiled with no-red-zone directive
upon the installation of our preemptive STM environment*. In such a case, the variation of the execution flow of
worker threads via the modification of the user space stack of the thread just above the current stack pointer address
(in order to activate preemption_check () ) might damage the stack content. Given that when the extra-tick is
received the timer-interrupt hook knows the address of the instruction to be processed upon resuming user space
execution, if this address falls outside the memory boundary associated with code portions that do not make use
of the red-zone we do not activate preemption_check (). Rather, we raise the STANDING_TICK directly by
kernel level code embedded within the hook.

“The red zone is the stack region above the current stack frame. It is typically exploited by conventional compilation tool-chains so as to
allow a leaf function to use the stack with no explicit storage reserving—via decrease of the stack pointer— within the stack frame.



transaction profile | CPU demand | priority level (the higher the better) |

delivery ~ b5 msec 1

stock level ~ 650 pusec 2

new order ~ 350 psec 3

order status ~ 10 pusec 4

payment < 10 psec 5
TABLE 1

TRANSACTION PROFILES AND ASSOCIATED PRIORITY LEVELS.

IV. EXPERIMENTAL STUDY
A. Experimental Settings

We run our preemptive STM environment on top of a 64-bit NUMA HP ProLiant server, equipped with four
2GHz AMD Opteron 6128 processors and 64 GB of RAM. Each processor has 8 cores, for a total of 32 CPU-cores,
which share a 12MB L3 cache (6 MB per each 4-cores set), and each CPU-core has a 512KB private L2 cache.
The operating system is OpenSuse 13.2 (Harlequin) (x86_64), with Linux kernel 3.16.7.

As hinted, our STM environment has been implemented by using TinySTM [11] as the baseline TM layer, and
the whole package we developed is available for free download®>. We note that TinySTM has the possibility to
be configured with either encounter-time-locking or commit-time-locking of the data accessed by a transaction.
Since we have introduced within TinySTM a fully innovative preemption facility, we decided to experiment with
the commit-time-locking configuration, since encounter-time-locking would require the preemptive approach to be
complemented with a suitable scheme for managing and resolving priority inversions. This topic is somehow aside
of the main contribution provided by our preemptive STM approach, and we plan to study the relation of the two
as future work.

In our experiments, we used 16 worker threads in charge of processing transactions, and 5 threads in charge of
managing I/O operations on the socket pool and inserting incoming transactional requests into the priority queue.
This scenario leads the STM environment to use no more than 65% of the overall available CPU-core capacity. This
choice allows leaving CPU resources for the Operating System (e.g. for kernel level threads in charge of carrying
out classical housekeeping operations, such as Linux kswapd demons). Hence it allows assessing our proposal
in scenarios avoiding interference on the measurements of performance parameters, which would be caused by
CPU competition depending on the choices by the Operating System scheduler. The workload generator issuing
transactional requests has been run on another multi-core machine with the same technical specifications of the one
hosting the STM environment, which we described above. Also, the two machines are connected via a switched
100Mb ethernet.

Finally, the extra-tick interval in our preemptive STM system, has been configured to 100 microseconds, a value
definitely lower than the timer-interrupt period originally used in the configuration of the Linux kernel we used,
which was set to 1 millisec. This value tends to avoid excessive interference by the extra-tick management logic
in the operations of the STM system, while still guaranteing that a lower priority transaction will not monopolize
a CPU-core while a higher priority one is standing. In fact in this scenario the lower priority transaction will not
be allowed to use the CPU-core for more than the very reduced wall-clock-time of 100 microseconds. In any case,
results related to the overhead by the extra-tick management logic under these settings are reported in the next
section. Finally, the size of the context pool has been set to 1024, a value that enables keeping active a number of
transactions definilty larger than the number of worker threads processing them.

B. Performance Data with the TPC-C Benchmark

To test our proposal we used a port of the classical TPC-C benchmark [20] to STM. TPC-C is representative of
OLTP workloads and includes 5 different transaction profiles that simulate a whole-sale supplying items from a set
of warehouses to customers within sales districts. In our experiments we instantiated one district, and generated a
workload made up by requests equally spanning the whole set of the 5 different transaction profiles specified by
the benchmark.

It must be noted that transactions belonging to the different profiles exhibit very different CPU demands. In our
port to the target STM environment, CPU demands range from tens of microseconds to milliseconds. This peculiarity
has been exploited in our experiments in order to determine a transaction priority scheme where shorter running
transactions are given higher priority. We recall that shortest-job-first (with preemption in our case) is a classical

Shttps://github.com/HPDCS/PRESTO
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way of managing priorities in computer systems, which typically allows the optimization of server side run-time
dynamics. As an example, it has been exploited in [12] in order to give higher server-side priority to the transfer of
shorter static HTML files in the context of Web-server operations—this is achieved via proper scheduling of socket
level operations within the operating system kernel. Overall, in Table I we report the list of transactional profiles
we have exploited from TPC-C in association with the order of magnitude of the CPU demand for processing them
and the corresponding priority level we assigned while testing our preemptive STM environment.

We setup the workload generator to inject 25000 transactional requests per second, issuing a total number of
6 millions of transactional requests along the experiment lifetime. Actually, this peak-load phase is suitable for
assessing the potential of an optimized preemptive CPU-dispatching scheme, and its actual advantages in the
management of differentiated transaction priorities. The indication of peak-load has been evidenced by having the
pool of contexts highly busy (above the 90%) for most of the experiment duration. The reported performance results
have been computed as the average over three repetitions of the experiment.

In Figure 7 we show the average turnaround time for transactions born at the 5 different priority levels. The
turnaround time is computed as the sum of all the times spent by a transaction either for actual processing activities
or while being kept within the priority queue (either as a cold or a hot transaction). Also, if a transaction is aborted
and then retried, any aborted transaction run contributes to the turnaround time for the transaction. The baseline
plot refers to a scenario where the STM does not use extra-ticks and consequently no preemption. Thus in the
baseline configuration a thread passes control to a standing higher priority transactional request only at the end of
the processing phase of the currently executed transaction. For completeness of the analysis we also considered a
setting where the extra-tick logic is active, but no-preemption is ever actuated. This configuration is useful for the
assessment of the overhead caused by the extra-tick logic compared to the baseline case. Also, the preemptive STM
architecture we have presented has been assessed by considering different settings for the value of C),4:, and by
either including or excluding the lazy priority promoting scheme for the management of the dynamic priority of
the transactions (see Section III-C). By the results we see how, compared to the baseline, the preemptive approach
reduces the average turnaround time of transactions born at higher priority levels (say levels 4 and 5) by abound
60%-65%. Also, transactions at middle priority levels (say level 3) exhibit an average turnaround latency essentially
not penalized by preemption, or even slightly favored, while transactions born at lower priority levels (say 1 and
2) show a penalization of their average turnaround which is mostly limited to less than 5%, and no more than
15% in the worst case. As expected, the higher advantages for higher priority transactions are achieved with larger
values of Ci,qz, Which lead to delaying the dynamic raise up of the priority if transactions born at low priority
levels (e.g., level 1). Also, the configuration where the extra-tick is active, but no preemption is ever actuated,
shows performance essentially aligned with the one of the baseline, indicating negligible overhead of the extra-tick
management logic.

In order to better outline the effects by the preemptive approach, we report in Figure 8 the ratio between the
average turnaround latency provided by the baseline and the one provided by the preemptive approach, namely
the speedup on the turnaround provided by the preemptive solution. For this plot we show the most promising
configurations of the preemptive solution, selected on the basis of the results shown in Figure 7. Clearly the best
configurations are still the ones with lager values of C),,; (namely 4 or 8). The plots show the effectiveness of
our preemptive approach in both lazy promoting and no-lazy promoting scenarios. In particular, the configuration
based on lazy promoting and C),,, set to the value 4 is even able to provide higher speedup (vs the baseline)
compared to the one not employing lazy promoting for transactions born at priority level 5, at the expense of a
reduction of the speedup for transactions born at priority level 2. This phenomenon is clearly due to the fact that,
with lazy promoting, transactions born at priority level 1 dynamically acquire higher priority (e.g. 2) right after the
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first preemption, thus interfering more with transactions originally born at priority level 2. This phenomenon does
not appear when lazy promoting is excluded.

Finally, in Figure 9 we report data indicating how the probability of abort varies in the different configurations.
As hinted (see Section III-C), this variation can be caused by the effects of preemptions on the length of the
vulnerability window of the transactions. By the results we see that transactions born at priority level 2 are those
more impacted by this phenomenon. In particular, they show an increase of the abort probability (with consequent
need for retries and stretch of the turnaround latency) for lower values of C),,, and/or when lazy promoting is
employed. As discussed before this is caused by the higher interference caused by transactions born at priority level
1, which dynamically acquire higher priority leading to increased concurrency between shorter transactions born
at priority level 2 and the definitely longer ones born at priority level 1. The opposite behavior, with a reduction
of the abort probability of transactions born at priority level 2 is instead noted when running with larger values of
Craz Or when excluding lazy promotion.

Overall, the experimental data support the effectiveness of our preemptive approach in favoring the turnaround
time of higher priority transactions, compared to a baseline scenario that manages priorities according to a non-
preemptive scheme. Also, the system/kernel level support we have developed for handling preemptions has been
shown to induce negligible overhead, which further favors our solution.

V. CONCLUSIONS

In this article we have presented a preemptive Software Transactional Memory (STM) environment, where fine
grain timer-interrupts—of the order of tens of microseconds—are delivered to the STM layer in order to enable
a thread running some in-memory transaction to be promptly interrupted and to pass control to some standing
higher priority transactional task. To the best of our knowledge this is the first attempt to provide such preemptive
capabilities within an STM environment, since state of the art STM implementations CPU-dispatch a higher priority
transactional task only after the finalization of the current one, thus not reacting to the injection of higher priority
tasks with the same level of promptness. We have also presented a policy for dynamically changing the priority of
transactions (depending on the behavior they show along their lifetime) in order to optimize the final performance
delivered by the preemptive STM environment. Finally, we have reported the results of an experimental study based
on a port of the TPC-C benchmark to STM, demonstrating the ability of our proposal to reduce the turnaround time
of higher priority transactions, while not significantly un-favoring lower priority ones. In this study the priorities are
determined on the basis of CPU demand by the different transaction profiles, with lower demanding ones having
higher priorities, a classical approach aiming at favoring shortest jobs.
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