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Abstract

In this paper, we describe a new active-set algorithmic framework for minimizing a function
over the simplex. The method is quite general and encompasses different active-set Frank-
Wolfe variants. In particular, we analyze convergence (when using Armijo line search in the
calculation of the stepsize) for the active-set versions of standard Frank-Wolfe, away-step
Frank-Wolfe and pairwise Frank-Wolfe. Then, we focus on convex optimization problems,
and prove that all active-set variants converge at a linear rate under weaker assumptions
than the classical counterparts. We further explain how to adapt our framework in order to
handle the problem of minimizing a function over the `1-ball. Finally, we report numerical
experiments showing the efficiency of the various active-set Frank-Wolfe variants.
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1 Introduction

Many real-world applications can be modeled as optimization problems over structured
feasible sets. In particular, the problem of minimizing a function over a simple polytope
(such as the unit simplex or the `1-ball) arises in different fields like, e.g., machine learn-
ing, statistics and economics. Examples of relevant applications include training of support
vector machines, boosting (Adaboost), convex approximation in `p, mixture density estima-
tion, lasso regression, finding maximum stable sets (maximum cliques) in graphs, portfolio
optimization and population dynamics problems (see, e.g., [5, 7, 16] and references therein).

Denoting by e = (1, . . . , 1)T , the problem we address can be stated as follows:

min
x∈Rn

f(x)

s.t. eTx = 1
x ≥ 0,

(1)

where f : Rn → R is continuously differentiable and its gradient ∇f(x) is Lipschitz contin-
uous over the feasible set.

Note that optimizing an objective function h(x) over a polytope P can be seen as
problem (1). Indeed, since any point x ∈ P can be expressed as a convex combination
of the columns of V =

[
v1 . . . vm

]
∈ Rn×m, with v1, . . . , vm vertices of P , problem

min{h(x) : x ∈ P} can be rewritten as min{h(V y) : eT y = 1, y ≥ 0}. Thus, each variable
yi represents the weight of the i-th vertex in the convex combination.

When dealing with optimization problems over simple feasible sets, Frank-Wolfe type
algorithms (see, e.g., [18] for a complete overview) guarantee good scalability, thanks to
their ability to nicely handle the constraints, and also give a sparse representation of the
iterates in terms of the vertices describing the feasible set. These are the reasons why, in the
last few years, those methods have re-gained popularity and now represent an interesting
alternative to projected and proximal gradient algorithms.

The original algorithm, described by M. Frank and P. Wolfe [13] in 1956, at each iteration
minimizes a linear approximation of the objective function over the given feasible set in order
to get a (feasible and descent) search direction, and then minimizes the original function
along that direction, thus getting a new iterate. The main drawback of the method is that
the convergence rate gets slow (i.e., sublinear) when the solution lies on the boundary of the
feasible set. We get this rate mainly because the search directions tend to become orthogonal
to the gradient very quickly, thus deteriorating their descent property and getting smaller
and smaller stepsizes (this is the so-called “zig-zagging” phenomenon).

In order to reduce the “zig-zagging” effect, Wolfe [28] proposed to use a further search
direction that allows to move away from a suitably chosen vertex. Guélat and Marcotte
proved in [15] that a linear rate can be established under the assumption that the function is
strongly convex, the feasible set is a polytope and the solution satisfies strict complementar-
ity. Jaggi and Lacoste-Julien [18] describe a modified version of the away-step Frank-Wolfe
algorithm, which calculates the away vertex by means of a simplex representation of the
problem, and prove linear convergence without making assumptions on the solution. They
also prove that the method guarantees linear rate for a specific class of non-strongly convex
functions. In [1], Beck and Shtern propose a further modification for the away-step variant

2



that guarantees linear rate for the same class of non-strongly convex functions. Another
interesting modification is described in [14], where “in-face” directions are used to boost
the algorithm.

In [25], the authors show that the Frank-Wolfe algorithm with away steps is somehow
related to the von Neumann algorithm. In particular, they first show that a variant of
the von Neumann algorithm converges linearly, then prove that convergence rate and geo-
metric insights also extend to a variant of the Frank–Wolfe algorithm with away steps for
minimizing a convex quadratic function over a polytope.

Another variant of the Frank-Wolfe algorithm, the so-called pairwise Frank-Wolfe, was
first described by Mitchel et al. in [20] for the polytope distance problem. Here the authors
define, at each iteration, a direction that moves the weight from one vertex to another.
More specifically, it moves the weight from the away vertex to the Frank-Wolfe vertex and
keeps all others weights unchanged. This method is further analyzed in [18] and linear
convergence is proved under the same assumptions seen before for the away-step variant.
This method is strictly related to classical working set algorithms [22], like SMO algorithms
for SVM training (see, e.g., [19, 26]).

In the context of big data, problems usually have very sparse solutions (i.e., solutions
with many zero components). Hence, developing methods that allow to quickly build and/or
identify the active set (i.e., the subset of zero components in a solution) is getting crucial
to guarantee relevant savings in terms of CPU time.

Plenty of active-set methods have been proposed for solving nonlinear optimization
problems (see [23] and references therein for further details). In active-set methods, at
each iteration, a working set that estimates the set of active constraints at the solution is
iteratively updated. Usually, only a single active constraint is added to or deleted from
the active set at each iteration. However, when dealing with simple constraints, one can
use more sophisticated active-set methods, which can add to or delete from the current
estimated active set more than one constraint at each iteration, and eventually find the
active set in a finite number of steps if certain conditions hold.

In machine learning, heuristic strategies that try to fix to zero a subset of variables
(at each iteration of a given algorithm according to a certain rule), the so-called shrinking
techniques, are widely used (see, e.g. [4]). Screening rules, i.e. rules to eliminate opti-
mization variables that do not contribute to any final solution, have also been proposed
recently. Those rules can be used either before passing the problem to the optimizer as
a preprocessing phase, or in a dynamical way to gradually reduce the problem during the
optimization. A nice overview of those methods is given in [27], where some new dynamic
rules are also proposed for different classes of (strongly) convex optimization algorithms.

In this paper, we propose an active-set estimate to identify the set of variables that are
zero at a stationary point of problem (1). We adapt some specific strategies proposed in
the contexts of box-constrained problems (see [3, 6, 8, 9]) to the case of unit simplex. The
main features of the active-set strategy developed in this paper are essentially two:

• it does not only focus on the zero variables and keep them fixed, but rather tries to
quickly identify as many active variables as possible (including nonzero variables) at
a given point;

• it gives a significant reduction in the objective function (when setting to zero those
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variables estimated active), while guaranteeing feasibility (i.e. nonzero weights need
to be suitably moved from active variables to some other variables in such a way that
objective function reduces).

Last property, which is somehow related to the fact that the estimated active variables
satisfy an approximate optimality condition, enables us to easily use this strategy into any
globally convergent algorithm.

It is easy to see that the proposed strategy is quite different from shrinking techniques
and static screening rules. It further differs from dynamic screening rules (like the ones
proposed in [27]). Indeed, as we already said, the proposed strategy sets variables to zero
in such a way that a sufficient reduction in the objective function is guaranteed. We might
say that, in our case, screening and descent are strongly related. Furthermore, all those
properties of the active-set estimate are guaranteed without making any strong assumption
on the objective function. We can actually use our strategy also when dealing with non-
convex objective functions.

In the second part of the paper, we then describe an active-set algorithmic framework
that encompasses the classical Frank-Wolfe method and the two variants described so far,
that is away-step Frank-Wolfe and pairwise Frank-Wolfe. More specifically, we get a two-
step algorithmic framework that combines the active-set strategy with a Frank-Wolfe like
procedure. In the first step, the algorithm moves weights from the estimated active variables
to a suitably chosen vertex (in order to both keep feasibility and reduce the objective
function). Then, in the second step, it defines a search direction in the subspace of the
estimated nonactive variables (using one of the Frank-Wolfe variants listed before) and
generates a new iterate. We prove convergence of our framework to stationary points of
problem (1) using Armijo line searches and Frank-Wolfe like directions (since no convexity
assumption is made on the objective function to prove convergence, the algorithm can also
be used as a local solver for non-convex optimization problems). Analysis of the convergence
rate is carried out under convexity assumptions. Linear convergence is proved for the active-
set versions of the Frank-Wolfe variants, when using exact line searches. The main results
are listed below:

• thanks to the use of our estimate, we are able to relax the classical assumptions on
the objective function needed to prove the linear rate (see, e.g.,[18]). Indeed, we only
require that the objective function is strongly convex into a suitably chosen restricted
space related to the optimal solution;

• we can also prove that the active-set version of the Frank Wolfe algorithm converges at
a linear rate under the additional assumption that strict complementarity holds at the
optimal solution (thus relaxing the assumption needed for the original Frank-Wolfe,
i.e. optimal solution in the relative interior of the feasible set);

• the rates we obtain depend on the sparsity of the final solution (so, in some way, the
sparser the solution is, the better the rate).

We further focus on optimization problems over the `1-ball. We adapt both the active-set
strategy and the algorithmic framework to this case, and analyze their theoretical proper-
ties.
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The paper is organized as follows. In Section 3, we describe in depth our active-set
estimate. In Section 4, we present our algorithmic framework and carry out the convergence
analysis for different choices of the search direction. In Section 5, we also analyze the
convergence rate of the active-set Frank-Wolfe variants proposed. In Section 6, we show how
our algorithm can be easily extended to optimization problems over the `1-ball. In Section 7,
we report our numerical experience. Finally, in Section 8, we draw some conclusions.

2 Notation and Preliminary Results

Throughout the paper, we indicate with ‖ · ‖ the Euclidean norm. Given a vector v ∈ Rn
and an index set I ⊆ {1, . . . , n}, we denote with vI the subvector with components vi, i ∈ I.
We indicate with ei the i-th unit vector. Given a set of vectors D = {v1, . . . , vm} ⊆ Rn,
we indicate with conv(D) the convex hull of D. Finally, the open ball with center x and
radius ρ > 0 is denoted by B(x, ρ).

Definition 1. A feasible point x∗ of problem (1) is a stationary point if and only if it
satisfies the following first order necessary optimality conditions:

∇f(x∗)− λ∗e− µ∗ = 0, (2)

(µ∗)Tx∗ = 0, (3)

µ∗ ≥ 0. (4)

where λ∗ ∈ R and µ∗ ∈ Rn are the KKT multipliers.

3 Active-Set Estimate

We consider as active set the subset of zero components of the optimal solution.

Definition 2. Let x∗ ∈ Rn be a stationary point of problem (1). We define as active set
the following set:

Ā(x∗) =
{
i ∈ {1, . . . , n} : x∗i = 0

}
. (5)

We further define the nonactive set N̄(x∗) as the complementary set of Ā(x∗):

N̄(x∗) = {1, . . . , n} \ Ā(x∗) =
{
i ∈ {1, . . . , n} : x∗i > 0

}
. (6)

The active-set estimate is computed by following the approach proposed in [10, 11],
which requires proper approximations of the KKT multipliers (the so called multiplier
functions). Given a stationary point x∗ of (1), let (λ∗, µ∗) be the KKT multipliers associated
to x∗. By (2), we have

µ∗ = ∇f(x∗)− λ∗e,

then, multiplying by x∗ and taking into account complementarity condition (3), we get

0 = (µ∗)Tx∗ = (∇f(x∗)− λ∗e)Tx∗.
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From the feasibility of x∗, we obtain the following expressions for the multipliers:

λ∗ = ∇f(x∗)Tx∗,

µ∗ = ∇f(x∗)− λ∗e,

so that we can introduce the following continuous functions as multiplier functions:

λ(x) = ∇f(x)Tx, (7)

µi(x) = ∇if(x)− λ(x), i = 1, . . . , n. (8)

Definition 3. Let x ∈ Rn be a feasible point of problem (1). We define the active-set
estimate A(x) and the nonactive-set estimate N(x) as

A(x) = {i : xi ≤ εµi(x)
}

= {i : xi ≤ ε∇f(x)T (ei − x)}, (9)

N(x) = {i : xi > εµi(x)} = {i : xi > ε∇f(x)T (ei − x)}, (10)

where ε is a positive scalar.

By adapting the results shown in [11], we can state the following result.

Theorem 1. If (x∗, λ∗, µ∗) satisfies KKT conditions for problem (1), then there exists a
neighborhood B(x∗, ρ) such that, for each x in this neighborhood, we have

{i : x∗i = 0, µi(x
∗) > 0} ⊆ A(x) ⊆ Ā(x∗).

Furthermore, if strict complementarity holds, then

{i : x∗i = 0, µi(x
∗) > 0} = A(x) = Ā(x∗),

for each x ∈ B(x∗, ρ).

3.1 A global property of the active-set estimate

Here, we analyze a global property of our active-set estimate. In particular, we show
how, given a point x ∈ Rn feasible for problem (1), we can obtain a sufficient decrease in
the objective function by setting the estimated active variables to zero. In order to keep
feasibility, we need to update at least one nonactive variable, so that all variables sum up
to 1. Next proposition gives us a hint on how to choose the nonactive variable that will be
updated when setting to zero the active variables.

Proposition 1. Let J(x) be the set:

J(x) =
{
j : j ∈ Argmin

i=1,...,n

{
∇if(x)

}}
. (11)

Let x ∈ Rn be a feasible point of problem (1). Then,

N(x) ∩ J(x) 6= ∅.
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Proof. see Appendix A.

In order to state the main result of this section, we need an assumption on the parameter
ε appearing in Definition 3.

Assumption 1. Assume that the parameter ε appearing in the estimates (9)– (10) satisfies
the following conditions:

0 < ε ≤ 1

2Ln
, (12)

where L is the Lipschitz constant of ∇f(x) over the unit simplex.

The main result, reported below, shows that it is possible to get a significant decrease in
the objective function when moving weights from the active-set variables to the nonactive
variable chosen in the set defined in Proposition 1.

Proposition 2. Let Assumption 1 hold. Given a feasible point x of problem (1), let j ∈
N(x) ∩ J(x) and I = {1, . . . , n} \ {j}. Let Â(x) be a set of indices such that

Â(x) ⊆ A(x).

Let x̃ be the feasible point defined as follows:

x̃Â(x) = 0; x̃I\Â(x) = xI\Â(x); x̃j = xj +
∑

h∈Â(x)

xh.

Then,
f(x̃)− f(x) ≤ −L‖x̃− x‖2.

Proof. See Appendix A.

4 An Active-Set Algorithmic Framework for Minimization
over the Simplex

In this section, we explain how to embed our active-set estimate into an algorithmic frame-
work to minimize a function over the unit simplex. The framework executes two different
steps at each iteration: the first one for updating the estimated active variables, and the
second one for updating the estimated nonactive variables. The aim is to exploit as much
as possible the properties of our estimate. First, the ability to identify those active vari-
ables satisfying the strict complementarity after a sufficiently large number of iterations
(according to the result in Theorem 1). Second, the ability to get a decrease of the objec-
tive function, when moving the weights from the active set to a suitably chosen variable
(according to the result in Proposition 2).

In particular, let xk be the point given at the beginning of a generic iteration k. In
the first step, we compute the active and nonactive-set estimates A(xk), N(xk), and we
generate the new feasible point x̃k, by setting x̃A(xk) to zero and by updating a suitably

chosen variable x̃kj , j ∈ J(xk) (all the other nonactive variables stay the same). Then, in
the second step, we compute a search direction in the subspace of the nonactive variables,
and, eventually, we execute a line search to get a new iterate xk+1. The detailed scheme of
our algorithmic framework is reported in Algorithm 1.
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Algorithm 1 Active-Set algorithmic framework for minimization over the

simplex (AS-SIMPLEX)

1 Choose a feasible point x0

2 For k = 0, 1, . . .
3 If xk is a stationary point, then STOP
4 Compute Ak := A(xk) and Nk := N(xk)
5 Compute Jk := J(xk), choose j ∈ Nk ∩ Jk and define Ñk = Nk \ {j}
6 Set x̃k

Ak = 0 , x̃k
Ñk = xk

Ñk and x̃kj = xkj +
∑
h∈Ak

xkh

7 Set dk
Ak = 0

8 Compute a feasible direction dk
Nk in x̃k and a maximum stepsize αkmax

9 If ∇f(x̃k)Tdk < 0 then
10 Compute a stepsize αk ∈ (0, αkmax] by means of a line search
11 Else
12 Set αk = 0
13 End if
14 Set xk+1 = x̃k + αkdk

15 End for

4.1 Use of Frank-Wolfe type directions in AS-SIMPLEX

At every iteration k of Algorithm 1, we need to compute a feasible direction with respect
to the nonactive subspace (Step 8), in order to move from x̃k and produce the new iterate
xk+1. A possibility is that of considering the Frank-Wolfe direction or one of its variants.

The Frank-Wolfe and the away-step directions, computed at x̃k, in the subspace Nk,
are respectively:

dFW
Nk = eı̂ − x̃kNk , ı̂ ∈ Argmin

i∈Nk

{
∇if(x̃k)

}
; (13)

dA
Nk = x̃kNk − e̂, ̂ ∈ Argmax

j∈Nk
0

{
∇jf(x̃k)

}
, (14)

where Nk
0 = {j ∈ Nk : x̃kj > 0}.

According to (13) and (14), we consider the following three search directions dk:

(FW) dk
Nk is chosen as the Frank-Wolfe direction:

dkAk = 0,

dkNk = dFW
Nk .

(AFW) dk
Nk is chosen as the away-step Frank-Wolfe direction:

dkAk = 0,

dkNk = dAFW
Nk =

{
dFW
Nk , if ∇Nkf(x̃k)TdFW

Nk ≤ ∇Nkf(x̃k)TdA
Nk ,

dA
Nk , otherwise.
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(PFW) dk
Nk is chosen as the pairwise Frank-Wolfe direction:

dkAk = 0,

dkNk = dPFW
Nk = dFW

Nk + dA
Nk = eı̂ − e̂,

where ı̂ and ̂ are defined as in (13) and (14), respectively.

In the following, we will refer to dFW, dAFW and dPFW if the direction dk is chosen according
to the Frank-Wolfe (FW), the away-step Frank-Wolfe (AFW) or the pairwise Frank-Wolfe
(PFW) rule, respectively.

As stated in the following lemma, all the search directions defined above are non-ascent
directions.

Lemma 1. Let x̃k be a feasible point generated by AS-SIMPLEX (Step 6) at iteration k. Let
dk be a search direction computed according to one among (FW), (AFW) and (PFW) rule.
Then,

∇f(x̃k)Tdk ≤ 0.

Proof. See Appendix B.

In the next lemma, we show that at every point x̃k produced by AS-SIMPLEX, the
directional derivative along dPFW is not larger than the directional derivative along dAFW.
This fact will play a crucial role in proving the convergence of the algorithm for all the
considered variants of the Frank-Wolfe direction.

Lemma 2. Let x̃k be a feasible point generated by AS-SIMPLEX at iteration k. Then,

∇f(x̃k)TdPFW ≤ ∇f(x̃k)TdAFW.

Proof. See Appendix B.

4.2 Computation of the stepsize

A possibility for the computation of the stepsize, at Step 10 of Algorithm 1, is that of
considering the classical Armijo line search (see, e.g., [2] and references therein). This
method, which basically performs a successive stepsize reduction, allows to avoid the often
considerable computation associated with an exact line search. Indeed, when dealing with
some non-convex problems, even finding an approximate local minimizer along the search
direction generally requires too many evaluations of the objective function and possibly the
gradient.

The detailed scheme of the Armijo line search is reported in Algorithm 2.
Depending on the direction dk used in the line search procedure, the maximum stepsize

αkmax is set as follows:

(FW) Frank-Wolfe direction: αkmax = 1;

(AFW) away-step Frank-Wolfe direction:
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Algorithm 2 Armijo line search

0 Choose δ ∈ (0, 1), γ ∈
(
0, 1

2

)
1 Set initial stepsize α = αkmax

2 While f(x̃k + αdk) > f(x̃k) + γ α∇f(x̃k)Tdk

3 Set α = δα
4 End while

if dk
Nk = dFW

Nk , then αkmax = 1;

if dk
Nk = dA

Nk , then αkmax = x̃k̂ /(1− x̃k̂ ) where ̂ is defined as in (14);

(PFW) pairwise Frank-Wolfe direction: αkmax = x̃k̂ , where ̂ is defined as in (14).

For every considered search direction dk, this choice guarantees that x̃k +αdk is feasible
for all α ∈ (0, αkmax]. Moreover, it is easy to verify that αkmax ≤ 1 for every kind of search
direction.

The following proposition follows from classical results on the Armijo line search. It
guarantees that ‖x̃k−xk‖ converges to zero and that the sequence of the directional deriva-
tives along the search direction converges to zero as well, for all the considered search
directions. Before stating the proposition, we observe that, from standard results on the
Armijo line search, Algorithm 2 computes αk in a finite number of steps at every iteration
k for which ∇f(x̃k)Tdk < 0.

Proposition 3. Let Assumption 1 hold. Let {xk}, {x̃k} and {dk} be the sequences produced
by AS-SIMPLEX, where dk is computed at Step 7–8 according to one among (FW), (AFW)
and (PFW) rule. If AS-SIMPLEX does not terminate in a finite number of iterations, then

lim
k→∞

‖x̃k − xk‖ = 0, (15)

lim
k→∞

∇f(x̃k)Tdk = 0. (16)

Proof. See Appendix B.

Remark 1. In the proof of Proposition 3 (see Appendix B for further details), computing
αk by the Armijo line search is not essential. Namely, Proposition 3 holds when considering
any value αk ∈ (0, αkmax] such that f(x̃k + αkdk) ≤ f(x̃k + αkAd

k), where αkA is the value
computed by the Armijo line search. In particular, this implies that Proposition 3 holds
under the assumption that the stepsize is computed in AS-SIMPLEX by means of an exact
line search, that is, αk is computed as

αk ∈ Argmin
α∈(0,αk

max]

f(x̃k + αdk).

4.3 Global convergence analysis

In this subsection, for every considered choice of the direction dk, we show the global
convergence of AS-SIMPLEX to stationary points.
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Theorem 2. Let Assumption 1 hold. Let {xk} be the sequence of points produced by AS-SIM-

PLEX, where

• the search direction dk is computed according to one among (FW), (AFW) and (PFW)
rule;

• the stepsize αk is computed using the Armijo line search.

Then, either an integer k̄ ≥ 0 exists such that xk̄ is a stationary point for problem (1), or
the sequence {xk} is infinite and every limit point x∗ of the sequence is a stationary point
for problem (1).

Proof. See Appendix B.

5 Convergence Rate Analysis

In this section, following the ideas used in [18], we analyze the convergence rate of the three
active-set Frank-Wolfe variants we described in the previous sections. In particular, we first
show that the AS-SIMPLEX with Frank-Wolfe direction and exact line search converges at
a linear rate under the assumptions that the objective function is strongly convex into a
suitably chosen restricted space related to the optimal solution and strict complementarity
holds at the optimal solution. Then, we get linear convergence for the other active-set
variants. In this case, we only assume that the objective function is strongly convex into a
suitably chosen restricted space related to the optimal solution.

In order to prove the results, we make an assumption that is pretty common when
analyzing the convergence rate of algorithms (see, e.g., [24]).

Assumption 2. Let {xk} be the infinite sequence generated by AS-SIMPLEX. We have that

lim
k→∞

xk = x∗,

where x∗ is an optimal point of problem (1).

From now on, we denote with Ā and N̄ the index sets defined in (5) and (6), respectively.
We denote with Ī the set {1, . . . , n}. Finally, we denote with ∆ the unit simplex, and with
∆I := {x ∈ ∆: xi = 0, ∀i /∈ I}, where I ⊆ Ī.

5.1 Linear convergence of active-set Frank-Wolfe

Here we show that, when embedding an active-set strategy in the Frank-Wolfe algorithm,
one can get linear convergence without assuming that the optimal solution is in the interior
of the feasible set. As we will see, this assumption is replaced by strict complementarity in
the optimal solution.

Before reporting the theoretical results related to the active-set Frank-Wolfe (i.e., AS-SIM-
PLEX with Frank-Wolfe direction), we need to introduce some constants. Given a minimum
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point x∗ and an index subset I ⊆ Ī, we define:

Cf (I) := sup
x,s∈∆I ,
α∈(0,1],

y=x+α(s−x)

2

α2

[
f(y)− f(x)−∇f(x)T (y − x)

]
,

µf (I) := inf
x∈∆I\{x∗},
α∈(0,1],

s̄=s̄(x,x∗,∆),
y=x+α(s̄−x)

2

α2

[
f(y)− f(x)−∇f(x)T (y − x)

]
,

where s̄(x, x∗,∆) := ray(x, x∗) ∩ ∂(∆). The curvature constant Cf (I), which measures the
non-linearity of the objective function in the subspace ∆I , is needed to give a quadratic up-
per bound on the objective function. The strong convexity constant µf (I), which measures
the strong convexity of the objective function in ∆I (and can be interpreted as the lower
curvature of the function), is used to give a quadratic lower bound instead. Both bounds are
needed for proving the main result reported in this subsection (see [17] for further details).

Remark 2. The constants given above are similar to the ones introduced in [17]. The
main difference is that ours are restricted to a particular subspace. Moreover, for any index
subset I ⊆ Ī, it is easy to see that

µf (Ī) ≤ µf (I) ≤ Cf (I) ≤ Cf (Ī). (17)

In the next theorem, we state the linear convergence rate of AS-SIMPLEX, when the
search direction dk is computed according to (FW) rule.

Theorem 3. Let Assumption 1 and 2 hold, let f(x) be strongly convex on ∆N̄ , and let us
assume that strict complementarity holds at x∗. Let us further assume that the exact line
search is used.

Then, there exists k̄ such that, if dk is computed according to (FW) rule, we have

f(xk+1)− f(x∗) ≤
(
1− ρAS−FW

)[
f(xk)− f(x∗)

]
, ∀k ≥ k̄,

where

ρAS-FW = min

{
1

2
,
µf (N̄)

Cf (N̄)

}
.

Proof. See Appendix C.

Remark 3. From (17), it follows that the smaller N̄ (i.e., the sparser x∗), the better the
convergence rate of AS-SIMPLEX. Moreover,

ρAS-FW ≥ min

{
1

2
,
µf (Ī)

Cf (Ī)

}
= ρFW,

where ρFW is the constant given in [17] for the convergence rate of the standard Frank-Wolfe
method.
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5.2 Linear convergence of active-set Frank-Wolfe variants

In this subsection, we prove that both active-set away-step Frank-Wolfe (i.e., AS-SIM-

PLEX with away-step Frank-Wolfe direction) and active-set pairwise Frank-Wolfe (i.e., AS-SIM-
PLEX with pairwise Frank-Wolfe direction) converge at linear rate. From now on, we denote
with

N+ := N̄ ∪ {i ∈ Ī : x∗i = 0, µ∗i = 0} and A+ := Ī \N+ = {i ∈ Ī : x∗i = 0, µ∗i > 0}.

Given an index subset I ⊆ Ī, we define the following two constants:

C∆
f (I) := sup

x,s,v∈∆I
α∈(0,1],

y=x+α(s−v)

2

α2

[
f(y)− f(x)− α∇f(x)T (s− v)

]
,

µ∆
f (I) := inf

x∈∆I

inf
x̂∈∆I

∇f(x)T (x̂−x)<0

2

α∆
I (x, x̂)

2

[
f(x̂)− f(x)−∇f(x)T (x̂− x)

]
,

where

α∆
I (x, x̂) :=

∇f(x)T (x̂− x)

∇f(x)T (sI(x)− vI(x))
,

sI(x) := eı̂, ı̂ ∈ Argmin
i∈I

{∇if(x)},

vI(x) := e̂, ̂ ∈ Argmax
j∈I : xj>0

{∇jf(x)}.

These two new constants are motivated in the analysis by the fact that both Frank-Wolfe
and away-step directions are used in the variants (see [18] for further details).

Remark 4. Also in this case, the constants given above are similar to the ones introduced
in [18]. Again, the difference is that ours are restricted to a particular subspace. Moreover,
for any index subset I ⊆ Ī, it is easy to see that the following inequalities hold:

µ∆
f (Ī) ≤ µ∆

f (I) ≤ C∆
f (I) ≤ C∆

f (Ī). (18)

Theorem 8 in [18] shows, for the standard away-step Frank-Wolfe and the standard
pairwise Frank-Wolfe methods, that the quantity f(xk) − f(x∗) decreases linearly at each
iteration k that is neither a so-called drop step nor a so-called swap step.

Iteration k is a drop step when the stepsize αk = αkmax < 1 and the number of zero
components in xk+1 increases by one. Iteration k is a swap step when the stepsize αk =
αkmax, but the number of zero components in xk+1 does not change. Note that a swap step
can occur only in the pairwise Frank-Wolfe method. In the convergence rate analysis, these
iterations are troublesome since a geometric decrease cannot be guaranteed.

In our context, these definitions apply when considering the computation of xk+1 from
x̃k and, as to be shown in the next theorem, we can still guarantee that the quantity
f(xk) − f(x∗) decreases linearly at each iteration k that is a good step (i.e., not a drop
step nor a swap step) with tighter constants (that depend on the sparsity of the optimal
solution).
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Theorem 4. Let Assumption 1 and 2 hold, let f(x) be strongly convex on ∆N+, with ∇f(x)
Lipschitz continuous on ∆N+ + (∆N+ − ∆N+) (in the Minkowski sense). Let us further
assume that the exact line search is used.

Then, there exists k̄ such that, for every iteration k ≥ k̄ that is a good step (i.e., it is
not a drop step nor a swap step), we have

f(xk+1)− f(x∗) ≤ (1− ρ)
[
f(xk)− f(x∗)

]
, ∀k ≥ k̄,

where

ρ =


ρAS-AFW =

µ∆
f (N+)

4C∆
f (N+)

, if dk is computed by (AFW) rule,

ρAS-PFW = min

{
1

2
,
µ∆
f (N+)

C∆
f (N+)

}
, if dk is computed by (PFW) rule.

(19)

Moreover, for k ≥ k̄, we have that

• at most |N+| − 1 drop steps can be performed in between two good steps,

• at most 3|N+|! swap steps can be performed in between two good steps (this can only
happen when (PFW) rule is used).

Proof. See Appendix C.

Remark 5. From (18), it follows that the smaller N+, the better the convergence rate of
AS-SIMPLEX. Moreover,

ρAS-AFW ≥
µ∆
f (Ī)

4C∆
f (Ī)

= ρAFW and ρAS-PFW ≥ min

{
1

2
,
µ∆
f (Ī)

C∆
f (Ī)

}
= ρPFW,

where ρAFW and ρPFW are the constants given in [18] for the convergence rate of the stan-
dard away-step Frank-Wolfe and the standard pairwise Frank-Wolfe method, respectively.
Furthermore, also the upper bound in the number of bad steps between two good steps de-
pends on the cardinality of N+ (for sufficiently large k). We would like to recall that, in
the standard Frank-Wolfe variants, this value is equal to n − 1 and 3n! for drop and swap
steps, respectively.

6 Extension to Minimization Problems over the `1-ball

In this section, we describe how we can adapt our algorithmic framework to solve optimiza-
tion problems over the `1-ball. We focus on problems of the following form:

min
x∈Rn

h(x)

s.t. ‖x‖1 ≤ τ,
(20)

with h ∈ C1(Rn), ∇h(x) Lipschitz continuous on the feasible set and τ > 0.
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First, we see how any point in the feasible set of problem (20) can be rewritten as a
convex combination of {±τe1, . . . ,±τen}. Let M ∈ Rn×2n be the matrix whose columns are
the vertices of the feasible region of (20), namely M = τ

[
I −I

]
, where I ∈ Rn×n

is the identity matrix. Let x ∈ Rn be any feasible point of problem (20). We can write

Mw = x, eTw = 1, w ≥ 0, w ∈ R2n.

Now, starting from problem (20), we consider a new matrix M̃ ∈ R(n+1)×(2n+1) that enables
us to extend the variable space:

M̃ = τ

 I −I
0
...
0

0 . . . 0 0 . . . 0 1

 ,
and the following feasible set:

P =

{
(x, z) ∈ Rn+1 :

(
x
z

)
= M̃y, eT y = 1, y ≥ 0

}
= conv{±τe1, . . . ,±τen, τen+1}.

(21)

We further define the new function h̄ : Rn+1 → R as follows: h̄(x, z) = h(x), for every
(x, z) ∈ Rn+1. We thus get the new equivalent problem:

min
y∈R2n+1

f(y) = h̄(M̃y)

s.t. eT y = 1
y ≥ 0.

(22)

This specific choice allows to describe any feasible point of the original problem using
a “minimal” representation (i.e., a representation with the smallest number of nonzero
components y1, . . . , y2n), that is:

yi =
1

τ
max{0, xi}, i = 1, . . . , n,

yn+i =
1

τ
max{0,−xi}, i = 1, . . . , n,

y2n+1 =
τ − ‖x‖1

τ
.

(23)

We have ∇f(y) = M̃T∇h̄(x) = τ

(
∇1h(x), . . . ,∇nh(x),−∇1h(x), . . . ,−∇nh(x), 0

)T
, so

that
∇f(y)T y = ∇h̄(x)T M̃y =

[
∇h(x)T 0

]
M̃y = ∇h(x)Tx. (24)

For every feasible point x of problem (20), we can consider the following sets:

A`1(x), the set of indices of the estimated active variables;

N`1(x), the set of indices of the estimated nonactive variables.

15



We show that there exists a correspondence between the variables xi estimated active for
problem (20) (i.e., those variables that are estimated to be zero at the stationary point)
and the variables yi estimated active for problem (22).

From (21), we can write

xi = τ (yi − yn+i), i = 1, . . . , n.

Consequently, if both yi and yn+i are estimated active for problem (22), we can estimate
xi active for problem (20). So, we define A`1(x) and N`1(x) as follows:

A`1(x) =
{
i ∈ {1, . . . , n} : i ∈ A(y) and (n+ i) ∈ A(y)

}
, (25)

N`1(x) =
{
i ∈ {1, . . . , n} : i ∈ N(y) or (n+ i) ∈ N(y)

}
. (26)

Using (23) and (24), for each index i ∈ {1, . . . , n} we can distinguish two cases:

(i) xi ≥ 0. Recalling (9)–(10), we have that i ∈ A(y) if and only if

0 ≤ 1

τ
xi = yi ≤ ε∇f(y)T (ei − y) = ε(∇if(y)−∇f(y)T y)

= ε(τ∇ih(x)−∇h(x)Tx) = ε∇h(x)T (τei − x)
(27)

and (n+ i) ∈ A(y) if and only if

−1

τ
xi ≤ 0 = yn+i ≤ ε∇f(y)T (en+i − y) = ε(∇n+if(y)−∇f(y)T y)

= ε(−τ∇ih(x)−∇h(x)Tx) = −ε∇h(x)T (τei + x).
(28)

(ii) xi < 0. Similarly to the previous case, we have that i ∈ A(y) if and only if

1

τ
xi < 0 = yi ≤ ε∇f(y)T (ei − y) = ε(∇if(y)−∇f(y)T y)

= ε(τ∇ih(x)−∇h(x)Tx) = ε∇h(x)T (τei − x)
(29)

and (n+ i) ∈ A(y) if and only if

0 < −1

τ
xi = yn+i ≤ ε∇f(y)T (en+i − y) = ε(∇n+if(y)−∇f(y)T y)

= ε(−τ∇ih(x)−∇h(x)Tx) = −ε∇h(x)T (τei + x).
(30)

From (27)–(30), we obtain

A`1(x) = {i : ε τ∇h(x)T (τei + x) ≤ 0 ≤ xi ≤ ε τ∇h(x)T (τei − x) or

ε τ∇h(x)T (τei + x) ≤ xi ≤ 0 ≤ ε τ∇h(x)T (τei − x)},
(31)

N`1(x) = {1, . . . , n} \A`1(x). (32)

Now, we show how the algorithmic framework described in the Section 4 can be adapted
to solve problem (20), using the active and nonactive set estimates (31)–(32).
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Proposition 4. Let J`1(x) be the set

J`1(x) =
{
j ∈ {1, . . . , n} : j ∈ Argmax

i=1,...,n

{
|∇ih(x)|

}}
.

Let x be a feasible point of problem (20) and assume that x is non-stationary. Then,

N`1(x) ∩ J`1(x) 6= ∅.

Proof. See Appendix D.

Assumption 3. Assume that the parameter ε appearing in the estimates (31)–(32) satisfies
the following conditions:

0 < ε ≤ 1

2τ2Ln
, (33)

where L is the Lipschitz constant of ∇h(x) over the feasible set of (20).

Proposition 5. Let Assumption 3 hold. Given a feasible point x of problem (20), let us
assume that x is non-stationary. Let j ∈ N`1(x) ∩ J`1(x) and I = {1, . . . , n} \ {j}. Let
Â`1(x) be a set of indices such that

Â`1(x) ⊆ A`1(x).

Let x̃ be the feasible point defined as follows:

x̃Â`1
(x) = 0; x̃I\Â`1

(x) = xI\Â`1
(x); x̃j = xj − sgn(∇jh(x))

∑
h∈Â`1

(x)

|xh|. (34)

Then,
h(x̃)− h(x) ≤ −L‖x̃− x‖2.

Proof. See Appendix D.

We report in Algorithm 3 the algorithmic framework to solve problem (20) that extends
Algorithm 1 to the case of minimization problems over the `1-ball.

Algorithm 3 Active-Set algorithmic framework for minimization over the

`1-ball (AS-`1)

. . . as in Algorithm 1 except for

sets Ak, Nk and Jk respectively replaced by

Ak`1 = A`1(xk), Nk
`1 = N`1(xk) and Jk`1 = J`1(xk),

and line:

6 Set x̃k
Ak

`1

= 0, x̃k
Ñk

`1

= xk
Ñk

`1

, x̃kj = xkj − sgn(∇jh(xk))
∑
h∈Ak

`1

|xkh|
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Also in this case, we choose to compute dk
Nk

`1

by means of the standard Frank-Wolfe

direction, or one of its variants. In particular, exploiting the relations between problem (20)
and (22), we can easily compute, in the subspace Nk

`1
, every variant of the Frank-Wolfe

direction that has been considered in Subsection 4.1.
For the sake of completeness, we report the way we compute such directions. At every

iteration k, we distinguish whether x̃k lies on the boundary or in the interior of the feasible
set. In the first case, (23) is the unique representation of x̃k in the y space. Then, we
simply compute the search direction as explained in Subsection 4.1.

Vice versa, if ‖x̃k‖1 < τ , there exist infinite representations of x̃k in the y space. In
particular, for each index h ∈ {1, . . . , n}, we can compute a point y that satisfies conditions
in (21) with yh > 0, yn+h > 0 and y2n+1 = 0, by setting

yi =


1

τ
max{0, x̃ki }+

1

2τ
(τ − ‖x̃k‖1), i = h,

1

τ
max{0, x̃ki }, i ∈ {1, . . . , n} \ {h},

yn+i =


1

τ
max{0,−x̃ki }+

1

2τ
(τ − ‖x̃k‖1), i = h,

1

τ
max{0,−x̃ki }, i ∈ {1, . . . , n} \ {h}.

This trick allows us to consider all vertices of the `1-ball in the computation of the away-step
direction when x̃k is in the interior of the feasible set.

More specifically, at every iteration k, two feasible search directions can be computed
(in the subspace Nk

`1
):

• the Frank-Wolfe direction:

dFW
Nk

`1

= −τ sgn(∇ı̂h(x̃k)) eı̂ − x̃kNk
`1

, ı̂ ∈ Argmax
i∈Nk

`1

{
|∇ih(x̃k)|

}
;

• the away-step direction:

dA
Nk

`1

=

x̃
k
Nk

`1

− τ sgn(x̃k̂ ) e̂, if ‖x̃k‖1 = τ,

x̃k
Nk

`1

− τ sgn(∇ı̂h(x̃k)) eı̂, otherwise,

where ı̂ ∈ Argmax
i∈Nk

`1

{
|∇ih(x̃k)|

}
and ̂ ∈ Argmax

j∈Nk
`1

: x̃kj 6=0

{
∇jh(x̃k) sgn(x̃kj )

}
.

The search direction dk can thus be computed according to the rules we defined before (i.e.,
(FW), (AFW) and (PFW)).

The maximum stepsize αkmax can be set again by distinguishing whether x̃k lies on the
boundary or in the interior of the feasible set, following the same reasoning made before
for the computation of the search direction:

(FW) Frank-Wolfe direction: αkmax = 1;

18



(AFW) away-step Frank-Wolfe direction:

if dk
Nk

`1

= dFW
Nk

`1

, then αkmax = 1;

if dk
Nk

`1

= dA
Nk

`1

, then αkmax =
σk

1− σk
, where

σk =


|x̃k̂ |/τ , if ‖x̃k‖1 = τ,

2 max{0, sgn(∇ı̂h(x̃k)) x̃kı̂ }+ τ − ‖x̃k‖1
2τ

, otherwise,
(35)

and ı̂, ̂ are the indices calculated in the away-step direction;

(PFW) pairwise Frank-Wolfe direction: αkmax = σk, with σk as in (35).

From the relations between problem (20) and problem (22), recalling Proposition 5 and
taking into account how we compute dk, the convergence of AS-`1 for every considered
variant of the Frank-Wolfe direction follows from the convergence results of AS-SIMPLEX.

Before ending the section, we would like to highlight again that the proposed active-set
framework works in the original problem space and no transformation of the variables is
needed in practice to handle the `1-ball.

7 Numerical Results

In this section, we report the numerical experience related to our active-set algorithmic
framework. We first analyze the benefits of embedding the active-set strategy in the Frank-
Wolfe algorithm by starting with an illustrative example. Then, we analyze the performance
of the three active-set Frank-Wolfe variants described in the previous sections on two dif-
ferent classes of problems:

• convex quadratic instances that satisfy strict complementarity at the optimal solution;

• lasso problems.

For each instance, we first ran the Frank-Wolfe variants without using the active-set esti-
mate, namely, the Frank-Wolfe, the away-step Frank-Wolfe and the pairwise Frank-Wolfe
method (all of them implemented according to the schemes described in [18]). Then, we
ran the corresponding active-set versions.

In the following, we denote by FW, AFW and PFW the Frank-Wolfe, the away-step Frank-
Wolfe and the pairwise Frank-Wolfe method, respectively. We further denote by AS-FW,
AS-AFW and AS-PFW the methods we have from our algorithmic framework, where the
search direction dk is computed according to (FW), (AFW) and (PFW) rule, respectively.

In order to calculate the estimates at each iteration, we need to set the ε parameter
to a proper value. In general, the value of this parameter cannot be a priori computed.
Following [6, 9], we employ this simple updating rule: at every iteration k, we compute x̃k

as indicated at Step 6 of Algorithm 1 and 3 and, if a sufficient decrease in the objective
function is obtained, then we accept x̃k and we do not change the value of ε. Otherwise,
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we do not accept x̃k, we reduce ε and we estimate the active set again, continuing until we
get a sufficient decrease in the objective function. The starting value for the ε parameter
is 10−1.

All the codes used in the tests were implemented in Matlab R2014b and the experiments
were ran on an Intel Xeon(R), CPU E5-1650 v2 3.50 GHz.

7.1 Benefits of the active-set strategy for the standard Frank-Wolfe

It is well known that, when dealing with minimization problems over polytopes, the conver-
gence rate of the Frank-Wolfe method is linear in case the optimal solution lies in the rela-
tive interior of the feasible set and the objective function is strongly convex (see, e.g., [15]).
This fact suggests an interesting methodological effect of the active-set strategy we have
proposed: as long as the optimal solution of problem (1) satisfies the strict complementarity
condition, according to Theorem 1, we are able to identify the optimal active set in a finite
number of iterations. This implies that, after a finite number of iterations, Algorithm 1
with the Frank-Wolfe direction behaves like the Frank-Wolfe method applied to a problem
whose solution lies in the relative interior of the feasible set, so that a linear convergence
rate is guaranteed (see proof of Theorem 3). Hence, we have cases where the convergence
rate of Frank-Wolfe is sublinear, but one can still get a linear convergence by using our
active-set strategy.

In Figure 1, we report the performance of the standard Frank-Wolfe and its active-set
version (namely, Algorithm 1 with dk = dFW) on a 3 dimensional example:

min
x∈Rn

1
2x

TQx

s.t. eTx = 1
x ≥ 0,

where Q ∈ R3×3 is the following symmetric and positive definite matrix

Q =

3 0 3
0 3/2 3/2
3 3/2 5

 .

It is easy to verify that x∗ = (1/3, 2/3, 0)T is the optimal solution of the problem and
together with µ∗ = (0, 0, 1)T and λ∗ = 1 satisfies the strict complementarity conditions.
The starting point for both algorithms was x0 = (0.1, 0.3, 0.6)T and we asked for a tolerance
of 10−5 (in other words, we stopped each algorithm as soon as an iteration k such that
∇f(xk)Tdk ≥ −10−5 was reached). We used an Armijo line search for both algorithms.
After 105 iterations, the standard Frank-Wolfe method is not able to stop, while its active-
set version stops after 12 iterations. The optimal active set, namely Ā(x∗) = {3}, is
identified by Algorithm 1 after the first iteration.

7.2 Comparison on convex quadratic instances

In the following, we report our numerical experience on convex quadratic instances whose
solutions satisfy the strict complementarity conditions. Taking inspiration from [21], we

20



0

0.5

11

0.5

0.2

0.4

0.6

0.8

1

0
0

x*

x0

Figure 1: Performance of AS-FW (blue line) and FW (red line) on a 3D example. Strict
complementarity holds at the solution.

built instances of the following problem

min
x∈Rn

1
2x

TQx− cTx
s.t. eTx = 1

x ≥ 0,

(36)

where Q � 0 is randomly generated and c ∈ Rn is chosen so that the randomly generated
solution x∗ satisfies the strict complementarity condition.

More specifically, we generated artificial problems with

• dimension n = 213;

• number of nonzero components in the optimal solution T = round(ρn), with ρ ∈
{0.01, 0.03, 0.05, 0.07, 0.1}.

We then defined c = Qx∗ − r, where r ∈ Rn is such that ri = 1 if x∗i > 0 and ri > 1 if
x∗i = 0. In this way, we ensured the satisfaction of the strict complementarity conditions
at x∗.

All the considered algorithms employed the vector e1 as starting point and were stopped
at the fist iteration k satisfying

∇h(xk)T (x− xk) ≥ −10−6,

for all x in the feasible set, where h is the objective function of (36). Moreover, we arrested
an algorithm when the number of iterations exceeded 200T . For every ρ, the results have
been averaged over 10 runs.

In Figure 2, we plot the objective function error Ek = f(xk)−f(x∗) versus the computa-
tional time. We can easily see that the use of the active-set estimate significantly improves
the performance of the algorithms for every considered sparsity level ρ. In particular, when
using AS-AFW and AS-PFW, we notice a pretty fast reduction that enables those algorithms
to stop much earlier than the original AFW and PFW.
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Figure 2: Objective function error vs CPU time (in seconds). Comparison between original
and active-set Frank-Wolfe variants. Strict complementarity holds at the solution. The y
axis is in logarithmic scale.

7.3 Comparison on lasso problems

We further tested our active-set variants on problems of the form:

min
x∈Rn

1

2
‖Ax− b‖2

‖x‖1 ≤ τ,
(37)

with A ∈ Rm×n, b ∈ Rm and τ > 0.
In order to generate testing problems of the form (37), we followed [9, 12]. More

specifically, we generated artificial signals with

• dimension n ∈ {211, 212, 213, 214};

• number of observations m = n/4;

• number of nonzero components in the optimal solution T = round(ρm), with ρ ∈
{0.01, 0.03, 0.05, 0.07, 0.1}.

Matrix A was obtained by generatingm×n independent and identically distributed elements
from the Normal distribution N(0, 1), and then normalizing the columns. Once matrix A
was built, the “true” signal x∗ ∈ Rn was generated as a vector with all components equal
to 0, except for T randomly placed ±1 spikes. Vector b was build as Ax∗+ η, with η drawn
from a normal distribution with mean 0 and variance 10−3. Finally, we set τ = 0.99‖x∗‖1.

All the considered algorithms employed the origin as starting point and were stopped
at the fist iteration k satisfying

∇h(xk)T (x− xk) ≥ −10−6, ∀x : ‖x‖1 ≤ τ,
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where h is the objective function of (37). Moreover, we arrested an algorithm when the
number of iterations exceeded 10T . For every fixed n and ρ, the results have been averaged
over 10 runs.

For what concerns FW, we actually did not observe significant differences when the active-
set estimate is employed. Namely, AS-FW and FW perform quite similarly. This might be
due to the fact that lasso instances do not usually satisfy the assumptions needed to get
the linear rate.

On the other hand, for both AFW and PFW, the use of the active-set estimate leads to
remarkable improvements. In particular, in Figure 3, we compare AS-AFW with AFW, and
in Figure 4 we compare AS-PFW with PFW. In both figures, we plot the objective function
versus the computational time (function error is not considered in this case, since the value
f(x∗) is not available). It is clear that the objective function decreases much faster when
the active-set estimate is employed, for every considered dimension n and sparsity level ρ.

0 1.75 3.5
10-4

10-2

100

102
ρ =0.01, n =2048

0 14 28
10-4

10-2

100

102
ρ =0.01, n =4096

0 90 180
10-4

10-2

100

102
ρ =0.01, n =8192

0 800 1600
10-4

10-2

100

102
ρ =0.01, n =16384

0 6 12
10-3

10-1

101

103
ρ =0.03, n =2048

0 40 80
10-3

10-1

101

103
ρ =0.03, n =4096

0 300 500
10-3

10-1

101

103
ρ =0.03, n =8192

0 2500 5000
10-3

10-1

101

103
ρ =0.03, n =16384

0 10 20
10-3

10-1

101

103
ρ =0.05, n =2048

0 80 160
10-3

10-1

101

103
ρ =0.05, n =4096

0 500 1000
10-3

10-1

101

103
ρ =0.05, n =8192

0 4500 9000
10-3

10-1

101

103
ρ =0.05, n =16384

0 15 30
10-3

10-1

101

103
ρ =0.07, n =2048

0 100 200
10-3

10-1

101

103
ρ =0.07, n =4096

0 750 1500
10-3

10-1

101

103
ρ =0.07, n =8192

0 7000 14000
10-3

10-1

101

103
ρ =0.07, n =16384

0 25 50
10-3

10-1

101

103
ρ =0.1, n =2048

0 150 300
10-3

10-1

101

103
ρ =0.1, n =4096

0 1200 2400
10-3

10-1

101

103
ρ =0.1, n =8192

0 10000 20000
10-3

10-1

101

103
ρ =0.1, n =16384

AS-AFW AFW

Objective function vs CPU time (s) - Comparing AS-AFW and AFW

Figure 3: Objective function vs CPU time (in seconds). Comparison between AS-AFW and
AFW. The y axis is in logarithmic scale.

8 Conclusions

In this paper, we focused on minimization problems over the simplex and the `1-ball, and
described an active-set algorithmic framework that encompasses different active-set Frank-
Wolfe variants. The active-set strategy embedded in the framework does not only focus
on the zero variables and keep them fixed, but rather tries to quickly identify as many
active variables as possible (including nonzero variables) at a given point. Furthermore,
it suitably reduces the objective function (when setting to zero those variables estimated
active), while guaranteeing feasibility. This last feature enable us to make our framework
globally convergent. In particular, we proved convergence for three different active-set
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Figure 4: Objective function vs CPU time (in seconds). Comparison between AS-PFW and
PFW. The y axis is in logarithmic scale.

Frank-Wolfe variants. We also showed that all active-set variants converge at a linear rate
(convex case) under weaker assumptions than the classical counterparts. The numerical
results highlighted that our active-set strategy gives a significant speedup when embedded
into a Frank-Wolfe like algorithm.

A Theoretical results related to the property of the active-
set estimate

In this appendix, we analyze the theoretical results related to the main property of the active set
estimate.

Proof of Proposition 1. We distinguish two different cases. First, we consider the case |J(x)| = n.
For every j ∈ J(x), we have

∇f(x)Tx = ∇jf(x)eTx = ∇jf(x), (38)

Exploiting the feasibility of x, we can choose an index ν ∈ J(x) such that xν > 0 and, recalling
definition of multipliers (7) and equation (38), we can write

µν(x) = ∇νf(x)− λ(x) = ∇νf(x)−∇f(x)Tx = ∇νf(x)−∇νf(x) = 0 < xν .

Since xν > 0 and µν(x) = 0, we have that xν > εµν(x) and then ν ∈ N(x).
Now, let us assume that |J(x)| < n. We consider two subcases. We first assume that for every

h such that ∇hf(x) > ∇jf(x), j ∈ J(x), we have xh = 0. It follows that∑
j∈J(x)

xj = 1
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and, reasoning as in the previous case, we get that (38) holds for all j ∈ J(x). Using the fact that
x is a feasible solution for problem (1), we can choose an index ν ∈ J(x) such that xν > 0 and,
recalling definition of multipliers (7) and equation (38), we can write

µν(x) = ∇νf(x)− λ(x) = ∇νf(x)−∇f(x)Tx = ∇νf(x)−∇νf(x) = 0 < xν .

Since xν > 0 and µ(x) = 0, we have that xν > εµν(x) and then ν ∈ N(x).
Now, we consider the case when there exists h such that ∇hf(x) > ∇jf(x), j ∈ J(x), and

xh > 0. It follows that
∇f(x)Tx > ∇jf(x)eTx = ∇jf(x).

Choosing ν = j, for any j ∈ J(x), and reasoning as before, we can write

µν(x) = ∇νf(x)− λ(x) = ∇νf(x)−∇f(x)Tx < ∇νf(x)−∇νf(x) = 0 ≤ xν .

Since xν ≥ 0 and µν(x) < 0, we have that xν > εµν(x) and then ν ∈ N(x).

Proof of Proposition 2. Define Â = Â(x). Using the mean value theorem, we can write:

f(x̃) = f(x) +∇f(w)T (x̃− x),

where w = x+ ξ(x̃− x), ξ ∈ (0, 1). From the Lipschitz continuity of the gradient, we have that

f(x̃) = f(x) +∇f(x)T (x̃− x) +
[
∇f(w)−∇f(x)

]T
(x̃− x)

≤ f(x) +∇f(x)T (x̃− x) +
∥∥∇f(w)−∇f(x)

∥∥∥∥x̃− x∥∥
≤ f(x) +∇f(x)T (x̃− x) + L‖x̃− x‖2

and, by adding and removing L‖x̃− x‖2, we get

f(x̃) ≤ f(x) +∇f(x)T (x̃− x) + 2L‖x̃− x‖2 − L‖x̃− x‖2. (39)

In order to prove the proposition, we need to show that

∇f(x)T (x̃− x) + 2L‖x̃− x‖2 ≤ 0. (40)

From the definition of x̃, we get

‖x̃− x‖2 =
∑
i∈Â

(xi)
2 +

(∑
i∈Â

xi

)2

≤
∑
i∈Â

(xi)
2 + |Â|

∑
i∈Â

(xi)
2 = (|Â|+ 1)xT

Â
xÂ (41)

and
∇f(x)T (x̃− x) = −∇Âf(x)TxÂ +∇jf(x)

∑
i∈Â

xi = xT
Â

(
∇jf(x)eÂ −∇Âf(x)

)
. (42)

From the definition of the index j, we have that ∇if(x) ≥ ∇jf(x) for all i ∈ {1, . . . , n}. Therefore,
we can write

n∑
i=1

∇if(x)xi ≥
n∑
i=1

∇jf(x)xi = ∇jf(x)

n∑
i=1

xi = ∇jf(x). (43)

Recalling the active-set estimate and using (43), we have that

xi ≤ ε
(
∇if(x)−

n∑
i=1

∇if(x)xi

)
≤ ε
(
∇if(x)−∇jf(x)

)
, ∀i ∈ Â,
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so that, by (41), we can write

‖x̃− x‖2 ≤ ε(|A|+ 1)xT
Â

(
∇Âf(x)−∇jf(x)eÂ

)
. (44)

From (42) and (44), we get

∇f(x)T (x̃− x) + 2L‖x̃− x‖2 ≤ xT
Â

[
∇jf(x)eÂ −∇Âf(x)

]
+

+ 2L(|A|+ 1)ε xT
Â

(
∇Âf(x)−∇jf(x)eÂ

)
=
[
2L(|A|+ 1)ε− 1

]
xT
Â

(
∇Âf(x)−∇jf(x)eÂ

)
≤ (2Lnε− 1)xT

Â

(
∇Âf(x)−∇jf(x)eÂ

)
,

where the last inequality follows from the non-negativity of xT
Â

(
∇Âf(x) − ∇jf(x)eÂ

)
(implied

by (44)) and from the fact that |A| ≤ n − 1 (implied by Proposition 1). Then, inequality (40)
follows from the assumption we made on ε.

B Theoretical results related to the convergence analysis

Here, we report the proofs of the theoretical results related to the convergence analysis. We first
start with the two lemmas describing the properties of the descent directions.

Proof of Lemma 1. First, we consider dk = dFW. We have that

∇f(x̃k)T dk ≤ −∇ı̂f(x̃k)
∑
h∈Nk

x̃kh +∇ı̂f(x̃k) = 0,

where the first inequality follows from the definition of ı̂ in (13) and the feasibility of x̃k and the
last equality follows from the fact that x̃Ak = 0.

Now, we consider dk = dAFW. As we have already shown that the assertion holds when dkNk =
dFW
Nk , we only have to prove that ∇f(x̃k)T dk ≤ 0 when dkNk = dA

Nk . In this case, we have

∇f(x̃k)T dk ≤ ∇̂f(x̃k)
∑
h∈Nk

x̃kh −∇̂f(x̃k) = 0,

where the first inequality follows from the definition of ̂ in (14) and the feasibility of x̃k and the
last equality follows from the fact that x̃Ak = 0.

Finally, it is easy to see that the assertion is true when dk = dPFW as well, since dPFW =
dFW + dAFW.

Proof of Lemma 2. In the following, we indicate with ı̂ and ̂ the indices defined as in (13) and (14),
respectively. From the feasibility of x̃k, and the fact that x̃Ak = 0, we can write

∇f(x̃k)T dFW = ∇ı̂f(x̃k)−∇f(x̃k)T x̃k = ∇ı̂f(x̃k)−
∑
h∈Nk ∇hf(x̃k) x̃kh

≥ ∇ı̂f(x̃k)−∇̂f(x̃k)
∑
h∈Nk x̃kh = ∇ı̂f(x̃k)−∇̂f(x̃k)

= ∇f(x̃k)T dPFW.

Similarly, we have that

∇f(x̃k)T dA = ∇f(x̃k)T x̃k −∇̂f(x̃k) =
∑
h∈Nk ∇hf(x̃k) x̃kh −∇̂f(x̃k)

≥ ∇ı̂f(x̃k)
∑
h∈Nk x̃kh −∇̂f(x̃k) = ∇ı̂f(x̃k)−∇̂f(x̃k)

= ∇f(x̃k)T dPFW.
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From the above relations, we get

∇f(x̃k)T dPFW ≤ min
{
∇f(x̃k)T dFW,∇f(x̃k)T dA

}
= ∇f(x̃k)T dAFW

that proves the result.

Now, we prove the result related to the Armijo line search.

Proof of Proposition 3. We first prove (15). From the instructions of Algorithm 2 and Proposition 2,
we can write

f(xk+1) ≤ f(x̃k) ≤ f(xk)− L‖x̃k − xk‖2. (45)

From the continuity of the objective function and the compactness of the feasible set, it follows that

lim
k→∞

[f(xk+1)− f(xk)] = 0. (46)

The above relation, combined with (45), proves (15).
Now, we recall that, by Lemma 1, ∇f(x̃k)T dk ≤ 0. To prove (16), we consider separately the

iterations in which ∇f(x̃k)T dk < 0 from those in which ∇f(x̃k)T dk = 0. More specifically, we
identify two iteration index subsets H,K ⊆ {1, 2, . . . }, such that:

• ∇f(x̃k)T dk < 0, for all k ∈ K;

• H = {1, 2, . . . } \K.

By assumption, Algorithm 1 does not terminate in a finite number of iterations, so that at least
one of the above sets is infinite. We assume without loss of generality that both H and K are infinite
sets.

From the instructions of the algorithm, it is straightforward to verify that

lim
k→∞, k∈H

∇f(x̃k)T dk = 0.

Therefore, we limit our analysis to consider the subsequence {xk}K . For all k ∈ K, since∇f(x̃k)T dk <
0, the Algorithm 2 computes a value αk ∈ (0, 1] in a finite number of iterations, such that

f(xk+1) ≤ f(x̃k) + γ αk∇f(x̃k)T dk, ∀k ∈ K,

or equivalently,
f(x̃k)− f(xk+1) ≥ γ αk |∇f(x̃k)T dk|, ∀k ∈ K.

From (15) and (46), we get that the left-hand side of the above inequality converges to zero for
k →∞, hence

lim
k→∞

αk |∇f(x̃k)T dk| = 0. (47)

Now, proceeding by contradiction, we assume that (16) does not hold. From the compactness
of the feasible set, {xk}K attains limit points. Let x̄ be any limit point of {xk}K . Using (15), since
{xk}, {x̃k} and {dk} are bounded, and taking into account that Ak and Nk are subsets of a finite
set of indices, without loss of generality we redefine {xk}K the subsequence such that

lim
k→∞, k∈K

xk = lim
k→∞, k∈K

x̃k = x̄ (48)

and

Ak = Â, Nk = N̂ , ∀k ∈ K, (49)

lim
k→∞, k∈K

dk = d̄. (50)
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As we have assumed that (16) does not hold, then the above relations, combined with the continuity
of the gradient, imply that

lim
k→∞, k∈K

∇f(x̃k)T dk = ∇f(x̄)T d̄ = −η < 0. (51)

We first prove that, if (51) holds, then M > 0 exists such that

αkmax ≥M, ∀k ∈ K. (52)

By contradiction, let us assume that an infinite subset of K (that we denote with K for simplicity)
exists such that

lim
k→∞, k∈K

αkmax = 0. (53)

We distinguish three different cases, depending on the strategy used for computing the direction dk

at Step 7–8 in Algorithm 1:

• Case (FW): it is easy to see that we get a contradiction since αkmax has a constant value equal
to 1.

• Case (AFW): recalling the definition of dAFW, the case we need to analyze is the one where
we get an infinite subsequence of away-step directions in Nk. So, we assume that an infinite
subset K̃ ⊆ K exists such that

dkNk = dA
Nk , ∀k ∈ K̃.

We have that αkmax =
x̃k̂

1− x̃k̂
, for all k ∈ K̃, where ̂ is the index computed according to (14).

Since the number of indices in N̂ is finite, we can consider a further subsequence (that we
denote with K̃ for simplicity), where the index ̂ is fixed. Taking into account (53), it is easy
to see that

lim
k→∞, k∈K̃

x̃k̂ = 0. (54)

Now, from (51), (54) and the continuity of ∇f(x), it follows that an index k̃ ∈ K̃ exists such
that, for all k ≥ k̃, k ∈ K̃, we have that

∇f(x̃k)T dk = ∇f(x̃k)T (x̃k − e̂) ≤ −
η

2
,

x̃k̂ ≤ ε
η

2
.

Therefore, we obtain

x̃k̂ ≤ ε∇f(xk)T (e̂ − x̃k), ∀k ≥ k̃, k ∈ K̃.

Recalling (9), this implies that ̂ ∈ Â and, considering the definition of ̂ in (14), we get a
contradiction.

• Case (PFW): in this case αkmax = x̃k̂ and the contradiction follows from the same reasoning
done above for (AFW).

So, (52) holds. Now, from (47) and (51), we get

lim
k→∞, k∈K

αk = 0. (55)
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Taking into account (52), it follows that a value k̄ ∈ K exists such that

αk < αkmax, ∀k ≥ k̄, k ∈ K.

In other words, for k ≥ k̄, k ∈ K, the stepsize αk cannot be set equal to the maximum stepsize and,
taking into account the line search procedure, we can write

f
(
x̃k +

αk

δ
dk
)
> f(x̃k) + γ

αk

δ
∇f(x̃k)T dk, ∀k ≥ k̄, k ∈ K. (56)

We can apply the mean value theorem and we have that ξk ∈ (0, 1) exists such that

f
(
x̃k +

αk

δ
dk
)

= f(x̃k) +
αk

δ
∇f
(
x̃k + ξk

αk

δ
dk
)T
dk, ∀k ≥ k̄, k ∈ K. (57)

By substituting (57) within (56), we have

∇f
(
x̃k + ξk

αk

δ
dk
)T
dk > γ∇f(x̃k)T dk, ∀k ≥ k̄, k ∈ K. (58)

From (55), (48), and exploiting the fact that {ξk} and {dk} are bounded, we also get

lim
k→∞, k∈K

x̃k + ξk
αk

δ
dk = lim

k→∞, k∈K
x̃k = x̄. (59)

Finally, from (51), (58) and (59), we obtain

−η = ∇f(x̄)T d̄ ≥ γ∇f(x̄)T d̄ = −γη,

which is a contradiction, since we set γ < 1.

Finally, we report the proof related to the convergence of our algorithmic framework.

Proof of Theorem 2. First, we consider the case where dk is computed according to (FW) rule, that
is, dk = dFW. Then, we will prove the remaining two cases.

Let {xk} be the sequence produced by Algorithm 1 and let us assume that a stationary point is
not produced in a finite number of iterations. Since the feasible set is compact, then the sequence
{xk} attains a limit point x∗ and, recalling (15) of Proposition 3, there exists K ⊆ N such that

lim
k→∞, k∈K

xk = lim
k→∞, k∈K

x̃k = x∗. (60)

Taking into account the structure of the feasible set, we can characterize a stationary point using
the following conditions

∇f(x)T (ei − x) ≥ 0, ∀ i ∈ {1, . . . , n}.

Let Φi(x) be the continuous function defined as

Φi(x) = max{0,−∇f(x)T (ei − x)},

that measures the violation of the stationarity conditions for a variable xi, i = 1, . . . , n.
By contradiction, we assume that x∗ is not a stationary point, so that an index ν ∈ {1, . . . , n}

exists such that
|Φν(x∗)| > 0. (61)

Taking into account that the number of possible different choices of Ak and Nk is finite, we can find
a subset of iteration indices K̄ ⊆ K such that Ak = Â and Nk = N̂ for all k ∈ K̄.
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First, suppose that ν ∈ Â. Then, by Definition 3, we can write

0 ≤ xkν ≤ ε∇f(xk)T (eν − xk),

so that Φν(xk) = max{0,−∇f(xk)T (eν − xk)} = 0, for all k ∈ K̄. Therefore, from (60) and the
continuity of the function Φi(·), we get a contradiction with (61).

Now, suppose that ν ∈ N̂ . We can choose an index ν̄ ∈ {1, . . . , n} and a further subset of
iteration indices K̂ ⊆ K̄ such that

Φν̄(x̃k) = max
i∈N̂
{Φi(x̃k)}, ∀ k ∈ K̂.

Hence, for all k ∈ K̂, Φν̄(x̃k) ≥ Φν(x̃k) ≥ 0, which, by continuity of Φi(·), implies that

Φν̄(x∗) ≥ Φν(x∗) > 0. (62)

From the definition of Φi(x) and ν̄, for all k ∈ K̂ we can write

Φν̄(x̃k) = maxi∈N̂
{

max{0,−∇f(x̃k)T (ei − x̃k)}
}

= −mini∈N̂{∇f(x̃k)T (ei − x̃k)} = −∇f(x̃k)T dFW.
(63)

Since we are considering the case where dk = dFW, from (60), (16) of Proposition 3 and the continuity
of Φi(·), we have that

0 = lim
k→∞
k∈K̂

∇f(x̃k)T dk = lim
k→∞
k∈K̂

−Φν̄(x̃k) = −Φν̄(x∗),

which, combined with (62), implies that Φν(x∗) = 0, thus contradicting (61). Then, the assertion
is proved for dk = dFW.

Now, we consider together the cases where dk = dAFW and dk = dPFW. In both cases, we can
apply the same reasoning made before and we obtain (63) again. Recalling the definition of dAFW

and Lemma 2, we can write

−∇f(x̃k)T dk ≥ −∇f(x̃k)T dFW = Φν̄(x̃k),

for both dk = dAFW and dk = dPFW. Consequently,

0 = lim
k→∞
k∈K̂

∇f(x̃k)T dk ≤ lim
k→∞
k∈K̂

−Φν̄(x̃k) = −Φν̄(x∗),

which, combined with (62), implies that Φν(x∗) = 0, thus contradicting (61). Then, the assertion
is also proved for dk = dAFW and dk = dPFW.

C Theoretical results related to the convergence rate analy-
sis

We first prove that active-set Frank-Wolfe converges at a linear rate.

Proof of Theorem 3. From Theorem 1, exploiting the fact that strict complementarity holds at x∗,
for sufficiently large k we have that

N(xk) = N(x̃k) = N̄ and A(xk) = A(x̃k) = Ā.

From the instructions of AS-SIMPLEX, it follows that x̃k = xk for sufficiently large k, and then the
minimization is restricted to Nk = N̄ . Since the search direction dk is computed according to (FW)
rule, the rest of the proof follows by repeating the same arguments of the proof given for Theorem 3
in [17], observing that µf (N̄) > 0 and Cf (N̄) <∞ under the hypothesis we made.
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Now, we report the proof related to the convergence rate analysis of the other active-set variants.

Proof of Theorem 4. First, we observe that Theorem 1 implies that Ak ⊇ A+ and Nk ⊆ N+ for
sufficiently large k. Now, we show that there exists an iteration index k̄ such that

(i) xkA+ = x̃kA+ = 0, for all k ≥ k̃;

(ii) ∇f(x̃k)T dk < 0, for all k ≥ k̄ ≥ k̃.

Point (i) follows from the instructions of the algorithm and the fact that Ak ⊇ A+, for k sufficiently
large. In order to prove point (ii) we proceed by contradiction. We assume that an infinite sub-
sequence {x̃k}K exists such that x̃kNk satisfies stationarity conditions over ∆Nk (but x̃k does not
satisfy stationarity conditions over ∆), for all k ∈ K. Since f is strongly convex on ∆N+ , there
exists a unique point satisfying stationarity conditions over ∆Nk . Taking into account that Ak

and Nk are subsets of a finite set of indices and x̃kAk
= 0, we have that, after a finite number of

iterations, the algorithm should cycle. This cannot be possible as we guarantee a strict decrease of
the objective function at each iteration.

Consequently, recalling that dkAk = 0, we can repeat the same arguments of the proof given for
Theorem 8 in [18], to provide the following bound:

f(xk+1)− f(x∗) ≤ (1− ρ)
[
f(x̃k)− f(x∗)

]
≤ (1− ρ)

[
f(xk)− f(x∗)

]
, ∀k ≥ k̄,

where the last inequality follows from the fact that f(x̃k) ≤ f(xk) and ρ is defined as in (19).
Moreover, we have that µ∆

f (N+) > 0 and C∆
f (N+) <∞ under the hypothesis we made.

Finally, we are left to bound the number of iterations for which k is not a good step. For what
concerns away-step Frank-Wolfe, we need to consider those iterations such that αk = αkmax < 1, for
k ≥ k̄. The fact that αkmax < 1 implies that dk = dA. Consequently, when αk = αkmax, we have
that xk+1

̂ = 0, where ̂ is the index computed according to (14). In other words, the number of

zero components in xk+1 increases by 1. From the instructions of the algorithm, we also have that
the number of zero components in x̃k+1 cannot decrease from xk+1. Combining these observations
with the fact that x̃kA+ = 0 for all k ≥ k̄, we conclude that after at most |N+| − 1 iterations with
αk = αkmax < 1, a point x̃k with n − 1 zero components is produced. Of course, we cannot further
increase the number of zero components.

For what concerns pairwise Frank-Wolfe, the claimed bound can simply be obtained by adapting
the arguments used in [18], recalling that, for k ≥ k̄, we have that xkA+ = x̃kA+ = 0 and the calculation
of the search direction is restricted to N+.

D Theoretical results related to minimization problems over
the `1-ball

Here, we report the results related to the active-set estimates for minimization problems over the
`1-ball.

Proof of Proposition 4. Let y be the point given by (23). Considering problem (22), we can compute
the active and nonactive-set estimates A(y), N(y). From the expression of ∇f(y), and exploiting
the hypothesis that x is non-stationary, it follows that

min
i=1,...,2n+1

{∇if(y)} < 0.

In particular, this implies that

(2n+ 1) /∈ Argmin
i=1,...,2n+1

{∇if(y)}.
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From Proposition 1, there exists ν ∈ {1, . . . , 2n} such that

ν ∈ Argmin
i=1,...,2n

{∇if(y)}, (64)

ν ∈ N(y). (65)

Recalling the expression of ∇f(y), we can rewrite (64) as

∇νf(y) ≤ min
i=1,...,n

{τ∇1h(x), . . . , τ∇nh(x),−τ∇1h(x), . . . ,−τ∇nh(x)},

that is,
−|∇νf(y)| ≤ −τ |∇ih(x)|, ∀i = 1, . . . , n. (66)

Let j ∈ {1, . . . , n} be the following index:

j =

{
ν, if ν ∈ {1, . . . , n},
ν − n, if ν ∈ {n+ 1, . . . , 2n}.

(67)

Exploiting again the expression of ∇f(y), we get |∇νf(y)| = |∇jf(y)| = τ |∇jh(x)|. This relation,
combined with (66), implies that

j ∈ Argmax
i=1,...,n

{
|∇ih(x)|

}
.

Finally, using (65) and (67), it follows that at least one index between j and (n + j) belongs to
N(y). Recalling (26), we have that j ∈ N`1(x) and the assertion is proved.

Proof of Proposition 5. Define Â = Â`1(x). As in the proof of Proposition 2, using the mean value
theorem, we get

h(x̃) ≤ h(x) +∇h(x)T (x̃− x) + 2L‖x̃− x‖2 − L‖x̃− x‖2

and, in order to prove the proposition, we need to show that

∇h(x)T (x̃− x) + 2L‖x̃− x‖2 ≤ 0. (68)

From the definition of x̃, reasoning as in the proof of Proposition 2, we get

‖x̃− x‖2 ≤ (|Â|+ 1)xT
Â
xÂ = (|Â|+ 1)(sgn(xÂ) · xÂ)T (sgn(xÂ) · xÂ), (69)

where the product sgn(xÂ) · xÂ has to be intended componentwise. Furthermore, we have

∇h(x)T (x̃− x) = −∇Âh(x)TxÂ − |∇jh(x)|
∑
i∈Â |xi|

= xT
Â

(
−|∇jh(x)|sgn(xÂ) · eÂ −∇Âh(x)

)
= (sgn(xÂ) · xÂ)T

(
−|∇jh(x)|eÂ −∇Âh(x) · sgn(xÂ)

)
.

(70)

From the definition of the index j, we have that∇ih(x) ≥ −|∇jh(x)| for all i ∈ {1, . . . , n}. Therefore,
we can write ∑n

i=1∇ih(x)xi =
∑n
i=1∇ih(x)sgn(xi) |xi|

≥
∑n
i=1−|∇jh(x)| |xi| = −|∇jh(x)| ‖x‖1 ≥ −|∇jh(x)| τ.

(71)

Recalling the active-set estimate and using (71), we have that

xi ≤ ε τ
(
∇ih(x)τ −

n∑
l=1

∇lh(x)xl

)
≤ ε τ

(
∇ih(x) τ + |∇jh(x)| τ

)
, ∀i ∈ Â
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and − xi ≤ ε τ
(
−∇ih(x)τ −

n∑
l=1

∇lh(x)xl

)
≤ ε τ

(
−∇ih(x) τ + |∇jh(x)| τ

)
, ∀i ∈ Â,

so that, we can majorize |xi|, for all i ∈ Â, as

|xi| = sgn(xi)xi ≤ ε τ2
(
∇ih(x) sgn(xi) + |∇jh(x)|

)
.

By using this majorization in (69), we can write

0 ≤ ‖x̃− x‖2 ≤ ε τ2 (|Â|+ 1) (sgn(xÂ) · xÂ)T
(
∇Âh(x) · sgn(xÂ) + |∇jh(x)|eÂ

)
. (72)

From (70) and (72), we get

∇h(x)T (x̃− x) + 2L‖x̃− x‖2 ≤

≤
[
ε τ2 2L(|Â|+ 1)− 1

]
(sgn(xÂ) · xÂ)T

(
∇Âh(x) · sgn(xÂ) + |∇jh(x)|eÂ

)
≤ (ε τ2 2Ln− 1) (sgn(xÂ) · xÂ)T

(
∇Âh(x) · sgn(xÂ) + |∇jh(x)|eÂ

)
,

where the last inequality follows from the non-negativity of ∇Âh(x) ·sgn(xÂ)+ |∇jh(x)|eÂ (implied

by (72)) and from the fact that |Â| ≤ n−1 (implied by Proposition 4). Then, inequality (68) follows
from the assumption we made on ε.
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