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Abstract

This paper demonstrates that standard central limit theorem (CLT) results do not
hold for means of nonparametric conditional efficiency estimators, and provides new
CLTs that do hold, permitting applied researchers to estimate confidence intervals for
mean conditional efficiency or to compare mean efficiency across groups of produc-
ers along the lines of the test developed by Kneip et al. (JBES, 2015b). The new
CLTs are used to develop a test of the “separability” condition that is necessary for
second-stage regressions of efficiency estimates on environmental variables. We show
that if this condition is violated, not only are second-stage regressions meaningless,
but also first-stage, unconditional efficiency estimates are without meaning. As such,
the test developed here is of fundamental importance to applied researchers using non-
parametric methods for efficiency estimation. Our simulation results indicate that our
tests perform well both in terms of size and power. We present a real-world empiri-
cal example by updating the analysis performed by Aly et al. (R. E. Stat., 1990) on
U.S. commercial banks; our tests easily reject the assumption required for two-stage
estimation, calling into question results that appear in hundreds of papers that have
been published in recent years.
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1 Introduction

Nonparametric efficiency estimators are widely used to benchmark the performance of firms
and other decision-making units. Unconditional versions of these estimators measure dis-
tance from a particular point in input-output space to an estimate of the boundary of the
attainable set, i.e., the set of feasible combinations of inputs and outputs. Farrell (1957)
is the first empirical example of such estimators, and relies on the convex hull of a set of
observed input-output combinations to estimate the attainable set. This method has been
popularized by Charnes et al. (1978) and is known in the literature as data envelopment
analysis (DEA).! Deprins et al. (1984) relaxed the convexity assumption in the DEA esti-
mator by using the free-disposal hull (FDH) of a set of observed input-output combinations
to estimate the attainable set. More recently, Daraio and Simar (2005) have developed
conditional measures of efficiency, allowing nonparametric estimation of technical efficiency
conditional on some explanatory, contextual, “environmental” variables that are neither in-
puts nor outputs in the production process. Recent surveys of both the unconditional and
conditional estimators are provided by Simar and Wilson (2013, 2015).

The presence of environmental variables raises important questions for practitioners, such
as the question of precisely how the environmental variables might affect the production pro-
cess. Conceivably, the environmental variables might affect only the distribution of efficiency
among firms. On the other hand, environmental variables might affect the production possi-
bilities of firms. Or, environmental variables might affect both the distribution of efficiency
as well as production possibilities.

Although there are numerous examples in the literature where the conditional efficiency
estimators have been used, two-stage estimation procedures wherein technical efficiency is
estimated by (unconditional) DEA or FDH estimators in the first stage, and the resulting
efficiency estimates are regressed on some environmental variables in a second stage, remain

very popular in the literature. Simar and Wilson (2007) cite 48 published papers that em-

1 Banker et al. (1984) modified the Farrell (1957) estimator by using the conical hull of a set of observed
input-output combinations to estimate the attainable set, thereby imposing an assumption of constant returns
to scale.

2 Examples of applications of conditional efficiency estimators include Halkos and Tzeremes, (2010, 2011a,
2011b, 2014), Verschelde and Rogge (2012), Zschille (2014, 2015), Rogge and De Jaeger (2013), Badin et al.
(2014), De Witte and Van Klaveren (2014), Tzeremes (2014, 2015), Mastromarco and Simar (2015), Cordero
et al. (2015) and D’Alfonso et al. (2015).



ploy this approach and comment that “as far as we have been able to determine, none of the
studies that employ this two-stage approach have described the underlying data-generating
process.” Simar and Wilson go on to (i) define a statistical model where truncated (but
not censored, i.e., tobit, nor ordinary least squares) regression yields consistent estimation
of model features, (ii) demonstrate that conventional, likelihood-based approaches to infer-
ence are invalid, and (iii) develop a bootstrap approach that yields valid inference in the
second-stage regression. The model defined by Simar and Wilson rationalizes second-stage
regressions of estimated efficiency on environmental variables in the sense that such a re-
gression estimates a feature of the model described by Simar and Wilson. However, as noted
by Simar and Wilson, the model contains a crucial feature—and a strong restriction—in the
form of a “separability condition” that appears below as Assumption 2.1. Without this con-
dition, second-stage regressions of estimated efficiency do not estimate any meaningful model
feature; as Simar and Wilson (2007) note, this condition should be tested before estimating
a second-stage regression, but until now no test has been available.

This paper presents a carefully-developed framework—i.e., a pair of statistical models—
in order to make clear how environmental variables might be relevant. We develop a test
of the separability condition described by Simar and Wilson. As will be seen below, this
test is of fundamental importance whenever environmental variables are present. If the sep-
arability condition does not hold, unconditional DEA and FDH estimators have no useful
interpretation; i.e., not only are second-stage regressions meaningless when the separability
condition is violated, but the (unconditional) first-stage efficiency estimates are also mean-
ingless. We also show that standard central limit theorem (CLT) results do not hold for
means of conditional efficiency estimators, and extend the results of Kneip et al. (2015a) to
prove new CLTs for means of conditional efficiency estimators. We use these new CLTSs to
develop our test of the separability condition. However, the new CLTs are useful beyond the
test of separability since they allow one to estimate confidence intervals for mean conditional
efficiency or to compare mean conditional efficiency across different groups along the lines
of the test developed by Kneip et al. (2015b) for unconditional efficiency measures.

A number of papers have appeared in recent years using the model and approach for
inference suggested by Simar and Wilson (2007). However, papers that estimate technical

efficiency in the first stage and then regress these estimates on some environmental variables



in a second-stage tobit model continue to appear. As far as we know, none of these papers
present a statistical model in which second-stage tobit estimation would consistently estimate
features of the model; the approach is ad hoc in each case. Moreover, regardless of how the
second-stage regression is specified, any results from such regressions are meaningless for
reasons given below when the separability condition is violated.> The statistical model
in Simar and Wilson rationalizes second-stage regression of efficiency estimates on some
environmental variables, but does not allow for the possibility that environmental variables
might affect the production possibilities. If they do, then a different model is needed, and
second-stage regression is not appropriate.

In the next section, we develop the statistical model. Estimators are discussed in Section
3, and the tests are developed in Section 5. Section 6 describes Monte Carlo experiments
used to assess the size and power of our tests as well as results. In Section 7 we provide
a real-world example by revisiting the work of Aly et al. (1990) and testing whether the
assumptions given by Simar and Wilson (2007) that are required for the two-stage approach
used by Aly et al. to be meaningful are satisfied. Conclusions are given in the final section.
Appendix A gives technical assumptions used to derive results in Section 5, proofs of lemmas
and theorems are given in Appendix B and Appendix C discusses how one can handle discrete
environmental variables. Supplementary material mentioned in Sections 5.4 and 6 appears

in separate Appendices D and E.

2 The Production Process in the Presence of Environ-
mental Factors

In this section we formalize a statistical model of the production process along the lines of
the probability framework of Cazals et al. (2002). The production process generates random

variables (X, Y, Z) in an appropriate probability space, where X € R is the vector of input

3 A search on Google Scholar on 21 June 2016 using the keywords “dea,” “efficiency,” “tobit,” and “two
stage” returned 2,370 papers with dates between 2008 and 2016. As far as we know, none of these papers
present a statistical model in which second-stage tobit estimation would consistently estimate features of
the model; the approach is ad hoc in each case. Repeating the search after dropping the keyword “tobit”
returned 11,100 papers over the same years. Even if only half of these hits are relevant, the searches indicate
that the practice of regressing nonparametric efficiency estimates on some environmental variables in a
second-stage regression is widespread, although perhaps many of these exercises yield meaningless results if
the separability condition is frequently violated. Apparently, the warnings of Simar and Wilson (2007) have
not been heeded.



quantities, Y € RY is the vector of output quantities and Z € R” is a vector of variables
describing environmental factors. These factors Z are neither inputs nor outputs and are
typically not under the control of the manager, but they may influence the production process
in different ways as explained below. Let fxyz(x,y, 2) denote the joint density of (X,Y, Z)
which has support P C RY x R% x R". This joint density can always be decomposed as

fxvz(,y,2) = fxviz(e,y | 2)f2(2). (2.1)

Let W* denote the conditional support of fxy|z(x,y | 2), i.e., the support of (z,y) given
Z = z, and let Z be the support of fz(z). Then ¥# is the set of feasible combinations of

inputs and outputs for a firm facing the environmental conditions Z = z; i.e.,
U* ={(X,Y) | X can produce Y when Z = z}. (2.2)

The environmental variables in Z can affect the production process either (i) only through
W#, the support of (X,Y"), or (ii) only through the density fxy|z(x,y | z), thereby affecting
the probability for a firm to be near its optimal boundary, or (iii) through both ¥# and

fXY|Z(*T7y | 2). Let

U= v (2.3)

By construction, * C UV 2z € Z, and clearly ¥ C RE™. However, whether W is useful
for benchmarking the performance of a firm producing output levels y from input levels x
while facing levels z of the environmental variables depends on whether the “separability”
condition described by Simar and Wilson (2007) is satisfied. This condition requires that Z
affect production only through the conditional density fxy|z(z,y | z) without affecting its
support W? and is stated explicitly in Assumption 2.1.

Assumption 2.1. (Separability Condition): W* =WV for all z € Z.
Clearly, when Assumption 2.1 holds the joint support of (X, Y, Z) can be factorized as
P=VxZ, (2.4)
and W can be interpreted as the unconditional attainable set

U ={(X,Y) | X can produce Y}. (2.5)

4



However, U has the interpretation in (2.5) if and only if (iff) Assumption 2.1 holds. The sep-
arability condition is very strong and restrictive. Under Assumption 2.1, the environmental
factors influence neither the shape nor the level of the boundary of the attainable set, and
the potential effect of Z on the production process is only through the distribution of the
inefficiencies. If the separability condition holds, it is meaningful to measure the efficiency
of a particular production plan (z,y) by its distance to the boundary of W. For example,

under separability, the output-oriented Farrell efficiency score is given by
Az, y) =sup{A > 0] (z,\y) € U}. (2.6)

In this case, it is meaningful to analyze the behavior of A(x,y) as a function of Z by using
an appropriate regression model (see Simar and Wilson, 2007, 2011 for details).*
Alternatively, if the separability condition does not hold, then we have a more general
situation where the factor Z may influence the level and the shape of the boundary of the
attainable sets (and may also influence the conditional density fxyz(z,y | 2)). The following

assumption characterizes this situation explicitly.

Assumption 2.2. (Non Separability Assumption): V* # U for some z € Z, i.e., for some
2,2€ Z, U #£ V2,

Note that Assumptions 2.1 and 2.2 are mutually exclusive; one and only one holds in a given
situation.

Under Assumption 2.2, the efficiency measure in (2.6) is difficult to interpret; in fact,
it is economically meaningless because it does not measure the distance to the appropriate
boundary. If Assumption 2.2 holds, the set U can still be defined as in (2.3), but for
benchmarking production units, the boundary of ¥ has little interest in this case because it
may be unattainable for some firms faced with unfavorable conditions represented described

by z. In such cases, the conditional measure

AMz,y | z) =sup{\ > 0| (z, \y) € ¥*} (2.7)

4 We focus the presentation in this paper using output-oriented measures of efficiency such as the one
in (2.6), but of course efficiency can be measured in other directions as desired. See the recent surveys
by Simar and Wilson (2013, 2015) and the references cited therein for details. All of the results here are
easily generalized to input, hyperbolic, and directional distance functions after straight-forward (but perhaps
tedious) changes in notation.



introduced by Cazals et al. (2002) and Daraio and Simar (2005) gives a measure of distance to
the appropriate, relevant boundary (i.e., the boundary that is attainable by firms operating
under conditions described by z).

The distinction between Assumptions 2.1 and 2.2, and their implications for how en-
vironmental variables in Z affect the production process, has often been neglected in the
literature where researchers analyze the effect of Z on A(X,Y’) by estimating some regres-
sion of A(X,Y) on Z. Typically, starting with a sample of observations (X;,Y;, Z;), DEA
or FDH estimators /):(Xi, Y;) computed in a first stage are regressed on Z; in a second-stage
analysis. Even if Assumption 2.1 holds, additional problems described in Simar and Wilson
(2007) remain to be solved in the second stage to obtain sensible inference. Theoretical
results on how to make inference in a second stage linear regression, when appropriate, is
described in detail by Kneip et al. (2015a). However, if Assumption 2.2 holds, the two-stage
approach is almost certain to lead to incorrect results and inferences about the effect of Z
on the production process. This explains why it is important, as noted by Simar and Wil-
son (2007)—indeed, essential—to test Assumption 2.1 against Assumption 2.2. If the test
rejects separability in favor of Assumption 2.2, then only a second-stage regression of the
conditional measure A\(X,Y | Z) on Z can be meaningful, as described for example in Badin
et al. (2012).

In order to derive results below, the efficiency measures in (2.6) and (2.7) must be defined
in terms of components of our probability model. Cazals et al. (2002) show that under free
disposability (see Assumption 4.2 below) the output-oriented efficiency measure in (2.6) can
be written as

Az, y) =sup{\ > 0| Hxy(z, \y) > 0}, (2.8)

where Hxy (z,y) = Pr(X <z, Y > y) is the probability of finding a firm dominating the
production unit operating at the level (z,y).> This can be factored as Pr(X < z)Pr(Y >
y | X <) = Fx(x)Syix(y | X < x), where the latter conditional survival function is
nonstandard due to the the condition X < z. For (z,y) such that x is in the interior of its

support (i.e., Fx(z) > 0), the efficiency score can be written equivalently as

Mz, y) =sup{A >0 | Sy;x(A\y | X <z) > 0} (2.9)

5 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.



Along the same lines, the conditional efficiency score can be expressed as
M,y | z) =sup{A >0 | Hyyz(x, Ay | 2) > 0}, (2.10)

where Hyy|z(z,y | 2) = Pr(X <z, Y >y | Z = z) is the probability of finding a firm dom-
inating the production unit operating at the level (z,y) and facing environmental conditions
z and is the distribution function corresponding to the conditional density fxyz(x,y | 2)
introduced earlier. Analogous to (2.9), the conditional efficiency measure can also be written
as

Mz,y | z) =sup{A > 0| Syjxz(\y | X <z, Z =2) >0} (2.11)

while noting the different roles of X and Z in the conditioning of the conditional survival

function Sy x z(y | X <2, Z=2)=Pr(Y >y | X < 2,7 = z2).

3 Non-parametric Efficiency Estimators

The literature on nonparametric statistical inference for efficiency scores is by now well-
developed. Here, we summarize the definitions and properties needed to test Assumption
2.1 versus Assumption 2.2. Consider a sample of identically, independently (iid) observations
S, ={(X;,Y;,Z;) |i=1, ..., n}. Following Deprins et al. (1984), the FDH of the sample
S,, is the set

Uron(S) = | {@y) eRY [y <Y, 2> X} (3.1)
(Xu}/z)esn

The convex hull of \TJFDH(Sn) given by
Uppa(Sn) = {(2.9) ERY Jy <D wili, o> 3 wiXi,
i=1 i=1

Zwizl,wiZO‘v’izl,...,n} (3.2)

i=1
provides the DEA estimator proposed by Farrell (1957) and popularized by Charnes et al.
(1978).9

6 Note that in (3.1)—(3.2), the data on Z; are ignored; only the first (p + ¢) components of the ordered
(p+ g + r)-tuples in S,, are used.



The corresponding efficiency estimators are obtained by plugging these estimators into

the definition of A(z,y) in (2.6). Using \/I\IFDH(Sn) in the FDH case leads to

~ ‘ Y/
Aron(2,y [ Sa) = max <jzrpl';.1 , <y7> ) : (3.3)

where 1/, Yij denote the jth elements of y (i.e., the input vector corresponding to the fixed
point of interest) and Y; (i.e., the output vector corresponding to the ith observation in
S,). This is simply the plug-in version of (2.8), where Hxy (z,y) is replaced by its empirical
version

Hyy(z,y) =n"' Y I(X; < 2,Y; > y), (3.4)

i=1
where I(A) is the indicator function equal 1 if A is true and 0 otherwise. In the DEA case,
replacing ¥ in (2.6) with Upga(S,) from (3.2) gives the DEA efficiency estimator

XDEA(x,y | S,) = max {A >0 Ay < Zini, x> Z%’Xz‘,
=1 i=1

YW1 ey Wi

2%21,%20\7@:1,...,71}. (3.5)

i=1

For the conditional efficiency scores we need to use a smoothed estimator of Hxy z(z,y |
z) to plug in (2.10), which requires a vector of bandwidths for Z. Denoting this r-vector
of bandwidths by h, the conditional distribution function Hyy|z(z,y | 2) is replaced by the

estimator
z:?:1 [(Xl <z, sz > y)Kh(ZZ — Z)

> i Kn(Zi — 2) ’
where Kj,(-) = (hy ... h,) 'K ((Z; — 2)/h) and the division between vectors is understood

Hxyiz(z,y | 2) = (3.6)

to be component-wise. As explained in the literature (e.g., see Daraio and Simar, 2007b),
the kernel function K (-) must have bounded support (e.g., the Epanechnikov kernel).” This

provides the estimator

~ _ Y/
Arpu(z,y | 2,8,) = x| (J.:qnf} , (?)) : (3.7)

7 An alternative would be, following Badin et al. (2010), to plug a smoothed estimator of Syix,z(y | X <
x,Z = z) into (2.11), but as shown in Simar et al. (2015), if the two methods are asymptotically equivalent,
the latter provides a bandwidth for z that depends on z and the resulting efficiency estimate may not be
monotone decreasing in z in finite samples, as the target A(z,y | 2) is.

8



where Z(z,h) ={i|z—h < Z; < z+ h}.
Alternatively, where one is willing to assume that the conditional attainable sets are

convex, Daraio and Simar (2007b) suggest a conditional DEA estimator of A(z,y | z), namely

XDEA(xay | 2787'1) - N max {A > O ’ Ay S Z wina X 2 Z WiXia

yW1y ooy Wn

1€Z(z,h) 1€Z(z,h)
for some w; > 0 such that Z w; =1, } (3.8)
1€Z(z,h)

Note that the conditional estimators in (3.7) and (3.8) are just localized version of the
unconditional FDH and DEA efficiency estimators given in (3.3) and (3.5), where the degree
of localization is controlled by the bandwidth in h. Practical aspects for choosing bandwidths
are discussed below in Section 5.3.

The properties of nonparametric efficiency estimators have been examined in a number
of papers in recent years. Park et al. (2000) and Daouia et al. (2015) derive the rate of
convergence and limiting distribution of the FDH efficiency estimator. Kneip et al. (1998)
derived the rate of convergence of the DEA estimator in (3.5), while Kneip et al. (2008)
derived its limiting distribution. Kneip et al. (2015a) provide results on the moments of both
FDH and DEA estimators. See Simar and Wilson (2013, 2015) for comprehensive surveys
of the literature. To summarize relevant results for the unconditional efficiency estimators,
under Assumptions 2.1, 4.1, 4.2 and some additional, appropriate regularity conditions (e.g.,
monotonicity, smoothness of the frontier and smoothness of the density of (X,Y)), for a

fixed point (z,y) in the interior of ¥, as n — oo,

" (X(x,y 1S,) — )\(x,y)) £ Quy() (3.9)

where () is a regular, non-degenerate distribution with parameters depending on the
characteristics of the DGP and on (z,y), and x determines the rate of convergence.® For
the FDH estimator, kK = 1/(p + ¢) while for the DEA estimator, k = 2/(p + ¢ + 1). For
the FDH case, the limiting distribution belongs to the Weibull family, but with parameters
that are difficult to estimate. For the DEA case, the limiting distribution does not have a

closed form. Hence in either case, inference on individual efficiency scores requires bootstrap

8 Here and in the exposition that follows, we omit the subscripts “FDH” and “DEA” from the efficiency
estimator in order to describe results in a generic fashion, thereby conserving space.



techniques. In the DEA case, Kneip et al. (2008) provide theoretical results for both a
smoothed bootstrap and for subsampling, while Kneip et al. (2011) and Simar and Wilson
(2011) provide details and methods for practical implementation. Subsampling can also be
used for inference in the FDH case; see Jeong and Simar (2006) and Simar and Wilson
(2011).

Jeong et al. (2010) show that the conditional version of the FDH and DEA efficiency
estimators share properties similar to their unconditional counterparts whenever the elements
of Z are continuous.? The sample size n is replaced by the effective sample size used to build
the estimates, which is of order nh; ... h,, which we write hereafter as nh" for simplicity
(hoping the reader will indulge the abuse of notation, since the individual bandwidths may

differ). For a fixed point (z,y) in the interior of ¥* as n — oo,

(nh") (X(x,y | 2,80) — Mz, | z)) £ Qo () (3.10)

where again Q,,.(-) is a regular, non-degenerate limiting distribution analogous to the cor-
responding one for the unconditional case. The main argument in Jeong et al. (2010) relies
on regularity conditions discussed in the next section, but also on the property that there are
enough points in a neighborhood of z, which is obtained with the additional assumption that
fz(z) is bounded away from zero at z and that if the bandwidth is going to zero, it should
not go too fast (see Jeong et al., 2010, Proposition 1; if h — 0, h should be of order n=®

with a < 1/r). We will return to this point in the discussion following Lemma 4.1 below.

4 New Results on Conditional Efficiency Estimators

4.1 Asymptotic Moments of Conditional Efficiency Estimators

As noted by Kneip et al. (2015a), availability of the asymptotic results for efficiency esti-
mated at a fixed point (z, y) is useful, but not sufficient for analyzing the behavior of statistics
that are function of FDH or DEA estimators evaluated at random points (X;,Y;). Kneip
et al. (2015a) provide results on moments of unconditional efficiency estimators evaluated
at random points, as well as central limit theorems for means of such estimators. However,

similar results for conditional efficiency estimators have been unavailable until now. Such

9 We discuss below in Appendix C how discrete “environmental” variables can be handled. Otherwise,
except in Appendix C, we assume throughout that all elements of Z are continuous.
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results are important. As noted in the discussion in Section 2, whenever Assumption 2.2
(as opposed to Assumption 2.1) holds, unconditional efficiency estimators have no useful
interpretation and unconditional efficiency estimators must be used. In situations where 2.2
holds, the results obtained below will facilitate the use of conditional efficiency estimators,
allowing researchers to make inference regarding mean efficiency, or to test other hypotheses
regarding model structure analogous to the tests developed Kneip et al. (2015b) for uncondi-
tional efficiency estimators. Moreover, the results obtained in this Section will be used later
in Section 5 to develop tests of separability versus non-separability, i.e., tests of Assumption
2.1 versus Assumption 2.2.

In the discussion below, we denote the FDH and DEA efficiency estimators by /)\\(Xi, Y; |
S,) to stress the fact that the estimator is to be evaluated at a random point (X;, Y;).

Kneip et al. (2015a) prove that for the unconditional FDH and DEA estimators, under

some regularity conditions (see Kneip et al., 2015a for details) and as n — oo,

E (X(XZ-, Y | S,) — M, }g)) = On™" + Ry, (4.1)

E <<§\\(XZ,Y7, | Sn) — )\(Xi,Yz‘)>2> = O(n*“)7 (4.2)
and
(cov (AX0, Vi ] 80) = MXe,Y0), MG, Y5 1 8a) = MG, Y5)) ( —o(n))  (4.3)

for all 4,7 € {1, ..., n}, i # j and where R, = o(n*). The values of the constant
C, the rate s, and the remainder term R, , depends on which estimator is used. For the
DEA estimator, K = 2/(p+ ¢ + 1) and R, . = O(n=*/%(logn)*!); for the FDH estimator,
k=1/(p+q) and R, . = O(n"**(logn)*?). The values of ; > 1, j = 1,2 are given in Kneip
et al. (2015a). For purposes of the results needed here, the logn factor contained in R,
does not play a role and can be ignored. The results outlined here are valid under a set of
corresponding regularity assumptions (see Theorems 3.1 and 3.3 in Kneip et al., 2015a).

Similar results are needed for the asymptotic moments of the conditional efficiency esti-
mators. To achieve this we follow the arguments of Jeong et al. (2010), who note that for a
given h, the conditional FDH and DEA estimators in (3.7) and (3.8) do not target A(z,y | 2),
but instead estimate

MN(z,y | 2) = sup{A > 0| (z,y) € T*"}, (4.4)

11



with the conditional attainable set given by

U>" = {(X,Y) | X can produce Y, when |Z — z| < h}
= {(ﬂfay) € RTq ’ H;L(Y|Z(xay | 2) > O}
- {(xay) € Rﬁ——i_q | f)}éY\Z('u : | Z) > 0} (45)

where H}Y‘Z(a:, y|z)=Pr(X <z,Y >y|z—h <Z < z+h) gives the probability of finding
a firm dominating the production unit operating at the level (x,y) and facing environmental
conditions Z in an h-neighborhood of z and f;lﬂ,' 4(+,+ | ) is the corresponding conditional

density of (X,Y") given |Z — z| < h. Alternatively, (4.4) can be written as
Nz, y|z)=sup{A>0]| H;l(nz(a:,)\y | z) > 0}. (4.6)

Moreover, it is clear that U*" = J;_, ., U*.
Consequently, for all points (x,y) in the support of fxy|z(x,y | 2), the error of estimation
can be decomposed as

~~ N~

=A; =A,

where the first difference (A;) is due to the estimation error in the localized problem and
the second difference (Aj) is the non-random bias (< 0) introduced by the localization.

Some assumptions are needed to define a statistical model. The next three assumptions
are conditional analogs of standard assumptions made by Shephard (1970), Fare (1988),
Kneip et al. (2015a) and others.

Assumption 4.1. For all z € Z, ¥* and ¥*" are closed.

Assumption 4.2. For all z € Z, both inputs and outputs are strongly disposable; i.e., for
any z € Z, x> x and 0 <y <y, if (x,y) € V* then (Z,y) € V* and (x,y) € V*. Similarly,
if (x,y) € UM then (Z,y) € U»" and (x,7) € U=,

Assumption 4.2 corresponds to Assumption 1F in Jeong et al. (2010), and amounts to a
regularity condition on the conditional attainable sets justifying the use of the localized

versions of the FDH and DEA estimators. The assumption imposes weak monotonicity
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on the frontier in the space of inputs and outputs for a given z € Z, and is standard in
micro-economic theory of the firm.
When the DEA estimators are used, the following assumption (corresponding to Assump-

tion 1D in Jeong et al., 2010) is also needed.
Assumption 4.3. For all z € Z, U* and U>" are convex in RE.

The next assumption concerns the regularity of the density of Z and of the conditional
density of (X,Y) given Z = z, as a function of z in particular near the efficient boundary of

U? (see Assumption 6 in Jeong et al., 2010).

Assumption 4.4. Z has a continuous density fz(-) such that for all z € Z f;(2) is bounded
away from zero. Moreover the conditional density fxy|z(-,- | 2) is continuous in z and is

strictly positive in a neighborhood of the boundary points.

A number of additional assumptions are needed to complete the statistical model and
to permit statistical analysis of the conditional estimators that have been introduced above
as well as the test statistics introduced below. These assumptions are given in Appenidx
A. Depending on the estimators that are used in a particular situation (i.e., either DEA or
FDH), only a subset of the assumptions listed in Appendix A are required.

Our first result establishes smoothness of the potential influence of z on the frontier of
W#. The result is needed in order to control the bias due to the localization, and is expressed

in terms of a continuity condition of A(-,- | z) as a function of z.

Lemma 4.1. Under either Assumption A.5 (for FDH case) or under Assumption A.6 (for
the DEA case), For all (z,y) in the support of (X,Y),

N(a,y | 2) = Mz, y | 2) = O(h) (4.8)
as h — 0.

Note that if Z is separable and has no effect on the frontier and (4.8) is trivially satisfied
for all h. As noted in Badin et al. (2015), it is easy to show that if A oc n=7 with 1/r > v >
1/(r +x7'), the difference in (4.8) will be o ((nh")™"). We need v < r~! to ensure there are

enough observations in the h-neighborhood of z (see Proposition 1 in Jeong et al., 2010).
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Since we cannot find an explicit expression for the second component Ay in (4.7), and since
the Weibull distribution linked to the first component A; contains unknown parameters, the
best that can be done is to determine the order of an optimal bandwidth by balancing the

~1/(+571) " and then to take, as usual in

order of the two error terms which leads to h < n
nonparametric smoothing techniques, a smaller bandwidth to eliminate the bias term due to
the localization as suggested in Jeong et al. (2010, Assumption 2). As expected, the order
of the optimal bandwidth depends on the dimensions of Z as well as of X and Y. Below, in
Section 5.3, we show how to select bandwidths h of appropriate order in applied work (see
also the discussions in Badin et al., 2015).

The following result provides moments for the conditional efficiency estimators.

Theorem 4.1. Let n, = min(n,nh"). Suppose Assumptions 4.1, 4.2, 4.4, A.1, A.2, A.3
and A.4 hold. Then under Assumption A.5 for FDH case, or under Assumptions 4.3 and
A.6 for the DEA case, as n — 00,

E (NX Y | Z5,8,) = N(X0, Y | 2)) = Coni™ + Ry (4.9)
where Ry, =0 (n,"),
E ((X(XZ-, Y | Z:,S,) — (X, | Zi)>2) = o(ny"), (4.10)
and
|COV (N0, Yi | ZiyS) = MK Yi | Z0), MG, Y5 1 25, 80) = NG, Y51 29)) | = o(ny")
(4.11)

foralli,5 € {1, ..., n}, i # j. In addition, for the conditional DEA estimator R, , =
O(nf”/?(log ny)*) and for the conditional FDH estimator R.,, . = O(n,**(logny,)*?).

As will be seen, the log(n;,) factors appearing in the expressions for R, ,, , do not play a
role in the results that are derived below. The results here should not be surprising since the
number of observations used to estimate the moments is reduced by the bandwidths; e.g., the
rates n" for the unconditional estimators are reduced to nj for the conditional estimators.

4.2 Central Limit Theorems for Conditional Efficiency Estimators

Consider the sample means

o =n""Y MNX.,Yi | Sn) (4.12)
=1

14



and .
fem =171 NX,Yi | Z:,S,) (4.13)

i=1
of unconditional and conditional efficiency estimators. The efficiency estimators in (4.12)
and (4.13) could be either FDH or DEA estimators; differences between the two are noted
below when relevant. In this subsection, we use the properties of moments of the conditional
efficiency estimators derived in Section 4.1 to develop CLT's for means of conditional efficiency

estimators.

For the case of means of unconditional efficiency estimators, Theorem 4.1 of Kneip et al.

(2015a) establishes that
Vi (fin — = Cn~" = Ry -5 N(0,0%) (4.14)

as n — oo, where = E (A(X,Y)) and 0? = VAR (A(X,Y)). The theorem also establishes
that 6% = n= ' >0, (X(XZ-,Yi | S,) — ﬁn)z is a consistent estimator of ¢?. Conventional
CLTs (e.g., the Lindeberg-Feller CLT) do not account for the bias term Cn~", and hence are
invalid for means of unconditional efficiency estimators unless unless £ > 1/2. In the case of
FDH estimators, £ > 1/2iff (p+¢q) < 1; in the case of DEA estimators, xk > 1/2iff (p+q) < 2.
If k = 1/2, the bias is stable as n — oo, but if kK < 1/2, the bias explodes asymptotically.
Kneip et al. (2015a) solve this problem by incorporating a generalized jackknife estimate of
the bias and considering, when needed, test statistics based on averages over a subsample
of observations. We use a similar approach below, although with the conditional efficiency
estimators, the problem is rather more complicated than the one in Kneip et al. (2015a) due

to the localization in the conditional efficiency estimators.

Define
W= E (VXY | 2)) = /Ah(:c,y ) fov (2, y, 2) d dy d (4.15)
P
and
a}h = VAR ()xh(X,Y | Z)) = / ()\h(x,y | 2) — u?)Qnyz(x,y, z) dx dy dz. (4.16)
P

These are the localized analogs of y and o®. Next, let 7., = n~ 'Y " M(X;,Y; | Z).
Although 7z, is not observed, by the Lindeberg-Feller CLT

VI (Tren = 1) = N(0,02") (4.17)
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under mild assumptions.

An obvious solution might be to estimate u” by Ji.,, but this proves problematic. To
see this, define ¢, = fien — H,,. It is clear that E(¢,) = Cen,™ + Rep, . by (4.9), and
VAR((,) = o (n;"') due to (4.10) and (4.11). It follows that ¢, — E((,) = op(ngl/Q). Now
define fi.,, = E (Jic,n). Then

flen =t + Cen," + Reny (4.18)

and it follows that

//Zc,n - ﬁc,n = ﬁc,n - ,u? + Cn - E(Cn)v
= Ec,n - :u? + Op (ngl/2> : (419)

Clearly /n(ficy, — fie,n) diverges as n — oo since although /n(f,, — ul) £, N(0,02h),
n'/%o0, (ngl/Q) diverges if n;, < n since n, = nh" = n' " with 1/(r + x7') < v < 1/r.
Moreover, unless 7 is irrelevant, n;, < n for an optimal choice of h. Changing the scaling
and considering n*(fic, — flen) for some a such that 0 < a < (1 —r)/2 < 1/2 does
not work because the limiting distribution collapses to a point mass at zero in this case.
Consequently, it seems there is no way to develop a CLT for means of conditional efficiency
estimators analogous to the one in (4.14) for means of unconditional efficiency estimators.

The following result will be useful for the results developed below.

Lemma 4.2. Under the assumptions Theorem 4.1, for k = 1/(p+q) in the case of the FDH
estimator and for k = 2/(p+ q+ 2) in the case of the DEA estimator,

E (X(Xi, Y | Zi. Sn)> = 1 + Cni™ + Ry i (4.20)

and
VAR (XX, Y: | Z:,8,)) = 02" + 0 (n,"*) | (4.21)

where R, » = o(n,").

Next, suppose n, < n (i.e., Z is relevant), and consider a random subsample S, from
S, of size nj, where for simplicity we use the optimal rates for the bandwidths so that
np = [nY "+ | where |a| denotes floor(a), i.e., the integer part of a. Define
—~ 1 ~
Heny, = — Z A()('w}/z | Zias’n)a (422)
np
{(X4,Y1,Z:)€S;;, }

Th
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and let fic,, = E(licyn,). Note that the estimators on the right-hand side of (4.22) are
computed relative to the full sample S,,, but the summation is over elements of the sub-
sample S .

The next result provides our first CLT for means of conditional efficiency estimators.

Theorem 4.2. Under the assumptions of Theorem 4.1, the following conditions hold

as n — oo with k = 1/(p + q) for the FDH case and v = 2/(p + q + 1) for

the DEA case: (Z) ﬁc,nh = :u? + Ccni:){ + RC,TLhﬁ; (“) ﬁC,TLh - /jC,nh = ﬁc,nh - /“LZ +

0 (nglﬂ); (11i) /n, (ﬁcmh — ph— Ceny " —Rc,nh,n) £y N(0,0%M); and (iv) 83”3 =
~ 2

Y (XX Y] 20 80) = fien | 020,

There are no cases where standard CLTs with rate \/n may be used with means of
conditional efficiency estimators, unless Z is irrelevant with respect to the support of (X,Y)
(i.e., unless Assumption 2.1 holds). Theorem 4.2 provides a CLT for means of conditional
efficiency estimators, but the convergence rate is \/n, as opposed to y/n, and the result is
of practical use only if x > 1/2. If k = 1/2, the bias term C.n," does not vanish, and if

Kk < 1/2, the bias term explodes as n — 0co. These cases are addressed below.

4.3 Bias corrections and subsample averaging

For the unconditional case, all necessary details can be found in Kneip et al. (2015a, Theo-
rems 4.3 and 4.4). Here, we derive corresponding results for conditional efficiency estimators.
Assume the observations in S,, are randomly ordered, and to simplify notation, assume n is
even. Let Sfll/)z denote the set of the first n/2 observations from S, and let 8722/)2 denote the
set of remaining n/2 observations from S,,.1° Next, for j € {1, 2} define

(Xi,Yi,Z:)eSY),

Let e = E (ﬁ}m /2> =F (ﬁzn /2> and define

_j 2
Mﬁ,m:ﬁ > (XY ). (4.24)
(XiaYi:Zi)ES,(Lj}Q

10°If n is odd, 5,(}/)2 can contain the first |n/2] observations and 87(12/)2 can contain remaining n — [n/2|

observations from &,,. The fact that 822/)2 contains one more observation than ST(LI/)2 makes no difference
asymptotically.

17



By (4.19),

. ~ _j ~1/2
Al js = Bz = hyn = 0+ 0p(ny %) (4.25)
for j € {1, 2}. Now define 7}, = (ﬁénﬂ + ﬂin/z) /2. Clearly,

ﬁz,n/2 - IEC,n/Q = ﬁc,n - /J“g + Op(n}jl/Q)' (426)

Subtracting (4.19) from (4.26) and re-arranging terms yields
. ~ ~ ~ ~1/2
Hepnso = Men = Hen/2 — Hen T op(ny, 7). (4.27)
Since ficpn/2 — fien = Ce(2% — 1)n, " + Rep, » We obtain an estimator
»e K — ~x% ~ —K —1/2
Bm,nh = (2 - 1) ! (luc,n/Q - :uCJL) = Ccnh + Rc,nh,n + Op(nh / )7 (428)

of the leading bias term C.n, " in Theorem 4.2, part (iii), noting that the remainder term
Ry, x = 0(n,") can be neglected.

Of course, for n even there are (n%) possible splits of the sample S,,. As noted by
Kneip et al. (2015b), the variation in By, can be reduced by repeating the above steps
K< (n72) times, shuffling the observations before each split of S,,, and then averaging the

bias estimates. This yields a generalized jackknife estimate
k o~
B, =K ') B, . (4.29)
k=1

where Eg’nh,k represents the value computed from (4.28) using the kth sample split.

Combining results yields the following:

Theorem 4.3. Under the Assumptions of Theorem 4.1, with k = 1/(p+ q) > 1/3 in the
FDH case or k =2/(p+q+ 1) > 2/5 in the DEA case,

Vi (B = 1 = By = Remye) =5 N(0,02%) (4.30)
as n — 0.

If k is smaller than 1/3 in the FDH case, or 2/5 in the DEA case, then the remainder term

does not vanish fast enough and /n,R.,, » — 00 as n — oo. In such cases, the approach of
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averaging efficiency scores over a subsample of smaller size as in Kneip et al. (2015a) must
be employed.
Define ny, . = |ni*| so that \/n,.. < n}/Q when k£ < 1/2. Then define

~ 1 ~
/’chnh,m = Z >\<X17K ’ Z“Sn) (431)

n
MR (X YiZ)eSs:

where §;7 is a random subsample of size ny, ; from S,,.

Theorem 4.4. Under the Assumptions of Theorem 4.1, with k = 1/(p+q) in the FDH case
ork=2/(p+q+1) in the DEA case,

Ve (e = 1 = By = Remye) =5 N(0,024), (4.32)

as n — oo whenever Kk < 1/2.

Remark 4.1. Kneip et al. (2015a) note that for selected values of p + q, two different
CLTs are available for means of unconditional efficiency estimators. The same s true for
the conditional cases. With the DEA estimator when p + q = 4 (so that k = 2/5), using
Theorem 4.3 neglects a term \/npReqp, » = O(ngl/m), whereas using Theorem 4.4, and an
average over a subsample we neglect a term \/mp Ren, x = O (n;I/B) and we might expect
a better approximation. For the conditional FDH estimator when p + q = 3 (and hence

k = 1/3), using Theorem 4.3 implies an error of order O (n;1/6>, and using an average

over a subsample implies, by Theorem 4.4, an error of the smaller order O (n,:l/3>.

5 Testing Separability
5.1 Basic Ideas

The goal is to test the null hypothesis of separability (Assumption 2.1) against its complement
(Assumption 2.2). The idea for building a test statistics is to compare the conditional and
unconditional efficiency scores using relevant statistics that are functions of X(Xi, Y| S,) and
NX;,Y; | Z:,8,) for i =1, ..., n. Note that under Assumption 2.1, A(X,Y) = A(X,Y | Z)
with probability one, even if Z may influence the distribution of the inefficiencies inside the
attainable set, and the two estimators converge to the same object. But under Assumption

2.2, the conditional attainable sets W* are different and the two estimators converge to

19



different objects. Moreover, under Assumption 2.2, A(X,Y) > MX,Y | Z) with strict
inequality holding for some (X,Y, Z) € P.

The approach developed here is similar to those developed in Kneip et al. (2015b) for
testing constant versus variable returns to scale or for testing convexity versus non-convexity
of the attainable set. Recall the sample means in (4.12) and (4.13), where the efficiency esti-
mators on the right-hand sides of (4.12) and (4.13) could be either FDH or DEA estimators.
For purposes of the following discussion, suppose the same type of estimators (FDH or DEA)
are used in both (4.12) and (4.13). By construction (i, — fi.,) > 0, and the null hypothesis
of separability should be rejected if this difference is “too big”. However, several problems
remain to be solved, requiring some preliminary steps to adapt the existing results to the
setup here. We demonstrate below in Section 6 that the procedure works well in practice

with finite sample sizes.

5.2 Test Statistics

As noted above, in order to test the hypothesis that Z is separable, i.e., to test
Hy: Assumption 2.1 holds versus H;: Assumption 2.2 holds, one might consider the dif-
ference between estimators of u = E(A(X,Y)) and pu! = E(A"(X,Y | Z)), which under the
null estimate the same quantity. When the null is true, A(X,Y) = A"(X,Y|Z) with proba-
bility one, for all values of h. Under the null, the two estimators fi, and f.,, have (when
appropriately rescaled, depending on the value of k), an asymptotic normal distribution with

2 = ¢2" for all h, and so both are consistent estimators of the

mean g = p" and variance o
common p. As explained in the preceding section, we can also, in both cases, correct for the
inherent bias of the estimators.

However, the properties of (fi, — Jicn, ) (and their bias-corrected versions) are complicated
due to the covariance between the two estimators, and this covariance is hard to estimate.
Even in the limiting case where h is big enough so that n;, = n, it is clear that under the
null, the asymptotic distribution of (fi,, — ficn, ) will be degenerate with mass one at zero.™
The solution used here is analogous to the method used in the test for convexity of

U described by Kneip et al. (2015b). In particular, the sample S,, can be split into two

11 As observed by Hall et al. (2004), if Z is irrelevant in the production process (independent of (X,Y)),
the optimal value of the bandwidth is infinity. This limiting case is more restrictive that the hypothesis to
be tested here, but may arise in practice.
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independent, parts Sy ,,, S2n, such that ny = |[n/2], no = n —ny, Sin, JS2.n, = Sn, and
S1n N S2n, = 0. The ny observations in Sy ,, are used for the unconditional estimates,
while the ny observations in S, ,,, are used for the conditional estimates.'?

After splitting the sample, compute the estimators

Iy =ny' Y MXL Y [ Si) (5.1)
(X4,Yi)€S1,nq
and
/*/IC,’I’LQJL = nQ_}L Z )\(X’Lv }/2 | Zi) 82,n2)7 (52)
(Xi,YmZi)ES;’nZh

where as above in Section 4.2, S5, in (5.2), is a random subsample from S,,, of size

N2,

ng,, = min(ng, noh”). Consistent estimators of the variances are given in the two independent

samples by

~ 2
6’21 = nfl Z ()\(le 1/; ‘ 81,711) - //In1> (53)
(X’L‘71/7:)681,7L1

and

'~ 2
2t =ngt > (MY Ze o) — e (5.4)

(X4,Y5,2:) €S2 ny
(respectively), where the full (sub)samples are used to estimate the variances.
The estimators of bias corresponding to (4.28) for a single split of each subsample for the

unconditional and conditional cases are given by

Bmm = (25 - 1)_1 (/721/2 - //jm) (55)

and
B;,ng!h - (2H - ]‘)_1 (ﬁz,ng/Z - /‘/ICJLZ) : (56)

12 Kneip et al. (2015b) proposed splitting the sample unevenly to account for the difference in the conver-
gence rates between the (unconditional) DEA and FDH estimators used in their convexity test, giving more
observations to the subsample used to compute FDH estimates than to the subsample used to compute DEA
estimates. Recall that the unconditional efficiency estimators converge at rate n', while the conditional
efficiency estimators converge at rate (nh”)®. The optimal bandwidths are of order =/ (541 giving a
rate of "/ (""+1) for the conditional efficiency estimators. Using the logic of Kneip et al. (2015b), The full
sample S, can be split so that the estimators in the two subsamples achieve the same rate of convergence
by setting nf = ng/(mﬂ). This gives ny = né/(MH). Values of ni, ny are obtained by finding the root 7
inn—n—n"/05+) =0 and setting ny = [70] and n1 = n — na. However, this will often result in too few
observations in the first subsample to obtain meaningful results. For example, if p = ¢ =r =1 and n = 200,
following the reasoning above would lead to n; = 22 and ny = 178.

21



For the unconditional case in (5.5), 1y, ,» = <ﬁ;1/2+ﬁ7211/2) /2, and for j € {1, 2},
i, o = (m/2)7" Z(Xi,Yi,Zi)eSfff/Q X, Y | Sijl)/2), where 815]1)/2 is the jth part of a ran-
dom split of the full (sub)sample S,,,. Details are given in Kneip et al. (2015a). For the
conditional case in (5.6), [}, , = (ﬁi’m/g—i-ﬁimﬂ) /2, and for j € {1, 2}, ﬁimﬂ =
(ng/2)! Z(Xi%7zi)63$/2 X, Y | Zi,Sq(fQ)/Z), where 31(1]2)/2 is the jth part of a random split
of the full (sub)sample S,,. The bias estimates in (5.5)—(5.6) can then be averaged over
K random splits of the two subsamples S, and &,,, to obtain bias estimates §,wl for the
unconditional case and Eg,m for the conditional case.

For small values of (p + ¢) such that x > 1/3 in the FDH case or k > 2/5 when DEA
estimators are used, Theorem 4.3 and Kneip et al. (2015a, Theorem 4.3) can be used to con-
struct an asymptotically normal test statistic for testing the null hypothesis of separability.
In particular, since our bias-corrected sample means are independent due to splitting the
original sample into independent parts, and since two sequences of independent variables

each with normal limiting distributions have a joint bivariate normal limiting distribution

with independent marginals, if follows that for the values of (p + ¢) given above

(//In - //Ic,ny ) - (B\K,n - Eg,n )
Tip=— o : 2/ £y N(0,1) (5.7)
ni n2.h

under the null. Alternatively, for k < 1/2, similar reasoning with Theorem 4.4 and Kneip

et al. (2015a, Theorem 4.4) leads to

(ﬁnm@ - ﬁc,nz,h,m) - <Bﬁ7n1 - B/inzh) C
Ty, = £y N(0,1) (5.8)
52 8'2’h
ny c,ng
N1,k n2 h,k

under the null, where n, , = [n2*| with fi,,, . = n; L > (X,¥)es: /):(Xi, Y; | Sp),and S;; s
s 5 i9¥q N1k SR

a random subsample of size n; , taken from S, (see Kneip et al., 2015a for details). For the

conditional part, we have similarly and as described in the preceding section, ngp, . = [n%’”;t],

] m P— _1 N . . . * ]
With fen, ), = Mok Z(Xi’yhzi)es% N NX:, Y | Zi, Sp,) where Sjy, s a random subsample
of size ngp . from S,,.
Given a random sample S,,, one can compute values 71, or T3, depending on the value

of (p+¢q). From the discussion in Section 5.1, it is clear that a one-sided test is appropriate;
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hence the null should be rejected whenever null whenever 1 —CID(an) orl —CID(f 9.n) is less than
the desired test size, e.g., .1, .05, or .01, where ®(-) denotes the standard normal distribution

function.

5.3 Bandwidth Optimization

As noted above, explicit expressions for the two components A; and A, of the estimation
error in (4.7) are not available. Consequently, the best that can be done is to determine
the order of optimal bandwidths by balancing the order of the two error terms yielding
h oc n~ /571 a5 explained earlier. Although the order by itself is of little help in appli-
cations, following the suggestion of Jeong et al. (2010) one can select optimal bandwidths
for estimating the conditional distribution Hxyz(x,y | 2) by }AIXY‘Z(x, y | z) given in (3.6).
This can be accomplished using the least-squares cross-validation (LSCV) procedure de-
scribed by Li et al. (2013), smoothing only on the r conditioning variables in Z, and not the
dependent variables (X,Y’). Note that, as proved by Hall et al. (2004), if one component
of Z is irrelevant, then the corresponding bandwidth obtained by LSCV will converge to
infinity as n — oo; but for relevant components of Z, LSCV gives a bandwidth with optimal
rate h oc n~ V) for estimating Hxyz(z,y | 2).

Recall that if Z is relevant, the optimal bandwidths for estimating A(z, y | z) have a differ-
ent order (h n~V/+7 as opposed to h o n~/+9) due to the presence of the localizing
bias. In practice, one can optimize bandwidths using LSCV, and then correct the resulting
bandwidths by multiplying by the scaling factor n!/ 41/ +s1) — p= =4)/((r+4)(r+s71)
to obtain bandwidths h with optimal order for estimating A(z,y | z). To avoid numerical
difficulties, for the jth element Zij of Z;, =1, ..., r,i=1, ..., n, one should in practice
bound the LSCV search between a small factor, say 0.01, times the normal reference rule
bandwidth (i.e., 0.01 x 1.065,;n'/%, where G is the sample standard deviation of the observa-
tions Z7, j =1, ..., n) and 2 times the difference (max;(Z/) —min;(Z?)). If Z/ is irrelevant,
LSCV will drive the jth element h; of h to its upper bound; using a bounded kernel (e.g.,
the Epanechnikov kernel), no smoothing will be done in the jth dimension of Z when this

happens. In such cases, there is no need to apply the scaling factor above to h;.
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5.4 Replicability

It is important to note that tests based on the statistics defined in (5.7) and (5.8) are valid
for any split of a given sample of size n into mutually exclusive, collectively exhaustive
subsamples of sizes n; and ny. However, there are n!/((n,!)(ny!)) possible splits (e.g., for
n = 100 and n; = |ny], ny = n — ny there are more than 10* possible splits), and results
may vary over these splits. This means that two researchers using the same data might reach
different results by using different splits of the sample. Worse, a naive or dishonest researcher
might be tempted to split the sample repeatedly until the desired result is obtained.

It does not appear possible to combine information across many splits of a given sample
and to obtain meaningful results. One might split the sample randomly, say 100 or 1,000
times, and then average the resulting values of the test statistic from (5.7) or (5.8), but
the values are not independent across the different sample splits, and the covariance is of
complicated and unknown form.

In order to make results of our tests repeatable and verifiable, we propose a deterministic
rule to randomly split n observations on (p + ¢ + r) variables. Our rule is expressed as an
algorithm, consisting of the following steps.

1. Arrange data in an n by (p + ¢ + r) matrix; the ordering of the rows and columns is
not relevant. Divide the values in each column by the standard deviation of all the
values in the column.

2. Compute the sum of values in each column. Create character strings by writing the
sums in format E18.10 with UTF-8 encoding.

3. Use Secure Hash Algorithm-2 to create an SHA-256 hash of the character strings
created in step 2; each hash is a string of characters 0-9, A—H with UTF-8 encoding.

4. Sort the hash strings created in step 3 in ascending order, and use this sorting to sort
the columns of the data matrix.

5. For each row in the column-sorted matrix, create a character string of the row’s (p +
q + r) values by writing in format aE18.10 where a is the value of (p + ¢ + 7).

6. Use Secure Hash Algorithm-2 to create an SHA-256 hash with UTF-8 encoding of the
character strings created in step 5.

7. Sort the hash strings created in step 6 in ascending order, and use this sorting to sort

the rows of the column-sorted data matrix obtained in step 4.
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8. Restore the original ordering of the columns using information saved from step 4.
9. Multiply each column of the row-sorted data matrix obtained in step 8 by the corre-
sponding standard deviations used in step 1.
10. Use the first n; rows of the row-sorted data matrix obtained in step 9 to form subsample
S1n,, and use the remaining rows to form subsample S, .

Following this algorithm ensures that the final ordering of the observations does not
depend on the initial ordering, nor on any choice made by the researcher provided values
in the data are not tampered with. Using UTF-8 encoding ensures that character data
will be encoded the same way by researchers working anywhere in the world. Secure Hash
Algorithm-2 is described by National Institute of Standards and Technology (2015) and
is based on character representations of the data, and hence creates orderings that can
be regarded as pseudo-random, unique, and independent of numerical values in the data
matrix. The widely used R programming language (R Development Core Team, 2008) with
the ‘digest’ package (Eddelbuettel, 2016) can be used to compute the SHA-256 hashes. R
code implementing the algorithm as a function is given in Appendix D, along with some

examples illustrating usage of the code.

6 Monte Carlo Evidence

We perform Monte Carlo experiments to gauge the performance of the separability test
described in Section 5. In each experiment, we simulate n € {100, 200, 1000} obser-
vations with r € {1, 2, 3} and (p,q) € {(1,1), (2,1), (2,2), (3,2), (3,3)} so that
(p+q) € {2, 3, 4, 5, 6}. To generate an observation (X;,Y,Z;), we first generate a
(p + q)-tuple v = [v]’o,vfl}/ uniformly distributed on a unit sphere centered at the origin
in RPT7 where v, and v, are column vectors of length p and ¢, respectively. We then set
X = (1 —uvy|) and Y = |uv,| to obtain fully efficient levels of inputs and outputs. Next,
we simulate an (r x 1) vector Z of independent draws from the uniform distribution on
(0,2), and a draw u from the half-normal distribution N*(0,1). Then we computed “ob-
served” output levels Y = YT [1 +6(Z/8)] /(1 + u) where 3 is an (r x 1) vector of ones,
5 €{0, 0.1, ..., 0.9, 1.0, 1.5, 2.0} and (1 + u) > 1 is the random inefficiency. Repeating
this for i = 1, 2, ..., n results in a simulated random sample S,, = {(X;, Y;, Z;)}~,. By
construction, when § = 0, Z plays no role and Assumption 2.1 (separability of Z) holds.
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Otherwise, when J > 0, separability does not hold and instead Assumption 2.2 holds.'3

The results of our experiments using DEA estimators with » € {1, 2} are shown in Tables
1-2. Table 1 gives results for tests for separability with » = 1, while Table E.3 gives results
for the corresponding experiments where r = 2. Both tables contain 3 groups of results
corresponding to 100, 200, or 1,000 observations. Within each of these groups, we show, for
various values of 4, rejection rates for the separability tests for nominal test sizes of .10, .05,
and .01 with (p 4 ¢) ranging from 2 to 6. The first row in each group corresponds to § = 0,
where the null hypothesis is true; the remaining rows give rejection rates with increasing
departures from the null, corresponding to increasing values of §. Additional results from
experiments with the DEA estimator and r» = 3 are presented in Table E.1 in Appendix E.
Results from the same experiments but using the FDH estimator, for r € {1, 2, 3} are given
in Tables E.2-E.4 in Appendix E.

Overall, the results in Tables 1-2 (and in Table E.1) confirm that the tests tend to reject
the null hypothesis of separability at increasing rates both (i) with increasing departure from
the null and (ii) as sample size increases. For each r € {1, 2, 3}, rejection rates when § = 0
(i.e., the realized sizes of the tests) are larger than the nominal sizes (.1, .05, and .01) when
n = 100. With n = 200, the realized test sizes are smaller than with n = 100, and with
n = 1,000 the realized sizes are much closer to the corresponding nominal sizes. Note also
that realized sizes tend to increase (for constant r and holding n fixed at 100 or 200) as
the number of input-output dimensions (p + ¢) increases from 2 to 4, but then improves
when (p + ¢) increases from 4 to 5. and T}, is replaced by T5,. Recalling the discussion in
Sections 4 and 5, the statistic T3, defined in (5.8) uses a subsample of efficiency estimates
to compute the sample mean of unconditional efficiency estimates, and a smaller subsample

of estimates to compute the sample mean of conditional efficiency estimates than is used for

13 Given a (p + g)-vector v of iid draws from the N(0,1) distribution, u = v(v'v)~'/2 is a vector of

coordinates from a uniform distribution on the unit sphere in RP*4 (Muller, 1959; Marsaglia, 1972). Setting
Y = |uy| amounts to reflecting any point that lies below one or more of the u, axes around those axes.
Similarly, —|u,| reflects around the u, axes, but in negative directions; adding 1 shifts the resulting points
to the positive orthant in RP*¢. This amounts to generating uniform points on a unit sphere centered
at [1;,0;]/, reflecting the points so that all lie on the part of the sphere in the unit hypercube with in
the positive orthant with a corner at the origin. We then projecting points away from this “frontier”
in the output directions. We use the massively parallel Palmetto Cluster at Clemson University for our
experiments, generating pseudo-random uniform deviates using independent Mersenne Twister generators
on each processor; see Matsumoto and Nishimura (2000) for details. Standard normal deviates are generated
from uniform (0, 1) deviates using the transformation method.
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Ty, defined in (5.7). A similar effect is seen in the tests involving unconditional efficiency
estimators developed by Kneip et al. (2015b).

Comparing corresponding sets of results for given values of n, d, and (p + ¢) across the
different values r € {1, 2, 3} in Tables 1, 2 and E.1), it is evident that there is a price
to pay in terms of power for increasing values of r. This is particularly true for the larger
values of (p + ¢). When n = 1,000, (p+ q) = 6 and § = 2.0, the achieved rejection rate is
0.923 at nominal test size .1 when r» = 1, but only 0.551 when r = 2 and only 0.266 when
r = 3. DEA estimators (both the unconditional and conditional versions) suffer from the
well-known curse of dimensionality, so these results are not surprising. The effect is much less
pronounced when (p+q) = 2, 3, or even 4, suggesting that one might want to use dimension-
reduction methods similar to the method used below for the empirical example appearing in
Section 7 in applications where there are more than 3-4 dimensions in input-output space.

As noted above, corresponding results obtained with FDH estimators are given in Ap-
pendix E. Inspection of those results reveal the same overall patterns seen with the DEA
estimators, with the exception that the realized sizes are larger and the power of the tests is
smaller with FDH estimators than with DEA estimators. This is due to the slower conver-
gence rate of FDH estimators as opposed to DEA estimators.

Results from a second and third set of experiments are given in Appendix E. In the
second set, data are simulated from a DGP where the environmental variables Z affect only
the distribution of inefficiency, but not the frontier, so that Assumption 2.1 holds for all
values of ¢ (see Appendix E for details). Results from the second set of experiments appear
in Tables E.5-E.7 for DEA estimators, and in Tables E.8-E.10 for FDH estimators. As ¢
increases, Z has an increasing impact on the dispersion of inefficiency, but rejection rates
increase only slightly. Some increase is to be expected, perhaps, since increased dispersion
of the inefficiency process means that there are fewer observations near the frontier, making
the frontier harder to estimate.

In the third set of experiments, the environmental variables affect both the frontier
and the dispersion of inefficiency, with both effects increasing as ¢ increases (again, see
Appendix E for details). Results obtained with DEA estimators are shown in Tables E.11-
E.13, while results obtained with FDH estimators are given in Tables E.14-E.16. Relative

to corresponding results from the first set of experiments described above where Z affects
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only the frontier when & > 0, test power is lower in the third set of experiments. As in the
second set of experiments, there is a price to pay for increasing dispersion of the inefficiency
process, which makes estimation of the frontier increasingly difficult. Nonetheless, the decline
in power relative to that in the first set of experiments leaves intact the qualitative statements
made earlier. For n = 200, (p+¢q) = 6, and r = 1, realized sizes are identical in the first and
third set of experiments when 6 = 0.0. When ¢ > 0, the corresponding estimated rejection
rates in Tables 1 and E.11 are very close and significantly different in perhaps only a few

cases.

7 Empirical Illustration using Bank Data

As a final exercise, we revisit the empirical examples provided by Simar and Wilson (2007),
where estimated efficiency of U.S. Banks is regressed on some explanatory variables in a
second-stage analysis. We start with the same data used by Simar and Wilson (2007), and
consider both the subsample of 322 banks as well as the full sample of 6,955 banks examined
by Simar and Wilson. The data include observations on 3 inputs (purchased funds, core
deposits, and labor) and 4 outputs (consumer loans, business loans, real estate loans, and
securities held). The data also include observations for two continuous explanatory variables
used by Simar and Wilson (2007), namely SIZE (i.e., the log of total assets, reflecting
banks’ sizes) and DIVERSE (i.e., a measure of diversity of banks’ loan portfolios). Specific
definitions of variables and other data details are given in Simar and Wilson (2007).

Our empirical examples here and in Simar and Wilson (2007) are motivated by Aly et al.
(1990), who similarly estimate efficiency for a sample of 322 U.S. banks operating during the
fourth quarter of 1986, and then attempt to explain variation in the first-stage efficiency esti-
mates in a second-stage regression by regressing estimated efficiency on continuous variables
reflecting bank size and loan-type diversity, as well as binary dummy variables reflecting
membership in a multi-bank holding company and presence in a metropolitan statistical
area. Whereas Aly et al. used the second-stage regression in an attempt to better under-
stand the performance of U.S. banks’ operations, Simar and Wilson carefully note that their
second-stage regressions are only for purposes of illustrating the bootstrap methods for infer-
ence developed in their paper. As discussed above, and as noted by Simar and Wilson, such

second-stage regressions can only be meaningful if the separability condition in Assumption
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2.1 holds. Simar and Wilson also noted that this condition should be tested before employing
a second-stage regression, but until now no such test has been available.

It is well-known that the distribution of U.S. bank sizes is heavily skewed to the right;
in fact, the distribution of total assets of U.S. banks is roughly log-log-normal (e.g., see
Wheelock and Wilson, 2001 for discussion). In order to use global bandwidths, as opposed
to adaptive bandwidths (which would increase computational burden), we first eliminate
very large banks and other outliers from the sub-sample of 322 observations as described
by Florens et al. (2014) (who used the same data in an empirical illustration), leaving 303
observations for analysis. Similarly, we omit the largest 5-percent of banks from the full
sample of 6,955 observations, leaving 6,607 observations. To further reduce computational
burden, we exploit multicollinearity among the input and output variables by aggregating
inputs into a single measure and also aggregating outputs into a single measure using eigen-
system techniques employed by Florens et al. (2014) in their analysis of the subsample of our
data and as described by Daraio and Simar (2007a, pp. 148-150). Due to the high degrees of
correlation among the original input and output variables, little information is lost by this
aggregation, while dimensionality is reduced from (p+¢) = 7 to 2.

We test the separability condition (Assumption 2.1) using both the subsample of 303
observations and the “full” sample of 6,607 observations using DEA estimators in both
input and output directions, with bandwidths optimized by least-squares cross-validation
and then adjusted to obtain the optimal order as discussed above. We first test separability
marginally by considering only SIZE, and then by considering only DIVERSFE so that r = 1.
We also perform joint tests (r = 2) considering both SIZE and DIVERSE.

Results for the tests for both samples are shown in Table 3. In all cases, we reject the
null hypothesis (i.e., Assumption 2.1) in favor of the alternative hypothesis (i.e., Assumption
2.2) with p-values well less than 0.00005. In the individual tests where r = 1, we reject with
SIZE more strongly than with DIVERSE. With the joint tests where r = 2, the values of
the test statistics are between those where we test only with SIZE and only with DIVERSE,
as one would expect.

The rejection of separability with respect to SIZE is hardly surprising given that larger
banks necessarily can produce more output than smaller banks. Of course, SIZFE is highly

correlated with banks’ inputs and outputs. Nonetheless, this variable is used by by Aly
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et al. (1990) in their second-stage regression, and one must assume separability in order to
believe the second-stage estimation makes any sense at all. Moreover, Aly et al. are not the
only ones to use such variables in second-stage regressions. The rejection with respect to
DIVERSE is less obvious a priori, and suggests that conditional efficiency estimators should

be used to analyze efficiency among banks.'4

8 Conclusions

We have provided CLTs for conditional efficiency estimators, allowing researchers to estimate
confidence intervals for mean conditional efficiency or to compare mean conditional efficiency
across groups of producers analogous to the test of equivalent mean unconditional efficiency
developed in Kneip et al. (2015b). We have also provided a test of the separability condi-
tion described by Simar and Wilson (2007) on which many papers that regress estimated
efficiency scores on some environmental variables depend. The condition is a restrictive, but
can now be tested empirically. In our empirical example in Section 7, patterned after the
application by Aly et al. (1990), we easily reject separability. This suggests that results of
the second-stage regression in Aly et al. (1990) are meaningless, or at best very difficult
to interpret. Furthermore, it raises the question of whether separability would similarly be
rejected in the hundreds or thousands of papers that have regressed estimated efficiencies
on environmental variables in a second stage regression. It is perhaps too much to expect
that all of these studies be re-examined, but now that an easily-implemented test of sep-
arability has been made available, researchers should employ the test before proceeding to
a second-stage regression. Moreover, whenever the test rejects separability, the researcher
should use conditional efficiency estimators instead of unconditional estimators in order to
estimate distance to the relevant frontier (i.e., to the frontier of W* instead of the frontier of
U which has no particular economic meaning when separability does not hold). Whenever
separability is rejected, the new CLT results will be useful tools for empirical researchers.
Of course, failure to reject the null hypothesis of separability does not by itself imply

that separability holds. As is always the case, our test can do only one of two things: it can

14 Note that the second-stage regression in Simar and Wilson (2007) was used only to illustrate how one
might apply the bootstrap methods proposed there. But, results from the second-stage regression in Aly
et al. (1990), and those from similar exercises in other papers that have regressed estimates of bank efficiency
on total assets, are rendered dubious and likely meaningless by the results obtained here.
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either reject, or fail to reject the null hypothesis. Failure to reject might be due to other
factors, such as insufficient data, or too many dimensions. In the later case, we have shown
in our empirical example how dimensionality can be reduced before testing separability.

It should be remembered, as noted in Section 3, that the conditional efficiency estimators
provide consistent estimates regardless of whether separability holds, but the unconditional
efficiency estimators provide meaningfully consistent estimates if and only if separability
holds. Of course, if separability holds, the unconditional estimators converge faster than
their conditional counterparts. But when testing separability, these points argue in favor
of a conservative test. Whereas one might ordinarily test a null hypothesis at the 10, 5, or
1-percent level, here one might want to test at a 20, 30, 40, or even larger percentage level.
The cost of a type-I error is slower convergence due to subsequent use of the conditional
efficiency estimators, whereas the cost of a type-II error is loss of any statistical or economic
meaning due to subsequent inappropriate use of unconditional efficiency estimators. The
cost of a type-II error here is arguably greater than the cost of a type-I error, which is
the reverse of the usual situation in hypothesis testing. Here, however, reversing things by
testing a null hypothesis of non-separability versus an alternative hypothesis of separability
would result in a test with poor size and power properties, as separability is a much more

restrictive condition than non-separability.

Appendices

A Technical Details

The assumptions listed here impose regularity conditions on the data-generating process.

The first assumption appears as Assumption 4 in Jeong et al. (2010).
Assumption A.1. The joint density fxyz(-,-, ) of (X,Y,Z) is continuous on its support.

The next assumptions are needed to establish results for the moments of the conditional
FDH and DEA estimators in Section 4.1. The assumptions here are conditional analogs of
Assumptions 3.1-3.4 and 3.6 (respectively) in Kneip et al. (2015a). Assumption A.2, part
(iii) and Assumption A.3, part(iii) appear as Assumption 5 in Jeong et al. (2010).
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Assumption A.2. Forall z € Z, (i) the conditional density fxy|z(-, | 2) of (X,Y) | Z =z
exists and has support D* C V*; (i) fxy|z(-,- | 2) is continuously differentiable on D*; and

(iii) f)]}YIZ("' | z) converges to fxy|z(-,- | z) as h — 0.

Assumption A.3. (i) D* = {(z,\(z,y | 2)y) | (z,y) € D*} C D?; (ii) D** is compact;
and (iii) fxyiz(x,Nz,y | 2)y | z) >0 for all (x,y) € D*.

Assumption A.4. For any z € Z, D* is almost strictly convez; i.e., for any (z,y), (T,y) €
D= with (153.9) # (7.9) the set {(a",y") | («",5") = (@,9) + (&) for some a € (0,1)}

1s a subset of the interior of D*.

Assumption A.5. For all z € Z, (i) MNz,y | z) is twice continuously differentiable on D?;
and (ii) all the first-order partial derivatives of A(z,y | z) with respect to x and y are nonzero

at any point (x,y) € D*.

Assumption A.6. For any z € Z, N(x,y | z) is three times continuously differentiable with

respect to x and y on D*.

When the conditional FDH estimator is used, Assumption A.5 is needed; when the condi-
tional DEA estimator is used, this is replaced by the stronger Assumption A.6.

Note that under the separability condition in Assumption 2.1, the assumptions here
reduce to the corresponding assumptions in Kneip et al. (2015a) due to the discussion in

Section 2.

B Proofs of Lemmas and Theorems

Proof of Lemma 4.1. Either assumption A.5 or A.6 is sufficient to establish Lipschitz
continuity of A(z,y | z) as a function of z. The result follows immediately. m

Proof of Theorem 4.1. Under (i) Assumptions 4.1, 4.2, 4.4, A.1, A.2 and two-times
differentiability (due to Assumption A.5) of A(z,y | z) with respect to x and y for the FDH
case, or under (i) Assumptions 4.1, 4.2, 4.3, 4.4, A.1, A.2 and three-times differentiability
(due to Assumption A.6) of A\(x,y | z) with respect to x and y for the DEA case, Jeong
et al. (2010) prove, using the result in Lemma 4.1 and h = O ((nh")~*), that the asymptotic
behavior of (nh")" (X(x, vl 2,8 — ANz, y | z)> is the same as the asymptotic behavior of
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(nh")"~ (X(x,y | 2,8,) — M(z,y | z)), which leads to the result in (3.10). For any given h,
we are in a localized version of the framework of Kneip et al. (2015a) for unconditional
efficiencies, except that here \*(X;,Y; | Z;) is the object of interest.

If Z is irrelevant, i.e. if Assumption 2.1 holds, then the optimal h — oo and n;, = n.
Otherwise Assumption 2.2 holds and h — 0 as n — oo, and the order of the number
of observations affecting the estimator is n, = nh”. Moreover, this is the order of the
cardinality of Z(z, h) for all z. Then for the FDH case, the results follow directly from the
proof of Theorem 3.3 in Kneip et al. (2015a) after changing notation there to reflect the
different number of observations. Similarly for the DEA case, the results follow directly
from the proof of Theorem 3.1 in Kneip et al. (2015a). =
Proof of Lemma 4.2. The result in (4.20) follows directly from Theorem 4.1. In addition,

~ ~ 2
VAR(A(X,,Y; | Z.8,) =E ((A(XZ-,Yi | Z5,82) = N'(Xi, Vi | 1) )

+E ((Ah(Xi, Y;| Zj) - E @Xi’ Yi Zi’S")>>2>
+28( (XX, | Z) - B (MX,Y: 1 Z:,50)) )
(X(Xi,yi | Zi,80) = N'(X3, Y | Zi)) ) (2.1)

Using the result in (4.9) from Theorem 4.1,

E ([)\h(Xi,Y; 1 Z) — B (X(XZ-,Yi | Zi,Sn))r) . [E (X(XZ-,Yi | Z:,8,) — N(X, Y | Zi))}2

= o2+ C2n;*" + 0 (n;,*") . (2.2)

Applying the Cauchy-Schwartz inequality, the result in (4.21) in Theorem 4.1 and (2.2), the
last term in (2.1) is bounded by o <n2/2>, establishing the result in (4.21). m
Proof of Theorem 4.2. Let

_ 1

Temy =— >, A(X,Yi| Z). (2.3)

np
(X3,Yi,2:)€S5;,

By the Lindeberg-Feller CLT, \/n4(f,,,, — ) N N(0,02"). Define (u, = fleny — Fen, -

C

Using Lemma 4.2, we have E(,,,) = Ceny "+ Reny o, VAR(Gay) = 0 (') and G, — E(Gy) =
—1/2
Op (Tlh >
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It can be shown that fi.,, = p*+ E((,,), and part (i) of the results is obtained by
substitution for E(,,). Next, note that fen, — fen, = (Cop + Fem,) — (e — E(Cny)) =
Tom, — (W2 + (Gup + E(Gy))- The last term in parentheses is o, (n;1/2>, establishing the
result in (ii). Part (iii) follows directly from part (ii). Finally,

G2 =0 (NXGL Y | Z,Sa))? — 12,
=1

Ly B(NX3, Y; | Z:,S0))") = (ul)?
= VAR(N(X,.Y; | 2, 8.) + [ (MX. Y] 2.80)] - ()2

The result obtains after applying the results of Lemma 4.2. =

Proof of Theorem 4.3. The result follows by substituting (4.29) in Theorem 4.2, part
(iii), and noting that for the indicated ranges of values for k, \/n,Rep, » = 0(1). =

Proof of Theorem 4.4. Let

1
ey, = > NXL Y] Z). (2.4)

Np
(X0 Yi ZoESs;

Clearly,

. _ 1 ~
e = e = Tie,, = e+ > (XY 208 - XX, Y| Z) . (25)

Ny
XYL Z)ES]

Since nyp,,, — 00 as N — 00, /M (ﬁcm“ - u?) £, N(0,0%"). By Lemma 4.2, the third
term on the right-hand side of (2.5) has expectation u? + Cen, ™ + Rep, » and variance
o2h +0(n,:“/ ?). Replacing C.n;* with Eg,nh and then multiplying both sides by ,/ny, . yields

the result. m

C Discrete Environmental Variables

In applied work, it is often the case that researchers include binary or categorical variables in
second-stage regressions of estimated efficiency on environmental variables. All of the results
obtained in the main part of this paper assume Z is continuous. However, in order for second-
stage regressions to estimate any useful, meaningful feature, the separability condition in

Assumption 2.1 must also hold with respect to discrete environmental variables.
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Testing the separability condition in the case of discrete variables can be done using
results and ideas from Kneip et al. (2015b), where a test of equivalent mean efficiency across
two groups of producers is developed. To illustrate, suppose r = 1 and Z is a binary dummy
variable. To test separability, first shuffle the observations, and then divide into two groups
of size n; = |n/2] and ny = n — ny. Apply the unconditional efficiency estimator to group
1. For group 2, a conditional efficiency estimator is needed, but since Z is discrete, there
is no smoothing to be done.'® Since Z is binary, there are only two sets U?. Hence, in the
second group, divide observations into two sub-groups according to whether Z = 0 or Z = 1;
observations in each sub-group, estimate efficiency using the same unconditional efficiency
estimator used with group 1, ignoring observations in the other group. This will yield a
set of ny conditional efficiency estimates since the ny observations have been divided into
sub-groups.

Note that the conditional estimates from group 2 have the usual convergence rate of
the unconditional efficiency estimator since no bandwidth is involved since Z is discrete.
One can now apply the difference-in-means test as described in Kneip et al. (2015b), taking
care to compute the bias-correction terms for group 2 separately and independently for
observations in the subgroup (of group 2) where Z = 0 and the subgroup where Z = 1. This
will necessitate splitting each sub-group (of group 2) to compute the generalized jackknife

estimates of bias for observations in each sub-group. See Kneip et al. (2015b) for details.

15 The problem here is rather different from the problem of nonparametric estimation of regressions or
densities, where one can smooth across discrete categories of data using the methods discussed by Li and
Racine (2007). Here, we are interested in boundaries of support, as opposed to densities or conditional mean
functions.
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Table 3: Tests of Separability on Banking Data

Input Output
T, p-value Tip p-value
n = 303
SIZE 13.9836 0.0000 8.3160 0.0000
DIVERSE  6.6719 0.0000 6.9408 0.0000
joint test  10.1990 0.0000 7.6620 0.0000
n = 6,607
SIZE 41.5341 0.0000 36.8514 0.0000
DIVERSE 14.4167 0.0000 16.2464 0.0000
joint test  24.4306 0.0000 32.8130 0.0000
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D Randomization Algorithm

The following R code implements the algorithm described in Section 5.4 for randomizing
data. The user passes to the function an n by (p+ ¢+ r) data matrix where the columns and
rows can be in any order, and an n by (p+¢+r) matrix with randomized observations or rows
is returned. Note that the code makes use of the “digest” package (Eddelbuettel, 2016) to
compute SHA-256 hashes. The package is not a part of the basic R distribution, but can be

downloaded from the Comprehensive R Archive Network at https://cran.r-project.org.


https://cran.r-project.org

randomize <- function (xyz) {
if (is.data.frame(xyz)) xyz=as.matrix(xyz)
if (length(colnames(xyz))>0) colnames(xyz)<-NULL
if (length(rownames(xyz))>0) rownames (xyz)<=NULL
n=nrow(xyz)
k=ncol (xyz)
#
# first, standardize so units do not matter:
std=apply (xyz,2,sd)
for (j in 1:k) {
iyz[,j]=xyz[,j]/std[j]

#

# then order the columns:

keyl=vector(length=k)

totals=apply(xyz,2,sum)

require(digest)

for (j in 1:k) {
tl=enc2utf8(formatC(totals[j],format="E",width=18,digits=10))
keyl[jl=enc2utf8(digest(tl,algo="sha256",serialize=FALSE,ascii=TRUE))

jj=sort(keyl,index.return=TRUE) $ix
xyz=xyz[,jj]
#

# now order the rows:
key2=vector (length=n)
for (i in 1:n) {
tl=enc2utf8(paste(formatC(xyz[i,],format="E",width=18,digits=10),
collapse=""))
key2[i]=enc2utf8(digest(tl,algo="sha256",serialize=FALSE,ascii=TRUE))

ii=sort(key2, index.return=TRUE) $ix
xyz=xyz[ii,]

#

# restore order of the columns:

xyzl,jjl=xyz
#

# un-do the standardizations:
for (j in 1:k) {
xyz[,jl=xyzl[, jl*std[j]
+

return(xyz)

The following shows an R session where the above code is used to randomize data from
Charnes et al. (1978). The data are loaded from the FEAR package by Wilson (2008). The
data are first loaded, stored in a matrix d, and then printed. Next, the data are randomized,
with the result stored in d2 and printed. Then the original data in d are copied to a new

matrix dnew, and 0.0001 is added to the element in row 36, column 6. The resulting matrix is

2



then randomized with the result stored in d3, which is then printed. Note that the ordering
of the rows in d3 is very different from the ordering in d2, illustrating that even a small
change in the data causes a very different ordering of the observations. This is characteristic
of well-designed hash algorithms, and is known as the “avalanche effect” (Feistel, 1973).
Finally, the columns of the original matrix d are permuted randomly and stored in the
matrix dnew. The randomization function is then applied to this matrix, with the result
stored in d4. The matrices d2 and d4 are compared and found to be the same, illustrating

that the randomization algorithm is not affected by the ordering of variables in the data.

R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl3.1.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

wdir=Sys.getenv("PWD")
setwd (wdir)
source (’randomize.R’)
#
#
require (FEAR)
Loading required package: FEAR
FEAR (Frontier Efficiency Analysis with R) version 2.0.1 installed
Copyright Paul W. Wilson 2014
Type "fear.license()" to view the software license for FEAR
Type "fear.cite()" to view the proper citation for FEAR
Read 2 items
data(ccr)
ccr=as.matrix(ccr) [,2:9]
colnames(ccr) <- NULL
d=ccr
#
# d is the data matrix.
print(d)
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[1,]

[2,]

[3,]

[4,]

[5,]

(6,]

[7,]

[8,]

[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
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.24
.24
.31
.14
.21
.97
.88
.97
.04
.50
.67
.15
.80
.88
.42
17
.43
.61
.70
.05
.08
.84
.14
.43
.05
.70
.38
.12
.55
.14
.89
.93
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.82
.56
.26
.68
.08
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.96
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.64
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33.
44 .
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.36
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17.
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54.
24.
36.
14.
.81
12.
17.
20.
26.
46.
39.
37.
26.
10.
.39
32.
17.
27.
41.
29.
37.
19.
39.
25.
.88
.62
.31
.00
.51
.64
12.
.59
43.
32.
34.
.52
15.
.91
30.
22.
24.
23.
.82
63.
.47
33.
29.
.70
12.
39.
.96

14

24
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80
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43
46
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38
64

96
44
63
41
11
92

94
42

17
07

58.
33.
40.
17.
.94
16.
16.
30.
29.
.59
37.
47.
.36
10.
18.
36.
20.
38.
43.
.63
.02
25.
47.
30.
25.
40.
38.
.30
.02
15.
15.
.16
46.
38.
45.
15.
19.
.30
33.
25.
27.
22.

51

31

42
51

21

12

31

11

11

98
89
62
58

85
99
64
80

73
85

86
30
03
80
19
80

18
72
81
27
78
32

26
90

64
55
46
14
21

53
24
16
67

.45
79.
.92
39.
35.
.02
16.
42.
14.

67

18
10

03
71
34

38.
26.
28.
16.
.37
12.
17.
33.
26.
35.
30.
25.
26.
.47
.33
38.
12.
20.
36.
23.
27.
16.
38.
16.
.43
31.
25.
18.
.16
15.
14.
.99
39.
.05
39.
13.
15.
.22
29.
17.
25.
17.
27.
63.
.85
34.
28.
.02
15.
27.
.33

14

22

31

16
02
51
19

84
82
16
29
20
29
35
54

19
07
44
54
34
44
52
97
54

16
03
30

68
42

10

22
91
30

80
15
30
56
54
11

61
42

82
67



[52,]
[53,]
[54,]
[55,]
[56,]
[57,]
[58,]
[59,]
[60,]
[61,]
[62,]
(63,1
[64,]
[65,]
[66,]
[67,]
[(68,]
(69,1
[70,]

55.
16.
82.
15.
.65

41.

10.
139.

16.
.06

4.
19.
28.
13.
23.
27.
11.

4.
10.

4

12

30
20
45
81

25
44
65
28

20
44
38
50
32
60
70
68
44
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.53
.02
.52
.93
.50
.41
.22
.03
.81
.59
.64
.83
91
.61
.10
.38
.53
.85
.82

> d2=randomize(d)
Loading required package: digest
Warning message:
package ’digest’ was built under
> print(d2)

[1,]
[2,]
[3,]
[(4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
(17,1
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]

[7
11.
10.
43.
11.
52.
16.
39.
11.

4.
39.
11.
31.
28.

4.
61.
35.
12.

7.
25.
41.
22.
34.
29.
44 .
68.
26.

1]
88
44
12
88
92
20
20
70
65
79
62
57
38
68
74
55
48
14
42
40
63
40
26
28
16
66

[,
4.
4.

11
3.
11
7.
10.
10.
5.
22.
2.
10.

8.

1
14.
6.
6.
5.
9.
11

4.
11
10.
14.
12.
11

2]
o7
82

.31

59

.67

02
80
53
50
49
21
08
91

.85

50
48
14
29
05

.70

43

.04

24
14
28

.43

36.
26.
45.
23.
20.
26.
17.
119.
18.
8.
9.
12.
30.
15.
.96
32.
37.
6.
17.

24

[’
18.
17.
38.
13.
39.
26.
.04
37.
20.
84.

6.
39.
30.

6.
49.
.69
23.
23.
29.
44 .
15.
38.
.96
56.
33.
.36

41

21

41

41

73
94
00
91
91
23
10
56
20
74
89
87
95
60

29
67
22
13

3]
73
13
19
41
48
94

67
91
77
85
34
95
22
09

13
10
69
01
40
16

70
58

35.
26.
44 .
23.
23.
25.
18.
130.
18.

8.
.25
13.
33.
12.
28.
34.
43.
5.
18.

11

[,
18.
18.
35.
13.
39.
26.
41.
43.
23.
76.

6.
40.
33.

5.
42.
.69
22.
19.
.74
46.
15.
42.
40.
52.
34.
44 .

21

31

78
30
23
61
39
24
93
83
98
17

23
33
39
56
01
60
46
21

4]
04
21
03
82
64
30
12
60
39
12
37
57
33
46
92

46
06

35
00
40
65
27
64
63
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13.
36.

9.
39.
18.
26.
22.
13.
63.

7.
37.
18.

8.
46.
22.
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-

OO, OITOONNPOHTDOCOITO P O0T00NWOOUI O O

=

]

45.
18.
59.
24.
13.
28.

21

11

12

31

24

21

37
23
63
20
53
39

.67
120.

15.
.92
.35
13.
18.
12.
16.
26.
22.
17
13.

17
15

03
63
28
81
36
85

69

6]
59
69
41
96
80
23
48
85
53
92
81
46
63
17
42
63

.64
.17
29.
.62
17.
26.
.69
39.
39.
.82

43

25
13

88
07

51.38
22.05
64.41
28.21
17.09
27.65
26.22
144 .67
18.04

7.10

9.85
13.40
24 .48
13.01
19.72
28.22
26.21

8.70
14.19

1.3

[,7]
16.85
14.19
40.62
14.34
37.73
22.05
31.36
26.21
17.09
79.67

6.94
51.02
24 .48

8.70
51.59
25.24
15.26
16.03
42.63
40.78
20.80
29.80
33.89
47.72
42.71
31.45

31.61
17.56
35.89
18.74
15.61
20.79
13.66
88.59
13.58

6.35

7.70
10.29
23.13

9.89
18.70
24.46
28.14

5.12
12.99

[,8]
12.84
12.99
28.51

9.33
30.29
17.56
26.54
28.14
15.61
63.11

5.37
27 .44
23.13

5.12
35.20
17.15
15.68
15.82
23.34
31.16
12.07
26.29
26.02
38.97
27.67
27.54



[27,] 25.44 7.10 26.81 26.23
[28,] 61.60 15.56 53.98 50.29
[29,] 59.78 13.52 48.80 49.69
[30,] 16.28 4.81 18.20 18.98
[31,] 30.53 9.30 35.50 35.14
[32,] 24.40 8.05 33.42 31.29
[33,] 20.79 12.97 54.85 b52.07
[34,] 34.40 11.61 41.79 41.79
[35,] 23.32 7.10 24.96 28.56

23.11 22.67 17.56
34.64 45.46 39.22
33.94 39.18 34.61
15.15 18.04 13.58
24.41 27.16 25.30
24.88 25.27 22.43
20.29 30.64 33.16
30.44 33.53 29.80
16.81 19.72 18.70

[y

N

[36,] 19.74 6.43 24.20 25.66 25.72 30.81 16.54
[37,] 31.08 6.26 22.18 21.96 11.52 15.14 13.91
[38,] 55.30 11.53 36.73 35.78 45.37 ©51.38 31.61
[39,] 24.96 6.14 24.81 25.15 14.94 17.58 16.19
[40,] 38.95 12.82 47.02 48.92 32.38 38.55 31.05
[41,] 27.20 9.38 37.80 31.55 31.31 38.32 25.03
[42,] 11.20 3.08 9.90 10.06 9.91 12.30 7.22
[43,] 10.62 2.55 10.10 9.09 6.51 7.02 6.16
[44,] 4.20 2.64 9.89 11.25 9.35 9.85 7.70
[45,] 19.35 6.68 22.61 23.31 15.96 19.21 15.30
[46,] 41.25 8.41 26.23 25.24 10 28.39 27.65 20.79
[47,] 13.50 3.61 15.60 12.39 12.28 13.01 9.89
[48,] 6.30 1.93 7.11 7.68 4.59 6.16 4.99
[49,] 14.60 2.88 9.64 11.14 10.31 10.86 7.47
[60,] 27.60 9.38 32.29 34.01 20 26.36 28.22 24.46
[61,] 39.22 10.06 37.00 38.33 29.42 35.10 28.42
[62,] 15.81 6.93 23.91 23.61 24.20 28.21 18.74

[63,] 53.56 13.70 53.04 49.85
[54,] 86.13 16.24 48.21 49.69
[55,] 139.65 35.03 119.56 130.83
[66,] 19.44 3.83 12.87 13.23
[57,] 3.24 3.18 13.12 12.71
[58,] 36.00 10.15 37.80 39.52
[69,] 27.25 14.17 56.46 b55.26
[60,] 23.92 7.12 25.58 29.01

41.12 43.80 36.54
54.53 58.98 38.16
120.17 144.67 88.59
13.03 13.40 10.29

7.70 11.02 9.02
37.84 47.85 25.3b5
32.94 36.03 38.19
21.00 21.30 18.30

N
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[61,] 46.62 14.65 65.71 57.49 10 43.76 46.64 39.10
[62,] 4.29 5.42 21.45 17.27 14.39 18.30 14.33
[63,] 10.44 5.22 17.10 18.93 21.67 26.22 13.66
[(64,] 12.06 2.59 8.74 8.17 6.92 T7.10 6.3
[656,] 19.32 5.89 24.01 24.74 12.58 15.90 14.42
[66,] 32.64 6.88 28.10 25.45 17.06 16.99 17.82
[67,] 16.34 5.84 20.89 22.10 19.40 25.18 16.52
(68, ] 8.32 3.64 12.92 13.13 9.47 11.92 8.8b
[69,] 82.45 15.52 45.00 44.23 13 59.63 64.41 35.89
[70,] 28.00 7.61 28.73 27.04 27.55 38.19 20.44
> #

> # make a small change in data matrix and randomize again:
> dnew=d

> print (dnew[35,6])

[1] 34.64

> dnew[35,6]=dnew[35,6]+0.0001

> print(dnew([35,6])



[1] 34.6401
> d3=randomize (dnew)
> print(d3)

[1,]

[2,]

[3,]

[4,]

[5,]

[6,]

[7,]

[8,]

[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
(27,1
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
[40,]
(41,]
[42,]
[43,]
[44,]
[45,]
(46, ]
(47,1

I::
15.
30.
39.
86.
12.

22

41

4

27

1]
81
53
22
13
06

.63
7.
19.
24.
43.
.25
44
29.
52.
139.
46.
39.
24.
35.
26.
82.
11.
4.
28.
41.
32.
10.
53.
11.
23.
16.
4.
61.
.65
8.
34.
20.
39.
.20
4.
55.
19.
34.
25.
19.
10.
16.

14
35
40
12

28
26
92
65
62
79
96
55
66
45
62
29
00
40
64
44
56
88
92
28
20
60

32
40
79
20

68
30
32
40
42
44
44
20

[,
6.

2]
93

.30
.06
.24
.59
.43
.29
.68
.05
.31
.41
.14
.24
.67
.03
.65
.49
.14
.48
.43
.52
.21
.42
.61
.70
.88
.82
.70
.59
.12
.81
.64
.56
.50
.64
.04
.97
.80
.38
.85
.53
.89
.61
.05
.83
.22
.02

[’
23.
35.
37.
48.

8.
15.
23.
22.
33.
38.
26.
56.
.96

39.
119.
65.
84.
24.

41

21
41

45.
6.
.45
28.
44 .
28.
17.
53.
13.
2b.
18.
9.
53.
.91
12.
38.
54.
.04
37.
6.
36.
24.

21

20

41

41

3]
91
50
00
21
74
40
10
61
42
19
23
70

48
56
71
77
81

.69
.36

00
85

73
01
10
13
04
41
58
20
89
98

92
16
85

80
22
73
01

.79
29.
12.
17.
26.

69
87
10
94

[,4] [,5]

23.
35.
38.
49.

8.
15.
19.
23.
.29

31

35.
25.
52.
40.
39.
130.
57.
76.
25.
.69
44 .
.23
6.
17.
27.
46.
25.
18.
49.
13.
29.
18.
.25
50.
23.
13.
42.
52.
41.
.55
5.
35.
24.

21

44

11

31

41
31

61
14
33
69
17
00
06
31

03
24
27
65
64
83
49
12
15

63

37
27
04
35
45
21
85
82
01
98

29
39
13
40
07
12

46
78
74

.79
.74
13.
18.
26.

23
93
30
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24

21

59.
.8100
14.
27.
.6200
17.
13.
41.
.9600
.0000
15.
.3500
34.
13.
.4700
26.
20.
26.
.3100
.1700
45.
12.
30.
29.
13.
.6700
18.

31

21

31

21

[,6]

.2000
24.
29.
54.
.9200
17.
12.
15.
24.
36.
28.
39.
24.
39.
120.
43.
63.
14.
22.
.8200

4100
4200
5300

2500
1700
9600
8800
4100
3900
8800
6900
8000
1700
7600
9200
9400
6300

6300

3900
5500

0600
6900
1200

1500

6401
5300

1300
2900
4800

3700
5800
4400
4300
0300

2300

I::
28.
27.
35.
58.
.10

20.
16.
19.
25.
40.
27.
47.
33.
37.
144,
46.
79.
17.
25.
31.
64.
.94
18.
38.
40.
16.
14.
43.
14.
21.
18.
.85
45.
.09
11.
29.
30.
31.
38.
.70
51.
15.
33.
.63
13.
26.
22.

17

42

7]

16
10
98

80
03
21
27
62
65
72
89
73
67
64
67
58
24
45
41

30
19
78
99
19
80
34
30
04

46

92
80
64
36
32

38
90
53

40
22
05

I:;
18.
25.
28.
38.
.35
.07
15.
15.
22.
28.
20.
38.
26.
30.
88.
39.
63.
16.
17.
27.
35.
.37
14.
20.
31.
17.
12.
36.
.33
18.
13.
.70
39.
15.
.85
26.
33.
26.
25.
.12
.61
14.
29.
23.
10.
13.
17.

12

31

8]
74
30
42
16

82
30
43
51
79
97
02
29
59
10
11
19
15
54
89

33
44
16
82
99
54

30
58

22
61

29
16
54
03

42
80
34
29
66
56



[48,] 25.44 7.10 26.
[49,] 19.74 6.43 24.
[50,] 68.16 12.28 33.
[51,] 3.24 3.18 13.
[562,] 61.74 14.50 49.
[53,] 31.57 10.08 39.
[54,] 16.34 5.84 20.
[65,]1 27.25 14.17 56.
[66,] 13.50 3.61 15.
[57,] 14.60 2.88 9.

[58,] 59.78 13.52 48.
[69,] 36.00 10.15 37.
[60,] 10.62 2.55 10.
[61,] 6.30 1.93 7.
[62,] 11.88 4.97 18.
[63,] 31.08 6.26 22.
[64,] 12.48 6.14 23.
[65,] 38.95 12.82 47.
[66,] 11.70 10.53 37.
[67,] 28.38 8.91 30.
[68,] 27.60 9.38 32.
[69,] 23.32 7.10 24.
[70,] 11.20 3.08 9.
> #

>

> # randomize matrix:

> set.seed(90001)

> dnew=d[sample.int(70)
> d4=randomize(d)

> any(!(d2!'=d4))

[1] TRUE
>
>
> proc.time()
user system elapsed
16.802 5.148 32.315

81
20
58
12
09
34
89
46
60
64
80
80
10
11
73
18
13
02
67
95
29
96
90

)]

26.
25.
34.
12.
.92
40.
22.
55.
12.
11.
49.
39.

9.

7.
18.
.96
22.
48.
43.
33.
34.
28.
10.

42

21

23
66
64
71

57
10
26
39
14
69
52
09
68
04

46
92
60
33
01
56
06

[y

[EY

N N
NNOOOOOMP PP WPLPOPPOOOTTTWW

23.
2b.
39.

7.
46.
37.
19.
32.
12.
10.
33.
37.

6.

4.

12
11
11

1100
7200
0700
7000
4200
4600
4000
9400
2800
3100
9400
8400
5100
5900

.5900
.5200
.6400
32.
22.
18.
26.
16.

9.

3800
8500
6300
3600
8100
9100

22.
30.
42.
11.
51.
51.
25.
36.
13.
10.
39.
47.

7.

6.
16.
15.
15.
38.
26.
.48
28.
19.
12.

24

67
81
71
02
59
02
18
03
01
86
18
85
02
16
85
14
26
55
21

22
72
30

17.
16.
27.
9.
35.
27.
16.
38.
9.
7.
34.
25.
6.
4.

12

31

# permute the rows and columns of d to see that we get

56
54
67
02
20
44
52
19
89
47
61
35
16
99

.84
13.
15.
.05
28.
23.
24.
18.

7.

91
68

14
13
46
70
22

the same



E Additional Results from Monte Carlo Experiments

Table E.1 gives results from the Monte Carlo experiments described in Section 6 using the
DEA estimators with r = 3. Tables E.2-E.3 give results from the Monte Carlo experiments
described in Section 6 using FDH estimators with » = 1 and 2, analogous to Tables 1-2 in
the paper. Similarly, Table E.4 gives results obtained using FDH estimators with r = 3,
analogous to the results in Table E.1.

In addition to the first set of experiments described in Section 6, we perform two ad-
ditional sets of experiments to examine the performance of the separability tests. In the
second set of experiments, we generate X, YT and Z as described in Section 6. We then

simulate observed output values Y by setting
Y = YT [(1+6(Za)?|ul + 1] (E.1)

where u ~ N1(0,1) and 0 and « are defined as in Section 6. Here, the environmental
variables Z affect the distribution of inefficiency, but have no effect on the frontier since
any effect of Z is wiped out whenever u = 0. Consequently, the separability condition in
Assumption 2.1 holds. Results from these experiments, for r € {1, 2, 3} and using DEA
estimators appear in Tables E.5—E.7. Corresponding results obtained with FDH estimators
appear in Tables E.8-E.10.

In the third set of experiments, we again generate X, Y and Z as described in Section

6. We then simulate observed output values Y by setting
Y =Y [1 4 6(Za)] [(1+6(Za)?|ul + 1] (E.2)

where where u ~ N*(0,1) and 6 and « are defined as in Section 6. In (E.2), the environ-
mental variables Z affect both the frontier as well as the distribution of inefficiency, violating
the separability in Assumption 2.1 so that Assumption 2.2 holds instead. Results from these
experiments, for r € {1, 2, 3} and using DEA estimators appear in Tables E.11-E.13.
Corresponding results obtained with FDH estimators appear in Tables E.14-E.16.
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