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Abstract

This paper demonstrates that standard central limit theorem (CLT) results do not
hold for means of nonparametric conditional efficiency estimators, and provides new
CLTs that do hold, permitting applied researchers to estimate confidence intervals for
mean conditional efficiency or to compare mean efficiency across groups of produc-
ers along the lines of the test developed by Kneip et al. (JBES, 2015b). The new
CLTs are used to develop a test of the “separability” condition that is necessary for
second-stage regressions of efficiency estimates on environmental variables. We show
that if this condition is violated, not only are second-stage regressions meaningless,
but also first-stage, unconditional efficiency estimates are without meaning. As such,
the test developed here is of fundamental importance to applied researchers using non-
parametric methods for efficiency estimation. Our simulation results indicate that our
tests perform well both in terms of size and power. We present a real-world empiri-
cal example by updating the analysis performed by Aly et al. (R. E. Stat., 1990) on
U.S. commercial banks; our tests easily reject the assumption required for two-stage
estimation, calling into question results that appear in hundreds of papers that have
been published in recent years.
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1 Introduction

Nonparametric efficiency estimators are widely used to benchmark the performance of firms

and other decision-making units. Unconditional versions of these estimators measure dis-

tance from a particular point in input-output space to an estimate of the boundary of the

attainable set, i.e., the set of feasible combinations of inputs and outputs. Farrell (1957)

is the first empirical example of such estimators, and relies on the convex hull of a set of

observed input-output combinations to estimate the attainable set. This method has been

popularized by Charnes et al. (1978) and is known in the literature as data envelopment

analysis (DEA).1 Deprins et al. (1984) relaxed the convexity assumption in the DEA esti-

mator by using the free-disposal hull (FDH) of a set of observed input-output combinations

to estimate the attainable set. More recently, Daraio and Simar (2005) have developed

conditional measures of efficiency, allowing nonparametric estimation of technical efficiency

conditional on some explanatory, contextual, “environmental” variables that are neither in-

puts nor outputs in the production process. Recent surveys of both the unconditional and

conditional estimators are provided by Simar and Wilson (2013, 2015).2

The presence of environmental variables raises important questions for practitioners, such

as the question of precisely how the environmental variables might affect the production pro-

cess. Conceivably, the environmental variables might affect only the distribution of efficiency

among firms. On the other hand, environmental variables might affect the production possi-

bilities of firms. Or, environmental variables might affect both the distribution of efficiency

as well as production possibilities.

Although there are numerous examples in the literature where the conditional efficiency

estimators have been used, two-stage estimation procedures wherein technical efficiency is

estimated by (unconditional) DEA or FDH estimators in the first stage, and the resulting

efficiency estimates are regressed on some environmental variables in a second stage, remain

very popular in the literature. Simar and Wilson (2007) cite 48 published papers that em-

1 Banker et al. (1984) modified the Farrell (1957) estimator by using the conical hull of a set of observed
input-output combinations to estimate the attainable set, thereby imposing an assumption of constant returns
to scale.

2 Examples of applications of conditional efficiency estimators include Halkos and Tzeremes, (2010, 2011a,
2011b, 2014), Verschelde and Rogge (2012), Zschille (2014, 2015), Rogge and De Jaeger (2013), Bădin et al.
(2014), De Witte and Van Klaveren (2014), Tzeremes (2014, 2015), Mastromarco and Simar (2015), Cordero
et al. (2015) and D’Alfonso et al. (2015).
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ploy this approach and comment that “as far as we have been able to determine, none of the

studies that employ this two-stage approach have described the underlying data-generating

process.” Simar and Wilson go on to (i) define a statistical model where truncated (but

not censored, i.e., tobit, nor ordinary least squares) regression yields consistent estimation

of model features, (ii) demonstrate that conventional, likelihood-based approaches to infer-

ence are invalid, and (iii) develop a bootstrap approach that yields valid inference in the

second-stage regression. The model defined by Simar and Wilson rationalizes second-stage

regressions of estimated efficiency on environmental variables in the sense that such a re-

gression estimates a feature of the model described by Simar and Wilson. However, as noted

by Simar and Wilson, the model contains a crucial feature—and a strong restriction—in the

form of a “separability condition” that appears below as Assumption 2.1. Without this con-

dition, second-stage regressions of estimated efficiency do not estimate any meaningful model

feature; as Simar and Wilson (2007) note, this condition should be tested before estimating

a second-stage regression, but until now no test has been available.

This paper presents a carefully-developed framework—i.e., a pair of statistical models—

in order to make clear how environmental variables might be relevant. We develop a test

of the separability condition described by Simar and Wilson. As will be seen below, this

test is of fundamental importance whenever environmental variables are present. If the sep-

arability condition does not hold, unconditional DEA and FDH estimators have no useful

interpretation; i.e., not only are second-stage regressions meaningless when the separability

condition is violated, but the (unconditional) first-stage efficiency estimates are also mean-

ingless. We also show that standard central limit theorem (CLT) results do not hold for

means of conditional efficiency estimators, and extend the results of Kneip et al. (2015a) to

prove new CLTs for means of conditional efficiency estimators. We use these new CLTs to

develop our test of the separability condition. However, the new CLTs are useful beyond the

test of separability since they allow one to estimate confidence intervals for mean conditional

efficiency or to compare mean conditional efficiency across different groups along the lines

of the test developed by Kneip et al. (2015b) for unconditional efficiency measures.

A number of papers have appeared in recent years using the model and approach for

inference suggested by Simar and Wilson (2007). However, papers that estimate technical

efficiency in the first stage and then regress these estimates on some environmental variables
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in a second-stage tobit model continue to appear. As far as we know, none of these papers

present a statistical model in which second-stage tobit estimation would consistently estimate

features of the model; the approach is ad hoc in each case. Moreover, regardless of how the

second-stage regression is specified, any results from such regressions are meaningless for

reasons given below when the separability condition is violated.3 The statistical model

in Simar and Wilson rationalizes second-stage regression of efficiency estimates on some

environmental variables, but does not allow for the possibility that environmental variables

might affect the production possibilities. If they do, then a different model is needed, and

second-stage regression is not appropriate.

In the next section, we develop the statistical model. Estimators are discussed in Section

3, and the tests are developed in Section 5. Section 6 describes Monte Carlo experiments

used to assess the size and power of our tests as well as results. In Section 7 we provide

a real-world example by revisiting the work of Aly et al. (1990) and testing whether the

assumptions given by Simar and Wilson (2007) that are required for the two-stage approach

used by Aly et al. to be meaningful are satisfied. Conclusions are given in the final section.

Appendix A gives technical assumptions used to derive results in Section 5, proofs of lemmas

and theorems are given in Appendix B and Appendix C discusses how one can handle discrete

environmental variables. Supplementary material mentioned in Sections 5.4 and 6 appears

in separate Appendices D and E.

2 The Production Process in the Presence of Environ-

mental Factors

In this section we formalize a statistical model of the production process along the lines of

the probability framework of Cazals et al. (2002). The production process generates random

variables (X, Y, Z) in an appropriate probability space, where X ∈ Rp
+ is the vector of input

3 A search on Google Scholar on 21 June 2016 using the keywords “dea,” “efficiency,” “tobit,” and “two
stage” returned 2,370 papers with dates between 2008 and 2016. As far as we know, none of these papers
present a statistical model in which second-stage tobit estimation would consistently estimate features of
the model; the approach is ad hoc in each case. Repeating the search after dropping the keyword “tobit”
returned 11,100 papers over the same years. Even if only half of these hits are relevant, the searches indicate
that the practice of regressing nonparametric efficiency estimates on some environmental variables in a
second-stage regression is widespread, although perhaps many of these exercises yield meaningless results if
the separability condition is frequently violated. Apparently, the warnings of Simar and Wilson (2007) have
not been heeded.
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quantities, Y ∈ Rq
+ is the vector of output quantities and Z ∈ Rr is a vector of variables

describing environmental factors. These factors Z are neither inputs nor outputs and are

typically not under the control of the manager, but they may influence the production process

in different ways as explained below. Let fXY Z(x, y, z) denote the joint density of (X, Y, Z)

which has support P ⊂ Rp
+ × Rq

+ × Rr. This joint density can always be decomposed as

fXY Z(x, y, z) = fXY |Z(x, y | z)fZ(z). (2.1)

Let Ψz denote the conditional support of fXY |Z(x, y | z), i.e., the support of (x, y) given

Z = z, and let Z be the support of fZ(z). Then Ψz is the set of feasible combinations of

inputs and outputs for a firm facing the environmental conditions Z = z; i.e.,

Ψz = {(X, Y ) | X can produce Y when Z = z}. (2.2)

The environmental variables in Z can affect the production process either (i) only through

Ψz, the support of (X, Y ), or (ii) only through the density fXY |Z(x, y | z), thereby affecting

the probability for a firm to be near its optimal boundary, or (iii) through both Ψz and

fXY |Z(x, y | z). Let

Ψ =
⋃
z∈Z

Ψz. (2.3)

By construction, Ψz ⊆ Ψ ∀ z ∈ Z, and clearly Ψ ⊂ Rp+q
+ . However, whether Ψ is useful

for benchmarking the performance of a firm producing output levels y from input levels x

while facing levels z of the environmental variables depends on whether the “separability”

condition described by Simar and Wilson (2007) is satisfied. This condition requires that Z

affect production only through the conditional density fXY |Z(x, y | z) without affecting its

support Ψz, and is stated explicitly in Assumption 2.1.

Assumption 2.1. (Separability Condition): Ψz = Ψ for all z ∈ Z.

Clearly, when Assumption 2.1 holds the joint support of (X, Y, Z) can be factorized as

P = Ψ×Z, (2.4)

and Ψ can be interpreted as the unconditional attainable set

Ψ = {(X, Y ) | X can produce Y }. (2.5)
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However, Ψ has the interpretation in (2.5) if and only if (iff) Assumption 2.1 holds. The sep-

arability condition is very strong and restrictive. Under Assumption 2.1, the environmental

factors influence neither the shape nor the level of the boundary of the attainable set, and

the potential effect of Z on the production process is only through the distribution of the

inefficiencies. If the separability condition holds, it is meaningful to measure the efficiency

of a particular production plan (x, y) by its distance to the boundary of Ψ. For example,

under separability, the output-oriented Farrell efficiency score is given by

λ(x, y) = sup{λ > 0 | (x, λy) ∈ Ψ}. (2.6)

In this case, it is meaningful to analyze the behavior of λ(x, y) as a function of Z by using

an appropriate regression model (see Simar and Wilson, 2007, 2011 for details).4

Alternatively, if the separability condition does not hold, then we have a more general

situation where the factor Z may influence the level and the shape of the boundary of the

attainable sets (and may also influence the conditional density fXY |Z(x, y | z)). The following

assumption characterizes this situation explicitly.

Assumption 2.2. (Non Separability Assumption): Ψz 6= Ψ for some z ∈ Z, i.e., for some

z, z̃ ∈ Z, Ψz 6= Ψz̃.

Note that Assumptions 2.1 and 2.2 are mutually exclusive; one and only one holds in a given

situation.

Under Assumption 2.2, the efficiency measure in (2.6) is difficult to interpret; in fact,

it is economically meaningless because it does not measure the distance to the appropriate

boundary. If Assumption 2.2 holds, the set Ψ can still be defined as in (2.3), but for

benchmarking production units, the boundary of Ψ has little interest in this case because it

may be unattainable for some firms faced with unfavorable conditions represented described

by z. In such cases, the conditional measure

λ(x, y | z) = sup{λ > 0 | (x, λy) ∈ Ψz} (2.7)

4 We focus the presentation in this paper using output-oriented measures of efficiency such as the one
in (2.6), but of course efficiency can be measured in other directions as desired. See the recent surveys
by Simar and Wilson (2013, 2015) and the references cited therein for details. All of the results here are
easily generalized to input, hyperbolic, and directional distance functions after straight-forward (but perhaps
tedious) changes in notation.
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introduced by Cazals et al. (2002) and Daraio and Simar (2005) gives a measure of distance to

the appropriate, relevant boundary (i.e., the boundary that is attainable by firms operating

under conditions described by z).

The distinction between Assumptions 2.1 and 2.2, and their implications for how en-

vironmental variables in Z affect the production process, has often been neglected in the

literature where researchers analyze the effect of Z on λ(X, Y ) by estimating some regres-

sion of λ(X, Y ) on Z. Typically, starting with a sample of observations (Xi, Yi, Zi), DEA

or FDH estimators λ̂(Xi, Yi) computed in a first stage are regressed on Zi in a second-stage

analysis. Even if Assumption 2.1 holds, additional problems described in Simar and Wilson

(2007) remain to be solved in the second stage to obtain sensible inference. Theoretical

results on how to make inference in a second stage linear regression, when appropriate, is

described in detail by Kneip et al. (2015a). However, if Assumption 2.2 holds, the two-stage

approach is almost certain to lead to incorrect results and inferences about the effect of Z

on the production process. This explains why it is important, as noted by Simar and Wil-

son (2007)—indeed, essential—to test Assumption 2.1 against Assumption 2.2. If the test

rejects separability in favor of Assumption 2.2, then only a second-stage regression of the

conditional measure λ(X, Y | Z) on Z can be meaningful, as described for example in Bădin

et al. (2012).

In order to derive results below, the efficiency measures in (2.6) and (2.7) must be defined

in terms of components of our probability model. Cazals et al. (2002) show that under free

disposability (see Assumption 4.2 below) the output-oriented efficiency measure in (2.6) can

be written as

λ(x, y) = sup{λ > 0 | HXY (x, λy) > 0}, (2.8)

where HXY (x, y) = Pr(X ≤ x, Y ≥ y) is the probability of finding a firm dominating the

production unit operating at the level (x, y).5 This can be factored as Pr(X ≤ x) Pr(Y ≥
y | X ≤ x) = FX(x)SY |X(y | X ≤ x), where the latter conditional survival function is

nonstandard due to the the condition X ≤ x. For (x, y) such that x is in the interior of its

support (i.e., FX(x) > 0), the efficiency score can be written equivalently as

λ(x, y) = sup{λ > 0 | SY |X(λy | X ≤ x) > 0}. (2.9)

5 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
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Along the same lines, the conditional efficiency score can be expressed as

λ(x, y | z) = sup{λ > 0 | HXY |Z(x, λy | z) > 0}, (2.10)

where HXY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | Z = z) is the probability of finding a firm dom-

inating the production unit operating at the level (x, y) and facing environmental conditions

z and is the distribution function corresponding to the conditional density fXY |Z(x, y | z)

introduced earlier. Analogous to (2.9), the conditional efficiency measure can also be written

as

λ(x, y | z) = sup{λ > 0 | SY |X,Z(λy | X ≤ x, Z = z) > 0} (2.11)

while noting the different roles of X and Z in the conditioning of the conditional survival

function SY |X,Z(y | X ≤ x, Z = z) = Pr(Y ≥ y | X ≤ x, Z = z).

3 Non-parametric Efficiency Estimators

The literature on nonparametric statistical inference for efficiency scores is by now well-

developed. Here, we summarize the definitions and properties needed to test Assumption

2.1 versus Assumption 2.2. Consider a sample of identically, independently (iid) observations

Sn = {(Xi, Yi, Zi) | i = 1, . . . , n}. Following Deprins et al. (1984), the FDH of the sample

Sn is the set

Ψ̂FDH(Sn) =
⋃

(Xi,Yi)∈Sn

{
(x, y) ∈ Rp+q

+ | y ≤ Yi, x ≥ Xi

}
. (3.1)

The convex hull of Ψ̂FDH(Sn) given by

Ψ̂DEA(Sn) =
{

(x, y) ∈ Rp+q
+ |y ≤

n∑
i=1

ωiYi, x ≥
n∑
i=1

ωiXi,

n∑
i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}

(3.2)

provides the DEA estimator proposed by Farrell (1957) and popularized by Charnes et al.

(1978).6

6 Note that in (3.1)–(3.2), the data on Zi are ignored; only the first (p + q) components of the ordered
(p+ q + r)-tuples in Sn are used.
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The corresponding efficiency estimators are obtained by plugging these estimators into

the definition of λ(x, y) in (2.6). Using Ψ̂FDH(Sn) in the FDH case leads to

λ̂FDH(x, y | Sn) = max
i=1,..., n|Xi≤x

(
min

j=1, ..., p

(
Y j
i

yj

))
, (3.3)

where yj, Y j
i denote the jth elements of y (i.e., the input vector corresponding to the fixed

point of interest) and Yi (i.e., the output vector corresponding to the ith observation in

Sn). This is simply the plug-in version of (2.8), where HXY (x, y) is replaced by its empirical

version

ĤXY (x, y) = n−1

n∑
i=1

I(Xi ≤ x, Yi ≥ y), (3.4)

where I(A) is the indicator function equal 1 if A is true and 0 otherwise. In the DEA case,

replacing Ψ in (2.6) with Ψ̂DEA(Sn) from (3.2) gives the DEA efficiency estimator

λ̂DEA(x, y | Sn) = max
λ,ω1, ..., ωn

{
λ > 0 |λy ≤

n∑
i=1

ωiYi, x ≥
n∑
i=1

ωiXi,

n∑
i=1

ωi = 1, ωi ≥ 0 ∀ i = 1, . . . , n
}
. (3.5)

For the conditional efficiency scores we need to use a smoothed estimator of HXY |Z(x, y |
z) to plug in (2.10), which requires a vector of bandwidths for Z. Denoting this r-vector

of bandwidths by h, the conditional distribution function HXY |Z(x, y | z) is replaced by the

estimator

ĤXY |Z(x, y | z) =

∑n
i=1 I(Xi ≤ x, Yi ≥ y)Kh(Zi − z)∑n

i=1 Kh(Zi − z)
, (3.6)

where Kh(·) = (h1 . . . hr)
−1K ((Zi − z)/h) and the division between vectors is understood

to be component-wise. As explained in the literature (e.g., see Daraio and Simar, 2007b),

the kernel function K(·) must have bounded support (e.g., the Epanechnikov kernel).7 This

provides the estimator

λ̂FDH(x, y | z,Sn) = max
i∈I(z,h)

(
min

j=1, ..., p

(
Y j
i

yj

))
, (3.7)

7 An alternative would be, following Bădin et al. (2010), to plug a smoothed estimator of SY |X,Z(y | X ≤
x, Z = z) into (2.11), but as shown in Simar et al. (2015), if the two methods are asymptotically equivalent,
the latter provides a bandwidth for z that depends on x and the resulting efficiency estimate may not be
monotone decreasing in x in finite samples, as the target λ(x, y | z) is.
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where I(z, h) = {i | z − h ≤ Zi ≤ z + h}.
Alternatively, where one is willing to assume that the conditional attainable sets are

convex, Daraio and Simar (2007b) suggest a conditional DEA estimator of λ(x, y | z), namely

λ̂DEA(x, y | z,Sn) = max
λ,ω1, ..., ωn

{
λ > 0 | λy ≤

∑
i∈I(z,h)

ωiYi, x ≥
∑

i∈I(z,h)

ωiXi,

for some ωi ≥ 0 such that
∑

i∈I(z,h)

ωi = 1,
}
. (3.8)

Note that the conditional estimators in (3.7) and (3.8) are just localized version of the

unconditional FDH and DEA efficiency estimators given in (3.3) and (3.5), where the degree

of localization is controlled by the bandwidth in h. Practical aspects for choosing bandwidths

are discussed below in Section 5.3.

The properties of nonparametric efficiency estimators have been examined in a number

of papers in recent years. Park et al. (2000) and Daouia et al. (2015) derive the rate of

convergence and limiting distribution of the FDH efficiency estimator. Kneip et al. (1998)

derived the rate of convergence of the DEA estimator in (3.5), while Kneip et al. (2008)

derived its limiting distribution. Kneip et al. (2015a) provide results on the moments of both

FDH and DEA estimators. See Simar and Wilson (2013, 2015) for comprehensive surveys

of the literature. To summarize relevant results for the unconditional efficiency estimators,

under Assumptions 2.1, 4.1, 4.2 and some additional, appropriate regularity conditions (e.g.,

monotonicity, smoothness of the frontier and smoothness of the density of (X, Y )), for a

fixed point (x, y) in the interior of Ψ, as n→∞,

nκ
(
λ̂(x, y | Sn)− λ(x, y)

)
L−→ Qxy(·) (3.9)

where Qxy(·) is a regular, non-degenerate distribution with parameters depending on the

characteristics of the DGP and on (x, y), and κ determines the rate of convergence.8 For

the FDH estimator, κ = 1/(p + q) while for the DEA estimator, κ = 2/(p + q + 1). For

the FDH case, the limiting distribution belongs to the Weibull family, but with parameters

that are difficult to estimate. For the DEA case, the limiting distribution does not have a

closed form. Hence in either case, inference on individual efficiency scores requires bootstrap

8 Here and in the exposition that follows, we omit the subscripts “FDH” and “DEA” from the efficiency
estimator in order to describe results in a generic fashion, thereby conserving space.
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techniques. In the DEA case, Kneip et al. (2008) provide theoretical results for both a

smoothed bootstrap and for subsampling, while Kneip et al. (2011) and Simar and Wilson

(2011) provide details and methods for practical implementation. Subsampling can also be

used for inference in the FDH case; see Jeong and Simar (2006) and Simar and Wilson

(2011).

Jeong et al. (2010) show that the conditional version of the FDH and DEA efficiency

estimators share properties similar to their unconditional counterparts whenever the elements

of Z are continuous.9 The sample size n is replaced by the effective sample size used to build

the estimates, which is of order nh1 . . . hr, which we write hereafter as nhr for simplicity

(hoping the reader will indulge the abuse of notation, since the individual bandwidths may

differ). For a fixed point (x, y) in the interior of Ψz, as n→∞,

(nhr)κ
(
λ̂(x, y | z,Sn)− λ(x, y | z)

)
L−→ Qxy|z(·) (3.10)

where again Qxy|z(·) is a regular, non-degenerate limiting distribution analogous to the cor-

responding one for the unconditional case. The main argument in Jeong et al. (2010) relies

on regularity conditions discussed in the next section, but also on the property that there are

enough points in a neighborhood of z, which is obtained with the additional assumption that

fZ(z) is bounded away from zero at z and that if the bandwidth is going to zero, it should

not go too fast (see Jeong et al., 2010, Proposition 1; if h → 0, h should be of order n−α

with α < 1/r). We will return to this point in the discussion following Lemma 4.1 below.

4 New Results on Conditional Efficiency Estimators

4.1 Asymptotic Moments of Conditional Efficiency Estimators

As noted by Kneip et al. (2015a), availability of the asymptotic results for efficiency esti-

mated at a fixed point (x, y) is useful, but not sufficient for analyzing the behavior of statistics

that are function of FDH or DEA estimators evaluated at random points (Xi, Yi). Kneip

et al. (2015a) provide results on moments of unconditional efficiency estimators evaluated

at random points, as well as central limit theorems for means of such estimators. However,

similar results for conditional efficiency estimators have been unavailable until now. Such

9 We discuss below in Appendix C how discrete “environmental” variables can be handled. Otherwise,
except in Appendix C, we assume throughout that all elements of Z are continuous.
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results are important. As noted in the discussion in Section 2, whenever Assumption 2.2

(as opposed to Assumption 2.1) holds, unconditional efficiency estimators have no useful

interpretation and unconditional efficiency estimators must be used. In situations where 2.2

holds, the results obtained below will facilitate the use of conditional efficiency estimators,

allowing researchers to make inference regarding mean efficiency, or to test other hypotheses

regarding model structure analogous to the tests developed Kneip et al. (2015b) for uncondi-

tional efficiency estimators. Moreover, the results obtained in this Section will be used later

in Section 5 to develop tests of separability versus non-separability, i.e., tests of Assumption

2.1 versus Assumption 2.2.

In the discussion below, we denote the FDH and DEA efficiency estimators by λ̂(Xi, Yi |
Sn) to stress the fact that the estimator is to be evaluated at a random point (Xi, Yi).

Kneip et al. (2015a) prove that for the unconditional FDH and DEA estimators, under

some regularity conditions (see Kneip et al., 2015a for details) and as n→∞,

E
(
λ̂(Xi, Yi | Sn)− λ(Xi, Yi)

)
= Cn−κ +Rn,κ (4.1)

E

((
λ̂(Xi, Yi | Sn)− λ(Xi, Yi)

)2
)

= o
(
n−κ

)
, (4.2)

and ∣∣∣COV
(
λ̂(Xi, Yi | Sn)− λ(Xi, Yi), λ̂(Xj, Yj | Sn)− λ(Xj, Yj)

)∣∣∣ = o
(
n−1
)

(4.3)

for all i, j ∈ {1, . . . , n}, i 6= j and where Rn,k = o (n−κ). The values of the constant

C, the rate κ, and the remainder term Rn,κ depends on which estimator is used. For the

DEA estimator, κ = 2/(p + q + 1) and Rn,κ = O(n−3κ/2(log n)α1); for the FDH estimator,

κ = 1/(p+q) and Rn,κ = O(n−2κ(log n)α2). The values of αj > 1, j = 1, 2 are given in Kneip

et al. (2015a). For purposes of the results needed here, the log n factor contained in Rn,κ

does not play a role and can be ignored. The results outlined here are valid under a set of

corresponding regularity assumptions (see Theorems 3.1 and 3.3 in Kneip et al., 2015a).

Similar results are needed for the asymptotic moments of the conditional efficiency esti-

mators. To achieve this we follow the arguments of Jeong et al. (2010), who note that for a

given h, the conditional FDH and DEA estimators in (3.7) and (3.8) do not target λ(x, y | z),

but instead estimate

λh(x, y | z) = sup{λ > 0 | (x, y) ∈ Ψz,h}, (4.4)

11



with the conditional attainable set given by

Ψz,h = {(X, Y ) | X can produce Y, when |Z − z| ≤ h}

=
{

(x, y) ∈ Rp+q
+ | Hh

XY |Z(x, y | z) > 0
}

=
{

(x, y) ∈ Rp+q
+ | fhXY |Z(·, · | z) > 0

}
(4.5)

where Hh
XY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | z−h ≤ Z ≤ z+h) gives the probability of finding

a firm dominating the production unit operating at the level (x, y) and facing environmental

conditions Z in an h-neighborhood of z and fhXY |Z(·, · | z) is the corresponding conditional

density of (X, Y ) given |Z − z| ≤ h. Alternatively, (4.4) can be written as

λh(x, y | z) = sup
{
λ > 0 | Hh

XY |Z(x, λy | z) > 0
}
. (4.6)

Moreover, it is clear that Ψz,h =
⋃
|z̃−z|≤h Ψz̃.

Consequently, for all points (x, y) in the support of fXY |Z(x, y | z), the error of estimation

can be decomposed as

λ̂(x, y | z)− λ(x, y | z) = λ̂(x, y | z)− λh(x, y | z)︸ ︷︷ ︸
=∆1

+λh(x, y | z)− λ(x, y | z)︸ ︷︷ ︸
=∆2

, (4.7)

where the first difference (∆1) is due to the estimation error in the localized problem and

the second difference (∆2) is the non-random bias (≤ 0) introduced by the localization.

Some assumptions are needed to define a statistical model. The next three assumptions

are conditional analogs of standard assumptions made by Shephard (1970), Färe (1988),

Kneip et al. (2015a) and others.

Assumption 4.1. For all z ∈ Z, Ψz and Ψz,h are closed.

Assumption 4.2. For all z ∈ Z, both inputs and outputs are strongly disposable; i.e., for

any z ∈ Z, x̃ ≥ x and 0 ≤ ỹ ≤ y, if (x, y) ∈ Ψz then (x̃, y) ∈ Ψz and (x, ỹ) ∈ Ψz. Similarly,

if (x, y) ∈ Ψz,h then (x̃, y) ∈ Ψz,h and (x, ỹ) ∈ Ψz,h.

Assumption 4.2 corresponds to Assumption 1F in Jeong et al. (2010), and amounts to a

regularity condition on the conditional attainable sets justifying the use of the localized

versions of the FDH and DEA estimators. The assumption imposes weak monotonicity
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on the frontier in the space of inputs and outputs for a given z ∈ Z, and is standard in

micro-economic theory of the firm.

When the DEA estimators are used, the following assumption (corresponding to Assump-

tion 1D in Jeong et al., 2010) is also needed.

Assumption 4.3. For all z ∈ Z, Ψz and Ψz,h are convex in Rp+q
+ .

The next assumption concerns the regularity of the density of Z and of the conditional

density of (X, Y ) given Z = z, as a function of z in particular near the efficient boundary of

Ψz (see Assumption 6 in Jeong et al., 2010).

Assumption 4.4. Z has a continuous density fZ(·) such that for all z ∈ Z fZ(z) is bounded

away from zero. Moreover the conditional density fXY |Z(·, · | z) is continuous in z and is

strictly positive in a neighborhood of the boundary points.

A number of additional assumptions are needed to complete the statistical model and

to permit statistical analysis of the conditional estimators that have been introduced above

as well as the test statistics introduced below. These assumptions are given in Appenidx

A. Depending on the estimators that are used in a particular situation (i.e., either DEA or

FDH), only a subset of the assumptions listed in Appendix A are required.

Our first result establishes smoothness of the potential influence of z on the frontier of

Ψz. The result is needed in order to control the bias due to the localization, and is expressed

in terms of a continuity condition of λ(·, · | z) as a function of z.

Lemma 4.1. Under either Assumption A.5 (for FDH case) or under Assumption A.6 (for

the DEA case), For all (x, y) in the support of (X, Y ),

λh(x, y | z)− λ(x, y | z) = O(h) (4.8)

as h→ 0.

Note that if Z is separable and has no effect on the frontier and (4.8) is trivially satisfied

for all h. As noted in Bădin et al. (2015), it is easy to show that if h ∝ n−γ with 1/r > γ >

1/(r + κ−1), the difference in (4.8) will be o ((nhr)−κ). We need γ < r−1 to ensure there are

enough observations in the h-neighborhood of z (see Proposition 1 in Jeong et al., 2010).
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Since we cannot find an explicit expression for the second component ∆2 in (4.7), and since

the Weibull distribution linked to the first component ∆1 contains unknown parameters, the

best that can be done is to determine the order of an optimal bandwidth by balancing the

order of the two error terms which leads to h ∝ n−1/(r+κ−1), and then to take, as usual in

nonparametric smoothing techniques, a smaller bandwidth to eliminate the bias term due to

the localization as suggested in Jeong et al. (2010, Assumption 2). As expected, the order

of the optimal bandwidth depends on the dimensions of Z as well as of X and Y . Below, in

Section 5.3, we show how to select bandwidths h of appropriate order in applied work (see

also the discussions in Bădin et al., 2015).

The following result provides moments for the conditional efficiency estimators.

Theorem 4.1. Let nh = min(n, nhr). Suppose Assumptions 4.1, 4.2, 4.4, A.1, A.2, A.3

and A.4 hold. Then under Assumption A.5 for FDH case, or under Assumptions 4.3 and

A.6 for the DEA case, as n→∞,

E
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)
= Ccn

−κ
h +Rc,nh,κ, (4.9)

where Rc,nh,κ = o
(
n−κh

)
,

E

((
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)2
)

= o
(
n−κh

)
, (4.10)

and∣∣COV
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi), λ̂(Xj, Yj | Zj,Sn)− λh(Xj, Yj | Zj)

) ∣∣ = o
(
n−1
h

)
(4.11)

for all i, j ∈ {1, . . . , n}, i 6= j. In addition, for the conditional DEA estimator Rc,nh,κ =

O(n
−3κ/2
h (log nh)

α1) and for the conditional FDH estimator Rc,nh,κ = O(n−2κ
h (log nh)

α2).

As will be seen, the log(nh) factors appearing in the expressions for Rc,nh,κ do not play a

role in the results that are derived below. The results here should not be surprising since the

number of observations used to estimate the moments is reduced by the bandwidths; e.g., the

rates nκ for the unconditional estimators are reduced to nκh for the conditional estimators.

4.2 Central Limit Theorems for Conditional Efficiency Estimators

Consider the sample means

µ̂n = n−1

n∑
i=1

λ̂(Xi, Yi | Sn) (4.12)
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and

µ̂c,n = n−1

n∑
i=1

λ̂(Xi, Yi | Zi,Sn) (4.13)

of unconditional and conditional efficiency estimators. The efficiency estimators in (4.12)

and (4.13) could be either FDH or DEA estimators; differences between the two are noted

below when relevant. In this subsection, we use the properties of moments of the conditional

efficiency estimators derived in Section 4.1 to develop CLTs for means of conditional efficiency

estimators.

For the case of means of unconditional efficiency estimators, Theorem 4.1 of Kneip et al.

(2015a) establishes that

√
n
(
µ̂n − µ− Cn−κ −Rn,κ

) L−→ N(0, σ2) (4.14)

as n → ∞, where µ = E (λ(X, Y )) and σ2 = VAR (λ(X, Y )). The theorem also establishes

that σ̂2 = n−1
∑n

i=1

(
λ̂(Xi, Yi | Sn)− µ̂n

)2

is a consistent estimator of σ2. Conventional

CLTs (e.g., the Lindeberg-Feller CLT) do not account for the bias term Cn−κ, and hence are

invalid for means of unconditional efficiency estimators unless unless κ > 1/2. In the case of

FDH estimators, κ > 1/2 iff (p+q) ≤ 1; in the case of DEA estimators, κ > 1/2 iff (p+q) ≤ 2.

If κ = 1/2, the bias is stable as n → ∞, but if κ < 1/2, the bias explodes asymptotically.

Kneip et al. (2015a) solve this problem by incorporating a generalized jackknife estimate of

the bias and considering, when needed, test statistics based on averages over a subsample

of observations. We use a similar approach below, although with the conditional efficiency

estimators, the problem is rather more complicated than the one in Kneip et al. (2015a) due

to the localization in the conditional efficiency estimators.

Define

µhc = E
(
λh(X, Y | Z)

)
=

∫
P
λh(x, y | z)fXY Z(x, y, z) dx dy dz (4.15)

and

σ2,h
c = VAR

(
λh(X, Y | Z)

)
=

∫
P

(
λh(x, y | z)− µhc

)2
fXY Z(x, y, z) dx dy dz. (4.16)

These are the localized analogs of µ and σ2. Next, let µc,n = n−1
∑n

i=1 λ
h(Xi, Yi | Zi).

Although µc,n is not observed, by the Lindeberg-Feller CLT

√
n
(
µc,n − µhc

) L−→ N(0, σ2,h
c ) (4.17)
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under mild assumptions.

An obvious solution might be to estimate µhc by µ̂c,n, but this proves problematic. To

see this, define ζn = µ̂c,n − µc,n. It is clear that E(ζn) = Ccn
−κ
h + Rc,nh,κ by (4.9), and

VAR(ζn) = o
(
n−1
h

)
due to (4.10) and (4.11). It follows that ζn − E(ζn) = op

(
n
−1/2
h

)
. Now

define µ̃c,n = E (µ̂c,n). Then

µ̃c,n = µhc + Ccn
−κ
h +Rc,nh,κ, (4.18)

and it follows that

µ̂c,n − µ̃c,n = µc,n − µhc + ζn − E(ζn),

= µc,n − µhc + op

(
n
−1/2
h

)
. (4.19)

Clearly
√
n(µ̂c,n − µ̃c,n) diverges as n → ∞ since although

√
n(µc,n − µhc )

L−→ N(0, σ2,h
c ),

n1/2op

(
n
−1/2
h

)
diverges if nh < n since nh = nhr = n1−γr with 1/(r + κ−1) < γ < 1/r.

Moreover, unless Z is irrelevant, nh < n for an optimal choice of h. Changing the scaling

and considering na(µ̂c,n − µ̃c,n) for some a such that 0 < a < (1 − γr)/2 < 1/2 does

not work because the limiting distribution collapses to a point mass at zero in this case.

Consequently, it seems there is no way to develop a CLT for means of conditional efficiency

estimators analogous to the one in (4.14) for means of unconditional efficiency estimators.

The following result will be useful for the results developed below.

Lemma 4.2. Under the assumptions Theorem 4.1, for κ = 1/(p+ q) in the case of the FDH

estimator and for κ = 2/(p+ q + 2) in the case of the DEA estimator,

E
(
λ̂(Xi, Yi | Zi,Sn)

)
= µhc + Ccn

−κ
h +Rc,nh,κ (4.20)

and

VAR
(
λ̂(Xi, Yi | Zi,Sn)

)
= σ2,h

c + o
(
n
−κ/2
h

)
, (4.21)

where Rc,nh,κ = o(n−κh ).

Next, suppose nh < n (i.e., Z is relevant), and consider a random subsample S∗nh from

Sn of size nh where for simplicity we use the optimal rates for the bandwidths so that

nh = bn1/(κr+1)c where bac denotes floor(a), i.e., the integer part of a. Define

µ̂c,nh =
1

nh

∑
{(Xi,Yi,Zi)∈S∗nh}

λ̂(Xi, Yi | Zi,Sn), (4.22)
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and let µ̃c,nh = E(µ̂c,nh). Note that the estimators on the right-hand side of (4.22) are

computed relative to the full sample Sn, but the summation is over elements of the sub-

sample S∗nh .

The next result provides our first CLT for means of conditional efficiency estimators.

Theorem 4.2. Under the assumptions of Theorem 4.1, the following conditions hold

as n → ∞ with κ = 1/(p + q) for the FDH case and κ = 2/(p + q + 1) for

the DEA case: (i) µ̃c,nh = µhc + Ccn
−κ
h + Rc,nh,κ; (ii) µ̂c,nh − µ̃c,nh = µc,nh − µhc +

o
(
n
−1/2
h

)
; (iii)

√
nh
(
µ̂c,nh − µhc − Ccn−κh −Rc,nh,κ

) L−→ N(0, σ2,h
c ); and (iv) σ̂2,h

c,n =

n−1
∑n

i=1

[
λ̂(Xi, Yi | Zi,Sn)− µ̂c,n

]2 p−→ σ2,h
c .

There are no cases where standard CLTs with rate
√
n may be used with means of

conditional efficiency estimators, unless Z is irrelevant with respect to the support of (X, Y )

(i.e., unless Assumption 2.1 holds). Theorem 4.2 provides a CLT for means of conditional

efficiency estimators, but the convergence rate is
√
nh as opposed to

√
n, and the result is

of practical use only if κ > 1/2. If κ = 1/2, the bias term Ccn
−κ
h does not vanish, and if

κ < 1/2, the bias term explodes as n→∞. These cases are addressed below.

4.3 Bias corrections and subsample averaging

For the unconditional case, all necessary details can be found in Kneip et al. (2015a, Theo-

rems 4.3 and 4.4). Here, we derive corresponding results for conditional efficiency estimators.

Assume the observations in Sn are randomly ordered, and to simplify notation, assume n is

even. Let S(1)
n/2 denote the set of the first n/2 observations from Sn, and let S(2)

n/2 denote the

set of remaining n/2 observations from Sn.10 Next, for j ∈ {1, 2} define

µ̂jc,n/2 = (n/2)−1
∑

(Xi,Yi,Zi)∈S
(j)
n/2

λ̂(Xi, Yi | Zi,S(j)
n/2). (4.23)

Let µ̃c,n/2 = E
(
µ̂1
c,n/2

)
= E

(
µ̂2
c,n/2

)
and define

µjc,n/2 =
2

n

∑
(Xi,Yi,Zi)∈S

(j)
n/2

λh(Xi, Yi | Zi). (4.24)

10 If n is odd, S(1)n/2 can contain the first bn/2c observations and S(2)n/2 can contain remaining n − bn/2c
observations from Sn. The fact that S(2)n/2 contains one more observation than S(1)n/2 makes no difference

asymptotically.
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By (4.19),

µ̂jc,n/2 − µ̃c,n/2 = µjc,n/2 − µ
h
c + op(n

−1/2
h ) (4.25)

for j ∈ {1, 2}. Now define µ̂∗c,n/2 =
(
µ̂1
c,n/2 + µ̂2

c,n/2

)
/2. Clearly,

µ̂∗c,n/2 − µ̃c,n/2 = µc,n − µhc + op(n
−1/2
h ). (4.26)

Subtracting (4.19) from (4.26) and re-arranging terms yields

µ̂∗c,n/2 − µ̂c,n = µ̃c,n/2 − µ̃c,n + op(n
−1/2
h ). (4.27)

Since µ̃c,n/2 − µ̃c,n = Cc(2
κ − 1)n−κh +Rc,nh,κ we obtain an estimator

B̃c
κ,nh

= (2κ − 1)−1
(
µ̂∗c,n/2 − µ̂c,n

)
= Ccn

−κ
h +Rc,nh,κ + op(n

−1/2
h ), (4.28)

of the leading bias term Ccn
−κ
h in Theorem 4.2, part (iii), noting that the remainder term

Rc,nh,κ = o(n−κh ) can be neglected.

Of course, for n even there are
(
n
n/2

)
possible splits of the sample Sn. As noted by

Kneip et al. (2015b), the variation in B̃c
κ,nh

can be reduced by repeating the above steps

K �
(
n
n/2

)
times, shuffling the observations before each split of Sn, and then averaging the

bias estimates. This yields a generalized jackknife estimate

B̂c
κ,nh

= K−1

k∑
k=1

B̃c
κ,nh,k

, (4.29)

where B̃c
κ,nh,k

represents the value computed from (4.28) using the kth sample split.

Combining results yields the following:

Theorem 4.3. Under the Assumptions of Theorem 4.1, with κ = 1/(p + q) ≥ 1/3 in the

FDH case or κ = 2/(p+ q + 1) ≥ 2/5 in the DEA case,

√
nh

(
µ̂c,nh − µhc − B̂c

κ,nh
−Rc,nh,κ

)
L−→ N(0, σ2,h

c ) (4.30)

as n→∞.

If κ is smaller than 1/3 in the FDH case, or 2/5 in the DEA case, then the remainder term

does not vanish fast enough and
√
nhRc,nh,κ →∞ as n→∞. In such cases, the approach of
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averaging efficiency scores over a subsample of smaller size as in Kneip et al. (2015a) must

be employed.

Define nh,κ = bn2κ
h c so that

√
nh,κ < n

1/2
h when κ < 1/2. Then define

µ̂c,nh,κ =
1

nh,κ

∑
(Xi,Yi,Zi)∈S∗∗nh,κ

λ̂(Xi, Yi | Zi,Sn) (4.31)

where S∗∗nh,κ is a random subsample of size nh,κ from Sn.

Theorem 4.4. Under the Assumptions of Theorem 4.1, with κ = 1/(p+ q) in the FDH case

or κ = 2/(p+ q + 1) in the DEA case,

√
nh,κ

(
µ̂c,nh,κ − µhc − B̂c

κ,nh
−Rc,nh,κ

)
L−→ N(0, σ2,h

c ), (4.32)

as n→∞ whenever κ < 1/2.

Remark 4.1. Kneip et al. (2015a) note that for selected values of p + q, two different

CLTs are available for means of unconditional efficiency estimators. The same is true for

the conditional cases. With the DEA estimator when p + q = 4 (so that κ = 2/5), using

Theorem 4.3 neglects a term
√
nhRc,nh,κ = O

(
n
−1/10
h

)
, whereas using Theorem 4.4, and an

average over a subsample we neglect a term
√
nh,κRc,nh,κ = O

(
n
−1/5
h

)
and we might expect

a better approximation. For the conditional FDH estimator when p + q = 3 (and hence

κ = 1/3), using Theorem 4.3 implies an error of order O
(
n
−1/6
h

)
, and using an average

over a subsample implies, by Theorem 4.4, an error of the smaller order O
(
n
−1/3
h

)
.

5 Testing Separability

5.1 Basic Ideas

The goal is to test the null hypothesis of separability (Assumption 2.1) against its complement

(Assumption 2.2). The idea for building a test statistics is to compare the conditional and

unconditional efficiency scores using relevant statistics that are functions of λ̂(Xi, Yi | Sn) and

λ̂(Xi, Yi | Zi,Sn) for i = 1, . . . , n. Note that under Assumption 2.1, λ(X, Y ) = λ(X, Y | Z)

with probability one, even if Z may influence the distribution of the inefficiencies inside the

attainable set, and the two estimators converge to the same object. But under Assumption

2.2, the conditional attainable sets Ψz are different and the two estimators converge to
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different objects. Moreover, under Assumption 2.2, λ(X, Y ) ≥ λ(X, Y | Z) with strict

inequality holding for some (X, Y, Z) ∈ P .

The approach developed here is similar to those developed in Kneip et al. (2015b) for

testing constant versus variable returns to scale or for testing convexity versus non-convexity

of the attainable set. Recall the sample means in (4.12) and (4.13), where the efficiency esti-

mators on the right-hand sides of (4.12) and (4.13) could be either FDH or DEA estimators.

For purposes of the following discussion, suppose the same type of estimators (FDH or DEA)

are used in both (4.12) and (4.13). By construction (µ̂n− µ̂c,n) ≥ 0, and the null hypothesis

of separability should be rejected if this difference is “too big”. However, several problems

remain to be solved, requiring some preliminary steps to adapt the existing results to the

setup here. We demonstrate below in Section 6 that the procedure works well in practice

with finite sample sizes.

5.2 Test Statistics

As noted above, in order to test the hypothesis that Z is separable, i.e., to test

H0 : Assumption 2.1 holds versus H1 : Assumption 2.2 holds, one might consider the dif-

ference between estimators of µ = E(λ(X, Y )) and µhc = E(λh(X, Y | Z)), which under the

null estimate the same quantity. When the null is true, λ(X, Y ) ≡ λh(X, Y |Z) with proba-

bility one, for all values of h. Under the null, the two estimators µ̂n and µ̂c,nh have (when

appropriately rescaled, depending on the value of κ), an asymptotic normal distribution with

mean µ = µhc and variance σ2 = σ2,h
c for all h, and so both are consistent estimators of the

common µ. As explained in the preceding section, we can also, in both cases, correct for the

inherent bias of the estimators.

However, the properties of (µ̂n−µ̂c,nh) (and their bias-corrected versions) are complicated

due to the covariance between the two estimators, and this covariance is hard to estimate.

Even in the limiting case where h is big enough so that nh = n, it is clear that under the

null, the asymptotic distribution of (µ̂n − µ̂c,nh) will be degenerate with mass one at zero.11

The solution used here is analogous to the method used in the test for convexity of

Ψ described by Kneip et al. (2015b). In particular, the sample Sn can be split into two

11 As observed by Hall et al. (2004), if Z is irrelevant in the production process (independent of (X,Y )),
the optimal value of the bandwidth is infinity. This limiting case is more restrictive that the hypothesis to
be tested here, but may arise in practice.
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independent, parts S1,n1 , S2,n2 such that n1 = bn/2c, n2 = n − n1, S1,n1

⋃
S2,n2 = Sn, and

S1,n1

⋂
S2,n2 = ∅. The n1 observations in S1,n1 are used for the unconditional estimates,

while the n2 observations in S2,n2 are used for the conditional estimates.12

After splitting the sample, compute the estimators

µ̂n1 = n−1
1

∑
(Xi,Yi)∈S1,n1

λ̂(Xi, Yi | S1,n1) (5.1)

and

µ̂c,n2,h
= n−1

2,h

∑
(Xi,Yi,Zi)∈S∗2,n2,h

λ̂(Xi, Yi | Zi,S2,n2), (5.2)

where as above in Section 4.2, S∗2,n2,h
in (5.2), is a random subsample from S2,n2 of size

n2,h = min(n2, n2h
r). Consistent estimators of the variances are given in the two independent

samples by

σ̂2
n1

= n−1
1

∑
(Xi,Yi)∈S1,n1

(
λ̂(Xi, Yi | S1,n1)− µ̂n1

)2

(5.3)

and

σ̂2,h
c,n2

= n−1
2

∑
(Xi,Yi,Zi)∈S2,n2

(
λ̂(Xi, Yi | Zi,S2,n2)− µ̂c,n2

)2

(5.4)

(respectively), where the full (sub)samples are used to estimate the variances.

The estimators of bias corresponding to (4.28) for a single split of each subsample for the

unconditional and conditional cases are given by

B̃κ,n1 = (2κ − 1)−1
(
µ̂∗n1/2

− µ̂n1

)
(5.5)

and

B̃c
κ,n2,h

= (2κ − 1)−1
(
µ̂∗c,n2/2

− µ̂c,n2

)
. (5.6)

12 Kneip et al. (2015b) proposed splitting the sample unevenly to account for the difference in the conver-
gence rates between the (unconditional) DEA and FDH estimators used in their convexity test, giving more
observations to the subsample used to compute FDH estimates than to the subsample used to compute DEA
estimates. Recall that the unconditional efficiency estimators converge at rate nκ, while the conditional
efficiency estimators converge at rate (nhr)κ. The optimal bandwidths are of order n−κ/(rκ+1), giving a
rate of nκ/(rκ+1) for the conditional efficiency estimators. Using the logic of Kneip et al. (2015b), The full
sample Sn can be split so that the estimators in the two subsamples achieve the same rate of convergence

by setting nκ1 = n
κ/(rκ+1)
2 . This gives n1 = n

1/(rκ+1)
2 . Values of n1, n2 are obtained by finding the root η0

in n − η − η1/(rκ+1) = 0 and setting n2 = bη0c and n1 = n − n2. However, this will often result in too few
observations in the first subsample to obtain meaningful results. For example, if p = q = r = 1 and n = 200,
following the reasoning above would lead to n1 = 22 and n2 = 178.
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For the unconditional case in (5.5), µ̂∗n1/2
=
(
µ̂1
n1/2

+ µ̂2
n1/2

)
/2, and for j ∈ {1, 2},

µ̂jn1/2
= (n1/2)−1

∑
(Xi,Yi,Zi)∈S

(j)
n1/2

λ̂(Xi, Yi | S(j)
n1/2

), where S(j)
n1/2

is the jth part of a ran-

dom split of the full (sub)sample Sn1 . Details are given in Kneip et al. (2015a). For the

conditional case in (5.6), µ̂∗c,n2/2
=
(
µ̂1
c,n2/2

+ µ̂2
c,n2/2

)
/2, and for j ∈ {1, 2}, µ̂jc,n2/2

=

(n2/2)−1
∑

(Xi,Yi,Zi)∈S
(j)
n2/2

λ̂(Xi, Yi | Zi,S(j)
n2/2

), where S(j)
n2/2

is the jth part of a random split

of the full (sub)sample Sn2 . The bias estimates in (5.5)–(5.6) can then be averaged over

K random splits of the two subsamples Sn1 and Sn2 to obtain bias estimates B̂κ,n1 for the

unconditional case and B̂c
κ,n2,h

for the conditional case.

For small values of (p + q) such that κ ≥ 1/3 in the FDH case or κ ≥ 2/5 when DEA

estimators are used, Theorem 4.3 and Kneip et al. (2015a, Theorem 4.3) can be used to con-

struct an asymptotically normal test statistic for testing the null hypothesis of separability.

In particular, since our bias-corrected sample means are independent due to splitting the

original sample into independent parts, and since two sequences of independent variables

each with normal limiting distributions have a joint bivariate normal limiting distribution

with independent marginals, if follows that for the values of (p+ q) given above

T1,n =

(
µ̂n1 − µ̂c,n2,h

)
−
(
B̂κ,n1 − B̂c

κ,n2,h

)
√

σ̂2
n1

n1
+

σ̂2,h
c,n2

n2,h

L−→ N(0, 1) (5.7)

under the null. Alternatively, for κ < 1/2, similar reasoning with Theorem 4.4 and Kneip

et al. (2015a, Theorem 4.4) leads to

T2,n =

(
µ̂n1,κ − µ̂c,n2,h,κ

)
−
(
B̂κ,n1 − B̂c

κ,n2,h

)
√

σ̂2
n1

n1,κ
+

σ̂2,h
c,n2

n2,h,κ

L−→ N(0, 1) (5.8)

under the null, where n1,κ = bn2κ
1 c with µ̂n1,κ = n−1

1,κ

∑
(Xi,Yi)∈S∗n1,κ

λ̂(Xi, Yi | Sn1), and S∗n1,κ
is

a random subsample of size n1,κ taken from Sn1 (see Kneip et al., 2015a for details). For the

conditional part, we have similarly and as described in the preceding section, n2,h,κ = [n2κ
2,h],

with µ̂c,n2,h,κ
= n−1

2,h,κ

∑
(Xi,Yi,Zi)∈S∗n2,h,κ

λ̂(Xi, Yi | Zi,Sn2) where S∗n2,h,κ
is a random subsample

of size n2,h,κ from Sn2 .

Given a random sample Sn, one can compute values T̂1,n or T̂2,n depending on the value

of (p+ q). From the discussion in Section 5.1, it is clear that a one-sided test is appropriate;
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hence the null should be rejected whenever null whenever 1−Φ(T̂1,n) or 1−Φ(T̂2,n) is less than

the desired test size, e.g., .1, .05, or .01, where Φ(·) denotes the standard normal distribution

function.

5.3 Bandwidth Optimization

As noted above, explicit expressions for the two components ∆1 and ∆2 of the estimation

error in (4.7) are not available. Consequently, the best that can be done is to determine

the order of optimal bandwidths by balancing the order of the two error terms yielding

h ∝ n−1/(r+κ−1) as explained earlier. Although the order by itself is of little help in appli-

cations, following the suggestion of Jeong et al. (2010) one can select optimal bandwidths

for estimating the conditional distribution HXY |Z(x, y | z) by ĤXY |Z(x, y | z) given in (3.6).

This can be accomplished using the least-squares cross-validation (LSCV) procedure de-

scribed by Li et al. (2013), smoothing only on the r conditioning variables in Z, and not the

dependent variables (X, Y ). Note that, as proved by Hall et al. (2004), if one component

of Z is irrelevant, then the corresponding bandwidth obtained by LSCV will converge to

infinity as n→∞; but for relevant components of Z, LSCV gives a bandwidth with optimal

rate h ∝ n−1/(r+4) for estimating HXY |Z(x, y | z).

Recall that if Z is relevant, the optimal bandwidths for estimating λ(x, y | z) have a differ-

ent order (h ∝ n−1/(r+κ−1), as opposed to h ∝ n−1/(r+4)) due to the presence of the localizing

bias. In practice, one can optimize bandwidths using LSCV, and then correct the resulting

bandwidths by multiplying by the scaling factor n1/(r+4)n−1/(r+κ−1) = n(κ−1−4)/((r+4)(r+κ−1)

to obtain bandwidths h with optimal order for estimating λ(x, y | z). To avoid numerical

difficulties, for the jth element Zj
i of Zi, j = 1, . . . , r, i = 1, . . . , n, one should in practice

bound the LSCV search between a small factor, say 0.01, times the normal reference rule

bandwidth (i.e., 0.01×1.06σ̂jn
1/5, where σ̂j is the sample standard deviation of the observa-

tions Zj
i , j = 1, . . . , n) and 2 times the difference (maxi(Z

j
i )−mini(Z

j
i )). If Zj

i is irrelevant,

LSCV will drive the jth element hj of h to its upper bound; using a bounded kernel (e.g.,

the Epanechnikov kernel), no smoothing will be done in the jth dimension of Z when this

happens. In such cases, there is no need to apply the scaling factor above to hj.
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5.4 Replicability

It is important to note that tests based on the statistics defined in (5.7) and (5.8) are valid

for any split of a given sample of size n into mutually exclusive, collectively exhaustive

subsamples of sizes n1 and n2. However, there are n!/((n1!)(n2!)) possible splits (e.g., for

n = 100 and n1 = bn1c, n2 = n − n2 there are more than 1025 possible splits), and results

may vary over these splits. This means that two researchers using the same data might reach

different results by using different splits of the sample. Worse, a naive or dishonest researcher

might be tempted to split the sample repeatedly until the desired result is obtained.

It does not appear possible to combine information across many splits of a given sample

and to obtain meaningful results. One might split the sample randomly, say 100 or 1,000

times, and then average the resulting values of the test statistic from (5.7) or (5.8), but

the values are not independent across the different sample splits, and the covariance is of

complicated and unknown form.

In order to make results of our tests repeatable and verifiable, we propose a deterministic

rule to randomly split n observations on (p + q + r) variables. Our rule is expressed as an

algorithm, consisting of the following steps.

1. Arrange data in an n by (p + q + r) matrix; the ordering of the rows and columns is

not relevant. Divide the values in each column by the standard deviation of all the

values in the column.

2. Compute the sum of values in each column. Create character strings by writing the

sums in format E18.10 with UTF-8 encoding.

3. Use Secure Hash Algorithm-2 to create an SHA-256 hash of the character strings

created in step 2; each hash is a string of characters 0–9, A–H with UTF-8 encoding.

4. Sort the hash strings created in step 3 in ascending order, and use this sorting to sort

the columns of the data matrix.

5. For each row in the column-sorted matrix, create a character string of the row’s (p +

q + r) values by writing in format aE18.10 where a is the value of (p+ q + r).

6. Use Secure Hash Algorithm-2 to create an SHA-256 hash with UTF-8 encoding of the

character strings created in step 5.

7. Sort the hash strings created in step 6 in ascending order, and use this sorting to sort

the rows of the column-sorted data matrix obtained in step 4.
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8. Restore the original ordering of the columns using information saved from step 4.

9. Multiply each column of the row-sorted data matrix obtained in step 8 by the corre-

sponding standard deviations used in step 1.

10. Use the first n1 rows of the row-sorted data matrix obtained in step 9 to form subsample

S1,n1 , and use the remaining rows to form subsample S2,n2 .

Following this algorithm ensures that the final ordering of the observations does not

depend on the initial ordering, nor on any choice made by the researcher provided values

in the data are not tampered with. Using UTF-8 encoding ensures that character data

will be encoded the same way by researchers working anywhere in the world. Secure Hash

Algorithm-2 is described by National Institute of Standards and Technology (2015) and

is based on character representations of the data, and hence creates orderings that can

be regarded as pseudo-random, unique, and independent of numerical values in the data

matrix. The widely used R programming language (R Development Core Team, 2008) with

the ‘digest’ package (Eddelbuettel, 2016) can be used to compute the SHA-256 hashes. R

code implementing the algorithm as a function is given in Appendix D, along with some

examples illustrating usage of the code.

6 Monte Carlo Evidence

We perform Monte Carlo experiments to gauge the performance of the separability test

described in Section 5. In each experiment, we simulate n ∈ {100, 200, 1000} obser-

vations with r ∈ {1, 2, 3} and (p, q) ∈ {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3)} so that

(p + q) ∈ {2, 3, 4, 5, 6}. To generate an observation (Xi, Y,, Zi), we first generate a

(p + q)-tuple v =
[
v′p, v

′
q

]′
uniformly distributed on a unit sphere centered at the origin

in Rp+q, where vp and vq are column vectors of length p and q, respectively. We then set

X = (1 − |vp|) and Y eff = |vq| to obtain fully efficient levels of inputs and outputs. Next,

we simulate an (r × 1) vector Z of independent draws from the uniform distribution on

(0, 2), and a draw u from the half-normal distribution N+(0, 1). Then we computed “ob-

served” output levels Y = Y eff [1 + δ(Z ′β)] /(1 + u) where β is an (r × 1) vector of ones,

δ ∈ {0, 0.1, . . . , 0.9, 1.0, 1.5, 2.0} and (1 + u) ≥ 1 is the random inefficiency. Repeating

this for i = 1, 2, . . . , n results in a simulated random sample Sn = {(Xi, Yi, Zi)}ni=1. By

construction, when δ = 0, Z plays no role and Assumption 2.1 (separability of Z) holds.
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Otherwise, when δ > 0, separability does not hold and instead Assumption 2.2 holds.13

The results of our experiments using DEA estimators with r ∈ {1, 2} are shown in Tables

1–2. Table 1 gives results for tests for separability with r = 1, while Table E.3 gives results

for the corresponding experiments where r = 2. Both tables contain 3 groups of results

corresponding to 100, 200, or 1,000 observations. Within each of these groups, we show, for

various values of δ, rejection rates for the separability tests for nominal test sizes of .10, .05,

and .01 with (p+ q) ranging from 2 to 6. The first row in each group corresponds to δ = 0,

where the null hypothesis is true; the remaining rows give rejection rates with increasing

departures from the null, corresponding to increasing values of δ. Additional results from

experiments with the DEA estimator and r = 3 are presented in Table E.1 in Appendix E.

Results from the same experiments but using the FDH estimator, for r ∈ {1, 2, 3} are given

in Tables E.2–E.4 in Appendix E.

Overall, the results in Tables 1–2 (and in Table E.1) confirm that the tests tend to reject

the null hypothesis of separability at increasing rates both (i) with increasing departure from

the null and (ii) as sample size increases. For each r ∈ {1, 2, 3}, rejection rates when δ = 0

(i.e., the realized sizes of the tests) are larger than the nominal sizes (.1, .05, and .01) when

n = 100. With n = 200, the realized test sizes are smaller than with n = 100, and with

n = 1, 000 the realized sizes are much closer to the corresponding nominal sizes. Note also

that realized sizes tend to increase (for constant r and holding n fixed at 100 or 200) as

the number of input-output dimensions (p + q) increases from 2 to 4, but then improves

when (p+ q) increases from 4 to 5. and T1,n is replaced by T2,n. Recalling the discussion in

Sections 4 and 5, the statistic T2,n defined in (5.8) uses a subsample of efficiency estimates

to compute the sample mean of unconditional efficiency estimates, and a smaller subsample

of estimates to compute the sample mean of conditional efficiency estimates than is used for

13 Given a (p + q)-vector v of iid draws from the N(0, 1) distribution, u = v(v′v)−1/2 is a vector of
coordinates from a uniform distribution on the unit sphere in Rp+q (Muller, 1959; Marsaglia, 1972). Setting
Y = |uq| amounts to reflecting any point that lies below one or more of the up axes around those axes.
Similarly, −|up| reflects around the uq axes, but in negative directions; adding 1 shifts the resulting points
to the positive orthant in Rp+q. This amounts to generating uniform points on a unit sphere centered
at
[
1′p,0

′
q

]′
, reflecting the points so that all lie on the part of the sphere in the unit hypercube with in

the positive orthant with a corner at the origin. We then projecting points away from this “frontier”
in the output directions. We use the massively parallel Palmetto Cluster at Clemson University for our
experiments, generating pseudo-random uniform deviates using independent Mersenne Twister generators
on each processor; see Matsumoto and Nishimura (2000) for details. Standard normal deviates are generated
from uniform (0, 1) deviates using the transformation method.
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T1,n defined in (5.7). A similar effect is seen in the tests involving unconditional efficiency

estimators developed by Kneip et al. (2015b).

Comparing corresponding sets of results for given values of n, δ, and (p + q) across the

different values r ∈ {1, 2, 3} in Tables 1, 2 and E.1), it is evident that there is a price

to pay in terms of power for increasing values of r. This is particularly true for the larger

values of (p + q). When n = 1, 000, (p + q) = 6 and δ = 2.0, the achieved rejection rate is

0.923 at nominal test size .1 when r = 1, but only 0.551 when r = 2 and only 0.266 when

r = 3. DEA estimators (both the unconditional and conditional versions) suffer from the

well-known curse of dimensionality, so these results are not surprising. The effect is much less

pronounced when (p+q) = 2, 3, or even 4, suggesting that one might want to use dimension-

reduction methods similar to the method used below for the empirical example appearing in

Section 7 in applications where there are more than 3–4 dimensions in input-output space.

As noted above, corresponding results obtained with FDH estimators are given in Ap-

pendix E. Inspection of those results reveal the same overall patterns seen with the DEA

estimators, with the exception that the realized sizes are larger and the power of the tests is

smaller with FDH estimators than with DEA estimators. This is due to the slower conver-

gence rate of FDH estimators as opposed to DEA estimators.

Results from a second and third set of experiments are given in Appendix E. In the

second set, data are simulated from a DGP where the environmental variables Z affect only

the distribution of inefficiency, but not the frontier, so that Assumption 2.1 holds for all

values of δ (see Appendix E for details). Results from the second set of experiments appear

in Tables E.5–E.7 for DEA estimators, and in Tables E.8–E.10 for FDH estimators. As δ

increases, Z has an increasing impact on the dispersion of inefficiency, but rejection rates

increase only slightly. Some increase is to be expected, perhaps, since increased dispersion

of the inefficiency process means that there are fewer observations near the frontier, making

the frontier harder to estimate.

In the third set of experiments, the environmental variables affect both the frontier

and the dispersion of inefficiency, with both effects increasing as δ increases (again, see

Appendix E for details). Results obtained with DEA estimators are shown in Tables E.11–

E.13, while results obtained with FDH estimators are given in Tables E.14–E.16. Relative

to corresponding results from the first set of experiments described above where Z affects
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only the frontier when δ > 0, test power is lower in the third set of experiments. As in the

second set of experiments, there is a price to pay for increasing dispersion of the inefficiency

process, which makes estimation of the frontier increasingly difficult. Nonetheless, the decline

in power relative to that in the first set of experiments leaves intact the qualitative statements

made earlier. For n = 200, (p+ q) = 6, and r = 1, realized sizes are identical in the first and

third set of experiments when δ = 0.0. When δ > 0, the corresponding estimated rejection

rates in Tables 1 and E.11 are very close and significantly different in perhaps only a few

cases.

7 Empirical Illustration using Bank Data

As a final exercise, we revisit the empirical examples provided by Simar and Wilson (2007),

where estimated efficiency of U.S. Banks is regressed on some explanatory variables in a

second-stage analysis. We start with the same data used by Simar and Wilson (2007), and

consider both the subsample of 322 banks as well as the full sample of 6,955 banks examined

by Simar and Wilson. The data include observations on 3 inputs (purchased funds, core

deposits, and labor) and 4 outputs (consumer loans, business loans, real estate loans, and

securities held). The data also include observations for two continuous explanatory variables

used by Simar and Wilson (2007), namely SIZE (i.e., the log of total assets, reflecting

banks’ sizes) and DIVERSE (i.e., a measure of diversity of banks’ loan portfolios). Specific

definitions of variables and other data details are given in Simar and Wilson (2007).

Our empirical examples here and in Simar and Wilson (2007) are motivated by Aly et al.

(1990), who similarly estimate efficiency for a sample of 322 U.S. banks operating during the

fourth quarter of 1986, and then attempt to explain variation in the first-stage efficiency esti-

mates in a second-stage regression by regressing estimated efficiency on continuous variables

reflecting bank size and loan-type diversity, as well as binary dummy variables reflecting

membership in a multi-bank holding company and presence in a metropolitan statistical

area. Whereas Aly et al. used the second-stage regression in an attempt to better under-

stand the performance of U.S. banks’ operations, Simar and Wilson carefully note that their

second-stage regressions are only for purposes of illustrating the bootstrap methods for infer-

ence developed in their paper. As discussed above, and as noted by Simar and Wilson, such

second-stage regressions can only be meaningful if the separability condition in Assumption
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2.1 holds. Simar and Wilson also noted that this condition should be tested before employing

a second-stage regression, but until now no such test has been available.

It is well-known that the distribution of U.S. bank sizes is heavily skewed to the right;

in fact, the distribution of total assets of U.S. banks is roughly log-log-normal (e.g., see

Wheelock and Wilson, 2001 for discussion). In order to use global bandwidths, as opposed

to adaptive bandwidths (which would increase computational burden), we first eliminate

very large banks and other outliers from the sub-sample of 322 observations as described

by Florens et al. (2014) (who used the same data in an empirical illustration), leaving 303

observations for analysis. Similarly, we omit the largest 5-percent of banks from the full

sample of 6,955 observations, leaving 6,607 observations. To further reduce computational

burden, we exploit multicollinearity among the input and output variables by aggregating

inputs into a single measure and also aggregating outputs into a single measure using eigen-

system techniques employed by Florens et al. (2014) in their analysis of the subsample of our

data and as described by Daraio and Simar (2007a, pp. 148–150). Due to the high degrees of

correlation among the original input and output variables, little information is lost by this

aggregation, while dimensionality is reduced from (p+ q) = 7 to 2.

We test the separability condition (Assumption 2.1) using both the subsample of 303

observations and the “full” sample of 6,607 observations using DEA estimators in both

input and output directions, with bandwidths optimized by least-squares cross-validation

and then adjusted to obtain the optimal order as discussed above. We first test separability

marginally by considering only SIZE, and then by considering only DIVERSE so that r = 1.

We also perform joint tests (r = 2) considering both SIZE and DIVERSE.

Results for the tests for both samples are shown in Table 3. In all cases, we reject the

null hypothesis (i.e., Assumption 2.1) in favor of the alternative hypothesis (i.e., Assumption

2.2) with p-values well less than 0.00005. In the individual tests where r = 1, we reject with

SIZE more strongly than with DIVERSE. With the joint tests where r = 2, the values of

the test statistics are between those where we test only with SIZE and only with DIVERSE,

as one would expect.

The rejection of separability with respect to SIZE is hardly surprising given that larger

banks necessarily can produce more output than smaller banks. Of course, SIZE is highly

correlated with banks’ inputs and outputs. Nonetheless, this variable is used by by Aly
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et al. (1990) in their second-stage regression, and one must assume separability in order to

believe the second-stage estimation makes any sense at all. Moreover, Aly et al. are not the

only ones to use such variables in second-stage regressions. The rejection with respect to

DIVERSE is less obvious a priori, and suggests that conditional efficiency estimators should

be used to analyze efficiency among banks.14

8 Conclusions

We have provided CLTs for conditional efficiency estimators, allowing researchers to estimate

confidence intervals for mean conditional efficiency or to compare mean conditional efficiency

across groups of producers analogous to the test of equivalent mean unconditional efficiency

developed in Kneip et al. (2015b). We have also provided a test of the separability condi-

tion described by Simar and Wilson (2007) on which many papers that regress estimated

efficiency scores on some environmental variables depend. The condition is a restrictive, but

can now be tested empirically. In our empirical example in Section 7, patterned after the

application by Aly et al. (1990), we easily reject separability. This suggests that results of

the second-stage regression in Aly et al. (1990) are meaningless, or at best very difficult

to interpret. Furthermore, it raises the question of whether separability would similarly be

rejected in the hundreds or thousands of papers that have regressed estimated efficiencies

on environmental variables in a second stage regression. It is perhaps too much to expect

that all of these studies be re-examined, but now that an easily-implemented test of sep-

arability has been made available, researchers should employ the test before proceeding to

a second-stage regression. Moreover, whenever the test rejects separability, the researcher

should use conditional efficiency estimators instead of unconditional estimators in order to

estimate distance to the relevant frontier (i.e., to the frontier of Ψz instead of the frontier of

Ψ which has no particular economic meaning when separability does not hold). Whenever

separability is rejected, the new CLT results will be useful tools for empirical researchers.

Of course, failure to reject the null hypothesis of separability does not by itself imply

that separability holds. As is always the case, our test can do only one of two things: it can

14 Note that the second-stage regression in Simar and Wilson (2007) was used only to illustrate how one
might apply the bootstrap methods proposed there. But, results from the second-stage regression in Aly
et al. (1990), and those from similar exercises in other papers that have regressed estimates of bank efficiency
on total assets, are rendered dubious and likely meaningless by the results obtained here.
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either reject, or fail to reject the null hypothesis. Failure to reject might be due to other

factors, such as insufficient data, or too many dimensions. In the later case, we have shown

in our empirical example how dimensionality can be reduced before testing separability.

It should be remembered, as noted in Section 3, that the conditional efficiency estimators

provide consistent estimates regardless of whether separability holds, but the unconditional

efficiency estimators provide meaningfully consistent estimates if and only if separability

holds. Of course, if separability holds, the unconditional estimators converge faster than

their conditional counterparts. But when testing separability, these points argue in favor

of a conservative test. Whereas one might ordinarily test a null hypothesis at the 10, 5, or

1-percent level, here one might want to test at a 20, 30, 40, or even larger percentage level.

The cost of a type-I error is slower convergence due to subsequent use of the conditional

efficiency estimators, whereas the cost of a type-II error is loss of any statistical or economic

meaning due to subsequent inappropriate use of unconditional efficiency estimators. The

cost of a type-II error here is arguably greater than the cost of a type-I error, which is

the reverse of the usual situation in hypothesis testing. Here, however, reversing things by

testing a null hypothesis of non-separability versus an alternative hypothesis of separability

would result in a test with poor size and power properties, as separability is a much more

restrictive condition than non-separability.

Appendices

A Technical Details

The assumptions listed here impose regularity conditions on the data-generating process.

The first assumption appears as Assumption 4 in Jeong et al. (2010).

Assumption A.1. The joint density fXY Z(·, ·, ·) of (X, Y, Z) is continuous on its support.

The next assumptions are needed to establish results for the moments of the conditional

FDH and DEA estimators in Section 4.1. The assumptions here are conditional analogs of

Assumptions 3.1–3.4 and 3.6 (respectively) in Kneip et al. (2015a). Assumption A.2, part

(iii) and Assumption A.3, part(iii) appear as Assumption 5 in Jeong et al. (2010).
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Assumption A.2. For all z ∈ Z, (i) the conditional density fXY |Z(·, · | z) of (X, Y ) | Z = z

exists and has support Dz ⊂ Ψz; (ii) fXY |Z(·, · | z) is continuously differentiable on Dz; and

(iii) fhXY |Z(·, · | z) converges to fXY |Z(·, · | z) as h→ 0.

Assumption A.3. (i) Dz∗ := {(x, λ(x, y | z)y) | (x, y) ∈ Dz} ⊂ Dz; (ii) Dz∗ is compact;

and (iii) fXY |Z(x, λ(x, y | z)y | z) > 0 for all (x, y) ∈ Dz.

Assumption A.4. For any z ∈ Z, Dz is almost strictly convex; i.e., for any (x, y), (x̃, ỹ) ∈
Dz with

(
x
||x|| , y

)
6=
(

x̃
||x̃|| , ỹ

)
, the set {(x∗, y∗) | (x∗, y∗) = (x, y) + α((x̃, ỹ)) for some α ∈ (0, 1)}

is a subset of the interior of Dz.

Assumption A.5. For all z ∈ Z, (i) λ(x, y | z) is twice continuously differentiable on Dz;
and (ii) all the first-order partial derivatives of λ(x, y | z) with respect to x and y are nonzero

at any point (x, y) ∈ Dz.

Assumption A.6. For any z ∈ Z, λ(x, y | z) is three times continuously differentiable with

respect to x and y on Dz.

When the conditional FDH estimator is used, Assumption A.5 is needed; when the condi-

tional DEA estimator is used, this is replaced by the stronger Assumption A.6.

Note that under the separability condition in Assumption 2.1, the assumptions here

reduce to the corresponding assumptions in Kneip et al. (2015a) due to the discussion in

Section 2.

B Proofs of Lemmas and Theorems

Proof of Lemma 4.1. Either assumption A.5 or A.6 is sufficient to establish Lipschitz

continuity of λ(x, y | z) as a function of z. The result follows immediately.

Proof of Theorem 4.1. Under (i) Assumptions 4.1, 4.2, 4.4, A.1, A.2 and two-times

differentiability (due to Assumption A.5) of λ(x, y | z) with respect to x and y for the FDH

case, or under (ii) Assumptions 4.1, 4.2, 4.3, 4.4, A.1, A.2 and three-times differentiability

(due to Assumption A.6) of λ(x, y | z) with respect to x and y for the DEA case, Jeong

et al. (2010) prove, using the result in Lemma 4.1 and h = O ((nhr)−κ), that the asymptotic

behavior of (nhr)κ
(
λ̂(x, y | z,Sn)− λ(x, y | z)

)
is the same as the asymptotic behavior of
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(nhr)κ
(
λ̂(x, y | z,Sn)− λh(x, y | z)

)
, which leads to the result in (3.10). For any given h,

we are in a localized version of the framework of Kneip et al. (2015a) for unconditional

efficiencies, except that here λh(Xi, Yi | Zi) is the object of interest.

If Z is irrelevant, i.e. if Assumption 2.1 holds, then the optimal h → ∞ and nh = n.

Otherwise Assumption 2.2 holds and h → 0 as n → ∞, and the order of the number

of observations affecting the estimator is nh = nhr. Moreover, this is the order of the

cardinality of I(z, h) for all z. Then for the FDH case, the results follow directly from the

proof of Theorem 3.3 in Kneip et al. (2015a) after changing notation there to reflect the

different number of observations. Similarly for the DEA case, the results follow directly

from the proof of Theorem 3.1 in Kneip et al. (2015a).

Proof of Lemma 4.2. The result in (4.20) follows directly from Theorem 4.1. In addition,

VAR(λ̂(Xi, Yi | Zi,Sn)) =E

((
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)2
)

+ E

((
λh(Xi, Yi | Zi)− E

(
λ̂(Xi, Yi | Zi,Sn)

))2
)

+ 2E
((

λh(Xi, Yi | Zi)− E
(
λ̂(Xi, Yi | Zi,Sn)

))
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

))
. (2.1)

Using the result in (4.9) from Theorem 4.1,

E

([
λh(Xi, Yi | Zi)− E

(
λ̂(Xi, Yi | Zi,Sn)

)]2
)

= σ2,h
c +

[
E
(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)]2

= σ2,h
c + C2

cn
−2κ
h + o

(
n−2κ
h

)
. (2.2)

Applying the Cauchy-Schwartz inequality, the result in (4.21) in Theorem 4.1 and (2.2), the

last term in (2.1) is bounded by o
(
n
κ/2
h

)
, establishing the result in (4.21).

Proof of Theorem 4.2. Let

µc,nh =
1

nh

∑
(Xi,Yi,Zi)∈S∗nh

λh(Xi, Yi | Zi). (2.3)

By the Lindeberg-Feller CLT,
√
nh(µc,nh − µ

h
c )

L−→ N(0, σ2,h
c ). Define ζnh = µ̂c,nh − µc,nh .

Using Lemma 4.2, we have E(ζnh) = Ccn
−κ
h +Rc,nh,κ, VAR(ζnh) = o

(
n−1
h

)
and ζnh−E(ζnh) =

op

(
n
−1/2
h

)
.
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It can be shown that µ̃c,nh = µhc + E(ζnh), and part (i) of the results is obtained by

substitution for E(ζnh). Next, note that µ̂c,nh − µ̃c,nh =
(
ζnh + µc,nh

)
−
(
µhc − E(ζnh)

)
=

µc,nh −
(
µhc + (ζnh + E(ζnh)

)
. The last term in parentheses is op

(
n
−1/2
h

)
, establishing the

result in (ii). Part (iii) follows directly from part (ii). Finally,

σ̂2,h
c,n = n−1

n∑
i=1

(λ̂(Xi, Yi | Zi,Sn))2 − µ̂2
c,nh

p−→ E[(λ̂(Xi, Yi | Zi,Sn))2]− (µhc )
2

= VAR(λ̂(Xi, Yi | Zi,Sn)) +
[
E
(
λ̂(Xi, Yi | Zi,Sn)

)]2

− (µhc )
2.

The result obtains after applying the results of Lemma 4.2.

Proof of Theorem 4.3. The result follows by substituting (4.29) in Theorem 4.2, part

(iii), and noting that for the indicated ranges of values for κ,
√
nhRc,nh,κ = o(1).

Proof of Theorem 4.4. Let

µc,nh,κ =
1

nh,κ

∑
(Xi,Yi,Zi)∈S∗∗nh,κ

λh(Xi, Yi | Zi). (2.4)

Clearly,

µ̂c,nh,κ − µhc = µc,nh,κ − µ
h
c +

1

nh,κ

∑
(Xi,Yi,Zi)∈S∗∗nh,κ

(
λ̂(Xi, Yi | Zi,Sn)− λh(Xi, Yi | Zi)

)
. (2.5)

Since nh,κ → ∞ as n → ∞,
√
nh,κ

(
µc,nh,κ − µ

h
c

)
L−→ N(0, σ2,h

c ). By Lemma 4.2, the third

term on the right-hand side of (2.5) has expectation µhc + Ccn
−κ
h + Rc,nh,κ and variance

σ2,h
c +o(n

−κ/2
h ). Replacing Ccn

−κ
h with B̂c

κ,nh
and then multiplying both sides by

√
nh,κ yields

the result.

C Discrete Environmental Variables

In applied work, it is often the case that researchers include binary or categorical variables in

second-stage regressions of estimated efficiency on environmental variables. All of the results

obtained in the main part of this paper assume Z is continuous. However, in order for second-

stage regressions to estimate any useful, meaningful feature, the separability condition in

Assumption 2.1 must also hold with respect to discrete environmental variables.
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Testing the separability condition in the case of discrete variables can be done using

results and ideas from Kneip et al. (2015b), where a test of equivalent mean efficiency across

two groups of producers is developed. To illustrate, suppose r = 1 and Z is a binary dummy

variable. To test separability, first shuffle the observations, and then divide into two groups

of size n1 = bn/2c and n2 = n − n1. Apply the unconditional efficiency estimator to group

1. For group 2, a conditional efficiency estimator is needed, but since Z is discrete, there

is no smoothing to be done.15 Since Z is binary, there are only two sets Ψz. Hence, in the

second group, divide observations into two sub-groups according to whether Z = 0 or Z = 1;

observations in each sub-group, estimate efficiency using the same unconditional efficiency

estimator used with group 1, ignoring observations in the other group. This will yield a

set of n2 conditional efficiency estimates since the n2 observations have been divided into

sub-groups.

Note that the conditional estimates from group 2 have the usual convergence rate of

the unconditional efficiency estimator since no bandwidth is involved since Z is discrete.

One can now apply the difference-in-means test as described in Kneip et al. (2015b), taking

care to compute the bias-correction terms for group 2 separately and independently for

observations in the subgroup (of group 2) where Z = 0 and the subgroup where Z = 1. This

will necessitate splitting each sub-group (of group 2) to compute the generalized jackknife

estimates of bias for observations in each sub-group. See Kneip et al. (2015b) for details.

15 The problem here is rather different from the problem of nonparametric estimation of regressions or
densities, where one can smooth across discrete categories of data using the methods discussed by Li and
Racine (2007). Here, we are interested in boundaries of support, as opposed to densities or conditional mean
functions.
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Table 3: Tests of Separability on Banking Data

Input Output
T1,n p-value T1,n p-value

n = 303
SIZE 13.9836 0.0000 8.3160 0.0000
DIVERSE 6.6719 0.0000 6.9408 0.0000
joint test 10.1990 0.0000 7.6620 0.0000

n = 6, 607
SIZE 41.5341 0.0000 36.8514 0.0000
DIVERSE 14.4167 0.0000 16.2464 0.0000
joint test 24.4306 0.0000 32.8130 0.0000
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D Randomization Algorithm

The following R code implements the algorithm described in Section 5.4 for randomizing

data. The user passes to the function an n by (p+q+r) data matrix where the columns and

rows can be in any order, and an n by (p+q+r) matrix with randomized observations or rows

is returned. Note that the code makes use of the “digest” package (Eddelbuettel, 2016) to

compute SHA-256 hashes. The package is not a part of the basic R distribution, but can be

downloaded from the Comprehensive R Archive Network at https://cran.r-project.org.

1
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randomize <- function (xyz) {
if (is.data.frame(xyz)) xyz=as.matrix(xyz)
if (length(colnames(xyz))>0) colnames(xyz)<-NULL
if (length(rownames(xyz))>0) rownames(xyz)<=NULL
n=nrow(xyz)
k=ncol(xyz)
#
# first, standardize so units do not matter:
std=apply(xyz,2,sd)
for (j in 1:k) {

xyz[,j]=xyz[,j]/std[j]
}

#
# then order the columns:
key1=vector(length=k)
totals=apply(xyz,2,sum)
require(digest)
for (j in 1:k) {

t1=enc2utf8(formatC(totals[j],format="E",width=18,digits=10))
key1[j]=enc2utf8(digest(t1,algo="sha256",serialize=FALSE,ascii=TRUE))
}

jj=sort(key1,index.return=TRUE)$ix
xyz=xyz[,jj]
#
# now order the rows:
key2=vector(length=n)
for (i in 1:n) {

t1=enc2utf8(paste(formatC(xyz[i,],format="E",width=18,digits=10),
collapse=""))

key2[i]=enc2utf8(digest(t1,algo="sha256",serialize=FALSE,ascii=TRUE))
}

ii=sort(key2,index.return=TRUE)$ix
xyz=xyz[ii,]
#
# restore order of the columns:
xyz[,jj]=xyz
#
# un-do the standardizations:
for (j in 1:k) {

xyz[,j]=xyz[,j]*std[j]
}

return(xyz)
}

The following shows an R session where the above code is used to randomize data from

Charnes et al. (1978). The data are loaded from the FEAR package by Wilson (2008). The

data are first loaded, stored in a matrix d, and then printed. Next, the data are randomized,

with the result stored in d2 and printed. Then the original data in d are copied to a new

matrix dnew, and 0.0001 is added to the element in row 36, column 6. The resulting matrix is

2



then randomized with the result stored in d3, which is then printed. Note that the ordering

of the rows in d3 is very different from the ordering in d2, illustrating that even a small

change in the data causes a very different ordering of the observations. This is characteristic

of well-designed hash algorithms, and is known as the “avalanche effect” (Feistel, 1973).

Finally, the columns of the original matrix d are permuted randomly and stored in the

matrix dnew. The randomization function is then applied to this matrix, with the result

stored in d4. The matrices d2 and d4 are compared and found to be the same, illustrating

that the randomization algorithm is not affected by the ordering of variables in the data.

R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin13.1.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

> wdir=Sys.getenv("PWD")
> setwd(wdir)
> source(’randomize.R’)
> #
> #
> require(FEAR)
Loading required package: FEAR
FEAR (Frontier Efficiency Analysis with R) version 2.0.1 installed
Copyright Paul W. Wilson 2014

Type "fear.license()" to view the software license for FEAR
Type "fear.cite()" to view the proper citation for FEAR

Read 2 items
> data(ccr)
> ccr=as.matrix(ccr)[,2:9]
> colnames(ccr) <- NULL
> d=ccr
> #
> # d is the data matrix.
> print(d)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

3



[1,] 86.13 16.24 48.21 49.69 9 54.53 58.98 38.16
[2,] 29.26 10.24 41.96 40.65 5 24.69 33.89 26.02
[3,] 43.12 11.31 38.19 35.03 9 36.41 40.62 28.51
[4,] 24.96 6.14 24.81 25.15 7 14.94 17.58 16.19
[5,] 11.62 2.21 6.85 6.37 4 7.81 6.94 5.37
[6,] 11.88 4.97 18.73 18.04 4 12.59 16.85 12.84
[7,] 32.64 6.88 28.10 25.45 7 17.06 16.99 17.82
[8,] 20.79 12.97 54.85 52.07 8 20.29 30.64 33.16
[9,] 34.40 11.04 38.16 42.40 8 26.13 29.80 26.29

[10,] 61.74 14.50 49.09 42.92 9 46.42 51.59 35.20
[11,] 52.92 11.67 39.48 39.64 5 39.80 37.73 30.29
[12,] 36.00 10.15 37.80 39.52 5 37.84 47.85 25.35
[13,] 39.20 10.80 41.04 41.12 7 26.48 31.36 26.54
[14,] 14.60 2.88 9.64 11.14 3 10.31 10.86 7.47
[15,] 4.29 5.42 21.45 17.27 5 14.39 18.30 14.33
[16,] 27.25 14.17 56.46 55.26 9 32.94 36.03 38.19
[17,] 22.63 4.43 15.40 15.00 2 17.25 20.80 12.07
[18,] 28.00 7.61 28.73 27.04 9 27.55 38.19 20.44
[19,] 53.56 13.70 53.04 49.85 7 41.12 43.80 36.54
[20,] 25.42 9.05 29.69 31.74 4 29.43 42.63 23.34
[21,] 31.57 10.08 39.34 40.57 6 37.46 51.02 27.44
[22,] 16.34 5.84 20.89 22.10 4 19.40 25.18 16.52
[23,] 44.28 14.14 56.70 52.27 11 39.88 47.72 38.97
[24,] 19.74 6.43 24.20 25.66 3 25.72 30.81 16.54
[25,] 24.40 8.05 33.42 31.29 7 24.88 25.27 22.43
[26,] 41.40 11.70 44.01 46.35 7 31.62 40.78 31.16
[27,] 27.20 9.38 37.80 31.55 4 31.31 38.32 25.03
[28,] 23.92 7.12 25.58 29.01 3 21.00 21.30 18.30
[29,] 10.62 2.55 10.10 9.09 4 6.51 7.02 6.16
[30,] 12.48 6.14 23.13 22.46 6 11.64 15.26 15.68
[31,] 19.32 5.89 24.01 24.74 6 12.58 15.90 14.42
[32,] 6.30 1.93 7.11 7.68 4 4.59 6.16 4.99
[33,] 46.62 14.65 65.71 57.49 10 43.76 46.64 39.10
[34,] 38.95 12.82 47.02 48.92 9 32.38 38.55 31.05
[35,] 61.60 15.56 53.98 50.29 6 34.64 45.46 39.22
[36,] 31.08 6.26 22.18 21.96 4 11.52 15.14 13.91
[37,] 19.35 6.68 22.61 23.31 4 15.96 19.21 15.30
[38,] 11.20 3.08 9.90 10.06 2 9.91 12.30 7.22
[39,] 34.40 11.61 41.79 41.79 5 30.44 33.53 29.80
[40,] 35.55 6.48 21.69 21.69 6 22.63 25.24 17.15
[41,] 30.53 9.30 35.50 35.14 8 24.41 27.16 25.30
[42,] 25.44 7.10 26.81 26.23 3 23.11 22.67 17.56
[43,] 26.66 11.43 41.36 44.63 6 21.82 31.45 27.54
[44,] 39.79 22.49 84.77 76.12 11 63.92 79.67 63.11
[45,] 8.32 3.64 12.92 13.13 2 9.47 11.92 8.85
[46,] 59.78 13.52 48.80 49.69 15 33.94 39.18 34.61
[47,] 39.22 10.06 37.00 38.33 4 29.42 35.10 28.42
[48,] 3.24 3.18 13.12 12.71 5 7.70 11.02 9.02
[49,] 7.14 5.29 23.10 19.06 8 12.17 16.03 15.82
[50,] 68.16 12.28 33.58 34.64 15 39.07 42.71 27.67
[51,] 11.88 3.59 13.41 13.82 8 9.96 14.34 9.33
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[52,] 55.30 11.53 36.73 35.78 6 45.37 51.38 31.61
[53,] 16.20 7.02 26.94 26.30 9 18.23 22.05 17.56
[54,] 82.45 15.52 45.00 44.23 13 59.63 64.41 35.89
[55,] 15.81 6.93 23.91 23.61 7 24.20 28.21 18.74
[56,] 4.65 5.50 20.91 23.39 5 13.53 17.09 15.61
[57,] 41.25 8.41 26.23 25.24 10 28.39 27.65 20.79
[58,] 10.44 5.22 17.10 18.93 3 21.67 26.22 13.66
[59,] 139.65 35.03 119.56 130.83 22 120.17 144.67 88.59
[60,] 16.28 4.81 18.20 18.98 5 15.15 18.04 13.58
[61,] 12.06 2.59 8.74 8.17 5 6.92 7.10 6.35
[62,] 4.20 2.64 9.89 11.25 2 9.35 9.85 7.70
[63,] 19.44 3.83 12.87 13.23 5 13.03 13.40 10.29
[64,] 28.38 8.91 30.95 33.33 8 18.63 24.48 23.13
[65,] 13.50 3.61 15.60 12.39 4 12.28 13.01 9.89
[66,] 23.32 7.10 24.96 28.56 22 16.81 19.72 18.70
[67,] 27.60 9.38 32.29 34.01 20 26.36 28.22 24.46
[68,] 11.70 10.53 37.67 43.60 8 22.85 26.21 28.14
[69,] 4.68 1.85 6.22 5.46 5 8.17 8.70 5.12
[70,] 10.44 4.82 17.13 18.21 9 13.69 14.19 12.99
> d2=randomize(d)
Loading required package: digest
Warning message:
package ’digest’ was built under R version 3.1.3
> print(d2)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 11.88 4.97 18.73 18.04 4 12.59 16.85 12.84
[2,] 10.44 4.82 17.13 18.21 9 13.69 14.19 12.99
[3,] 43.12 11.31 38.19 35.03 9 36.41 40.62 28.51
[4,] 11.88 3.59 13.41 13.82 8 9.96 14.34 9.33
[5,] 52.92 11.67 39.48 39.64 5 39.80 37.73 30.29
[6,] 16.20 7.02 26.94 26.30 9 18.23 22.05 17.56
[7,] 39.20 10.80 41.04 41.12 7 26.48 31.36 26.54
[8,] 11.70 10.53 37.67 43.60 8 22.85 26.21 28.14
[9,] 4.65 5.50 20.91 23.39 5 13.53 17.09 15.61

[10,] 39.79 22.49 84.77 76.12 11 63.92 79.67 63.11
[11,] 11.62 2.21 6.85 6.37 4 7.81 6.94 5.37
[12,] 31.57 10.08 39.34 40.57 6 37.46 51.02 27.44
[13,] 28.38 8.91 30.95 33.33 8 18.63 24.48 23.13
[14,] 4.68 1.85 6.22 5.46 5 8.17 8.70 5.12
[15,] 61.74 14.50 49.09 42.92 9 46.42 51.59 35.20
[16,] 35.55 6.48 21.69 21.69 6 22.63 25.24 17.15
[17,] 12.48 6.14 23.13 22.46 6 11.64 15.26 15.68
[18,] 7.14 5.29 23.10 19.06 8 12.17 16.03 15.82
[19,] 25.42 9.05 29.69 31.74 4 29.43 42.63 23.34
[20,] 41.40 11.70 44.01 46.35 7 31.62 40.78 31.16
[21,] 22.63 4.43 15.40 15.00 2 17.25 20.80 12.07
[22,] 34.40 11.04 38.16 42.40 8 26.13 29.80 26.29
[23,] 29.26 10.24 41.96 40.65 5 24.69 33.89 26.02
[24,] 44.28 14.14 56.70 52.27 11 39.88 47.72 38.97
[25,] 68.16 12.28 33.58 34.64 15 39.07 42.71 27.67
[26,] 26.66 11.43 41.36 44.63 6 21.82 31.45 27.54
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[27,] 25.44 7.10 26.81 26.23 3 23.11 22.67 17.56
[28,] 61.60 15.56 53.98 50.29 6 34.64 45.46 39.22
[29,] 59.78 13.52 48.80 49.69 15 33.94 39.18 34.61
[30,] 16.28 4.81 18.20 18.98 5 15.15 18.04 13.58
[31,] 30.53 9.30 35.50 35.14 8 24.41 27.16 25.30
[32,] 24.40 8.05 33.42 31.29 7 24.88 25.27 22.43
[33,] 20.79 12.97 54.85 52.07 8 20.29 30.64 33.16
[34,] 34.40 11.61 41.79 41.79 5 30.44 33.53 29.80
[35,] 23.32 7.10 24.96 28.56 22 16.81 19.72 18.70
[36,] 19.74 6.43 24.20 25.66 3 25.72 30.81 16.54
[37,] 31.08 6.26 22.18 21.96 4 11.52 15.14 13.91
[38,] 55.30 11.53 36.73 35.78 6 45.37 51.38 31.61
[39,] 24.96 6.14 24.81 25.15 7 14.94 17.58 16.19
[40,] 38.95 12.82 47.02 48.92 9 32.38 38.55 31.05
[41,] 27.20 9.38 37.80 31.55 4 31.31 38.32 25.03
[42,] 11.20 3.08 9.90 10.06 2 9.91 12.30 7.22
[43,] 10.62 2.55 10.10 9.09 4 6.51 7.02 6.16
[44,] 4.20 2.64 9.89 11.25 2 9.35 9.85 7.70
[45,] 19.35 6.68 22.61 23.31 4 15.96 19.21 15.30
[46,] 41.25 8.41 26.23 25.24 10 28.39 27.65 20.79
[47,] 13.50 3.61 15.60 12.39 4 12.28 13.01 9.89
[48,] 6.30 1.93 7.11 7.68 4 4.59 6.16 4.99
[49,] 14.60 2.88 9.64 11.14 3 10.31 10.86 7.47
[50,] 27.60 9.38 32.29 34.01 20 26.36 28.22 24.46
[51,] 39.22 10.06 37.00 38.33 4 29.42 35.10 28.42
[52,] 15.81 6.93 23.91 23.61 7 24.20 28.21 18.74
[53,] 53.56 13.70 53.04 49.85 7 41.12 43.80 36.54
[54,] 86.13 16.24 48.21 49.69 9 54.53 58.98 38.16
[55,] 139.65 35.03 119.56 130.83 22 120.17 144.67 88.59
[56,] 19.44 3.83 12.87 13.23 5 13.03 13.40 10.29
[57,] 3.24 3.18 13.12 12.71 5 7.70 11.02 9.02
[58,] 36.00 10.15 37.80 39.52 5 37.84 47.85 25.35
[59,] 27.25 14.17 56.46 55.26 9 32.94 36.03 38.19
[60,] 23.92 7.12 25.58 29.01 3 21.00 21.30 18.30
[61,] 46.62 14.65 65.71 57.49 10 43.76 46.64 39.10
[62,] 4.29 5.42 21.45 17.27 5 14.39 18.30 14.33
[63,] 10.44 5.22 17.10 18.93 3 21.67 26.22 13.66
[64,] 12.06 2.59 8.74 8.17 5 6.92 7.10 6.35
[65,] 19.32 5.89 24.01 24.74 6 12.58 15.90 14.42
[66,] 32.64 6.88 28.10 25.45 7 17.06 16.99 17.82
[67,] 16.34 5.84 20.89 22.10 4 19.40 25.18 16.52
[68,] 8.32 3.64 12.92 13.13 2 9.47 11.92 8.85
[69,] 82.45 15.52 45.00 44.23 13 59.63 64.41 35.89
[70,] 28.00 7.61 28.73 27.04 9 27.55 38.19 20.44
> #
> # make a small change in data matrix and randomize again:
> dnew=d
> print(dnew[35,6])
[1] 34.64
> dnew[35,6]=dnew[35,6]+0.0001
> print(dnew[35,6])
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[1] 34.6401
> d3=randomize(dnew)
> print(d3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 15.81 6.93 23.91 23.61 7 24.2000 28.21 18.74
[2,] 30.53 9.30 35.50 35.14 8 24.4100 27.16 25.30
[3,] 39.22 10.06 37.00 38.33 4 29.4200 35.10 28.42
[4,] 86.13 16.24 48.21 49.69 9 54.5300 58.98 38.16
[5,] 12.06 2.59 8.74 8.17 5 6.9200 7.10 6.35
[6,] 22.63 4.43 15.40 15.00 2 17.2500 20.80 12.07
[7,] 7.14 5.29 23.10 19.06 8 12.1700 16.03 15.82
[8,] 19.35 6.68 22.61 23.31 4 15.9600 19.21 15.30
[9,] 24.40 8.05 33.42 31.29 7 24.8800 25.27 22.43

[10,] 43.12 11.31 38.19 35.03 9 36.4100 40.62 28.51
[11,] 41.25 8.41 26.23 25.24 10 28.3900 27.65 20.79
[12,] 44.28 14.14 56.70 52.27 11 39.8800 47.72 38.97
[13,] 29.26 10.24 41.96 40.65 5 24.6900 33.89 26.02
[14,] 52.92 11.67 39.48 39.64 5 39.8000 37.73 30.29
[15,] 139.65 35.03 119.56 130.83 22 120.1700 144.67 88.59
[16,] 46.62 14.65 65.71 57.49 10 43.7600 46.64 39.10
[17,] 39.79 22.49 84.77 76.12 11 63.9200 79.67 63.11
[18,] 24.96 6.14 24.81 25.15 7 14.9400 17.58 16.19
[19,] 35.55 6.48 21.69 21.69 6 22.6300 25.24 17.15
[20,] 26.66 11.43 41.36 44.63 6 21.8200 31.45 27.54
[21,] 82.45 15.52 45.00 44.23 13 59.6300 64.41 35.89
[22,] 11.62 2.21 6.85 6.37 4 7.8100 6.94 5.37
[23,] 4.29 5.42 21.45 17.27 5 14.3900 18.30 14.33
[24,] 28.00 7.61 28.73 27.04 9 27.5500 38.19 20.44
[25,] 41.40 11.70 44.01 46.35 7 31.6200 40.78 31.16
[26,] 32.64 6.88 28.10 25.45 7 17.0600 16.99 17.82
[27,] 10.44 4.82 17.13 18.21 9 13.6900 14.19 12.99
[28,] 53.56 13.70 53.04 49.85 7 41.1200 43.80 36.54
[29,] 11.88 3.59 13.41 13.82 8 9.9600 14.34 9.33
[30,] 23.92 7.12 25.58 29.01 3 21.0000 21.30 18.30
[31,] 16.28 4.81 18.20 18.98 5 15.1500 18.04 13.58
[32,] 4.20 2.64 9.89 11.25 2 9.3500 9.85 7.70
[33,] 61.60 15.56 53.98 50.29 6 34.6401 45.46 39.22
[34,] 4.65 5.50 20.91 23.39 5 13.5300 17.09 15.61
[35,] 8.32 3.64 12.92 13.13 2 9.4700 11.92 8.85
[36,] 34.40 11.04 38.16 42.40 8 26.1300 29.80 26.29
[37,] 20.79 12.97 54.85 52.07 8 20.2900 30.64 33.16
[38,] 39.20 10.80 41.04 41.12 7 26.4800 31.36 26.54
[39,] 27.20 9.38 37.80 31.55 4 31.3100 38.32 25.03
[40,] 4.68 1.85 6.22 5.46 5 8.1700 8.70 5.12
[41,] 55.30 11.53 36.73 35.78 6 45.3700 51.38 31.61
[42,] 19.32 5.89 24.01 24.74 6 12.5800 15.90 14.42
[43,] 34.40 11.61 41.79 41.79 5 30.4400 33.53 29.80
[44,] 25.42 9.05 29.69 31.74 4 29.4300 42.63 23.34
[45,] 19.44 3.83 12.87 13.23 5 13.0300 13.40 10.29
[46,] 10.44 5.22 17.10 18.93 3 21.6700 26.22 13.66
[47,] 16.20 7.02 26.94 26.30 9 18.2300 22.05 17.56
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[48,] 25.44 7.10 26.81 26.23 3 23.1100 22.67 17.56
[49,] 19.74 6.43 24.20 25.66 3 25.7200 30.81 16.54
[50,] 68.16 12.28 33.58 34.64 15 39.0700 42.71 27.67
[51,] 3.24 3.18 13.12 12.71 5 7.7000 11.02 9.02
[52,] 61.74 14.50 49.09 42.92 9 46.4200 51.59 35.20
[53,] 31.57 10.08 39.34 40.57 6 37.4600 51.02 27.44
[54,] 16.34 5.84 20.89 22.10 4 19.4000 25.18 16.52
[55,] 27.25 14.17 56.46 55.26 9 32.9400 36.03 38.19
[56,] 13.50 3.61 15.60 12.39 4 12.2800 13.01 9.89
[57,] 14.60 2.88 9.64 11.14 3 10.3100 10.86 7.47
[58,] 59.78 13.52 48.80 49.69 15 33.9400 39.18 34.61
[59,] 36.00 10.15 37.80 39.52 5 37.8400 47.85 25.35
[60,] 10.62 2.55 10.10 9.09 4 6.5100 7.02 6.16
[61,] 6.30 1.93 7.11 7.68 4 4.5900 6.16 4.99
[62,] 11.88 4.97 18.73 18.04 4 12.5900 16.85 12.84
[63,] 31.08 6.26 22.18 21.96 4 11.5200 15.14 13.91
[64,] 12.48 6.14 23.13 22.46 6 11.6400 15.26 15.68
[65,] 38.95 12.82 47.02 48.92 9 32.3800 38.55 31.05
[66,] 11.70 10.53 37.67 43.60 8 22.8500 26.21 28.14
[67,] 28.38 8.91 30.95 33.33 8 18.6300 24.48 23.13
[68,] 27.60 9.38 32.29 34.01 20 26.3600 28.22 24.46
[69,] 23.32 7.10 24.96 28.56 22 16.8100 19.72 18.70
[70,] 11.20 3.08 9.90 10.06 2 9.9100 12.30 7.22
> #
> # permute the rows and columns of d to see that we get the same
> # randomize matrix:
> set.seed(90001)
> dnew=d[sample.int(70),]
> d4=randomize(d)
> any(!(d2!=d4))
[1] TRUE
>
>
> proc.time()

user system elapsed
16.802 5.148 32.315
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E Additional Results from Monte Carlo Experiments

Table E.1 gives results from the Monte Carlo experiments described in Section 6 using the

DEA estimators with r = 3. Tables E.2–E.3 give results from the Monte Carlo experiments

described in Section 6 using FDH estimators with r = 1 and 2, analogous to Tables 1–2 in

the paper. Similarly, Table E.4 gives results obtained using FDH estimators with r = 3,

analogous to the results in Table E.1.

In addition to the first set of experiments described in Section 6, we perform two ad-

ditional sets of experiments to examine the performance of the separability tests. In the

second set of experiments, we generate X, Y eff and Z as described in Section 6. We then

simulate observed output values Y by setting

Y = Y eff
[
(1 + δ(Zα))1/2|u|+ 1

]−1
(E.1)

where u ∼ N+(0, 1) and δ and α are defined as in Section 6. Here, the environmental

variables Z affect the distribution of inefficiency, but have no effect on the frontier since

any effect of Z is wiped out whenever u = 0. Consequently, the separability condition in

Assumption 2.1 holds. Results from these experiments, for r ∈ {1, 2, 3} and using DEA

estimators appear in Tables E.5–E.7. Corresponding results obtained with FDH estimators

appear in Tables E.8–E.10.

In the third set of experiments, we again generate X, Y eff and Z as described in Section

6. We then simulate observed output values Y by setting

Y = Y eff [1 + δ(Zα)]
[
(1 + δ(Zα))1/2|u|+ 1

]−1
(E.2)

where where u ∼ N+(0, 1) and δ and α are defined as in Section 6. In (E.2), the environ-

mental variables Z affect both the frontier as well as the distribution of inefficiency, violating

the separability in Assumption 2.1 so that Assumption 2.2 holds instead. Results from these

experiments, for r ∈ {1, 2, 3} and using DEA estimators appear in Tables E.11–E.13.

Corresponding results obtained with FDH estimators appear in Tables E.14–E.16.
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