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1 Introduction

Nowadays Revenue Management (RM) models are very popular and represent one of
the most effective methodologies in which maths penetrates in the operative economic
decisions. Broadly speaking the Revenue Management systems (RMS) constitute a
complex network which involves different fields in applied maths, from statistic to
computer science, operations research, data mining and much more, understanding
that innovation and research are continuously driven to improve results.

An overview about Revenue Management can be found at [7] and [8].

Probably the most popular sector where RMS are applied is the Airline Industry. His-
torically, after the deregulation in 1978, the great quantity of fixed costs related to air
transportation has convinced a lot of companies of the advantages to invest in such
systems.

In this contest one of the latest models proposed has been the Sales-Based Linear
Program (SBLP) proposed from [3], which this article starts with. The SBLP model
is widely smaller than the Choice-Based Linear Program, see [2] and [5], that was the
most recent model proposed.

The principal contribution of this paper is the definition of a new integer formulation
for the Sales-Based model.

In real applications, SBILP is a large-scale integer programming problem, that can-
not be solved effectively in practice in the most of cases. Even its linear relaxation,
well-known as SBLP, requires a remarkable computational effort by state-of-art com-
mercial solvers. However, Airlines RM Departments are interested in SBILP solutions,
rather than of SBLP, since the SBLP solutions have low quality due to the considerable
integrality gap that is often observed.

Our work aims to improve and investigate important properties of SBILP, in order to
meet the practical needs of airlines. We study possible methods to improve the linear
relaxations SBLP and the properties due to the particular structure of the problem. In
particular, we introduced simple cuts that can highly improve upper bound provided
by SBLP. Moreover, we investigate a simple market-based decomposition model that
allows first to allocate capacities over different markets (master problem) and then to
allocate the capacities among different flight alternatives (Slave problem), thus leading
to a cost-effective method for the solution of SBILP.

Up to our knowledge, few other researchers have developed decomposition approaches
to solve efficiently large scale of real problems. One for all consider [1] that use the
great knowledge in literature for the Single-Leg Revenue Management for defining a
good decomposition scheme. However it does not consider the spill and recapture
effects, as done e.g. in the Customer Choice Model of [3], so that the resulting the
model is unrealistic. Leg-Based Decomposition does not take into account the true
nature of the problem; indeed as a matter of fact a leg (direct OD connection) could
concern more Services and Markets.

Another relevant observation is that this decomposition is not unique but it depends
on the single-leg model adopted.

This paper is divided in four sections. In section 2 we state standard model settings

2



and terminology for Revenue Management Problem; in section 3 we present the Sales
Based Integer Linear Program. In section 4 we focus on some appealing cuts that allows
to improve the bound obtained by the linear relaxation SBLP. In section 5 we propose
the scalable Master-Slave decomposition approach. This last section is the central one
where different approaches, properties and developments are explained.

2 Model settings

Let’s enter details of the setting and introduce the notation.

Flight Leg. A leg ¢ defines a direct connection between a certain origin and
destination (OD).

Let £ be the complete set of flight legs.

Flight Leg Cabin. A flight cabin b represents a subset of seats in the flight. Each
flight leg ¢ is characterized by a set of cabins By. Each cabin b € By is restricted
by its capacity c¢,. Cabin are implicitly ordered: if b; < b;, then passengers sold
to cabin b; can be upgraded to b;.

Service. A service s identifies a, possible multi-leg, itinerary to go from one origin
O to one destination D which represent respectively the starting and end point
of a travel. Let S be the complete set of services. Let Sy be the set of services
using the flight leg /.

Travel Alternative. A travel alternative a represents a possible option to travel
from O to D. An alternative a is characterized by its first choice demand d, and
fare p,. An alternative can be owned by the host-airline or it can be related to
not fly and other airlines options ("no-purchase or null alternative)

Let A be the complete set of host travel alternatives, while A are the ”no-purchase
or null alternatives.

Market.

A market defines a set travel alternatives including the no-purchase/null alterna-
tive at a given time period. Hence a market m is the set of the demand dependent
alternatives

Am = {am,al...,afm}

where f,, = |An| (cardinality of A,,) and a,, € A denotes the null alternative
for market m.

We denote by A,, C A the set of host market alternatives
Total market demand is computed as

=Y da+dm = pm + dp
a€Am



where d,,, is the demand associated with the null alternative a,, and we denote
by pm the aggregate host market demand.

Let M be the complete set of markets.
Let My be the set of markets referring to service s.
Let My, be the set of markets using flight leg £ and cabin b.

We point out that alternatives are interchangeable due to recapture and spill
effects. Indeed if all products are available for sale, the first-choice, or natural,
demand is satisfied for each of the products. However, when a product is unavail-
able, its first-choice demand is redirected to other available alternatives (including
the no-purchase alternative).

— Spill refers to redirected lost demand to competition or to the no-purchase
alternative.

— Spilled demands are recaptured from the open alternatives according to the
attractiveness, more simply respect to the first choice demand. Recapture
refers to redirected demand in the sale of a different available product.

— NoFly-NoOtherAilrines option, that is also called no-purchase or null alter-
native, is assumed always available.

3 Sales-Based Model

The problem is to allocate seats to market alternatives such that:
e Revenue is maximized
e Sales of cabin seats are consistent respect to the capacity restrictions.

e Sales are compliant respect to the available demand and respect to spill /recapture
effect between close and open alternatives.

We consider a Sales-Based model that is derived from the SBLP proposed by [4].

The decision variables are the seats sold for each host market alternatives z,, a € A
and the seats allocated to null market alternatives z,,, m € M.
Seats z, must be integer variables:

2, €N, Vae A

Formally given a set A,, C A,,, whichever m € M, the following vectorial notation is
introduced :

Xz, = (Tagy- - s Ta,)T
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where n :=| A, | , A = {a1,...,a,}. Another notation used is :

XAml

XA m

where M = {ml,... ,m‘M|}.
Alternatives sales z, are bounded

lo<zg<ug, VacA

Generally [, is simply zero and u, is defined by the total market demand. In some cases,
lower and upper bounds may be more restrictive because of some business requirements.

Sales (indirect) decisions z, for the null market alternatives can be considered as con-
tinuous variables z,, € R since they do not correspond to physical resources. Market
alternatives sales are bounded too

2m > dm VYVmeM
A vectorial notation is introduced:
7 = (Zml,. .. ’ZmIMI)T

where M = {ml,... ,m‘M|}.

A first set of constraints takes into account that the demand must be distributed within
all market alternatives, that is:

Z Ty + 2m =dm VYm e M.
aE.A'm

Constraints must be added that model the fact that demand of a not available alter-
native can be recaptured by another market alternative. Recapturing is proportional
to the ratio between the demand for a and for the null alternative.

- Tq — dg - 2m < 0 YmeM Vac A,

It is relevant to observe that in this model the attractiveness proposed in [4] is ap-
proximated with demand. This choice is made principally because actual software have
not incorporated routines those can compute these values, on the other hand these
simplification helps exposition.

Independently from that it’ s easy to return to the model proposed by Gallego et al.
only substituting the demands in this constraints with attractivenesses.

For each leg ¢ and for each cabin b € By we must impose that the total number of seats
allocated do not exceed the capacity of b and of all the lower cabin.
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Of course total sales on a flight leg must satisfy the seat capacity among all cabins.

Sy Ya< Y o« WeLWeB

tEBy:t<bmeMy; aEAm, teBy:t<b

The objective function is the total revenue to be maximized:
mx Y Y e
meM (leAm

So the standard Sales-Based Integer Linear Program as the following MILP :

max Z Z Pa - Tq

xENIAl zeRIMI

meM a€EA,
S Y Y as Y oa Weswes
teBp:t<bmeMy; a€Am, teBy:t<b
A - Tq — dg - 2m <0, YmeM, Vace A, (1)
Zxa—l—zm:dm, Ym e M
aE.Am
lo <2 < Ug, Vac A
Zm > o, VmeM

where z,, for all a € A,,, m € M and z,, for all m € M are the decision variables.

4 Improving formulation

In order to get a bound, integrality can be removed from SBILP considering the linear
relaxation SBLP.

mex Y S pez

xERIAl zeRIMI

meM a€A,
> D> @< > @, VLELNVHEB
tEBp:t<bmeMy; aEAm, teBp:t<b
A - Tg — dg - 2m <0, YmeM, Vae A, (2)
Zxa+zm:dm, VYm e M
(IE.Am
log < 24 < ug, Vac A
Zm > dm, VmeM

Some simple inequalities that can improve the bounds obtainable solving the relaxation
SBLP can be derived from the resolution of some easier problems. These bounds can be
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obtained easily and their use improves significantly the quality of the relaxed solution
as we will show on a small example.
A first bound is obtained by solving the problem of maximizing the seats xz, allocated
to an alternative a € A,,, when all the other alternatives are closed, given its own
demand d, and the recaptured one.

Definition 1 (Max Single Sales Upper Bound (MSSP)). Given a market m € M and
an alternative a € A, we define Max Single Sales Upper Bound (MSSP) the following

value:
u(a, m) = Maxy,eN, z,eR{  Ta:

Lo+ 2m = dm
Jm-xa_—da-zm <0 (3)

The solution of this problem is given by the formula:

- dq
wa,m) = Lud | de

We have that z, < u(a,m), that can be used as a cut constraint in (2). Further the

total revenue
Zpa‘xag Zpa'@(a;m)
aG.Am CLGAm

However the bound obtained is too weak.

We improve it by introducing a Max Group-sales bound. The second type of bound
takes into account the fact that alternatives are always correlated to a market. The
idea is to maximize the allocations to a market considering only demand constraints.
In order to solve efficiently each sub-problem, we have to distinguish three different
bounds.

Definition 2 (Max Group Sales Upper Bound (MGSP)). Given a market m € M and
a subset I C A, we define the Max Group Sales Upper Bound (MGSP) as the following
value:

an(m,I)= max { Zxa:

Xy eN sZm [SIN
acl
Z(IEI a m m

Jm-xa_—da-zmgo ael
Zmzdm}

Usually |A,,| is not so big so that the number of variables for this type of problems is
tractable; additionally the structure of the problem is very simple and so the solution
can be easily computed by a standard solver for linear mixed integer program.

It can be used as additional constraints to be add to (1) as

Za:a <an(m,I).
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Despite these good aspects, it could happen that the number of markets is large. So
the pre-process needed to compute MGSP bounds could be potentially too expensive.
A smart relief is to use the linear relaxation of the MGSP.

Definition 3 (Max Group Sales Upper Bound Linear Program (MGSP-LP)). Given a
market m € M and a set I C A, we define the Max Group Sales Upper Bound Linear
Program (MGSP-LP) as the following value:

aun(m,I) = XIGI%;?;GR{ Ze;xa :
a
Zae] Tq + 2m = dm

- Tg—dg-2m <0 acl
JUGZOJ aecl
Zmzdm}

The good structure of the formulation helps us in the fact that is possible to build an
analytical solution for this problem.

Proposition 4.1. Given a market m € M the optimal solution of MGSP-LP is given

by
A - dg
= forallael
p]+dm
" pI+Jm

where pr =3 ,c1da

Proof. Given the primal in definition (3), the dual formulation follows:

Minimize : dp, - Ao — dym - \s

e+ dm Mg >1 , acl (4)

Ae=Y da-Aa— A >0 (5)
acl

Ae >0

A >0

We can relax the Feasible Region observing some simple structures of the constraints.
We can transform the constraints (4) as it follows:

Ae+dm-Ag > 1 ael

)

1—
)\aZT)\C ael



Multiplying d, Va € I and summing by a € I,

1—-)c
Zda')\azzda' d;n

ael a€el

Then we can remove A, = (Aays Aays ...,)\am)T variables relaxing the constraint (5),
obtaining :

Minimize : dp, - Ao — dpm - \s
1-— )¢
Ae — —— - dy,— X, >0
> —

a€el m
Ae >0
A, >0

Given that there is only one vertex, for the Fundamental Theorem of Linear Program-
ming if a solution exists, then it is situated in a vertex. It is possible now to compute
an easy solution for the dual. Note that there are also different solutions in the sense
of A7 but the optimal value of the objective function does not change.

* PI
AN= =
¢ dm"‘Pl
1
No= ael
dm+Pl
A=0

z

This solution is optimal for the Dual because is optimal for an its relaxation and still
feasible for the non-relaxed formulation.

Noting that A} and A}, a € I are greater than 0, we can use the Complementarity
Formulas to compute the primal solution.
We have to simply solve a linear system of equations, with square coefficient matrix .

Am * Tqg —dg - 2m = 0, ael
Z:ﬁa+zm:dm
acl

dm - d
=" el
p[+dm ¢

_Pl‘f‘CZm



We report a simple example to show the values of the different bounds allow to add
different cuts to the original formulation.

Example 4.2. Given a set of alternatives {A, B,C} calling {0} the null alternative
and the related demands, we can compute the bounds.

Alternatives Demand MSSP

A 0.6 1
B 1 1
C 0.6 1
0 1.5

Alternatives MGSP MGSP-LP

A+B 1 2
B+C 1 2
A+C 1 2
A+B+C 2 3

With MSSP no alternative can be removed from the problem.

Using MGSP-LP, no restrictions are added and there’s no benefit to use them instead
of MSSP’s ones.

Finally with MGSP we have that at most two alternatives can be used, reducing the
feasible region.

5 Decomposition Approach

Problem (1) can have a huge number of variables so that it cannot be solved at optimal-
ity even using improved formulation. In literature and in practical applications there
are a lot of Decomposition methods proposed for Network Based Revenue Management
problem. The usual practice is to decompose the network by legs and then to optimize
each single leg separately using standard methods, introducing some factors that take
into account network relations.

In the following we assume that at each market m is associated a single service s.

We introduce a decomposition by market and not by single leg. The main idea is very
simple, the solution of the problem is obtained by solving by a sequence of Master -
Slave pair problems. The principal problem is divided as follows :
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o Master Problem: is the problem to allocate capacities over markets, maximizing
network profit;

e Slave Problem: is the problem to allocate the capacity allocated to a market by
the Master problem over the different alternatives, maximizing the profit.

The decision variables of the Master problem are the capacities v,, dedicated to the
m-th market where m € M. They are constrained to be integers and they cannot
exceed the aggregate host demand for the market p,, = > A, da-

We first introduce the Slave problem where we assume that the capacities v,, dedicated
to the m-th market, m € M, are assigned. The decision variables of the Slave problems
are analogous to those of the basic model (1) but restricted to a single market m. Since
each market has its own capacity allocated in the Master decision step, it is always
satisfied the relation:

S o= v (6)

max E Da * Tq

X A, ENIAM] 2 eR

Am - g — dg * 2 < 0, VaeAn,

Zm > A
For given fixed allocation v,,, m € M the optimal objective value of the slave problem

Pm (V) is defined as follows.

Definition 4 (Revenue Market Function). For a given m € M associated with a value
U, Such that vy, € N and vy, < pm, we define the Revenue Market Function py,(vy,)
as follows:

P (V) = max { Z Pa " Lq '

X Am €N|Am‘,zm€R

a€Am

Z Lg = Um ,

a€Am

Zxa—f—zm—dm , (8)
aEAm

AdmTa — dazm < 0 a € A,
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We are now ready to define the Master formulation:

Maximize : Z P (Um)

meM

> > wm< > @, VIEL VbeB (9)
teB:it<bmeM;y, teB:t<b

0<vm < pm, VYmeM

Um € N, VmeM

5.1 Slave problem

It’s very interesting to show that it’s possible to find a trivial solution for the Slave
problem.
We are ready to show the main result about the slave problem.

Theorem 5.1. Given a market m € M and a value vy,. Only one of the two following
sentences is true:

1. the Slave problem is unfeasible ;

2. the Slave problem admits a solution. This solution is obtainable using a Greedy-
type algorithm.

Proof. Given a market m € M and a value v,,, consider the Slave formulation , def-
inition (5.4). Now we show that a solution exists if and only if a certain condition is
verified.

Given a market m € M we will say that v, satisfies the feasibility condition if satisfies:

0 < vy < 2,4: L;l:; (dm — vm)J (10)

So definetely a solution for the Slave problem exists if and only if the feasibility condition
is satisfied.

We remove z,, from the formulation. In fact we can substitute what appear in the fized
allocation constraint in the total demand one, obtaining :

Zm = dm — U

If the feasibility condition is valid v, < pm,, thus this value for z,, is always feasible
and constant. We remove it.
We now reduce the Slave formulation and we rewrite the relative demand constraints.
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max g Pa * Tq

Xy ENIAM] 20 R

cAm
> amon
CLEAm
dq
o < — - (dpm — V), a€ Ay,
m

Combining the integrality with the relative demand constraints, we can easily im-
provethe upper bounds for all a € A as follow:

{xaeN:and_a-(dm—vm)}@){xaeN:xag Vl_a(dm—vm)J}

dpm dm

It’s simple to understand that there’s not loss of information.

The solution of this problem is trivial, in fact all the variables are superior bounded
and each bound is constant. So it’s sufficient to use a Greedy-type algorithm to reach
the solution.

We have to use all the fixed capacity v, allocating resource until the bound is reached or
the remain capacity is terminated. Obviously this procedure begins from the alternative
a € A, with maximum price, when it’s full then it consider the second maximum price
alternative, then the third and so on iteratively.

Now we have to show that a solution for the Slave problem exists only if v, satisfies
the feasibility condition. We decide to demonstrate the negation of the what we’ve
just said (observe that this is a note and valid method to conduce demonstrations). So
definitively we have to demonstrate that if v, doesn’t satisfy the feasibility condition
the Slave problem is unfeasible .

If the feasibility condition is not valid we can distinguish 3 cases:

1. v, <0
2.0,20 A Uy > pm
3. 20 A vy < pm

Case 1 : If v, < 0 the problem is infeasible because EaeAm T, > 0 and so EaeAm Ty >
U

Case2: Ifv,, >0 A vy, > pm we have again that the problem is infeasible because
Zm = Pm + dm — U and 50 2, < dpy,.

Case 3 : Finally suppose that v,, >0 A vy < pp. Known that vy, < p,, we can
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repeat the same steps made before to reduce the Slave formulation, re obtaining :

max E Pa * Tq

a€Am

5 ramn

aEAm

l‘ag\‘ja'(dm_vm)Ja ac Ay,

Summing by a € A,, all the relative demand constraints we observe:
Za < @ (dm — vm)
a dm
€Am acAm

But remembering the fized allocation constraint we have:

s T |7

aEAm
This is exact the feasibility condition and we are supposing that it is not satisfied, but
for the 3rd case this means that vy, > 37 4 L‘%ﬂ (dm — vm)J and thus finally the
Slave problem is Infeasible.

Actually we’ve just demonstrated that a solution exists if and only if the feasibility
condition is satisfied, so the point (2) of the theorem is accomplished.

To conclude the demonstration we have to show that if the solution does not exist, then
the problem is unfeasible . But as we’ve just seen a solution does not exist if and only
if the feasibility condition is violated. Thus we have definitely two cases:

e Case 1:
U < 0

Trivially the feasible region is empty because both the following condition have
to be verified:

Z Ta=0m <0 A z,€N, ac€A,

a€EAm

In fact a sum of positive numbers cannot be negative.

e Case 2 :

V> Z LC;;‘; : (dm—vm)J

aEAm

But looking at the problem it is clear that

m

d
xag\‘da'(dm_vm)Ja a€An A Zxazvm
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It’s impossible that ) A, Ta is greater than the sum of the bounds of the terms
those compose it. So again the feasible region is empty.

This conclude the proof. 0

More formally we can introduce a simple Greedy-type algorithm scheme for the com-
putation of the solution for the Slave problem.

Slave solution Greedy Algorithm

Initialization. Set Py = A,,, so = vy €N, 2 = 0 for all a € A, and p?, = 0.
For h =0,1,...

1. Set p* = * = .
et p ggf{pa}, a arggéég;{pa}

2. Ifsp,>1 A 2zl < [d‘f* '(dm—vm)J

a*
then 2/ =zl 41, 2/l =2l Vae An~{a*}, sp=sn—1

and  pitt = py, +p*

3. Ifsp>1 A th{@-(dm—vm)J

a* dm
then P11 = Py ~ {a.}
4. If s, =0
put z, =z, Vae A, and  pp(vn) = plit!
then STOP
End For

A central result is a particular property that the Revenue Market Function.

Proposition 5.2. For any m € M, let v, satisfying (10) then

Pm(VUm + 1) < Pm(Vm)
vm+1 T vy

Proof. Suppose by contradiction that 3m € M such that Jv,, satisfying (10) and such
that
Um + 1 U

We know that
pm('Um + 1) = pm(vm) + Apnz('um + 1)
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where
Apm(vm + 1) = pm(vm + 1) - pm(vm)

Substituting in ( 11 ) we have that

Pm (Um) Apm (Um + 1) Pm (Um)

+ >
Um + 1 Um + 1 Um
4
App (U + 1) - Uy > P (Vi) (12)

On the other hand we are incrementing only one unit of capacity so the increment is

less or equal than the price of the alternative immediately disposal when one unit of
capacity is added.

Apm(vm + 1) = pm(vm + 1) _pm(vm) <p
But we know that

pm(vm) = Pa1%a; T Pas¥ay + -+ + Pa,Za,
Where r < f,,, and pg;, > pay, > ... > Da,. Basily we can write

Pm(Vm) > Pa, - Vm

Remembering that v, < vy, + 1 we have that necessarily p,, > p. Finally we have

that
Pm(VUm) = Pay - Vm =P U 2> App (v + 1) - vy

this is in contradiction with the absurd assumption ( 12 ), and so the thesis is veri-
fied. 0

Roughly speaking we say that the unitary Revenue is non-increasing. Using empirical

data it turns out that the structure of the Market Revenue Function is basically concave,
with a noise that modifies locally its behaviour.
We can make a lower and an upper approximation.

e Upper Approximation

The main idea is to use some results from the Global Optimization Theory. A fa-
mous branch of Global Optimization refers to the concept of Convexr Hull (speak-
ing about minimization problems). For a better comprehension see [6].

Briefly from now we will write more coherently about the Concave Hull of the
Market Revenue Function.

A note definition of this curve follows.
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Proposition 5.3. Given f(x): Q — R, a continous function always defined and
finite on the set Q@ C R™ that is closed. We can define the ConcaveHull co(f(x))
of the function f(x) as:

co(f(z)) =infla’z+b:a"y+b> fly) YyeQ, acR", beR}

Our approach is very simple. We apply this definition to a discretized set, and
the problem degenerate to a simple bi-dimensional linear programming problem.

In other words we compute p,,(v) Vv € {0,1,... ,uby}, the reason of this are
twice: first we are only interested on integer values, second the Market Revenue
Function is attributable to a continuous piecewise linear function on [0, uby,].

After this calculus we can easily find the ConcaveHull co(pm(v)) solving the
following problem:

co(pm(v)) = min{a-v+b : a-ut+b > pp(u) Yu € {0,1,... ,uby,}, a€R, beR}

Observe that we write min instead of inf because this is a linear programming
minimization problem lower bounded and non-empty (a feasible solution is given
by a = max{pm(v)/v:v e {l,... ;uby}} and b =0+ ).

Our application is fitted on the Airline Revenue Management, so generally speak-
ing the capacities are in the order of 500-1000 available units. Definitely this gives
us the opportunity to effectively build and solve the problem we’ve just presented.
Lower Approximation

The main idea here is to use the ConcaveHull shown before to realize a lower
function. This computation is very easy and can be made just rescaling oppor-
tunely what we’ve already collect computing the Upper Bound.

Thus once calculated p,,(v) Vo € {0,1,... ,uby,} and the respective Convex Hull
co(pm(v)) Yv € {0,1,... ,uby,} (eventually reducing ub,, — u},), we can solve
the following problem:

a=min{a:a-co(pm(v)) < pm) Yve{0,1,... ,uby},acl0,1]}

The problem is well posed because is linear and non-empty (o = 0 is a feasible
solution).

This problem have only one decision variable and have to be solved one time for
Market.

Once alpha is computed we can easily write the ConcaveLower BoundFunction
cor,(pm (v)) as:

cor,(pm(v)) = a - co(pm(v)) Vo € {0,...,ubny}
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Figure 1: Left: the Market Revenue Function. Right: the Market Revenue Function,
its upper approximation and the lower one.

The most relevant advantage of use this approach is we have a gap between Upper
and Lower approximation that is always constant in percentage. In formulas:
CO(pm(v)) - COL(pm(v)
co(pm(v)

=1l-«a Vo e {l,... uby}

or equivalently
cor(Pm(v))

=« Yo e{l,..., uby,
co(pm(v) { }

Example 5.4. Considering a simplified Market made up of a couple Origin-Destination
related to only one service. Sample data are reported in the table.

Alternative | Demand | Price
al 0 985
a2 0.004 777
al 0.808 586
a4 4.454 517
ad 0.026 464
ab 1.758 418
a7 0.402 339
a8 2.899 276
a9 7457 230
al0 23.426 201
all 0.487 171
al 90.399

We can easily generate the approximations.
Here the value of alpha is 95%, so the error committed is no more than 5%.
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5.2 Master problem

We discuss in this section properties of the Master problem (9).

It is useful to solve the problem rewriting it in a easier form, that is a linear combina-
torial programming reformulation.

Notationally we call ky, = |pm] m € M and ppi = pm(7) Ym € M,i €
{0,1,... km}.

Definition 5. The Master problem binary reformulation (BPM) is defined as :

k“ m

Mazimize : Z Z Pmi * Ymi

me./\/l l:lm

km
Z Z Zlym,zg Z Ct le L, be B

teBt<bmeMy; i—=0 teBt<b
km

Z Ym,i = 1 me M

i=lm

Ym,i € {0,1} me M
here Ym.i me M,ie€{0,1,... ky} are the decision variables.

A binary variable is equal to one if and only if we're allocating ¢ capacity to the
respective market. It is also possible to reserve only a variable to a certain market,
this is the reason of the additional constraints. Master feasibility is kept in mind by
km m € M parameters.

The only observation here is that the problem, even if it is linear, has computational
complications given by the binary structure of the decision variables.

5.3 Market-Service Decomposition

In this section we neglect the assumption one Market- one Service. As a matter of fact
real application of these models are based on the key concept of Market-Service.

We want to discuss now how the model could be modified if we pass from the single-
service case to the multiple one.

First of all we have to redefine the Slave Problem itself. For a given market m € M
let be Sy, := {s1,...,54} the set of services associated to this market. Let now be
P, = {P,,.. .Psq} a partition of alternatives associated to market m, each P, C
An i=1,...,¢, P, NP;, =0 Vi,he{l,...,q} i# hand U_ P =Ap.

Definition 6. For a given m € M associated with a value v, such that vy, € N and

Um < Pm, we define the Multi-Service Revenue Market Function pfn(vm, Wsy s Wayy - - -
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as follows:

S — .
Py (Vmy Wey, Wy, - - ., Ws, ) = MAX g Do Tg
aeAm

Zxa:vi 1=1,...,q,

2o < V_l“ (e — vm)J 0 Am  (13)
zq €N a € Am (14)

This complication is reflected in the Master problem by using the following constraint:

q
U = Z W, (15)

i=1
Fortunately we can now further decompose the Slave Problem. In fact the allocation of

capacity for each service is outsourced in the Master (maintaining its own structure).

Definition 7. Given m € M associated with a value vy, such that v, € N and v, <
pm- Given also a service sj € Sy, associated with a value ws;, we define the Single-
Service Revenue Market Function p‘:,{(vm,wsj) as follows:

pfg(vm7w5j) ‘= max Z Pa " Zq :

aEPSj
Z Tq = Ws; )
(IEPS]‘
da
Zg < {_ (dm — vm)J a€ P, (16)
zq €N a € P, (17)

This decomposition is exact because the problem is Block decomposable, and so we can
write:

q
pi(vmawslvwsy cee 7v5q) = szé(”um;w Sj)
i=1

So definitely the only complication in the Master will be to introduce as a constraint
the equation (15), maximizing the following objective function:

q
p(vmp' ce >vm|M|) = Z pfn(vm>wslvw827' i 7wsq) = Z Ep%(vmywsj)

meM meM j=1

The size of the Master problem is now larger but still less than exponential. Indeed in
the worst case we have exact one alternative for each service, and at most one with 2
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alternatives. This is still significantly less the dimension of the basic model, so it’s still
good.

In real application we have to consider also lower and upper bounds that each alterna-
tive, or each couple market-service, could have. Generally this increase only the reading
complexity.

We can easily rebuild the Master problem based on Market-Service decomposition.

Definition 8. The Master problem is defined as solving the following mathematical
programming formulation:

Mazximize : Z Z P (Vm, Ws)

meM s€Sm
Z Ws = U m e M
SESM
Z Z Um, < Z Ct lelL, bebB
teB:t<bmeMy, teB:t<b
I < ws < ug meM, se8,
Im < vm < pm me M
ws €N meM, seS,
Um € N me M

where v,, meE M andws me M , s €S, are the decision variables.

The Master problem defined above can be formulated in a binary way. In this case
we have to introduce two group of constraints that have the function to link capacities
between Markets and Services.

We decide to present the model and after that to describe it.

Definition 9. The Master problem binary Market-Service reformulation (BPMS) is
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defined as :

k’rn

Us
Mazimize : Z Z Z me,s(i,j) “Ym,s,ij

MEM s€ESm i=lm j=ls

km us
Z Z Z ZZj'ym,s,i,jS Z Ct lel, bebh
teB:it<bmeMy; SESm, i=lm j=ls teB;:t<b

km  us

Z Z Ym,sjij = 1 meM, ses, (18)

i=lm j:ls

Us Us
> Ympsig = Ymsig mEM, 3€Su~{3}, i€ {ln... km}

Jj=ls J=ls
(19)
km
S i tmsig<i meM, i€ {lm ... km} (20)
SESm j=lm

Ym,sij € 10,1} meM, s€Sm, P€{lmy.- km}t, JE{ls,... us}

here Ymsij m € M,i € {lm,...  km},s € Sm,j € {ls,...,us} are the decision
variables, and § € Sy, is a whichever service for each m € M.

The binary formulation becomes rapidly crowded with constraints. Obviously the pre-
vious constraints are still necessary and thus here we have to add a summation that
covers all the possible new binary variables for each Market-Service. As said before,
unfortunately, two big groups of constraints are added to the model:

o Market’s Capacity Coherency constraints :

They refer to constraints (19). The idea here is that we have to choose the same
level of capacity allocated for a Market, for each couple Market-Service correlated.

Combined with the constraints of type ( 18), it’s easy to see that for a given level
of capacity allocated to a Market, then the summation could be 1 ore 0 (and no
other values are admitted). Definitely if a certain value i is chosen, then only
binary variables with this value are a solution.

Without these constraints the algorithm tends to solve separately each Market-
Service couple , returning solutions non feasible for the original formulation.
o Market’s Capacity bound constraints :

They refer to constraints (20). The idea here is that given a fixed value of Market’s
capacity ¢, then the summation of capacities allocated to Market-Service couples
have to be equal to the one allocate to the Market. In other terms we try to
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reproduce the following constraint:

Unfortunately the binary nature of the reformulation does not admit equality in
this case, in fact this should imply that a Market’s capacity value is fixed. So in
the end our constraints force a weaker condition:

vaZws méeM

SGSm

Realistically speaking this is not a problem, as a matter of fact a solution is
optimal if and only if all the Market’s capacity is consumed. This is an easy
deduction derived from the greedy nature of Market Revenue Function and from
the fact that capacity constraints are based on Market decomposition concept.

6 Conclusions and future research

SBILP is one of the more effective Revenue Management models. In real applications,
SBILP is a large-scale integer programming problem, that cannot be solved effectively
in practice in the most of cases. Even its linear relaxation, well-known as SBLP, requires
a remarkable computational effort by state-of-art commercial solvers. The results in
this paper investigate important properties of SBILP that allows us to improve the
formulation. In particular, we introduced simple cuts that can highly improve upper
bound provided by SBLP. Moreover, we investigate a simple decomposition approach
leading to a cost-effective method for the solution of SBILP.

Having observed that our research moved on binary formulation. Here we definitely
found a strong formulation for the problem, but the Boolean nature of the variables
generates a large number of elements that wore out time efficiency.

In our intention we will now move to reduce the size of the Master problem, trying
to add more complexity to the Slave. A central idea is to pass from the Market-
Service decomposition, to the Service-Cabin one. This setting can reduce dimensions
of Master’s input even of 75 percent.

Actually we are also continuing to develop an algorithm that can take into account the
concave approximation.

We have developed preliminary numerical test that show viability of the approach.
Future research will be dedicated to the implementation of the algorithm and test in
real data.
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