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Abstract

Simar and Wilson (J. Econometrics, 2007) provided a statistical model that can
rationalize two-stage estimation of technical efficiency in nonparametric settings. Two-
stage estimation has been widely used, but requires a strong assumption: the second-
stage environmental variables cannot affect the support of the input and output vari-
ables in the first stage. In this paper, we provide a fully nonparametric test of this
assumption. The test relies on new central limit theorem (CLT) results for uncondi-
tional efficiency estimators developed by Kneip et al. (Econometric Theory, 2015a) and
new CLTs for conditional efficiency estimators developed in this paper. The test can
be implemented relying on either asymptotic normality of the test statistics or using
bootstrap methods to obtain critical values. Our simulation results indicate that our
tests perform well both in terms of size and power. We present a real-world empiri-
cal example by updating the analysis performed by Aly et al. (R. E. Stat., 1990) on
U.S. commercial banks; our tests easily reject the assumption required for two-stage
estimation, calling into question results that appear in hundreds of papers that have
been published in recent years.
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1 Introduction

Two-stage estimation procedures wherein technical efficiency is estimated by data envelop-
ment analysis (DEA) or free disposal hull (FDH) estimators in the first stage, and the result-
ing efficiency estimates are regressed on some environmental variables in a second stage, are
very popular in the literature. Simar and Wilson (2007) cite 48 published papers that employ
this approach and commented that “as far as we have been able to determine, none of the
studies that employ this two-stage approach have described the underlying data-generating
process.” Simar and Wilson go on to (i) define a statistical model where truncated (but
not censored, i.e., tobit, nor ordinary least squares) regression yields consistent estimation
of model features, (ii) demonstrate that conventional, likelihood-based approaches to infer-
ence are invalid, and (iii) develop a bootstrap approach that yields valid inference in the
second-stage regression. The model defined by Simar and Wilson rationalizes second-stage
regressions of estimated efficiency on environmental variables in the sense that such a re-
gression estimates a feature of the model described by Simar and Wilson. However, as noted
by Simar and Wilson, the model contains a crucial feature—and a strong restriction—in
the form of a “separability condition” that appears below as Assumption 2.1. Without this
condition, second-stage regressions of estimated efficiency do not estimate any meaningful
model feature; as Simar and Wilson (2007), this condition should be tested before estimating
a second-stage regression, but until now no test has been available. Such a test is provided
in this paper.

A number of papers have appeared in recent years using the approach suggested by Simar
and Wilson (2007). However, papers that estimate technical efficiency in the first stage and
then regress these estimates on some environmental variables in a second-stage tobit model
continue to appear. As far as we know, none of these papers present a statistical model in
which second-stage tobit estimation would consistently estimate features of the model; the
approach is ad hoc in each case. Moreover, regardless of how the second-stage regression
is specified, any results from such regressions are meaningless for reasons given below when

the separability condition is violated.!

L A search on Google Scholar on 14 August 2015 using the keywords “dea,” “efficiency,” “tobit,” and “two
stage” returned 3,240 papers with dates between 2008 and 2015. As far as we know, none of these papers
present a statistical model in which second-stage tobit estimation would consistently estimate features of
the model; the approach is ad hoc in each case. Repeating the search after dropping the keyword “tobit”



Recently, Daraio and Simar (2005) develop conditional measures of efficiency, which allow
nonparametric estimation of technical efficiency conditional on some explanatory variables
in a single stage. This raises some important questions for practitioners, such as the ques-
tion of precisely how environmental variables might affect the production process. In the
model presented by Simar and Wilson (2007), environmental variables affect the shape (i.e.,
mean, variance, etc.) of the distribution of inefficiencies, but not the support of input or
output variables. Conceivably, however, environmental variables might have other effects; in
particular, they might affect the production possibilities themselves. The statistical model
in Simar and Wilson rationalizes second-stage regression of efficiency estimates on some en-
vironmental variables, but does not allow for the possibility that environmental variables
might affect the production possibilities. If they do, then a different model is needed, and
second-stage regression is not appropriate.

In this paper, we present a carefully-developed framework—i.e., a statistical model—
in order to make clear how environmental variables might be relevant, and how to test
whether two-stage approaches might be meaningful (i.e., whether the separability condition
described by Simar and Wilson, 2007 and required by studies that have used the two-stage
approach is satisfied). We then extend the CLT results of Kneip et al. (2015a) to conditional
efficiency estimators; while the new CLTs are useful in their own right for making various
hypothesis tests along the lines of Kneip et al. (2015b), they are needed to develop our
separability test. We then develop test statistics and prove that they have asymptotic
normal limiting distributions from which critical values for implementing the test can be
obtained. In addition, we describe a bootstrap method that can be used to assess the
significance of test statistics without incurring a large computational burden; results from
Monte Carlo simulations suggest that in many cases the bootstrap tests have better power
than those relying on asymptotic normality. In cases where two-stage approaches are found
to be inappropriate, one can (and should) estimate efficiency conditionally on environmental
variables, for reasons given below.

In the next section, we develop the statistical model. Estimators are discussed in Section

returned 19,300 papers over the same years. Even if only half of these hits are relevant, the searches indicate
that the practice of regressing nonparametric efficiency estimates on some environmental variables in a
second-stage regression is widespread, although perhaps many of these exercises yield meaningless results if
the separability condition is frequently violated.



3, and the tests are developed in Section 4. Section 5 describes Monte Carlo experiments
used to assess the size and power of our tests as well as results. In Section 6 we provide
a real-world example by revisiting the work of Aly et al. (1990) and testing whether the
assumptions given by Simar and Wilson (2007) that are required for the two-stage approach
used by Aly et al. to be meaningful are satisfied. Conclusions are given in the final section.
Appendix A gives technical assumptions used to derive results in Section 4, and Appendix

B discusses how one can handle discrete environmental variables.

2 The Production Process in the Presence of Environ-
mental Factors

In this section we formalize a statistical model of the production process along the lines of
the probability framework of Cazals et al. (2002). The production process generates random
variables (X, Y, Z) in an appropriate probability space, where X € R” is the vector of input
quantities, Y € RY is the vector of output quantities and Z € R” is a vector of variables
describing environmental factors. These factors Z are neither inputs nor outputs and are
typically not under the control of the manager, but they may influence the production process
in different ways as explained below. Let fxyz(x,y,2) denote the joint density of (X,Y, Z)
which has support P C RY x R% x R". This joint density can always be decomposed as

fXYZ(I,y;Z) = fXY\Z(‘Tvy ’ Z)fZ(Z) (21>

Let U* denote the conditional support of fxyz(z,y | 2), i.e., the support of (x,y) given
Z = z, and let Z be the support of fz(z). Then W¥# is the set of feasible combinations of

inputs and outputs for a firm facing the environmental conditions Z = z; i.e.,
U* = {(X,Y) | X can produce Y when Z = z}. (2.2)

The environmental variables in Z can affect the production process either (i) only through
U?# the support of (X,Y), or (ii) only through the density fxy|z(z,y | ), thereby affecting
the probability for a firm to be near its optimal boundary, or (iii) through both ¥* and
Ixviz(z,y | 2). Let

U= o (2.3)

z€EZ
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Clearly, ¥ C Rffrq, but whether ¥ is useful for benchmarking the performance of a firm pro-
ducing output levels y from input levels x while facing levels z of the environmental variables
depends on whether the “separability” condition described by Simar and Wilson (2007) is
satisfied. This condition requires that Z affect production only through the conditional den-
sity fxviz(z,y | z) without affecting its support ¥#, and is stated explicitly in Assumption
2.1.

Assumption 2.1. (Separability Condition): W* =W for all z € Z.
Clearly, when Assumption 2.1 holds the joint support of (X, Y, Z) can be factorized as
P=V¥x Z, (2.4)
and W can be interpreted as the unconditional attainable set
U ={(X,Y) | X can produce Y}. (2.5)

However, ¥ has the interpretation in (2.5) if and only if (iff) Assumption 2.1 holds. The sep-
arability condition is very strong and restrictive. Under Assumption 2.1, the environmental
factors influence neither the shape nor the level of the boundary of the attainable set, and
the potential effect of Z on the production process is only through the distribution of the
inefficiencies. If the separability condition holds, it is meaningful to measure the efficiency
of a particular production plan (z,y) by its distance to the boundary of W. For example,

under separability, the output-oriented Farrell efficiency score is given by
Az, y) = sup{A > 0| (z, \y) € U}. (2.6)

In this case, it is meaningful to analyze the behavior of A(x,y) as a function of Z by using
an appropriate regression model (see Simar and Wilson, 2007, 2011 for details).?
Alternatively, if the separability condition does not hold, then we have a more general
situation where the factor Z may influence the level and the shape of the boundary of the
attainable sets (and may also influence the conditional density fxy|z(z,y | 2)). The following

assumption characterizes this situation explicitly.

2 We focus the presentation in this paper using output-oriented measures of efficiency such as the one
n (2.6), but of course efficiency can be measured in other directions as desired. See the recent surveys
by Simar and Wilson (2013, 2015) and the references cited therein for details. All of the results here are
easily generalized to input, hyperbolic, and directional distance functions after straight-forward (but perhaps
tedious) changes in notation.



Assumption 2.2. (Non Separability Assumption): W* £ U for some z € Z, i.e., for some
2,2 € Z, U £ V%,

Note that Assumptions 2.1 and 2.2 are mutually exclusive; one and only one holds in a given
situation.

Under Assumption 2.2, the efficiency measure in (2.6) is difficult to interpret; in fact,
it is economically meaningless because it does not measure the distance to the appropriate
boundary. If Assumption 2.2 holds, the set U can still be defined as in (2.3), but for
benchmarking production units, the boundary of U has little interest in this case because it
may be unattainable for some firms faced with unfavorable conditions represented described

by z. In such cases, the conditional measure
Az,y | z) =sup{\ > 0| (z,\y) € ¥} (2.7)

introduced by Cazals et al. (2002) and Daraio and Simar (2005) gives a measure of distance to
the appropriate, relevant boundary (i.e., the boundary that is attainable by firms operating
under conditions described by z).

The distinction between Assumptions 2.1 and 2.2, and their implications for how en-
vironmental variables in Z affect the production process, has often been neglected in the
literature where researchers analyze the effect of Z on A(X,Y’) by estimating some regres-
sion of A(X,Y) on Z. Typically, starting with a sample of observations (X;,Y;, Z;), DEA
or FDH estimators /):(Xi, Y;) computed in a first stage are regressed on Z; in a second-stage
analysis. Even if Assumption 2.1 holds, additional problems described in Simar and Wilson
(2007) remain to be solved in the second stage to obtain sensible inference. Theoretical
results on how to make inference in a second stage linear regression, when appropriate, is
described in detail by Kneip et al. (2015a). However, if Assumption 2.2 holds, the two-stage
approach is almost certain to lead to incorrect results and inferences about the effect of Z
on the production process. This explains why it is important, as noted by Simar and Wil-
son (2007)—indeed, essential—to test Assumption 2.1 against Assumption 2.2. If the test
rejects separability in favor of Assumption 2.2, then only a second-stage regression of the
conditional measure A\(X,Y | Z) on Z can be meaningful, as described for example in Badin

et al. (2012).°

3 A search for papers using Google Scholar on July 16, 2015 found approximately 4,500 hits using keywords
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In order to derive results below, the efficiency measures in (2.6) and (2.7) must be defined
in terms of components of our probability model. Cazals et al. (2002) show that under free
disposability (see Assumption 4.2 below) the output-oriented efficiency measure in (2.6) can
be written as

AMz,y) =sup{\ > 0| Hxy(x, A\y) > 0}, (2.8)

where Hxy (z,y) = Pr(X <z, Y > y) is the probability of finding a firm dominating the
production unit operating at the level (z,y).* This can be factored as Pr(X < x)Pr(Y >
y | X <) = Fx(x)Syx(y | X < x), where the latter conditional survival function is
nonstandard due to the the condition X < z. For (z,y) such that x is in the interior of its

support (i.e., Fx(z) > 0), the efficiency score can be written equivalently as

Az, y) =sup{A >0 | Sy;x(A\y | X <) > 0}. (2.9)
Along the same lines, the conditional efficiency score can be expressed as

Ma,y | z) =sup{A > 0| Hxyz(x, Ay | z) > 0}, (2.10)

where Hyy|z(x,y | 2) = Pr(X <2, Y >y | Z = z) is the probability of finding a firm dom-
inating the production unit operating at the level (x,y) and facing environmental conditions
z and is the distribution function corresponding to the conditional density fxy|z(z,y | 2)
introduced earlier. Analogous to (2.9), the conditional efficiency measure can also be written
as

M,y | z) =sup{A > 0| Syixz(\y | X <2, Z =2) >0} (2.11)

while noting the different roles of X and Z in the conditioning of the conditional survival

function Sy x z(y | X <2, Z=2)=Pr(Y >y | X < 2,7 = z2).

3 Non-parametric Efficiency Estimators

The literature on nonparametric statistical inference for efficiency scores is by now well-
developed. Here, we summarize the definitions and properties needed to test Assumption

2.1 versus Assumption 2.2. Consider a sample of identically, independently (iid) observations

“dea,” “efficiency,” and “second-stage regression” while restricting the search to papers dated 2008 through
2015. Apparently, the warnings of Simar and Wilson (2007) have not been heeded.
4 Note that as usual, inequalities involving vectors are defined on an element-by-element basis.
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S, ={(X,,Y;,Z;) |i=1, ..., n}. Following Deprins et al. (1984), the FDH of the sample
S,, is the set

(X,L',Y'Z‘)Esn

The convex hull of {I\/FDH(Sn) given by
\/I\’DEA(Sn) = {(%y) S RT(I |?J < Zini, x> ZwiXia
i=1 i=1

iwizl,wiZOVizl,...,n} (3.2)

i=1
provides the DEA estimator proposed by Farrell (1957) and popularized by Charnes et al.
(1978).5

The corresponding efficiency estimators are obtained by plugging these estimators into

the definition of A(x,y) in (2.6). Using Uppy(S,) in the FDH case leads to

~ . Y/
Aron(z,y [ Sa) = max (j.qu_{l , <y7> ) : (3.3)

where 17, Y;j denote the jth elements of y (i.e., the input vector corresponding to the fixed
point of interest) and Y; (i.e., the output vector corresponding to the ith observation in
S,). This is simply the plug-in version of (2.8), where Hxy (z,y) is replaced by its empirical
version

Hyy(z,y)=n"'Y I(X;<x,Y; >y), (3.4)

i=1
where I(A) is the indicator function equal 1 if A is true and 0 otherwise. In the DEA case,
replacing ¥ in (2.6) with Upga(S,) from (3.2) gives the DEA efficiency estimator

XDEA(m,y | S,) = /\wxlnaxw {)\ >0 Ay < Zini, x> ZM’X@,
’ " =1 =1

.....

Zwizl,wiz[ﬁ)Vi:l,...,n}. (3.5)
=1

For the conditional efficiency scores we need to use a smoothed estimator of Hxy z(z,y |

z) to plug in (2.10), which requires a vector of bandwidths for Z. Denoting this r-vector

® Note that in (3.1)-(3.2), the data on Z; are ignored; only the first (p + ¢) components of the ordered
(p+ ¢+ r)-tuples in S, are used.



of bandwidths by h, the conditional distribution function Hyyz(x,y | 2) is replaced by the

estimator
S (X <aY, > y)Kn(Z; — 2)

i=1
A
where Kj,(-) = (hy ... h,)"'K ((Z; — 2z)/h) and the division between vectors is understood

ﬁXY|Z($7y | Z) = (3-6)

to be component-wise. As explained in the literature (e.g., see Daraio and Simar, 2007b),
the kernel function K (-) must have bounded support (e.g., the Epanechnikov kernel).® This

provides the estimator

~ ' Y/
Arpu(z, Y | 2,S8n) = e <jf{llf_1 , (?)) : (3.7)

where Z(z,h) ={i | z—h < Z; < z+ h}.
Alternatively, where one is willing to assume that the conditional attainable sets are

convex, Daraio and Simar (2007b) suggest a conditional DEA estimator of A(x,y | z), namely

XDEA(ac,y | 2,8,) = | nax {)\ >0 Ay < Z w;Y;, T > Z w; X,

Wb n i€T(z,h) i€Z(2,h)
for some w; > 0 such that Z w; =1, } (3.8)
1€Z(z,h)

Note that the conditional estimators in (3.7) and (3.8) are just localized version of the
unconditional FDH and DEA efficiency estimators given in (3.3) and (3.5), where the degree
of localization is controlled by the bandwidth in h. Practical aspects for choosing bandwidths
are discussed below in Section 4.5.

The properties of nonparametric efficiency estimators have been examined in a number
of papers in recent years. Park et al. (2000) and Daouia et al. (2015) derive the rate of
convergence and limiting distribution of the FDH efficiency estimator. Kneip et al. (1998)
derived the rate of convergence of the DEA estimator in (3.5), while Kneip et al. (2008)
derived its limiting distribution. Kneip et al. (2015a) provide results on the moments of both
FDH and DEA estimators. See Simar and Wilson (2013, 2015) for comprehensive surveys

of the literature. To summarize relevant results for the unconditional efficiency estimators,

6 An alternative would be, following Badin et al. (2010), to plug a smoothed estimator of Syix,z(y | X <
x,Z = z) into (2.11), but as shown in Simar et al. (2015), if the two methods are asymptotically equivalent,
the latter provides a bandwidth for z that depends on z and the resulting efficiency estimate may not be
monotone decreasing in z in finite samples, as the target A(z,y | 2) is.



under Assumptions 2.1, 4.1, 4.2 and some additional, appropriate regularity conditions (e.g.,
monotonicity, smoothness of the frontier and smoothness of the density of (X,Y)), for a

fixed point (z,y) in the interior of ¥, as n — oo,

n" (X(m,y | Sn) — Az, y)) £, Quy () (3.9)

where Q,,() is a regular, non-degenerate distribution with parameters depending on the
characteristics of the DGP and on (z,y), and x determines the rate of convergence.” For
the FDH estimator, kK = 1/(p + ¢) while for the DEA estimator, K = 2/(p + ¢ + 1). For
the FDH case, the limiting distribution belongs to the Weibull family, but with parameters
that are difficult to estimate. For the DEA case, the limiting distribution does not have a
closed form. Hence in either case, inference on individual efficiency scores requires bootstrap
techniques. In the DEA case, Kneip et al. (2008) provide theoretical results for both a
smoothed bootstrap and for subsampling, while Kneip et al. (2011) and Simar and Wilson
(2011) provide details and methods for practical implementation. Subsampling can also be
used for inference in the FDH case; see Jeong and Simar (2006) and Simar and Wilson
(2011).

Jeong et al. (2010) show that the conditional version of the FDH and DEA efficiency
estimators share properties similar to their unconditional counterparts whenever the elements
of Z are continuous.® The sample size n is replaced by the effective sample size used to build
the estimates, which is of order nh; ... h,, which we write hereafter as nh" for simplicity
(hoping the reader will indulge the abuse of notation, since the individual bandwidths may

differ). For a fixed point (x,y) in the interior of ¥# as n — oo,
T\KR N L
(k' (Nsy | 2,82) = M@y | 2)) =5 Quyia() (3.10)

where again Q,,.(-) is a regular, non-degenerate limiting distribution analogous to the cor-
responding one for the unconditional case. The main argument in Jeong et al. (2010) relies
on regularity conditions discussed in the next section, but also on the property that there

are enough points in a neighborhood of z, which is obtained with the additional assumption

7 Here and in the exposition that follows, we omit the subscripts “FDH” and “DEA” from the efficiency
estimator in order to describe results in a generic fashion, thereby conserving space.

8 We discuss below in Appendix B how discrete “environmental” variables can be handled. Otherwise,
except in Appendix B, we assume throughout that all elements of Z are continuous.



that f7(z) is bounded away from zero at z and that if the bandwidth is going zero, it should
not go too fast (see Jeong et al., 2010, Proposition 1; if A — 0, h should be of order n=®

with ao < 1/r). We will return to this point in the discussion following Lemma 4.1 below.

4 Testing Separability
4.1 Basic Ideas

The goal is to test the null hypothesis of separability (Assumption 2.1) against its complement
(Assumption 2.2). The idea for building a test statistics is to compare the conditional and
unconditional efficiency scores using relevant statistics that are functions of /)\\(Xi, Y| S,) and
X(XZ»,Yi | Z;,Sy,) for i =1, ..., n. Note that under Assumption 2.1, A(X,Y) = A(X,Y | 2)
with probability one, even if Z may influence the distribution of the inefficiencies inside the
attainable set, and the two estimators converge to the same object. But under Assumption
2.2, the conditional attainable sets W* are different and the two estimators converge to
different objects. Moreover, under Assumption 2.2, A(X,Y) > MX,Y | Z) with strict
inequality holding for some (X,Y,7) € P.

The approach developed here is similar to those developed in Kneip et al. (2015b) for
testing constant versus variable returns to scale or for testing convexity versus non-convexity

of the attainable set. Now consider the sample means

o =n""Y ANX.,Yi | Sn) (4.1)
=1
and .
flem =171 NX3,Y; | Z:,S,) (4.2)
=1

of unconditional and conditional efficiency estimators. The efficiency estimators in (4.1) and
(4.2) could be either FDH or DEA estimators, but for purposes of the following discussion,
suppose the same type of estimators (FDH or DEA) are used in both (4.1) and (4.2). By
construction (i, — fic,,) > 0, and the null hypothesis of separability should be rejected if
this difference is “too big”. However, several problems remain to be solved.

In particular, From Kneip et al. (2015a) we know that even under the null hypothesis,

standard central limit theorems (e.g., the Lindeberg-Feller theorem) cannot be used with i,

10



to make inferences about population means unless (p+¢) < 3 in the DEA case or (p+q) < 2
in the FDH case. As will be seen below, similar problems exist for ji.,. Moreover, even
if with the applicable CLT from Kneip et al. (2015a) and the CLT proved below for the
conditional estimators, the (asymptotic) distribution of the difference (i, — fic») is quite
complicated due to the covariance between the two estimators. A viable solution to this
problem is to randomly split the sample §,, into two independent parts consisting of n; and
no observations (such that ny + ny = n), and compute fi,,, using the first part S,,, and Jic ,
using the second part S,,,. This provides two independent statistics where it will be possible
to apply the results of Kneip et al. (2015a) and additional results proved below to derive the
sampling distribution under the null. But this requires some preliminary steps to adapt the
existing results to the setup here. We demonstrate below in Section 5 that the procedure

works well in practice with finite sample sizes.

4.2 Sampling distribution of averages of the efficiency scores

As noted by Kneip et al. (2015a), availability of the asymptotic results for efficiency estimated
at a fixed point (z,y) is useful, but not sufficient for analyzing the behavior of statistics that
are function of FDH or DEA estimators evaluated at random points (X, Y;). In the discussion
below, we denote the FDH and DEA efficiency estimators by A(X;, Y; | S,) to stress the fact

that the estimator is to be evaluated at a random point (X;,Y;).

4.2.1 Asymptotic Moments of Efficiency Estimators

Kneip et al. (2015a) prove that for the unconditional FDH and DEA estimators, under some

regularity conditions (see Kneip et al., 2015a for details) and as n — oo,

E (X(Xi, Yo [S,) — AMX,, m)) = On™" + Ry, (4.3)

E ((Xm,m 8.) — A(X@-,m)Q) = o(n™), (4.4)
and
(COV (R(X0, i | 80) = X3, YD), MX5, %5 | Sa) = A(X3, )| =o(n™)  (45)

for all 4,7 € {1, ..., n}, i # j and where R, = o(n*). The values of the constant

C, the rate s, and the remainder term R, , depends on which estimator is used. For the

11



DEA estimator, k = 2/(p + ¢ + 1) and R, = O(n=3*/2(logn)*); for the FDH estimator,
k=1/(p+q) and R, . = O(n"**(logn)*2). The values of a; > 1, j = 1,2 are given in Kneip
et al. (2015a). For purposes of the results needed here, the logn factor contained in R,
does not play a role and can be ignored. The results outlined here are valid under a set of
corresponding regularity assumptions (see Theorems 3.1 and 3.3 in Kneip et al., 2015a).

Similar results are needed for the asymptotic moments of the conditional efficiency esti-
mators. To achieve this we follow the arguments of Jeong et al. (2010), who note that for a
given h, the conditional FDH and DEA estimators in (3.7) and (3.8) do not target A(z,y | 2),
but instead estimate

MN(z,y | 2) = sup{\ > 0] (z,9) € U=}, (4.6)
with the conditional attainable set given by
U= = {(X,Y) | X can produce Y, when |Z — z| < h}
= {(z,y) € RE | H;Z(Y|Z(xay | z) >0}
= {(z,y) € R | fryiz(,- [ 2) > 0} (4.7)
where H?(Y‘Z(x, yl|z)=Pr(X <x,Y >y|z—h <Z < z+h) gives the probability of finding
a firm dominating the production unit operating at the level (x,y) and facing environmental

conditions Z in an h-neighborhood of z and f;éYl 4(+,+ | ) is the corresponding conditional

density of (X,Y) given |Z — z| < h. Alternatively, (4.6) can be written as
Nz, y|z) =sup{A>0]| H}wz(m,/\y | z) > 0}. (4.8)

Moreover, it is clear that U*" = Upz_zi<n vZ,
Consequently, for all points (z,y) in the support of fxy|z(x,y | 2), the error of estimation
can be decomposed as

M,y | 2) = Ay | 2) = Mayy | 2) = Nayy | 2) + )@y | 2) =My | =), (49)

=A1 =As

where the first difference (A;) is due to the estimation error in the localized problem and
the second difference (Aj) is the non-random bias (< 0) introduced by the localization.

Some assumptions are needed to define a statistical model. The next three assumptions
are conditional analogs of standard assumptions made by Shephard (1970), Fare (1988),
Kneip et al. (2015a) and others.
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Assumption 4.1. For all z € Z, ¥* and " are closed.

Assumption 4.2. For all z € Z, both inputs and outputs are strongly disposable; i.e., for
any z € Z, x> x and 0 <y <y, if (x,y) € V* then (Z,y) € ¥* and (x,y) € V*. Similarly,
if (x,y) € UM then (T,y) € U»" and (z,7y) € ¥>".

Assumption 4.2 corresponds to Assumption 1F in Jeong et al. (2010), and amounts to a
regularity condition on the conditional attainable sets justifying the use of the localized
versions of the FDH and DEA estimators. The assumption imposes weak monotonicity
on the frontier in the space of inputs and outputs for a given z € Z, and is standard in
micro-economic theory of the firm.

When the DEA estimators are used, the following assumption (corresponding to Assump-

tion 1D in Jeong et al., 2010) is also needed.
Assumption 4.3. For all z € Z, V* and V> are conver in RE.

The next assumption concerns the regularity of the density of Z and of the conditional
density of (X,Y) given Z = z, as a function of z in particular near the efficient boundary of

U? (see Assumption 6 in Jeong et al., 2010).

Assumption 4.4. Z has a continuous density fz(-) such that for all z € Z f(2) is bounded
away from zero. Moreover the conditional density fxy|z(-,- | 2) is continuous in z and is

strictly positive in a neighborhood of the boundary points.

A number of additional assumptions are needed to complete the statistical model and
to permit statistical analysis of the conditional estimators that have been introduced above
as well as the test statistics introduced below. These assumptions are given in Appendix
A. Depending on the estimators that are used in a particular situation (i.e., either DEA or
FDH), only a subset of the assumptions listed in Appendix A are required.

Our first result establishes smoothness of the potential influence of z on the frontier of
W*, The result is needed in order to control the bias due to the localization, and is expressed

in terms of a continuity condition of A(+,- | z) as a function of z.

Lemma 4.1. Under either Assumption A.5 (for FDH case) or under Assumption A.6 (for
the DEA case), For all (z,y) in the support of (X,Y),

MN(z,y|2) = Mz, y | 2) = O(h) (4.10)
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as h — 0,

Proof. Either assumption A.5 or A.6 is sufficient to establish Lipschitz continuity of A(z,y |
z) as a function of z. The result follows immediately. m

Note that if Z is separable and has no effect on the frontier and (4.10) is trivially satisfied
for all h. As noted in Badin et al. (2015), it is easy to show that if h occ n™7 with 1/r > v >
1/(r + x71), the difference in (4.10) will be o ((nh")™"). We need v < r~! to ensure there
are enough observations in the h-neighborhood of z (see Proposition 1 in Jeong et al., 2010).
Since we cannot find an explicit expression for the second component A, in (4.9), and since
the Weibull distribution linked to the first component A; contains unknown parameters, the
best that can be done is to determine the order of an optimal bandwidth by balancing the
order of the two error terms which leads to h o n~"/ (’””*71), and then to take, as usual in
nonparametric smoothing techniques, a smaller bandwidth to eliminate the bias term due to
the localization as suggested in Jeong et al. (2010, Assumption 2). As expected, the order
of the optimal bandwidth depends on the dimensions of Z as well as of X and Y. Below, in
Section 4.5, we show how to select bandwidths h of appropriate order in applied work (see
also the discussions in Badin et al., 2015).

The following result provides moments for the conditional efficiency estimators.

Theorem 4.1. Let n;, = min(n,nh"). Suppose Assumptions 4.1, 4.2, 4.4, A.1, A.2, A.3
and A.J hold. Then under Assumption A.5 for FDH case, or under Assumptions 4.3 and
A.6 for the DEA case, as n — 00,

E (X(Xi, Yi | Zi,8) — M (X, | Zi)) = Cni™ + Ry, (4.11)
where Ry, =0 (n,"),
B (R0 %1 2080 - 06 %11 20)) = ofo), (112)
and

‘COV(/)‘\<XZ‘7K | Z:,8,) — NM(X0, i | Z), MX;, Y5 | Z5,80) — M(X;, Y | Zj)) = o(n;")
(4.13)
foralli,5 € {1, ..., n}, i # j. In addition, for the conditional DEA estimator R, » =
0(%23”/2(1% ny)*) and for the conditional FDH estimator R, . = O(n,**(logny,)*?).
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Proof. Under (i) Assumptions 4.1, 4.2, 4.4, A.1, A.2 and two-times differentiability (due
to Assumption A.5) of A(z,y | z) with respect to  and y for the FDH case, or under
(ii) Assumptions 4.1, 4.2, 4.3, 4.4, A.1, A.2 and three-times differentiability (due to As-
sumption A.6) of A(z,y | z) with respect to = and y for the DEA case, Jeong et al.
(2010) prove, using the result in Lemma 4.1 and h = O ((nh")~"), that the asymptotic
behavior of (nh")* (X(w,y | 2,Sn) — ANz, y | z)> is the same as the asymptotic behavior of
(nh")" (X(x,y | 2,8,) — M(z,y | z)), which leads to the result in (3.10). For any given h,
we are in a localized version of the framework of Kneip et al. (2015a) for unconditional
efficiencies, except that here \*(X;,Y; | Z;) is the object of interest.

If Z is irrelevant, i.e. if Assumption 2.1 holds, then the optimal h — oo and n; = n.
Otherwise Assumption 2.2 holds and h — 0 as n — oo, and the order of the number
of observations affecting the estimator is n; = nh”. Moreover, this is the order of the
cardinality of Z(z, h) for all z. Then for the FDH case, the results follow directly from the
proof of Theorem 3.3 in Kneip et al. (2015a) after changing notation there to reflect the
different number of observations. Similarly for the DEA case, the results follow directly
from the proof of Theorem 3.1 in Kneip et al. (2015a). m

As will be seen, the log(ny,) factors appearing in the expressions for R, , do not play a
role in the results that are derived below. The results here should not be surprising since the
number of observations used to estimate the moments is reduced by the bandwidths; e.g., the

rates n" for the unconditional estimators are reduced to nj for the conditional estimators.

4.2.2 Central Limit Theorems (CLT)

Here, we use the properties of moments of the conditional efficiency estimators derived in
Section 4.2.1 to develop CLTs for means of conditional efficiency estimators.
For the case of means of unconditional efficiency estimators, Theorem 4.1 of Kneip et al.

(2015a) establishes that
Vi (fin =t — Cn™" = Ry..) == N(0,07) (4.14)

as n — oo, where = E (A\(X,Y)) and 02 = VAR (A(X,Y)). The theorem also establishes
~ 2

that 6% = n7 1>, ()\(Xi,Yi | Sn) — ﬁn> is a consistent estimator of o?. Conventional

CLTs (e.g., the Lindeberg-Feller CLT) do not account for the bias term Cn~", and hence are
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invalid for means of unconditional efficiency estimators unless unless x > 1/2. In the case of
FDH estimators, £ > 1/2iff (p+¢) < 1; in the case of DEA estimators, x > 1/2iff (p+q) < 2.
If kK = 1/2, the bias is stable as n — oo, but if Kk < 1/2, the bias explodes asymptotically.
Kneip et al. (2015a) solve this problem by incorporating a generalized jackknife estimate of
the bias and considering, when needed, test statistics based on averages over a subsample of
observations. We use a similar approach below, although with the unconditional efficiency
estimators, the problem is rather more complicated than the one in Kneip et al. (2015a) due

to the localization in the conditional efficiency estimators.

Define
P
and
o2 = VAR (\"(X,Y | 2)) = / (M(z,y | 2) — u?)Q fxvz(z,y,2)dedydz. (4.16)
P

These are the localized analogs of p and o®. Next, let ., = n~ 'Y " M(X,,Y; | Z).
Although 7z, is not observed, by the Lindeberg-Feller CLT

Vi (fi, — pl) == N(0,02") (4.17)

under mild assumptions.

An obvious solution might be to estimate p! by f.,, but this proves problematic. To
see this, define ¢, = ficn — M., It is clear that E((,) = Cen,™ + Rep, .« by (4.11), and
VAR(G,) = o (n;!) due to (4.12) and (4.13). It follows that ¢, — E(C,) = o,(n;,"/*). Now
define fi.,, = E (lcy). Then

ﬁcm = ,u? + Ccn;?i + Rc,nh,m (4.18)
and it follows that

,ac,n - ,Ec,n = Ec,n - ,U? + Cn - E(Cn)7
= Ec,n - ,LL? + Op (n;1/2> : (419)

Clearly /n(ficy — fic,n) diverges as n — oo since although /n(f,, — ul) £, N(0,02M),

nt/2o, (n;1/2> diverges if n;, < n since n, = nh" = n'™" with 1/(r + k') < v < 1/r.
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Moreover, unless Z is irrelevant, n; < n for an optimal choice of h. Changing the scaling
and considering n*(fic,, — fle,n) for some a such that 0 < a < (1 —r)/2 < 1/2 does
not work because the limiting distribution collapses to a point mass at zero in this case.
Consequently, it seems there is no way to develop a CLT for means of conditional efficiency
estimators analogous to the one in (4.14) for means of unconditional efficiency estimators.

The following result will be useful for the results developed below.

Lemma 4.2. Under the assumptions Theorem 4.1, for k = 1/(p+q) in the case of the FDH
estimator and for k = 2/(p+ q+ 2) in the case of the DEA estimator,

E (X(Xi, Y | Zi. Sn)> = 1 + Cni ™ + Ry (4.20)
and

VAR (X(Xi, Y; | Zi, sn)) L (ngm) , (4.21)
where R, » = o(n,").

Proof. The result in (4.20) follows directly from Theorem 4.1. In addition,

~ ~ 2
VAR(X, i | 20 8.) = ( (R060¥11 20,80 - 20601 20))

v E ((A’%Xi, Y| Z) - B (NX..Yi | Zi,8n>))2)
+28( (N(X0, | Z) - B (MX:Yi | Z:.50)) )
(X0 Yi | 2080 =N (X, Y| 2)) ). (422)
Using the result in (4.11) from Theorem 4.1,
~ 2 ~ 2
B ([Ah(Xi,Y@- 12) - B (MX il 20 S) | ) = o2+ [B (NX0 Yi | 20,82 = N'(X0, Vi | 20)) |
= o2 + Cn;*" + 0 (n;,*") . (4.23)

Applying the Cauchy-Schwartz inequality, the result in (4.21) in Theorem 4.1 and (4.23),
the last term in (4.22) is bounded by o (nz/Q), establishing the result in (4.21). =
Next, suppose n, < n (i.e., Z is relevant), and consider a random subsample S, from

S, of size nj, where for simplicity we use the optimal rates for the bandwidths so that
np, = [nY" Y| where |a| denotes floor(a), i.e., the integer part of a. Define

~ 1 ~

Heny, = — Z A()('w}/z | Zi78’n)a (424)

N
{(X4,Y1,Z:)€S;;, }

Th
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and let fic,, = E(licyn,). Note that the estimators on the right-hand side of (4.24) are
computed relative to the full sample S,,, but the summation is over elements of the sub-
sample S .

The next result provides our first CLT for means of conditional efficiency estimators.

Theorem 4.2. Under the assumptions of Theorem 4.1, the following conditions hold
as n — oo with k = 1/(p + q) for the FDH case and v = 2/(p + q + 1) for
the DEA case: (i) fien, = '+ Ceny™ + Renprs (i0) Ten, — Hemy, = Hen, — ult +
0 (n;1/2>; (i1i) \/n_h(ﬁcvnh —ul—Cuny” _Rcmh,n) £, N(0,0%"); and (iv) 837’3 =
VS MY | 208,) — fiea] L 020
Proof: Let

e, = nih Z NN(X3, Y | Z2). (4.25)

(Xi.Yi.Z:)eS;,

By the Lindeberg-Feller CLT, \/n4(f,,,, — p) £ N(0,02"). Define (u, = ey, — Fen, -
Using Lemma 4.2, we have E((,,) = Ccn, "+ Ren, «» VAR((,,) =0 (n,;l) and (,, — E(Cy,) =
Op (ngl/ 2).

It can be shown that fi.,, = p" + E((,, ), and part (i) of the results is obtained by
substitution for E((,,). Next, note that ficn, — fen, = (G + Fem,) — (12— E(Gry)) =
Fen, — (1 + (G + E(Cay)). The last term in parentheses is o, (n,?l/ 2), establishing the
result in (ii). Part (iii) follows directly from part (ii). Finally,

32,’3 = nil Z(X<Xﬂ }/Z | Ziv Sn))2 - ﬁz,nh
i=1
o B, Y: | 2280 = (ue)?
~ ~ 2

= VAR(NX,, Y | Z,,S,)) + [E ()\(XZ-, Y, | Z, Sn)>] — ()2,

The result obtains after applying the results of Lemma 4.2. =
There are no cases where standard CLTs with rate \/n may be used with means of

conditional efficiency estimators, unless Z is irrelevant (i.e., unless Assumption 2.1 holds).
Theorem 4.2 provides a CLT for means of conditional efficiency estimators, but the conver-
gence rate is \/ny, as opposed to y/n, and the result is of practical use only if x > 1/2. If

k = 1/2, the bias term C.n," does not vanish, and if k < 1/2, the bias term explodes as

n — 00. These cases are addressed below.
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4.2.3 Bias corrections and subsample averaging

For the unconditional case, all necessary details can be found in Kneip et al. (2015a, Theo-
rems 4.3 and 4.4). Here, we derive corresponding results for conditional efficiency estimators.
Assume the observations in S,, are randomly ordered, and to simplify notation, assume n is
even. Let 81(11/)2 denote the set of the first n/2 observations from §,,, and let 87(3)2 denote the

set of remaining n/2 observations from S,,.° Next, for j € {1, 2} define

ﬁi,n/2 = (n/2)7 Z AMXG, Y | Zi,Sff))Q)- (4.26)

(Xi.Yi,20)€S,),
Let fien2 = E (ﬁ(lzn/Q) =F (ﬁinﬂ) and define

—j 2
:“é,n/2 ~ Z N(X3, Y | Z). (4.27)
(Xi,%,Zi)eSff}Q
By (4.19),

~ i —1/2
B s — Hlemfa =T, g — il + 0p(m, %) (4.28)

for j € {1, 2}. Now define fi, , = (ﬂi,n/Z + ﬁinﬂ) /2. Clearly,
. ~ _ ~1/2
:uc,n/Q — Hen/2 = Hepn — /JJ? + Op(nh / ) (429>
Subtracting (4.19) from (4.29) and re-arranging terms yields
. ~ ~ ~ ~1/2
Hepya = Hen = Hen/2 = Hen + op(ny, 7). (4.30)
Since ficpn/2 — fien = Ce(2% — 1)n, " 4+ Rep, » We obtain an estimator
e K —1 [~ ~ —K —1/2
Bn,nh = (2 - 1) ! (:U’c,n/2 - IU’CJL) = Ccnh + RC,”hJ’v + Op(nh / )7 (431>

of the leading bias term C.n," in Theorem 4.2, part (iii), noting that the remainder term
Ry, x = 0(n,") can be neglected.

Of course, for n even there are (7;/12) possible splits of the sample S,,. As noted by
Kneip et al. (2015b), the variation in By, can be reduced by repeating the above steps

9 1f n is odd, 5,(}/)2 can contain the first |n/2| observations and 87(12/)2 can contain remaining n — [n/2|

observations from &,,. The fact that 822/)2 contains one more observation than ST(LI/)2 makes no difference
asymptotically.
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K< (n72) times, shuffling the observations before each split of S,,, and then averaging the

bias estimates. This yields a generalized jackknife estimate

k
Bt =K 'Y B, . (4.32)
k=1
where Egmh,k represents the value computed from (4.31) using the kth sample split.

Combining results yields the following:

Theorem 4.3. Under the Assumptions of Theorem 4.1, with kK = 1/(p 4+ q) > 1/3 in the
FDH case or k =2/(p+q+1) > /2/5 in the DEA case,

~ Se c
VT (Mcmh — g — B, — Rc,nhﬁ) — N(0,02") (4.33)

as n — Q.

Proof. The result follows by substituting (4.32) in Theorem 4.2, part (iii), and noting that
for the indicated ranges of values for k, \/n,Rep, » = 0(1). =

If k is smaller than 1/3 in the FDH case, or 2/5 in the DEA case, then the remainder term
does not vanish fast enough and \/n, R, » — 00 as n — oo. In such cases, the approach of
averaging efficiency scores over a subsample of smaller size as in Kneip et al. (2015a) must
be employed.

Define ny, . = [n3"] so that \/ny . < ny> when x < 1/2. Then define

~ 1 ~
e, = S AXLYi | Z,8) (4.34)

Ny
XYL Z0)ES]

where 8;: _ is a random subsample of size ny,,; from S,,.

Theorem 4.4. Under the Assumptions of Theorem 4.1, with k = 1/(p+q) in the FDH case
or k=2/(p+q+1) in the DEA case,

. e L
vV .k <H0,nh,n - :ug - Bn,nh - RCv”hﬁ) — N(Ov Ug,h)’ (4'35)
as n — 0o whenever k < 1/2.

Proof. let

_ ! > MXLY Z). (4.36)

(Xi,Y0, Zi)ESEs
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Clearly,

~ _ 1 ~
e = = Tlep,, — e+ > (X Yi 1 208 = N(XYi | Z)) - (4.37)

n
hoe (Xa,Y5,Zi)ESky

Since nyp,,, — 00 as N — 00, \/Mpr (ﬁmhn - u’j) £ N(0,0%"). By Lemma 4.2, the third
term on the right-hand side of (4.37) has expectation u! + Cen;,* + Ry, » and variance
02"+ o(n, **). Replacing C,n; " with Eg,nh and then multiplying both sides by /ny, . yields

the result. m

Remark 4.1. Kneip et al. (2015a) note that for selected values of p + q, two different
CLTs are available for means of unconditional efficiency estimators. The same s true for
the conditional cases. With the DEA estimator when p 4+ q = 4 (so that k = 2/5), using
Theorem 4.3 neglects a term \/npRep, » = O(ngl/m), whereas using Theorem 4.4, and an
average over a subsample we neglect a term /My xRepy x = O (n,:l/‘r’) and we might expect
a better approximation. For the conditional FDH estimator when p + q = 3 (and hence
k = 1/3), using Theorem 4.3 implies an error of order O (ngl/(j), and using an average

over a subsample implies, by Theorem 4.4, an error of the smaller order O (ngl/?’).

4.3 Test Statistics

As noted above, in order to test the hypothesis that Z is separable, i.e., to test
Hy: Assumption 2.1 holds versus H;: Assumption 2.2 holds, one might consider the dif-
ference between estimators of y = E(A(X,Y)) and u" = E(A\"(X,Y | Z)), which under the
null estimate the same quantity. When the null is true, A(X,Y) = M*(X,Y|Z) with proba-
bility one, for all values of h. Under the null, The two estimators fi,, and [i.,, have (when
appropriately rescaled, depending on the value of k), an asymptotic normal distribution with

2 = g2" for all h, and so both are consistent estimators of the

mean g = p and variance o
common p. As explained in the preceding section, we can also, in both cases, correct for the
inherent bias of the estimators.

However, the properties of (fi, — ficn, ) (and their bias-corrected versions) are complicated
due to the covariance between the two estimators, and this covariance is hard to estimate.

Even in the limiting case where h is big enough so that n;, = n, it is clear that under the
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null, the asymptotic distribution of (i, — ficn, ) will be degenerate with mass one at zero."

The solution used here is analogous to the method used in the test for convexity of
U described by Kneip et al. (2015b). In particular, the sample S, can be split into two
independent, parts Sy ,,, Sz, such that ny +ny = n, Sin, US2m, = Sn, and Sy, [ S2n, =
(). The my; observations in S, are used for the unconditional estimates, while the ns
observations in Sy ,, are used for the conditional estimates. Recall that the unconditional
efficiency estimators converge at rate n”, while the conditional efficiency estimators converge

K/ (rk+1

at rate (nh")"®. The optimal bandwidths are of order n=*/("+1) giving a rate of n ) for

the conditional efficiency estimators. The full sample S,, can be split so that the estimators

in the two subsamples achieve the same rate of convergence by setting n} = ng/ D) This

( rr+1)

gives ny = ny/ "D Value of n1, ny are obtained by finding the root ny in n —n — n'/(
2 Ui n—n
and setting ny = [no] and n; = n — ny, where [a] denotes the integer nearest a.

After splitting the sample, compute the estimators

//an = nl_1 Z /):(le Y; | Sl,nl) (438)
(Xi,Yi)ES1 n,
and
fema, = N > MNX3, Y | Zi, Somy),s (4.39)
(Xi,Yi Z:)ESS 0,

where as above in Section 4.2.2, &5 in (4.39), is a random subsample from Sy, of size

na,, = min(ng, noh”). Consistent estimators of the variances are given in the two independent

samples by
Gn, =17 Z (X(Xm Yi|Sin) — ﬁn1>2 (4.40)
(X3,Y:)€S1
and
2t =nst Y (AXLYi] Z0Sa) ~ Flans) (4.41)

(X4,Y3,Z:)€S2,n4
respective , wnere cu Sup )sample oz ,, TO €stimate € variance .’ o € condailtiona
pectively), where the full (sub)sample S, to estimate the variance 02" of the conditional

efficiency measures.

10" As observed by Hall et al. (2004), if Z is irrelevant in the production process (independent of (X,Y)),
the optimal value of the bandwidth is infinity. This limiting case is more restrictive that the hypothesis to
be tested here, but may arise in practice.
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The estimators of bias corresponding to (4.31) for a single split of each subsample for the

unconditional and conditional cases are given by

BRJH = (21‘C - 1)_1 (ﬁ21/2 - ﬁm) (442>
and
Bf&,nz,h = (2“{ - 1>71 (ﬁ:,ng/Z - ﬁC,nz) . (443)

For the unconditional case in (4.42), 15, ,, = <ﬁ1111/2+ﬁ$z1/2> /2, and for j € {1, 2},

ﬁfll/Q = (ny/2)71 Z(X,-,)@,Zi)es(j)/Q)‘(Xi’Y; | 87(1{)/2), where Sg)ﬂ is the jth part of a ran-
ni

dom split of the full (sub)sample S,,. Details are given in Kneip et al. (2015a). For the

conditional case in (4.43), 7, o = (ﬁ}:mﬂ—{—ﬁinzm) /2, and for j € {1, 2}, i/ =

c,na/2
(ng/2)~1 Z(Xi,n,zi)esff;ﬂ ANXG, Y| Zi,SffZ)/Q), where Sr(i;)/z is the jth part of a random split
of the full (sub)sample S,,. The bias estimates in (4.42)-(4.43) can then be averaged over

~

K random splits of the two subsamples S,,, and &,,, to obtain bias estimates B, ,, for the
unconditional case and Eg,m for the conditional case.

For small values of (p + ¢) such that x > 1/3 in the FDH case or k > 2/5 when DEA
estimators are used, Theorem 4.3 and Kneip et al. (2015a, Theorem 4.3) can be used to con-
struct an asymptotically normal test statistic for testing the null hypothesis of separability.
In particular, since our bias-corrected sample means are independent due to splitting the
original sample into independent parts, and since two sequences of independent variables

each with normal limiting distributions have a joint bivariate normal limiting distribution

with independent marginals, if follows that for the values of (p + ¢) given above

~

(ﬁn - ﬁc,n , ) - (Bﬁ,n - B\Z,n )
Tip=— o : 2/ £y N(0,1) (4.44)
52, | Gem
TRk

under the null. Alternatively, for k < 1/2, similar reasoning with Theorem 4.4 and Kneip

et al. (2015a, Theorem 4.4) leads to

(/‘/’an,n - ﬁC,nz,h,n) - (B/{m,l - Bz,ngyh) L
Ty, = — £5 N(0,1) (4.45)
o aom
m,i + n2,h,2n

under the null, where ny ,, = |n3*] with fi,, . = ny Z(Xi,Yi)Esisl ) A(X;,Y; | Sy), and S, 18

a random subsample of size n; , taken from S, (see Kneip et al., 2015a for details). For the
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conditional part, we have similarly and as described in the preceding section, ngj , = [n%’%],

with Ly, . = n;,lm Z(Xi,Yl-,Zi)eS:LQ’M NXi, Y; | Zi, Spy) where Sj, s a random subsample
of size ngp . from S,,.

Given a random sample §,,, one can compute values ﬁ’n or T »» depending on the value
of (p+ q). From the discussion in Section 4.1, it is clear that a one-sided test is appropriate;
hence the null should be rejected whenever null whenever 1 _(b(fl,n) orl —CID(f 9.n) 1s less than

the desired test size, e.g., .1, .05, or .01, where ®(+) denotes the standard normal distribution

function.

4.4 Bootstrap Approximation

Under the null hypothesis of separability, the test statistics T3, and Ty, in (4.44) and
(4.45) are asymptotically pivotal as well as asymptotically normally distributed. It is well-
known that bootstrap methods sometimes provide better performance than tests based on
asymptotic normality, particularly when asymptotically pivotal statistics are available.
Given a sample S, a bootstrap test of separability can be implemented by estimating
a one-sided bootstrap confidence interval for one of the statistics in (4.44) or (4.45) and
rejecting the null hypothesis if this estimated interval does not cover zero. The test is
very fast from a computational viewpoint, although implementation requires re-ordering the
computations leading to the bias corrections as discussed in Kneip et al. (2015b). Since the
test statistics in (4.44) and (4.45) involve differences in sample means, a “naive” bootstrap
can be used; i.e., once the original firm-specific efficiencies have been estimate, no new

efficiency estimates have to be computed. See Kneip et al. (2015b) for details.

4.5 Bandwidth Optimization

As noted above, explicit expressions for the two components A; and A, of the estimation
error in (4.9) are not available. Consequently, the best that can be done is to determine
the order of optimal bandwidths by balancing the order of the two error terms yielding
h oc n= /71 a5 explained earlier. Although the order by itself is of little help in appli-
cations, following the suggestion of Jeong et al. (2010) one can select optimal bandwidths
for estimating the conditional distribution Hxyz(x,y | z) by }AIXY‘Z(x, y | z) given in (3.6).

This can be accomplished using the least-squares cross-validation (LSCV) procedure de-
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scribed by Li et al. (2013), smoothing only on the r conditioning variables in Z, and not the
dependent variables (X,Y). Note that, as proved by Hall et al. (2004), if one component
of Z is irrelevant, then the corresponding bandwidth obtained by LSCV will converge to
infinity as n — oo; but for relevant components of Z, LSCV gives a bandwidth with optimal
rate h oc n~ Y+ for estimating Hxyz(z,y | 2).

Recall that if Z is relevant, the optimal bandwidths for estimating A(z,y | z) have a differ-
ent order (h o n~ /570 as opposed to h o n~/+9) due to the presence of the localizing
bias. In practice, one can optimize bandwidths using LSCV, and then correct the resulting
bandwidths by multiplying by the scaling factor n'/+9p=1/+s1) — p= =4)/(r+4)(r+s"1)
to obtain optimal bandwidths A for estimating A(z,y | z). To avoid numerical difficulties,
for the jth element Zij of Z;, 7 =1, ..., r,i =1, ..., n, one should in practice bound
the LSCV search between a small factor, say 0.01, times the normal reference rule band-
width (i.e., 0.01 x 1.065,n'/%, where 5; is the sample standard deviation of the observations
ZJ,j =1, ..., n) and 2 times the difference (max;(Z7) — min;(Z7)). If Z/ is irrelevant,
LSCV will drive the jth element h; of h to its upper bound; using a bounded kernel (e.g.,
the Epanechnikov kernel), no smoothing will be done in the jth dimension of Z when this

happens. In such cases, there is no need to apply the scaling factor above to h;.

5 Monte Carlo Evidence

We perform Monte Carlo experiments to gauge the performance of the separability test
described in Section 4. In each experiment, we simulate n € {100, 200, 1000} observations
with =1 and (p,q) € {(1,1), (2,1), (2,2), (3,2), (3,3)} so that (p+¢q) € {2, 3, 4, 5, 6}.
To generate an observation (X;,Y, Z;), we first simulate a draw Z; ~ N(0,1). Next, we
generate a (p 4 q)-tuple u = [u), u;]/ uniformly distributed on a unit sphere centered at the
origin in RP*? where u, and u, are column vectors of length p and ¢, respectively. We then
set X = (1 —abs(u,)) and Y = abs(u,) (|Z'8]°A7!) where Z is (r x 1), 8 is an (r x 1) vector
of ones, A > 1 is a scalar-valued pseudo random variable such that (A — 1) ~ N¥(0,1),
abs(a) denotes the vector containing the absolute values of elements of a vector a, and
9 € {0, 0.1, ..., 0.9, 1.0, 1.5, 2.0}. When 6 = 0, Z plays no role and Assumption 2.1
(separability of Z) holds. Otherwise, when Z > 0, separability does not hold and instead
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Assumption 2.2 holds.*

The results of our experiments are shown in Tables 1-4. In Tables 1-2, we test for
separability using DEA estimators. In Table 1 we rely on the asymptotic normality of the
test statistics in (4.44)—(4.45), while in Table 2 we use bootstrap methods as described
in Section 4.4. In Tables 3-4 give results for the corresponding experiments using FDH
estimators. Fach table contains 3 groups of results corresponding to 100, 200, or 1,000
observations. Within each of these groups, we show, for various values of 9, rejection rates
for the separability tests for nominal test sizes of .10, .05, and .01. The first row in each group
corresponds to 6 = 0, where the null hypothesis is true; the remaining rows give rejection
rates with increasing departures from the null, corresponding to increasing values of §.

Overall, the results in Tables 1-4 confirm that the tests tend to reject the null hypothesis
of separability at increasing rates both with increasing departure from the null and as sample
size increases. Comparing the results in Tables 1-2 where DEA estimators are used with the
corresponding results in Tables 3-4 where FDH estimators are used reveals that the tests
have greater power when DEA estimators are used than when FDH estimators are used.
Given the slower convergence rate of the FDH estimator, this is as expected.

Focusing on Tables 1-2, where DEA estimators are used, our experiments suggest that
both the tests based on asymptotic normality as well as those based on bootstrap methods
are conservative in the sense that they tend to reject the null at rates less than the nominal
size when the null is true. for the cases where (p+¢) < 4 and the statistic 7} ,, can be used, the
tests based on asymptotic normality and on bootstrap methods provide very similar rejection
rates for given values of 4, (p + ¢), and nominal test size. However, for (p + q) > 4 where
the statistic 75, based on subsamples must me used, the bootstrap tests are seen to provide

greater power than the tests based on asymptotic normality in many cases, particularly for

1 Given a (p + g)-vector v of draws from the uniform distribution on [0, 1], u = v(v'v)~/? is a vector of

coordinates from a uniform distribution on the unit sphere in RPT%. Setting Y = |u,| amounts to reflecting
any point that lies below one or more of the u, axes around those axes. Similarly, —|u,| reflects around the
uq axes, but in negative directions; adding 1 shifts the resulting points to the positive orthant in RP*4. This

amounts to generating uniform points on a unit sphere centered at [1;,, 0;] /, reflecting the points so that all
lie on the part of the sphere in the unit hypercube with in the positive orthant with a corner at the origin.
We then projecting points away from this “frontier” in the output directions. We use the massively parallel
Palmetto Cluster at Clemson University for our experiments, generating pseudo-random uniform deviates
using independent Mersenne Twister generators on each processor; see Matsumoto and Nishimura (2000)
for details. Standard normal deviates are generated from uniform (0,1) deviates using the transformation

method.
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larger values of §. In a number of cases where (p + g > 4, the power of the bootstrap tests
is almost twice that of the corresponding tests based on asymptotic normality.

Similar remarks hold for the results in Tables 3-4 where FDH estimators are used. Using
FDH estimators, the results in Table 3 suggest that the tests provide reasonable power when
(p + ¢) < 3 and the statistic 77, can be used. However, for larger dimensionality where
(p+q) > 3, even with n = 1,000 and § = 2, the tests that rely on asymptotic normality
have almost no power. This is not true for the bootstrap tests. The results in Table 4 reveal
that for (p+q) = 5 or 6, the tests using FDH and bootstrap methods result in greater power
than the corresponding tests using DEA and relying on asymptotic normality.!?

The simulation results in Tables 1-4 show rejection rates when » = 1. One should expect
the power of the tests to decrease with increasing values of r for given values p, ¢, and n.
However, as the empirical example in the next section illustrates, one can perform marginal
tests for each element of Z, ignoring the other elements when r > 1, before performing a joint
test with all the elements of Z. If one is testing the separability condition in order to justify a
second-stage regression, any rejection of Assumption 2.1 should rule out use of a second-stage
regression. In other words, if one of the marginal tests rejects Assumption 2.1, there is no
need to incur the computational expense of further marginal or joint tests, and any plans for
a second-stage regression should be abandoned. Moreover, when confronted with evidence
that an element of Z affects the shape of the frontier (as is the case whenever Assumption
2.1 is rejected), one should use conditional efficiency estimators instead of unconditional

efficiency estimators.

6 Empirical Illustration using Bank Data

As a final exercise, we revisit the empirical examples provided by Simar and Wilson (2007),
where estimated efficiency of U.S. Banks is regressed on some explanatory variables in a
second-stage analysis. We start with the same data used by Simar and Wilson (2007), and
consider both the subsample of 322 banks as well as the full sample of 6,955 banks examined
by Simar and Wilson. The data include observations on 3 inputs (purchased funds, core

deposits, and labor) and 4 outputs (consumer loans, business loans, real estate loans, and

12 The favorable comparison does not carry over to (p + ¢) = 4. But in this case, 1, can be used with
DEA estimators, but 15, must be used with FDH estimators.
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securities held). The data also include observations for two continuous explanatory variables
used by Simar and Wilson (2007), namely SIZE (i.e., the log of total assets, reflecting
banks’ sizes) and DIVERSE (i.e., a measure of diversity of banks’ loan portfolios). Specific
definitions of variables and other data details are given in Simar and Wilson (2007).

Our empirical examples here and in Simar and Wilson (2007) are motivated by Aly et al.
(1990), who similarly estimate efficiency for a sample of 322 U.S. banks operating during the
fourth quarter of 1986, and then attempt to explain variation in the first-stage efficiency esti-
mates in a second-stage regression by regressing estimated efficiency on continuous variables
reflecting bank size and loan-type diversity, as well as binary dummy variables reflecting
membership in a multi-bank holding company and presence in a metropolitan statistical
area. Whereas Aly et al. used the second-stage regression in an attempt to better under-
stand the performance of U.S. banks’ operations, Simar and Wilson carefully note that their
second-stage regressions are only for purposes of illustrating the bootstrap methods for infer-
ence developed in their paper. As discussed above, and as noted by Simar and Wilson, such
second-stage regressions can only be meaningful if the separability condition in Assumption
2.1 holds. Simar and Wilson also noted that this condition should be tested before employing
a second-stage regression, but until now no such test has been available.

It is well-known that the distribution of U.S. bank sizes is heavily skewed to the right;
in fact, the distribution of total assets of U.S. banks is roughly log-log-normal (e.g., see
Wheelock and Wilson, 2001 for discussion). In order to use global bandwidths, as opposed
to adaptive bandwidths (which would increase computational burden), we first eliminate
very large banks and other outliers from the sub-sample of 322 observations as described
by Florens et al. (2014) (who used the same data in an empirical illustration), leaving 303
observations for analysis. Similarly, we omit the largest 5-percent of banks from the full
sample of 6,955 observations, leaving 6,607 observations. To further reduce computational
burden, we exploit multicollinearity among the input and output variables by aggregating
inputs into a single measure and also aggregating outputs into a single measure using eigen-
system techniques employed by Florens et al. (2014) in their analysis of the subsample of our
data and as described by Daraio and Simar (2007a, pp. 148-150). Due to the high degrees of
correlation among the original input and output variables, little information is lost by this

aggregation, while dimensionality is reduced from (p+ ¢) = 7 to 2.
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We test the separability condition (Assumption 2.1) using both the subsample of 303
observations and the “full” sample of 6,607 observations using DEA estimators in both
input and output directions, with bandwidths optimized by least-squares cross-validation
and then adjusted to obtain the optimal order as discussed above. We first test separability
marginally by considering only SIZFE, and then by considering only DIVERSFE so that r = 1.
We also perform joint tests (r = 2) considering both SIZE and DIVERSE.

Results for the tests for both samples are shown in Table 5. With the subsample, in the
input orientation, both the asymptotic normal and the bootstrap tests yield p values smaller
than 0.05 for SIZF; in the output orientation, the asymptotic normal test also yields a p-
value less than 0.05, while the bootstrap test gives a p-value just larger than 0.10. There is no
evidence against separability in the marginal tests with DIVERSFE. The joint test yields one
p-value less than 0.10, while two of the other three p-values are just larger than 0.10. With
the sample of 6,607 observations, it becomes even more clear that SIZFE violates separability,
while there is no evidence that DIVERSE violates the condition.

Again, the second-stage regression in Simar and Wilson (2007) was used only to illustrate
how one might apply the bootstrap methods proposed there. But, results from the second-
stage regression in Aly et al. (1990), and those from similar exercises in other papers that
have regressed estimates of bank efficiency on total assets, are rendered dubious and likely

meaningless by the results obtained here.

7 Conclusions

We have provided a test of the separability condition described by Simar and Wilson (2007)
on which many papers that regress estimated efficiency scores on some environmental vari-
ables depend. The condition is a restrictive, but can now be tested empirically. In our
empirical example in Section 6, patterned after the application by Aly et al. (1990), we
easily reject separability. This suggests that results of the second-stage regression in Aly
et al. (1990) are meaningless, or at best very difficult to interpret. Furthermore, it raises the
question of whether separability would similarly be rejected in the hundreds or thousands
of papers that have regressed estimated efficiencies on environmental variables in a second
stage regression. It is perhaps too much to expect that all of these studies be re-examined,

but now that an easily-implemented test of separability has been made available, researchers
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should employ the test before proceeding to a second-stage regression. Moreover, whenever
the test rejects separability, the researcher should use conditional efficiency estimators in-
stead of unconditional estimators in order to estimate distance to the relevant frontier (i.e.,
to the frontier of W* instead of the frontier of ¥ which has no particular economic meaning
when separability does not hold).

Of course, failure to reject the null hypothesis of separability does not by itself imply
that separability holds. As is always the case, our test can do only one of two things: it can
either reject, or fail to reject the null hypothesis. Failure to reject might be due to other
factors, such as insufficient data, or too many dimensions. In the later case, we have shown
in our empirical example how dimensionality can be reduced before testing separability.

It should be remembered, as noted in Section 3, that the conditional efficiency estimators
provide consistent estimates regardless of whether separability holds, but the unconditional
efficiency estimators provide meaningfully consistent estimates if and only if separability
holds. Of course, if separability holds, the unconditional estimators converge faster than
their unconditional counterparts. But when testing separability, these points argue in favor
of a conservative test. Whereas one might ordinarily test a null hypothesis at the 10, 5, or
1-percent level, here one might want to test at a 20, 30, 40, or even larger percentage level.
The cost of a type-I error is slower convergence due to subsequent use of the conditional
efficiency estimators, whereas the cost of a type-II error is statistical inefficiency due to
subsequent inappropriate use of unconditional efficiency estimators. The cost of a type-II
error here is arguably greater than the cost of a type-I error, which is the reverse of the usual
situation in hypothesis testing. Here, however, reversing things by testing a null hypothesis
of non-separability versus an alternative hypothesis of separability would result in a test
with poor size and power properties, as separability is a much more restrictive condition

than non-separability.

Appendix A Technical Details

The assumptions listed here impose regularity conditions on the data-generating process.

The first assumption appears as Assumption 4 in Jeong et al. (2010).

Assumption A.1. The joint density fxyz(-,-,-) of (X,Y,Z) is continuous on its support.
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The next assumptions are needed to establish results for the moments of the conditional
FDH and DEA estimators in Section 4.2.1. The assumptions here are conditional analogs of
Assumptions 3.1-3.4 and 3.6 (respectively) in Kneip et al. (2015a). Assumption A.2, part
(iii) and Assumption A.3, part(iii) appear as Assumption 5 in Jeong et al. (2010).

Assumption A.2. Forall z € Z, (i) the conditional density fxyz(-,- | z) of (X,Y) | Z =z
exists and has support D* C V*; (ii) fxv|z(-,- | 2) is continuously differentiable on D?; and

(111) f)}éy|z<'7' | z) converges to fxy|z(-,-| z) as h — 0.

Assumption A.3. (i) D* = {(z,\(z,y | 2)y) | (z,y) € D*} C D?; (ii) D** is compact;
and (iii) fxy)z(x,Nz,y | 2)y | z) > 0 for all (x,y) € D*.

Assumption A.4. For any z € Z, D* is almost strictly convez; i.e., for any (z,y), (T,y) €
D= with (5.y) # (1.9, the set {(2*,y") | (2%,y") = (2,) + (@, 7)) for some a € (0,1)}

15 a subset of the interior of D>.

Assumption A.5. For all z € Z, (i) MN(z,y | z) is twice continuously differentiable on D?;
and (ii) all the first-order partial derivatives of A(z,y | z) with respect to x and y are nonzero

at any point (x,y) € D*.

Assumption A.6. For any z € Z, N(x,y | z) is three times continuously differentiable with

respect to x and y on D?.

When the conditional FDH estimator is used, Assumption A.5 is needed; when the condi-
tional DEA estimator is used, this is replaced by the stronger Assumption A.6.

Note that under the separability condition in Assumption 2.1, the assumptions here
reduce to the corresponding assumptions in Kneip et al. (2015a) due to the discussion in

Section 2.

Appendix B Discrete Environmental Variables

In applied work, it is often the case that researchers include binary or categorical variables in
second-stage regressions of estimated efficiency on environmental variables. All of the results
obtained in the main part of this paper assume Z is continuous. However, in order for second-
stage regressions to estimate any useful, meaningful feature, the separability condition in

Assumption 2.1 must also hold with respect to discrete environmental variables.
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Testing the separability condition in the case of discrete variables can be done using
results and ideas from Kneip et al. (2015b), where a test of equivalent mean efficiency across
two groups of producers is developed. To illustrate, suppose r = 1 and Z is a binary dummy
variable. To test separability, first shuffle the observations, and then divide into two groups
of size n; = |n/2] and ny = n — ny. Apply the unconditional efficiency estimator to group
1. For group 2, a conditional efficiency estimator is needed, but since Z is discrete, there
is no smoothing to be done.'® Since Z is binary, there are only two sets U?. Hence, in the
second group, divide observations into two sub-groups according to whether Z = 0 or Z = 1;
observations in each sub-group, estimate efficiency using the same unconditional efficiency
estimator used with group 1, ignoring observations in the other group. This will yield a
set of ny conditional efficiency estimates since the ny observations have been divided into
sub-groups.

Note that the conditional estimates from group 2 have the usual convergence rate of
the unconditional efficiency estimator since no bandwidth is involved since Z is discrete.
One can now apply the difference-in-means test as described in Kneip et al. (2015b), taking
care to compute the bias-correction terms for group 2 separately and independently for
observations in the subgroup (of group 2) where Z = 0 and the subgroup where Z = 1. This
will necessitate splitting each sub-group (of group 2) to compute the generalized jackknife

estimates of bias for observations in each sub-group. See Kneip et al. (2015b) for details.

13 The problem here is rather different from the problem of nonparametric estimation of regressions or
densities, where one can smooth across discrete categories of data using the methods discussed by Li and
Racine (2007). Here, we are interested in boundaries of support, as opposed to densities or conditional mean
functions.
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Table 5: p-values for Tests of Separability on Banking Data

Input Output
Asy. Normal Bootstrap Asy. Normal Bootstrap

n =303
SIZE 0.0013 0.0135 0.0495 0.1085
DIVERSE ~ 0.8869 0.7910 0.8294 0.7295
joint test 0.1043 0.1760 0.0874 0.1180

n = 6,607
SIZE 0.0000 0.0000 0.0000 0.0000
DIVERSE  0.9999 0.9980 0.9998 0.9925
joint test 0.0000 0.0000 0.0000 0.0000
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