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Abstract

Inspired by the optimal value approach, we propose a new reformulation of the op-
timistic Bilevel programming Problem (BP) as a suitable Generalized Nash Equilibrium
Problem (GNEP). We provide a complete analysis of the relationship between the original
hierarchical BP and the corresponding “more democratic” GNEP. Moreover, we investi-
gate solvability and convexity issues of our reformulation. Finally, relying on the vast
literature on solution methods for GNEPs, we devise a new effective algorithmic frame-
work for the solution of significant classes of BPs.

Keywords: Bilevel programming, Generalized Nash Equilibrium Problems (GNEP), para-
metric optimization, numerical approaches.



1 Introduction

Bilevel programming is a fruitful modeling framework that is widely used in many fields,
ranging from economy and engineering to natural sciences (see [4], the fundamental [5], [6],
the recent [10], the references therein, and the seminal paper [20]).

Bilevel programs have a hierarchical structure involving two decision levels. At the upper
level an optimization is carried out with respect to two blocks of variables, namely x and y;
but, in turn, y is implicitly constrained by the reaction of a subaltern (lower level) part to
the choice of the first variable block x. Thus, bilevel problems can be viewed, in some sense,
as a special two-agents optimization. The two agents play here an asymmetric role, in that
the variable block x is controlled only by the upper level agent, while the second block y is
controlled by both the upper and the lower level agents. It is precisely this asymmetrically
shared control on the variable blocks that makes bilevel programs inherently hard to solve.
It is worth noting that, whenever there is not such a thorny relationship between the agents,
things become much simpler. Indeed, on the one hand, if all the variables are controlled by
both the agents, we have a (conceptually) simpler pure hierarchical problem; while, on the
other hand, with = being controlled by the upper level agent, if y is controlled only by the
lower level agent, we get a game, in which the two agents act as players.

In this paper, we address the optimistic Bilevel programming Problem (BP) (see [5, 10]).
This problem, in its full generality, is structurally nonconvex and nonsmooth (see [8]); further-
more, it is hard to define suitable constraint qualification conditions for it, see, e.g., [9, 22].
In fact, the study of provably convergent and practically implementable algorithms for the
solution of BPs is still in its infancy (see, as a matter of example, [3, 6, 18, 21]), as also wit-
nessed by the scarcity of results in the literature. Yet, some approaches have been proposed
mainly in order to investigate optimality conditions and constraint qualifications: to date, the
most studied and promising are optimal value and KKT one level reformulations (see [10],
the references therein and [17, 23]). As far as the KKT reformulation is concerned, it should
be remarked that the BP has often be considered as a special case of Mathematical Program
with Complementarity Constraints (MPCC). Actually, this is not the case, as shown in [7]:
indeed, a local solution of the MPCC, which is what one can expect to compute, may happen
not to be a local optimal solution of the corresponding BP.

The main contributions of our analysis are: (i) we propose a new reformulation of a BP
as a suitable Generalized Nash Equilibrium Problem (GNEP) (see [11, 12, 13, 14, 15]); (ii)
we investigate properties, e.g., solvability issues and convexity, of the resulting GNEP; (iii)
we capitalize on the proposed GNEP reformulation to devise an algorithmic framework for
the solution of significant classes of BPs.

We remark that our GNEP reformulation is slightly related to the optimal value approach,
in that, when passing from the bilevel problem to the “more democratic” GNEP, we exploit
the value function idea to mimic the originally hierarchical relationship between the agents.
We study connections between the original problem and our GNEP reformulation for classes
of BPs and we point out strengths, as well as inevitable drawbacks of our approach. Moreover,
we give new sufficient optimality conditions for BPs based on our reformulation.

Numerical testing of our algorithmic framework is underway but preliminary results show
the effectiveness of the proposed approach.



2 Generalized Nash equilibrium problem reformulation
We consider the following optimistic bilevel programming problem (BP):

minimize F(x,y)
x7y
s.t. reX (1)

y € S(x),
where F': R™ x R™ — R is a continuous function and X C R™ is a closed set; the set-valued
mapping S : R™ == R™ describes the solution set of the following lower level parametric

optimization problem:
minimize f(z,w)
w

s.t. welU (
g9(x,w) <0,

[\)
~

where f : R™ x R™ — R and g : R™ x R™ — R™ are continuous functions, and U
R™ is a closed set. Besides, let W £ {(z,y) € X x S(z)} and U N K(z), with K(x)
{veR™: g(z,v) <0}, denote the feasible sets of problems (1) and (2), respectively.

A point (z*,y*) is a global solution of problem (1) if

[1>1N

(x*,y") e W,
F(z*,y") < F(z,y), V(z,y) e W.

The previous relations, which state feasibility and optimality of (z*,y*), respectively, can be
equivalently rewritten, more explicitly, in the following manner:

(z%,y") € X x U, f(a*,y") < f(z*,y) Vy e UN K (z%), g(z",9y") <0 (3)
F(z*,y") < F(z,y) Y (z,y) € W, (4)

where W = {(u,v) € X x U : f(u,v) < f(u,w) Yw € UNK(u), g(u,v) < 0}.
Now, let us consider the following Generalized Nash Equilibrium Problem (GNEP) with
two players:

mirgﬂimize F(z,y) mingnize flz,w)
s‘éj (x,y) e X xU s.t. welU 5)
flz,y) < fz,w) g(z, w) <0.
g(z,y) <0

We say that the player controlling = and y is the leader, while the other player is the follower.

GNEP (5) is strongly related to the original BP (1), as the following considerations clearly
show (see Theorems 2.1 and 2.5, Corollary 2.3 and Examples 2.2 and 2.4). As a side remark,
we point out that, in order to recast BP (1) as GNEP (5), we draw inspiration from the
optimal value approach (see [10, 17, 23]). Indeed, the structure of leader’s feasible set in (5)
(in particular, constraint f(x,y) < f(z,w)) is intended to mimic, in some sense, and to deal
with the value function implicit constraint f(x,y) < miny{f(z,y): y € K(z) N U}. We note
that, as one can expect, it is precisely the “difficult” constraint f(x,y) < f(z,w) that makes,



in general, problem (5) not easily solvable: because of the presence of such constraint, GNEP
(5) lacks convexity and suitable constraint qualifications are not readily at hand. However,
one can still define classes of BPs for which reformulation (5) can lead to efficient algorithmic
schemes by referring to the vast literature on solution methods for GNEPs [11]-[15].
We denote by
T2 {(x,y) € X xU : g(z,y) <0} and U

the “private” constraints sets, and by
H(w) = {(z,y) e R™ xR™ : f(z,y) < f(z,w)} and K(z)

the “coupling” constraints sets of the leader and the follower, respectively. Moreover, let
V(w) £ T N H(w) be the feasible set of the leader.
A solution, or an equilibrium, of GNEP (5) is a triple (z*, y*, w*) such that

(=% y") € X xU, f(a%,y") < f(a",w"), g(z",y%) <0, 6

F(z*,y*) < F(z,y), V(z,y) € V(w"), 7

w* eU, gz, w*) <0, 8

(
(
(
9

)
)
)
fla*,w*) < f(z*,w), Ywe UnNK(z"), )
where V(w*) = {(u,v) € X x U : f(u,v) < f(u,w*), g(u,v) < 0}. Conditions (6)-(7) and
(8)-(9) state feasibility and optimality of (z*,y*,w*) for leader’s problem and for follower’s

problem, respectively.
The following theorem establish relations between solutions of GNEP (5) and of BP (1).

Theorem 2.1 Let (z*,y*, w*) be an equilibrium of GNEP (5). If g(x,w*) <0 for all x such
that there exists y with (z,y) € W and F(x,y) < F(x*,y*), then (z*,y*) is a solution of BP

(1).

Proof. Under the assumptions of the theorem, (z*,y*, w*) satisfy relations (6)-(9); we now
show that (3) and (4) hold at (z*,y*).

We observe that (6), (8) and (9) together imply that (z*,y*) satisfies (3).

Furthermore, let us denote by £* the level set of F' at (z*, "), and by (£*)¢ its complement:

L2 {(z,y) € R™ x R™ : F(z,y) < F(z*,y")},

(L) £ {(z,y) ER™ xR™ : F(z,y) > F(a",y")}.

Let (z,y) be any couple in W N L*: by assumptions, we have g(z,w*) < 0. Therefore,
w* € UN K(Z) and, since (z,y) € W, in turn (z,y) € V(w*) and

WnLsCv(w). (10)

Thanks to (7) and (10), and noting that for every (z,y) € W N (L£*)¢ we have F(z,y) >
F(x*,y*), (4) holds at (z*,y*). Hence, (z*,y*) is a solution of BP (1). O

The following example gives a picture of the relationship between GNEP (5) and BP (1), as
stated in Theorem 2.1.



Example 2.2 Let us consider the following bilevel problem:
minimize 2?2 + 32

x7y
st.  x>1 (11)

y € 5(x),
where S(x) denotes the solution set of the lower level problem

minimize w
w

T4+w>1,
and the corresponding GNEP, that is,
minimize 2 + y? minimize w
z,y w
s.t. rz>1 s.t. T+ w > 1.
(12)

y<w
z+y>1

Point (1,0) is the unique solution of problem (11), while all the infinitely many points (1 —
A A A), with A < 0, are equilibria of GNEP (12). In particular, we remark that (1,0,0) is
the only solution of GNEP (12) that satisfies the assumptions of Theorem 2.1 (see Figure 1
and Figure 2).

Figure 1: The feasible set W and the unique  Figure 2: A sketch of leader’s problem in

solution of BP (11) GNEP (12): the feasible set V(w) and the
corresponding solution are depicted for dif-
ferent values of w, namely w = 0 and w =
—1.

We further observe that if the lower level feasible set does not depend on the upper level
variables z, then the requirements of Theorem 2.1 can be weakened, thus obtaining the
following result whose proof is omitted.



Corollary 2.3 Suppose that the lower level feasible set UNK (x) does not depend on the upper
level variables x. If (x*,y*,w*) is an equilibrium of GNEP (5), then (z*,y*) is a solution of
BP (1).

Example 2.4 shows that the implications in Theorem 2.1 and Corollary 2.3 can not be reversed:
indeed, in general, given a solution (z*,y*) of BP (1), (z*, y*, y*) may not be an equilibrium
for GNEP (5), even when the lower level feasible set does not depend on the upper level
variables x.

\ \ V(1/2)
(1/2,1/2) (1/2,1/2)
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Figure 3: The feasible set W and the unique  Figure 4: A sketch of leader’s problem in

solution of BP (13) GNEP (14): the feasible set V(w) and the
corresponding solution are depicted for w =
1/2.

Example 2.4 Let us consider the following bilevel problem:

minimize 22 + y?
Ty (13)
s.t. y € S(z),

where S(x) denotes the solution set of the lower level problem
mingnize (z+w—1)2
and the corresponding GNEP
minimize 22 + y? mingnize (x+w—1)2%

m7y

st (r+y—1P<(z+w—1) (14)

1 1). However, the triple (z*,y*, w*) =

L 1) is feasible for

The unique solution of problem (13) is (z*,3*) = (5, 5
(%, %, %) is not an equilibrium of GNEP (14), since point (Z,y*, w*) = (0, 55

the first player and 72 + (y*)2 < (2*)% + (y*)? (see Figure 3 and Figure 4).

On the other hand, we notice that, whenever, at the lower level, the whole dependence on x
is dropped, thus S does not depend on z, being the solution set of the optimization problem
minimize f(w)
w

s.t. w e U,



then an even deeper connection between BP (1) and GNEP (5) could be established. Indeed,
in this case, the implications in Theorem 2.1 can be reversed.

Theorem 2.5 Suppose that set S in (1) does not depend on the upper level variables x. The
following implications hold:

(i) if (z*,y*, w*) is an equilibrium of GNEP (5), then (z*,y*) is a solution of BP (1);

(ii) if (x*,y*) is a solution of BP (1), then, for all w* € U such that f(w*) = f(y*),
(x*, y*,w*) is a solution of GNEP (5).

Proof. (i) The claim follows from Corollary 2.3.
(ii) Preliminarily, for the sake of clarity, we specialize relations (3) and (4) and (6)-(9) in
case S does not depend on the upper level variables. Hence, (z*,y*) is a solution of (1) if

(x5, y") e X xU, fy")<fly) YyeU (15)
F(z*,y*) < F(z,y), Y(z,y)eW,

where W = {(z,y) € X x U : f(y) < f(w) Yw e U}.
We aim at proving that (z*,y*, w*) is a solution of GNEP (5), that is,

(", y") e X x U,

F(",y") < F(z,y), V(z,y) € V(w"),
w* e U,

fw*) < f(w), VYwel,

where V(w*) = {(z,y) € X x U : f(y) < f(w*)}.

Since y* is optimal for the lower-level problem and f(w*) = f(y*), then also w* is optimal
for the lower-level problem. Thus, relying on (15), we obtain W = V(w*) and the thesis
follows readily. O

Theorem 2.1 clearly indicates the path: we aim at computing a solution of the original
problem (1) by solving GNEP (5). It goes without saying that this approach is viable only if an
equilibrium of GNEP (5) exists; clearly, in this case, also a solution of BP (1) is guaranteed to
exist. As a matter of example, relying on classical equilibrium existence results (see [1, 12, 16]),
whenever the lower level functions f and g are affine, one can refer to the following proposition.

Proposition 2.6 Let F' be quasi-convex on T, f and g be affine functions, and X and U be
polyhedral compact sets. Suppose that T x U is nonempty, and, for every (x,y,w) € T x U,
both T'N H(w) and U N K(x) are nonempty. Then, an equilibrium of GNEP (5) exists.

Proof. Since, by assumptions, both the graph of T'N H and the graph of U N K are
polyhedral, then both 7N H and U N K are Lipschitz continuous, see e.g. [19, Example 9.35].
For the sake of clarity, we remark that sets 7N H(w) C T and U N K(x) C U are nonempty
and convex for all w € U and all (z,y) € T. Finally, by noting that F' and f are quasi-convex,
the assertion is a consequence of the classical theorem on the existence of an equilibrium, see
e.g. [12, Theorem 4.1]. O

An important class of BPs is that in which the objective function of the lower level problem



does not depend on the upper level variables x, while its feasible set depends on them. For
these problems, convexity and solvability for the corresponding GNEP reformulation can be
established by imposing simple assumptions. The following proposition concerns convexity,
while Theorem 3.2 in the next section copes with the solvability issue.

Proposition 2.7 Suppose that function f does not depend on variables xz, that is f(x,-) =
fO). If X and U are convex sets, and F, f and g are convex functions on T, U and T,
respectively, then both leader’s and follower’s problems in GNEP (5) are conver.

3 Algorithmic Framework

Building on the previous theoretical considerations and in view of the relationship between
the original general BP (1) and its GNEP reformulation (5), we aim at solving (1) by finding
a suitable equilibrium of (5). This is a twofold issue: on the one hand, one must be able to
compute an equilibrium of GNEP (5); on the other hand, in order to obtain a solution of the
original problem, this equilibrium must satisfy the assumptions of Theorem 2.1. As regards
the first issue, Algorithm 1 defines an algorithmic framework which is intended to compute
an equilibrium of (5). Algorithm 2 deals with the second issue.

Algorithm 1 : L/F Alternating Optimization Algorithm for BP
Data: 2° € X, w® € UN K(2°), set k = 0.

(S.1) (Leader optimization) Calculate (z*+1 y**1), solution of

minimize F(z,y)
x’y
s.t. (x,y) e X xU

f(z,y) < flak,wh)
g(x,y) < 0.

(16)

(S.2) (Follower optimization) Calculate w**!, solution of

minimize  f(2**1, w)
w
s.t. welU (17)
g(z* 1 w) <0.

(S.3) k + k+ 1. If f(z* y*) = f(2* wF), then STOP. Otherwise, go to step (S.1).

We remark that, in some sense, this scheme may be referred to the Gauss-Seidel approach
for GNEPs (see [12]), in that it consists in the alternating optimization of players’ problems.
However, we point out that the presence of z* in the constraints of problem (16) makes
Algorithm 1 different from the standard Gauss-Seidel method.

The following Theorem 3.1 summarizes the main properties of Algorithm 1.

Theorem 3.1 Suppose that X and U are compact and there exist ° € X such that U N
K(x%) # 0. Let {(z*, y* w*)} be the sequence generated by Algorithm 1. The following
properties hold:



(i) Algorithm 1 is well defined;
(ii) f(zF1 wht) < f(ak w) for every k > 0;
(iii) F(xF gk ) > F(aF, y*) for every k > 1;
(iv) Bvery point (z*, wk) belongs to W, thus is feasible for BP (1), for every k > 1;

(v) sequence {(x*,y* wk)} is bounded and such that either Algorithm 1 terminates after a
finite number of iterations, or each of its limit points satisfies the stopping criterion at
step (S.3) and sequence f* £ {f(2* wk)} converges.

Proof. (i) By the assumptions of the theorem, at least point (z*,w") belongs to the feasible
set of problem (16) for every k; moreover, certainly y**! is feasible for problem (17). Thus,
thanks to the Weierstrass theorem, steps (S.1) and (S.2) are well defined.

(ii) We observe that, for every k > 0,

f($k+17wk+1) < f(xk+17yk+1) < f(:ck,wk), (18)

where the second inequality holds because (z**1,7**1) is feasible for problem (16), while,

since y**1 is feasible and w**! optimal for problem (17), respectively, we get f(zF+1 wh+1) <
Fah+ Ry,

(iii) By relations (18), the sequence of the right hand side terms of the constraint f(z,y) <
f(zF, w*) in (16), that is {f(2*, w¥)}, is monotonic nonincreasing. This fact, in turn, entails
F(zF*1 o+ > P2k, y*) for every k > 1.

(iv) Since w**! is optimal for (17), we have (zF1, wk*1) ¢ W.

(v) Preliminarily, we note that, in view of the compactness of X and U, the sequence
generated by the algorithm is bounded. Moreover, if, for every k, the stopping criterion at
step (S.3) is not fulfilled, then, however, by (ii) and the compactness assumption, sequence
{f(xF, w*)} converges, implying limy_,o f(2*, w¥) — f(zF+1, wF*1) = 0; furthermore, by (18),
limy_oo f(xFFL yF+1) — f(2¥+1, wF*1) = 0 and the thesis follows from the continuity of f and
the boundedness of {(z*,y*, w*)}. O

Actually, in general, Algorithm 1 is not guaranteed to converge to an equilibrium of GNEP
(5). Nonetheless, one can establish suitable conditions and, thus, classes of problems for
which the previous method converges to a solution of (5). As a matter of example, whenever
function f does not depend on x, Algorithm 1 reduces to the standard Gauss-Seidel method
and the following result holds.

Theorem 3.2 Under the same assumptions of Theorem 3.1, suppose that function f does
not depend on variables x, that is f(x,-) = f(-). Then, if Algorithm 1 terminates after a
finite number of iterations, it provides an equilibrium of GNEP (5). Furthermore, let both
TNH(w) and UN K(x) be nonempty for every (x,y,w) € T x U. The following properties
hold:

(i) if F is quasi-convex on T, f and g are affine, and X and U are polyhedral, then each
limit point of the sequence generated by Algorithm 1 is an equilibrium of GNEP (5);

(ii) suppose that f is quasi-conver on the convex set U; if g(x,-) is convex on U for every
x € X and the Slater constraint qualification holds in U N K (x) for every x € X, then
each limit point (Z,y,w) of the sequence generated by the algorithm is such that (Z,w)
is feasible for BP (1), that is (Z,w) € W.



Proof. Whenever f does not depend on variables z, steps (S.1) and (S.2) in Algorithm 1
become
(S.1) (Leader optimization) Calculate (z*+1,3*+1), solution of

minimize F(x,y)
:Dﬂy
s.t. (x,y) e X xU

fly) < fwh)
g(x,y) <0.

(19)

(S.2) (Follower optimization) Calculate w**!, solution of

minimize  f(w)
w
s.t. weU (20)
9@t w) <0.

As regards the finite termination of the algorithm, in view of Theorem 3.1, it is not hard to
prove the claim.

In order to prove properties (i) and (ii), preliminarily, we remark that (19) and (20) are
parametric optimization problems in which the feasible sets vary with respect to w* and zF*1,
respectively.

(i) Let the set-valued mapping R : R = R™ x R™! describe the solution set of problem
(19): hence, for all k, we can write (z*+1, y**1) € R(p*), with p¥ = f(w*). We recall that
S :R™ = R™ describes the solution set of problem (20). Since, by assumptions, the graph
of TN H(p), where H(p) £ {(z,y) € R™ x R™ : f(y) < p}, and the graph of U N K (x) are
polyhedral, then both 7N H and U N K are Lipschitz continuous, see e.g. [19, Example 9.35].
Moreover, the sets R(p) and S(z) are nonempty and bounded for every p € f(U) and z € X;
by [2, Theorem 4.3.3] and [2, Lemma 2.2.1] (see also [19, Theorem 5.19]), R and S are outer
semicontinuous relative to f(U) and X, respectively.

Let (Z,y,w) be a limit point of the sequence generated by Algorithm 1. We can write
(L Yk 1) € R(pF), and wh*! € S(2**1) for every k. Furthermore, we remark that, by (v) in
Theorem 3.1, sequence { f(w*)} converges and, thus, without loss of generality, limy,_,o p* =
p. Therefore, by virtue of the outer semicontinuity of R and S relative to f(U) and X, we
have (z,y) € R(p), and w € S(x).

Since f is continuous and p* convergent, we get p = f(w) and, hence, (Z,7) is a solution
of Problem (19) given w. Moreover, w is a solution of problem (20) given z. But this, in
turn, is equivalent to say that (z,y,w) is an equilibrium of GNEP (5).

(ii) By [2, Theorem 3.1.6] the mapping U N K is inner semicontinuous, while by [19,
Example 5.8], it is also outer semicontinous. Furthermore, S(x) is nonempty and bounded
and UN K (x) is convex for every z € X. Thus, thanks again to [2, Theorem 4.3.3], S is outer
semicontinuos relative to X: letting (Z,y,w) be a limit point of the sequence generated by
Algorithm 1, since w*t! € S(x¥*1) for every k, we have w € S(Z) with # € X and, in turn,
(z,w) e W. O

In the light of Theorem 2.1, we can obtain a solution of the original BP (1) by solving

GNEP (5), provided that the computed equilibrium satisfies further conditions. The generic
algorithmic framework 2 produces a sequence of feasible points for BP (1) aimed at satisfying
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the assumptions of Theorem 2.1. We preliminarily define the following set, given fixed z* and
y¥, for each i € {1,...,m}:

Mi(zF, yF) & {(x,y) € W : gi(z,y®) > 0, F(x,y) < F(z*,4%)}. (21)

We observe that, in general, finding a point belonging to M?(2*,y*) is not an easy task.
Indeed, this set is the intersection between W, which is the feasible set of (1), and a set
defined by some side constraints. However, in our forthcoming numerical analysis, we will
provide some procedures aiming at efficiently implementing the following scheme.

Algorithm 2 : Improving Algorithm for BP

Data: (2°,94%) € W, set k = 0.

(S.1) If Mi(z*, y¥) =0 Vi € {1,...,m}, then STOP.

(S.2) For any M7 (x* y*) # 0, find (x*+1, y**+1) € MI(2%,y*); k < k + 1, go to step (S.1).

Theorem 3.3 states that the sequence generated by Algorithm 2 is feasible with respect to BP
(1) and such that the corresponding values of F' are nonincreasing. Moreover, letting (Z,3)
be a point provided by Algorithm 2, if (Z,y,y) happens to be a solution of GNEP (5), then
(z,7) is also a solution of the original BP (1).

Theorem 3.3 Let {(z*,y*)} be the sequence generated by Algorithm 2. The following prop-
erties hold:

(i) F(xF %) < F(xF=1 %= 1) and (2%, y*) € W for every k > 1;

(ii) let (Z,y) be a point satisfying the stopping criterion in (S.1) and suppose further that
(Z,9,79) is an equilibrium of GNEP (5); then (Z,9y) is a solution of BP (1).

Proof. (i) The property is a direct consequence of the fact that (z*,y*) € M (2zF=1 y*~1)
for one i € {1,...,m}.

(ii) The assertion follows from Theorem 2.1. In fact, (Z,y,y) is an equilibrium of GNEP

(5) and g(z,y) < 0 for all x such that there exists y with (z,y) € W and F(z,y) < F(Z,7).

O

We note that, since the sequence generated by the previous scheme is not guaranteed to
lead to an equilibrium of GNEP (5), one can rely on Algorithm 2 mainly as an a posteriori
optimality check of the output of Algorithm 1.
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