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Abstract

The training of Support Vector Machines may be a very difficult
task when dealing with very large datasets. The memory requirement
and the time consumption of the SVMs algorithms grow rapidly with
the increase of the data. To overcome these drawbacks, we propose
a parallel decomposition algorithmic scheme for SVMs training for
which we prove global convergence under suitable conditions. We out-
line how these assumptions can be satisfied in practice and we suggest
various specific implementations exploiting the adaptable structure of
the algorithmic model.
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1 Introduction

A Support Vector Machine (SVM) is a well known classification and regres-
sion tool that has spread in many scientific fields during the last two decades,
see [5]. Given a training set of n input-target pairs

D = {(zr, yr), r = 1, . . . , n, zr ∈ R
m, yr ∈ {−1, 1}},
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an SVM provides a prediction model used to classify new unlabeled samples.
The dual formulation of an SVM training problem is

min
x

f(x) :=
1

2
xTQx− eTx

yTx = 0 (1)

0 ≤ x ≤ Ce,

where x ∈ R
n, e ∈ R

n is a vector of all ones, C > 0 is a positive constant,
y ∈ {−1, 1}n and Q is an n×n symmetric positive semidefinte matrix. Each
component of x is associated with a sample of the training set and y is the
vector of the corresponding labels. Entries of Q are defined by

Qrq = yryqK(zr, zq), r, q = 1, 2, . . . , n,

where K : Rm × R
m → R is a given kernel function [23].

Many real SVM applications are characterized by a large dimensional train-
ing set. This implies that hessian matrix Q is so big that it cannot be entirely
stored in memory. For this reason classical optimization algorithms that use
first and second order information cannot be used to efficiently solve problem
(1).
To overcome this difficulty, many decomposition algorithms have been pro-
posed in literature. At each iteration, they split the original problem into
a sequence of smaller subproblems where only a subset of variables (work-
ing set) are updated. Columns of the hessian submatrix corresponding to
each subproblem are, partially or entirely, recomputed at each step. These
strategies can be mainly divided into SMO (Sequential Minimal Optimiza-
tion) and non-SMO methods. SMO algorithms (see e.g. [3, 21]) work with
subproblems of dimension two, so that their solutions can be computed an-
alytically; while non-SMO algorithms (see e.g. [10, 13]) need an iterative
optimization method to solve each subproblem. From the theoretical point
of view, the policy for updating the working set plays a crucial role to prove
convergence. In case of SMO methods, a proper selection rule based on the
maximal violating principle is sufficient to ensure asymptotic convergence of
the decomposition scheme [4, 16]. For larger working sets, convergence proofs
are available under further conditions [15, 19, 20].

In recent years SVMs have been applied to huge datasets, mainly related
to web-oriented applications. To reduce the big amount of time needed for
the training of SVMs on such huge datasets, parallel algorithms have been
proposed. Some of these parallel approaches to SVMs consists in distributing
the most expensive tasks, such as subproblems solving and gradient updat-
ing, among the available processors, see [11, 26, 27]. Another way of fruitfully
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exploit parallelism is based on splitting the training data into subsets and
distributing them among the processors [2, 28]. Among these parallel tech-
niques, there are also the so called Cascade-SVM (see [12, 25]) that has been
introduced to face big dimensional instances. While achieving a good reduc-
tion of the training time respect to sequential methods, these methods may
lack convergence properties or may require strong assumptions to prove it.

Actually, combining decomposition rules, for the selection of working sets,
and parallelism makes the proof of convergence a very difficult task, see [18].
This is mainly due to nonseparability of the feasible set of problem (1).

In this work we propose a class of convergent parallel training algorithms
based on the decomposition of problem (1) into a partition of subproblems
that can be solved independently by parallel processes. The convergence to
a global optimum of problem (1) is proved under realistic assumptions. It
partially exploits results introduced in [9, 24]. The algorithmic framework
presented may include, as a special case, other convergent theoretical models
like [18].

The paper is organized as follows: in Section 2 we introduce some prelim-
inary results; in Section 3 we introduce a general parallel algorithmic scheme.
We analyze its convergence properties in Sections 4, 5 and 6; in Section 7 we
discuss about some possible practical implementations.

Notation In the following we use this notation. Vectors are boldface.
Given a vector x ∈ R

n with components xr and a subset of indices P ⊆
{1, . . . , n} we denote by xP ∈ R

|P | the subvector made up of components xr

with r ∈ P and by x−P ∈ R
n−|P | the subvector made up of components xr

with r 6∈ P . By ‖ · ‖ we indicate the euclidean norm, whereas the zero norm
of a vector ‖x‖0 denotes the number of nonzero components of vector x.
Further given a square n× n matrix Q, we denote by Q∗r the r−th column
of the matrix. Given two subsets of indices Pr, Pq ⊆ {1, . . . , n}, we write
QPrPq

to indicate the |Pr| × |Pq| submatrix of Q with row indices in block Pr

and column indices in block Pq. We denote by λQ
min and λQ

max respectively the
minimum and maximum eigenvalue of a square matrix Q. For the sake of
simplicity we denote the r−th component of the gradient as ∇f(x)r =

∂f(x)
∂xr

and as ∇Pf(x) ∈ R
|P | the subvector of the gradient made up of components

∂f(x)
∂xr

with r ∈ P . We denote by F the feasible set of problem (1), namely

F = {x ∈ R
n : yTx = 0, 0 ≤ x ≤ Ce}.

Note that all the results that we report in the sequel hold also in the case
of feasible set F = {x ∈ R

n : yTx = b, 0 ≤ x ≤ Ce}, where y ∈ R
n and

b ∈ R, but for sake of simplicity we refer to the case b = 0 and y ∈ {−1, 1}n.
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2 Optimality Conditions and Preliminary Re-

sults

Let us consider a solution x∗ of problem (1). Since constraints are linear
and the objective function is convex, necessary and sufficient conditions for
optimality are the Karush-Kuhn-Tucker (KKT) conditions that state that
there exists a scalar s such that for all indices r ∈ {1, . . . , n}:

∇f(x∗)r + syr ≥ 0 if x∗
r = 0

∇f(x∗)r + syr ≤ 0 if x∗
r = C (2)

∇f(x∗)r + syr = 0 if 0 < x∗
r < C.

It is well known (see e.g.[13]) that KKT conditions can be written in a more
compact form by introducing the following sets

Iup(x) := {r ⊆ {1, . . . , n} : xr < C, yr = 1, or xr > 0, yr = −1},

Ilow(x) := {r ⊆ {1, . . . , n} : xr < C, yr = −1, or xr > 0, yr = 1}.
Assuming that Iup(x

∗) 6= ∅ and Ilow(x
∗) 6= ∅, then we can rewrite (2) as

m(x∗) = max
r∈Iup(x∗)

−∇f(x∗)r
yr

≤ min
r∈Ilow(x∗)

−∇f(x∗)r
yr

= M(x∗). (3)

By the convexity of problem (1), we can say that x∗ is optimal if and only if
either Iup(x

∗) = ∅ or Ilow(x
∗) = ∅ or condition (3) holds.

Such a form of the KKT conditions is the basis of most efficient sequential
decomposition algorithms for the solution of problem (1). In decomposition
algorithms the sequence {xk} is obtained by changing at each iteration only
a subset of the variables, let’s say xPi

with Pi ⊂ {1, . . . , n}, whilst the other
x−Pi

remain unchanged. Thus the sequence takes the form

xk+1 = xk + αkdk,

where dk is a sparse feasible descent direction such that ‖dk‖0 = |Pi| with
|Pi| << n and αk represents a stepsize along this direction. Whatever the
feasible direction dk is, since the objective function is quadratic and convex,
the choice of the stepsize can be performed by using an exact minimization
of the objective function along dk. Indeed, let β̄ > 0 be the largest feasible
step at xk ∈ F along the descent direction dk then

αk := min

{
−∇f(xk)Tdk

dkTQdk
, β̄

}
. (4)
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Sequential decomposition methods differ in the choice of the direction dk, or
equivalently in the choice of the so called working set Pi.

Sequential Minimal Optimization (SMO) methods uses feasible descent
directions dk with ‖dk‖0 = 2 which is the minimal possible cardinality due
to the equality constraint. In a feasible point x ∈ F a feasible direction with
two nonzero components d(ij) is given by

d(ij)r :=





1

yr
if r = i

− 1

yr
if r = j

0 otherwise

, r = 1, . . . , n. (5)

for any pair (i, j) ∈ Iup(x) × Ilow(x). We say that a pair (i, j) ∈ Iup(x) ×
Ilow(x) is a violating pair at x if it satisfied also ∇f(x)Td(ij) < 0.

The exact optimal stepsize α ≥ 0 along a direction d(ij) can be efficiently
computed by noting that in (4) we have

β̄ = min {βi, βj} , (6)

where

βh :=

{
xh if d

(ij)
h < 0

C − xh if d
(ij)
h > 0.

(7)

Thus we get the value of the optimal stepsize α along a direction d(ij) as

α := min

{
− ∇fiyi −∇fjyj
Qii +Qjj − 2yiyjQij

, β̄

}
. (8)

Among such minimal descent directions, i.e. violating pairs, a crucial role is
played by the so called Most Violating Pair (MVP) direction (see e.g. [13]).
To be more specific, given a feasible point x, let us define the sets

IMV P
up (x) :=

{
i ∈ Iup(x) : i ∈ arg max

h∈Iup(x)
−∇f(x)h

yh

}
,

IMV P
low (x) :=

{
j ∈ Ilow(x) : j ∈ arg min

h∈Ilow(x)
−∇f(x)h

yh

}
.

If x is not a solution of problem (1), then (iMVP, jMVP) ∈ IMV P
up (x)×IMV P

low (x) is
a pair, possibly not unique, that violates the KKT conditions at most and it
is said Most Violating Pair (MVP). In the sequel, for the sake of notational
simplicity, we assume that, for every feasible x, the MVP is unique as this
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makes no difference in our analysis.
The direction dMVP ∈ R

n corresponding to the pair (iMVP, jMVP) ∈ IMV P
up (x) ×

IMV P
low (x) is, among all feasible descent directions with only two nonzero com-
ponents, the steepest descent one at x.
Now we are ready to introduce the definition of “most violating step”. Let
xMVP = x+ αMVPdMVP with αMVP obtained by (8) with i = iMVP, j = jMVP.

Definition 2.1 (Most Violating Step) At a point x ∈ F , we define the
“Most Violating Step” (MVS) SMVP as:

SMVP(x) := ‖xMVP − x‖ = |αMVP|‖dMVP‖. (9)

In particular, since yi ∈ {−1, 1} we have that SMVP(x) = |αMVP|
√
2.

We can state the optimality condition using the definition of MVS.

Proposition 2.2 A point x∗ ∈ F is optimal for problem (1) if and only if
either Iup(x

∗) = ∅ or Ilow(x
∗) = ∅ or SMVP(x

∗) = 0.

Proof. As said above x∗ is optimal for problem (1) if and only if either
Iup(x

∗) = ∅ or Ilow(x
∗) = ∅ or condition (3) holds. Therefore we only have to

show that, in the case in which Iup(x
∗) 6= ∅ and Ilow(x

∗) 6= ∅, the following
holds:

SMVP(x
∗) = 0 ⇔ m(x∗) ≤ M(x∗).

Since Iup(x
∗) 6= ∅ and Ilow(x

∗) 6= ∅, we can compute a pair (i∗
MVP

, j∗
MVP

) ∈
IMV P
up (x∗) × IMV P

low (x∗) and d∗
MVP

= d(i∗
MVP

,j∗
MVP

) as in (5). m(x∗) ≤ M(x∗) is
equivalent to inequality ∇f(x∗)Td∗

MVP
≥ 0. By noting that d∗

MVP
is a feasible

direction at x∗, then from (6) we have β̄ > 0. Therefore by (8) we can con-
clude that ∇f(x∗)Td∗

MVP
≥ 0 if and only if α∗

MVP
= 0 and, in turn, if and only

if SMVP(x
∗) = 0, so that the proof is complete. � �

3 A Parallel Decomposition Model

In this section we introduce a parallel decomposition scheme for finding a so-
lution of problem (1). The theoretical properties and implementation details
are discussed in the next sections. The algorithm fits in a decomposition
framework where, as usual, the solution of problem (1) is obtained by a se-
quence of solution of smaller problems in which only a subset of the variables
is changed. To fix notation, let xk ∈ F and consider a subset Pi ⊂ {1, . . . , n},
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so that xk can be partitioned as xk := (xk
Pi
,xk

−Pi
). The problem of minimizing

over xPi
with x−Pi

fixed to the current value xk
−Pi

is:

min
xPi

∈Fk
Pi

fPi
(xPi

,xk
−Pi

) +
τki
2
‖xPi

− xk
Pi
‖2, (10)

where a proximal point term with τki ≥ 0 has been added [20], and the
feasible set is

Fk
Pi

:= {xPi
∈ R

|Pi| : yT

Pi
xPi

= yT

Pi
xk
Pi
, 0 ≤ xPi

≤ CePi
}.

Problem (10) is still quadratic and convex with hessian matrix QPiPi
+ τki IPi

symmetric and positive semidefinite, and linear term given by ℓkPi
+ τki x

k
Pi
,

where
ℓkPi

=
∑

Pj∈P,j 6=i

QPiPj
xk
Pj

− ePi
.

We denote x̂k
Pi

as a solution of problem (10), which is unique either if τki > 0
or if QPiPi

is positive definite.
The parallel scheme that we are going to define is not based on splitting

the data set or in parallelizing the linear algebra, but on defining a bunch
of subproblems to be solved by means of parallel and independent processes.
Unlike sequential decomposition methods, the search direction dk is obtained
by summing up smaller directions obtained by solving in parallel a bunch of
subproblems of type (10).

Let us define a partition P = {P1, P2, . . .} of the set of all indices {1, . . . , n}.
By definition we have that Pi∩Pj = ∅ and ∪iPi = {1, . . . , n}. The basic idea
underlying the definition of the parallel decomposition algorithm is summa-
rized in the scheme below.
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Algorithm 3.1 Parallel Decomposition Model

Initialization Choose x0 ∈ F and set k = 0.

Do while (a stopping criterion satisfied)

S.1 (Partition definition)

Set Pk = {P1, P2, . . . , PNk} and set τki ≥ 0 for all i =
1, . . . , Nk.

S.2 (Blocks selection)

Choose a subset of blocks J k ⊆ Pk.

S.3 (Parallel computation)

For all Pi ∈ J k compute in parallel the optimal solution
x̂k
Pi

of problem (10).

S.4 (Direction) Set dk ∈ R
n block-wise as

dk
Pi

=

{
x̂k
Pi
− xk

Pi
if Pi ∈ J k,

0 otherwise.
(11)

S.5 (Stepsize) Choose a suitable stepsize αk > 0.

S.6 (Update) Set xk+1 = xk + αkdk and k = k + 1.

End While

Return xk.

The scheme above encompasses different possible algorithms depending on
the choice of the partition Pk at S.1, the blocks selection J k at S.2 and the
stepsize rule at S.5.

A widely used standard feasible point is x0 = 0, but of course different
choices are possible if available. The choice of x0 = 0 presents the advantage
that also the gradient is available being ∇f(x0) = −e.

Checking optimality of the current point xk may require zero or first
order information depending on the stopping criterion adopted. A standard
stopping criterion is based on checking condition m(xk) ≤ M(xk)− η, for a
given tolerance η > 0. In this case the updated gradient ∇f(xk+1) is needed
at each iteration. It is well known that for large scale problem this is a
big effort due to expensive kernel evaluations. Indeed we have the following
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iterative updating rule

∇f(xk+1) = ∇f(xk) + αk
∑

Pi∈J k

∑

h∈Pi

Q∗hd
k
h.

At S.1 a partition Pk of {1, . . . , n} is defined. We point out that both
the number Nk of blocks and their composition in Pk can vary from one
iteration to another. For notational simplicity we omit dependency of blocks
P1, P2, . . . , PNk on the iteration k. As usual in decomposition algorithms, a
correct choice of the partition is crucial for proving global convergence of the
method.

At S.2 a subset J k of blocks in Pk is selected. These blocks are the only
ones used at S.3 to compute a search direction dk according to (11). The
selection of blocks makes the algorithmic scheme more flexible since one can
set the overall computational burden.

At S.3 we obtain an optimal solutions x̂k
Pi

of problem (10) for each Pi ∈
J k. Note that x̂k

Pi
satisfies the optimality condition

[
∇Pi

fPi
(x̂k

Pi
,xk

−Pi
) + τki (x̂

k
Pi
− xk

Pi
)
]T

dPi
≥ 0 (12)

for any feasible direction dPi
at x̂k

Pi
. The computational burden of this step

consists in

• computing vector ℓkPi
to construct the objective function of (10) for all

blocks Pi ∈ J k,

• solving the |J k| subproblems.

These |J k| convex quadratic problems can be distributed to different pro-
cesses in order to be solved in a parallel fashion.
At S.4 the algorithm computes search direction dk.
At S.5 the algorithm computes stepsize αk. We show in the next section
(Theorems 4.2, 4.3 and 4.4) that, in order to have convergence of the algo-
rithm, αk can be computed according to a simple diminishing stepsize rule
or a linesearch procedure (including the exact minimization rule).

4 Theoretical Analysis

In this section we analyze the theoretical properties of Algorithm 3.1. To
this aim, we first introduce the definition of descent block and of descent
iteration that are crucial for the following analysis.
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Definition 4.1 (Descent block) Given ǫ > 0. At a feasible point xk, we
say that the block of variables Pi ⊆ {1, . . . , n} is a descent block if it satisfies

‖x̂Pi
− xk

Pi
‖ ≥ ǫSMVP(x

k), (13)

where x̂Pi
is the optimal solution of the corresponding problem (10) and

SMVP(x
k) = ‖xk

MVP
− xk‖.

Whenever at least one descent block Pi is selected in J k at S.2 of Algorithm
3.1, we say that iteration k is a descent iteration.

Under the assumption that at least one descent block is selected for opti-
mization at S.3 of the parallel algorithmic model, we will prove that by using
a suitable αk at S.5 the sequence {xk} produced by the algorithm satisfies

lim
k→∞

SMVP(x
k) = 0. (14)

We prove later on that the assumption is easy to achieve. We first consider
the case when the stepsize αk is determined by a standard Armjio linesearch
procedure along the direction dk.

Theorem 4.2 Let {xk} be the sequence generated by Algorithm 3.1 where
αk ≤ 1 at S.5 satisfies the following Armjio condition

f(xk + αkdk) ≤ f(xk) + θαk∇f(xk)Tdk, (15)

with θ ∈ (0, 1). Assume that for all iterations k

(i) a descent iteration k̃ with k ≤ k̃ ≤ k+L for a finite L ≥ 0 is generated;

(ii) either τki ≥ τ > 0 or QPiPi
≻ 0, for all Pi ∈ J k.

Then either Algorithm 3.1 terminates in a finite number of iterations to a
solution of problem (1) or {xk} admits a limit point and it satisfies (14).

Proof. First of all we note that {xk} is a feasible sequence, in fact it is
sufficient to show that for all k if xk is feasible then also xk+1 is feasible.
Since for all Pi ∈ J k it holds that yPi

T x̂Pi
= yPi

Txk
Pi
, then we can write

yTxk+1 =
∑

Pi∈J k

yPi

T
(
xk
Pi
+ αk(x̂Pi

− xk
Pi
)
)
+

∑

Pi /∈J k

yPi

Txk
Pi

=
∑

Pi∈J k

yPi

Txk
Pi
+

∑

Pi /∈J k

yPi

Txk
Pi

= yTxk = 0.
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Finally by noting that for all Pi ∈ J k it holds that 0 ≤ x̂Pi
≤ C, then by the

convexity of the box constraints and since αk ≤ 1, we obtain 0 ≤ xk+1 ≤ C
and this proves the feasibility of the sequence.

Note that ∀Pi ∈ J k the direction −dk
Pi

is a feasible direction at x̂k
Pi

hence
by (12) we can write

−
[
∇Pi

fPi
(x̂k

Pi
,xk

−Pi
) + τki (x̂

k
Pi
− xk

Pi
)
]T

dk
Pi

≥ 0. (16)

Hence it holds that

−∇Pi
fPi

(xk
Pi
,xk

−Pi
)Tdk

Pi
=

(
QPiPi

xk
Pi
+ ℓkPi

)T

(xk
Pi
− x̂k

Pi
) =

(
QPiPi

xk
Pi
+ ℓkPi

)T

(xk
Pi
− x̂k

Pi
)− (xk

Pi
− x̂k

Pi
)TQPiPi

(xk
Pi
− x̂k

Pi
)+

(xk
Pi
− x̂k

Pi
)TQPiPi

(xk
Pi
− x̂k

Pi
) =

(
QPiPi

x̂k
Pi
+ ℓkPi

)T

(xk
Pi
− x̂k

Pi
)+

(xk
Pi
− x̂k

Pi
)TQPiPi

(xk
Pi
− x̂k

Pi
) =

−∇Pi
fPi

(x̂k
Pi
,xk

−Pi
)Tdk

Pi
+

(xk
Pi
− x̂k

Pi
)TQPiPi

(xk
Pi
− x̂k

Pi
)
(16)

≥
τki ‖x̂k

Pi
− xk

Pi
‖2+

(xk
Pi
− x̂k

Pi
)TQPiPi

(xk
Pi
− x̂k

Pi
) ≥

(τki + λ
QPiPi

min )‖dk
Pi
‖2,

and then we have

∇Pi
fPi

(xk
Pi
,xk

−Pi
)Tdk

Pi
≤ −(τki + λ

QPiPi

min )‖dk
Pi
‖2. (17)

We denote by ρk = minPi∈J k(τki + λ
QPiPi

min ) > 0. By assumption (ii) there
exists ρ > 0 such that ρk ≥ ρ for all k.

From conditions (15) and (17) we can write

f(xk+1)− f(xk) ≤ −αkθρ‖dk‖2, (18)

therefore sequence {f(xk)} is decreasing. It is also bounded below so that it
converges and

lim
k→∞

(f(xk+1)− f(xk)) = 0. (19)

Let x̄ be a limit point of {xk}, at least one of such points exists being
F compact. Since, by the compactness of F and by the continuity of f ,
−∞ < f(x̄)− f(x0) for all x0 ∈ F , then, by (18) and (19), we can write

∞∑

k=0

αk‖dk‖2 < +∞. (20)
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By condition (i) we can define an infinite subsequence {k}K̃ made up of only
descent iterations. Then, by (20), it follows that

∞∑

k=0,k∈K̃

αk‖dk‖2 < +∞. (21)

A standard Armijo linesearch satisfying (15) produces at each iteration an
αk > 0 in a finite number of steps (see [1]) and this ensures that

∞∑

k=0,k∈K̃

αk = +∞. (22)

By (21) and (22), we obtain

lim inf
k→∞,k∈K̃

‖dk‖ = 0.

Now since each J k with k ∈ K̃ contains a descent block at xk, by (13) we
can conclude that

lim inf
k→∞,k∈K̃

SMVP(x
k) = 0,

and then, since SMVP(x
k) ≥ 0 for all k, we can write

lim inf
k→∞

SMVP(x
k) = 0. (23)

Suppose by contradiction that lim supk→∞ SMVP(x
k) > 0, then for any γ > 0

sufficiently small we would have SMVP(x
k) > γ for infinitely many k and

SMVP(x
k) < γ

2
for infinitely many k. Therefore, one can always find an infinite

set of indices, say N , having the following property: for any n ∈ N , there
exists an integer in > n such that SMVP(x

n) < γ
2
and SMVP(x

in) > γ. Then it

is easy to see that xn 6= xin and then
∑in−1

k=n αk‖dk‖ > 0 for all n ∈ N . And
then

lim inf
n∈N ,n→∞

in−1∑

k=n

αk‖dk‖ > 0,

which is in contradiction with (20). Then we finally obtain (14). � �

Note that since f is quadratic, condition (15) can be guaranteed by using
the exact minimization rule along direction dk:

αk := max

{
min

{
−∇f(xk)Tdk

dkTQdk
, ᾱk

}
, 0

}
, (24)

12



where

ᾱk := min
i∈{1,...,n}:dk

i 6=0

{
ᾱk
i =

{
(xk)i if dk

i < 0
C − (xk)i if dk

i > 0

}
.

Note that in this case it is not necessary to impose αk ≤ 1 since the feasibility
is guaranteed by construction.

If n is huge it may be cheaper to compute αk in an alternative way in order
to save costly function evaluations. In particular we propose a diminishing
stepsize strategy for which we give two different convergence results based
on slightly different hypotheses.

Theorem 4.3 Let {xk} be the sequence generated by Algorithm 3.1 where
αk ∈ (0, 1] at S.5 satisfies the following condition

αk → 0 and

∞∑

k=0

αk = +∞. (25)

Assume that for all iterations k

(i) k is a descent iteration;

(ii) either τki ≥ τ > 0 or QPiPi
≻ 0, for all Pi ∈ J k;

Then either Algorithm 3.1 converges in a finite number of iterations to a
solution of problem (1) or {xk} admits a limit point and (14) holds.

Proof. Note that feasibility of the sequence {xk} and inequality (17) hold,
see proof of Theorem 4.2.

For any given k ≥ 0 we can write (Descent Lemma [1]):

f(xk+1)− f(xk) ≤ αk∇f(xk)Tdk +
(αk)2λQ

max

2
‖dk‖2. (26)

By using (ii) and (17) we can rewrite inequality (26):

f(xk+1)− f(xk) ≤ αk

(
−ρ+

αkλQ
max

2

)
‖dk‖2, (27)

where ρ > 0 is the minimum among τ and all the minimum eigenvalues of
all the positive definite principal submatrices of Q. Since, by (25), αk → 0 it
follows that there exist ρ̄ > 0 and k̄ sufficiently large such that for all k ≥ k̄
inequality (27) implies:

f(xk+1)− f(xk) ≤ −αkρ̄‖dk‖2.

13



Since, as said in the proof of Theorem 4.2, −∞ < f(x̄)− f(xk̄) for all xk̄ ∈ F
and any limit point x̄ of {xk}, in a similar way we can write

∞∑

k=k̄

αk‖dk‖2 < +∞. (28)

By (25),
∑∞

k=k̄ α
k = +∞, and then we obtain

lim inf
k→∞

‖dk‖ = 0.

Now since each J k contains a descent block at xk, by (13) we can conclude
that

lim inf
k→∞

SMVP(x
k) = 0,

and the thesis follows under the same reasoning of the proof of Theorem 4.2.
� �

As stated in Theorem 4.3, a diminishing stepsize rule requires all itera-
tions to be descent. In certain applications (e.g. when variables are randomly
partitioned), it could be useful to relax this condition, requiring that only a
subsequence of the iterations are descent, as well as for Theorem 4.2. This
is formalized in the next theorem where we assume the additional mild hy-
pothesis of monotonicity of sequence {αk}.

Theorem 4.4 Let {xk} be the sequence generated by Algorithm 3.1 where
αk ∈ (0, 1] at S.5 satisfies (25). Assume that for all iterations k

(i) a descent iteration k̃ with k ≤ k̃ ≤ k+L for a finite L ≥ 0 is generated;

(ii) either τki ≥ τ > 0 or QPiPi
≻ 0, for all Pi ∈ J k;

(iii) αk ≥ αk+1;

then either Algorithm 3.1 converges in a finite number of iterations to a
solution of problem (1) or {xk} admits a limit point and (14) holds.

Proof. Following the same reasoning of Theorem 4.3, inequality (28) holds.
By condition (i) we can define an infinite subsequence {k}K̃ containing only
descent iterations. Then by (28) it follows that

∞∑

k=k̄,k∈K̃

αk‖dk‖2 < +∞. (29)
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We can write the following chain of inequalities

+∞ =
∞∑

k=k̄+1

L−1∑

h=0

αL·k+h ≤ L
∞∑

k=k̄+1

αL·k ≤ L
∞∑

k=k̄,k∈K̃

αk,

where the equality is due to (25), the first inequality holds by (iii) and the
second inequality holds by (i) and (iii). Then the thesis follows from the
same reasoning of the proof of Theorem 4.2. � �

5 Construction of the Partitions

To make the results stated in the previous section of practical interest, the
major difficulty is to ensure that an iteration is descent in the sense that
at least one descent block, according to Definition 4.1, is selected. Next
lemma gives a relation between the steplenght produced optimizing over a
generic block Pi and the one produced optimizing over any violating pair
(̄i, j̄) belonging to Pi. This result will be useful in order to practically build
a descent block and it is used in Theorem 5.2. In this section we use the
simplified assumption that any principal submatrix of Q of order 2 is positive
definite.

Lemma 5.1 Assume that any principal submatrix of Q of order 2 is positive
definite. Let xk be a feasible point for problem (1) and let (̄i, j̄) ∈ Iup(x

k)×
Ilow(x

k). Suppose that a block Pi ⊆ {1, . . . , n} exists such that (̄i, j̄) ⊆ Pi.
Let xk be the unique solution of

min
x(̄i,j̄)∈F(̄i,j̄)

f(̄i,j̄)

(
x(̄i,j̄),x

k
{1,...,n}\(̄i,j̄)

)
. (30)

Then there exists a scalar ǭ > 0 such that

‖x̂k
Pi
− xk

Pi
‖ ≥ ǭ‖xk − xk‖, (31)

where x̂k
Pi

is a solution of problem (10).

Proof. First we note that

xk = xk + ᾱd(̄i,j̄)

with d(̄i,j̄) defined in (5) and ᾱ computed as in (8). For the sake of notation
let us set d = d(̄i,j̄).

Since (̄i, j̄) ⊆ Pi, two cases are possible: (a) x̂k
Pi

+ µdPi
/∈ FPi

for all

µ > 0, or (b) µ > 0 exists such that x̂k
Pi
+µdPi

∈ FPi
, that is dPi

is a feasible
direction at x̂k

Pi
.
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(a) By construction it holds that yT

Pi
dPi

= 0. Then it holds that for all
µ > 0:

yT

Pi
(x̂k

Pi
+ µdPi

) = yT

Pi
x̂k
Pi

= yT

Pi
xk
Pi
,

where last equality holds since x̂k
Pi

∈ FPi
. Therefore we can conclude

that for all µ > 0:
x̂k
Pi
+ µdPi

/∈ [0, C]|Pi|,

and then either x̂k
ī or x̂k

j̄ must be on a bound. In particular, supposing

w.l.o.g. that is the component ī the one on the bound, if dī > 0 then
x̂k
ī = C and then we can write

0 < ᾱdī = xk
ī − xk

ī ≤ C − xk
ī = x̂k

ī − xk
ī ;

otherwise dī < 0 then x̂k
ī = 0 and then

0 > ᾱdī = xk
ī − xk

ī ≥ 0− xk
ī = x̂k

ī − xk
ī .

In both cases it holds that

|ᾱdī| ≤ |x̂k
ī − xk

ī |.

Therefore noting that |ᾱdī| = |ᾱ| and that |ᾱ|
√
2 = ‖x̄k − xk‖ we can

conclude that

‖x̂k
Pi
− xk

Pi
‖ ≥ |ᾱ| = 1√

2
‖xk − xk‖.

(b) Since dPi
is a feasible direction at x̂k

Pi
and since x̂k

Pi
is an optimal solution

of problem (10) at xk, by (12), we can write

[
∇Pi

fPi

(
x̂k
Pi
,xk

−Pi

)
+ τki (x̂

k
Pi
− xk

Pi
)
]T

dPi
≥ 0. (32)

Since x̄k is a solution of (30), and being −d a feasible direction for (30)
at x̄k, then, by the minimum principle and since (̄i, j̄) ⊆ Pi, we can write

∇Pi
fPi

(
xk
Pi
,xk

−Pi

)T

dPi
≤ 0.

And therefore by (32) we can write

[
∇Pi

fPi

(
x̂k
Pi
,xk

−Pi

)
+ τki (x̂

k
Pi
− xk

Pi
)
]T

dPi
≥

∇Pi
fPi

(
xk
Pi
,xk

−Pi

)T

dPi
. (33)

By assumptions, σ > 0 exists such that

σ‖xk
Pi
− xk

Pi
‖2 ≤ (xk

Pi
− xk

Pi
)TQPiPi

(xk
Pi
− xk

Pi
)
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=
[
∇Pi

fPi

(
xk
Pi
,xk

−Pi

)
−∇Pi

fPi

(
xk
Pi
,xk

−Pi

)]T
ᾱdPi

. (34)

Then combining (33) and (34) we can write

σ‖xk
Pi
− xk

Pi
‖2 ≤ τki (x̂

k
Pi
− xk

Pi
)T ᾱdPi

+
[
∇Pi

fPi

(
x̂k
Pi
,xk

−Pi

)
−∇Pi

fPi

(
xk
Pi
,xk

−Pi

)]T
ᾱdPi

≤
(τki + ‖QPiPi

‖)‖x̂k
Pi
− xk

Pi
‖‖ᾱdPi

‖ =

(τki + λQ
max)‖x̂k

Pi
− xk

Pi
‖‖xk

Pi
− xk

Pi
‖.

Therefore we obtain

‖x̂k
Pi
− xk

Pi
‖ ≥ σ

τki + λQ
max

‖xk
Pi
− xk

Pi
‖ =

σ

τki + λQ
max

‖xk − xk‖,

and finally we have the proof.

� �

Theorem 5.2 Assume that any principal submatrix of Q of order 2 is pos-
itive definite. Let xk be a feasible point for problem (1) and let (̄i, j̄) be a
pair of indices such that ī ∈ Iup(x

k) and j̄ ∈ Ilow(x
k). Suppose that a block

Pi ⊆ {1, . . . , n} exists such that (̄i, j̄) ⊆ Pi. Let x̄k be the unique solution of
problem (30) and suppose that ǫ̃ > 0 exists such that

‖x̄k − xk‖ ≥ ǫ̃SMVP(x
k). (35)

Then Pi is a descent block.

Proof. By Lemma 5.1 we know that (31) holds. Therefore by combining
(31) and (35) we obtain the proof. � �

Theorem 5.2 shows that we can build a descent block at the cost of
computing a pair that satisfies (35). Clearly the most violating pair does it,
but it is easy to see that any pair that “sufficiently” violates KKT conditions
can be used as well.

Now we give a further theoretical result which guarantees that at each
iteration of Algorithm 3.1 at least one descent block can be built.

Theorem 5.3 Let xk be a feasible, but not optimal, point for problem (1)
then at least one descent block Pi ⊆ {1, . . . , n} exists.

Proof. By Proposition 2.2, if xk is not optimal then Iup(x
k) 6= ∅, Ilow(xk) 6=

∅ and SMVP(x
k) > 0. Therefore Pi = (iMVP, jMVP) is a descent block. � �
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6 Global Convergence in a Realistic Setting

So far we have proved that, under some suitable conditions, Algorithm 3.1
either converges in a finite number of iterations to a solution of problem (1)
or the produced sequence {xk} satisfies (14). However the fact that SMVP(x

k)
goes to zero is not enough to guarantee asymptotic convergence of Algorithm
3.1 to a solution of problem (1). Indeed, this is due to the discontinuous
nature of indices sets Iup and Ilow that enters the definition of SMVP(x

k).
Actually, this is a well known theoretical issue in decomposition methods for
the SVM training problem. However, even in the case when the algorithm
were proved to asymptotically converge to an optimal solution, the validity
of a stopping criterion based on the KKT conditions must be verified [17]. A
possible way to sorting out these theoretical issues is to use some theoretical
tricks. For example by properly inserting some standard MVP iterations in
the produced sequence {xk} [19] or by dealing with ǫ−solutions [14]. All
these theoretical efforts can be encompassed in a realistic numerical setting.
Indeed all the papers discussing about decomposition methods rely on the
fact that the indices sets Iup and Ilow can be computed in exact arithmetic. In
practice what it can actually be computed are the following ǫ−perturbations
of sets Iup and Ilow

Iǫup(x) := {r ⊆ {1, . . . , n} : xr ≤ C − ǫ, yr = 1, or xr ≥ ǫ, yr = −1},
Iǫlow(x) := {r ⊆ {1, . . . , n} : xr ≤ C − ǫ, yr = −1, or xr ≥ ǫ, yr = 1},

with ǫ > 0. Consequently we can define at a feasible point x the following
quantities

mǫ(x) = max
r∈Iǫup(x)

−∇f(x)r
yr

, M ǫ(x) = min
r∈Iǫ

low
(x)

−∇f(x)r
yr

.

As a matter-of-fact an effective optimality condition which can be used is

mǫ(xk) ≤ M ǫ(xk) + η, (36)

where η > 0 is a given tolerance. Note that any asymptotically convergent
decomposition algorithm can actually converge only to a point satisfying
(36), rather than (3).

It is easy to see that Iǫup(x) ⊆ Iup(x) and Iǫlow(x) ⊆ Ilow(x) for all ǫ > 0.
Furthemore in [22], it has been proved the following result.

Proposition 6.1 Let {xk} be a sequence of feasible points converging to a
point x̄ ∈ F . Then, there exists a scalar ǭ > 0 (depending only on x̄) such
that for every ǫ ∈ (0, ǭ] there exists an index k̄ = kǫ for which

Iǫup(x
k) := Iup(x

k) and Iǫlow(x
k) := Ilow(x

k) for all k ≥ k̄.
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This proposition allows to state that for k sufficiently large and ǫ sufficiently
small using index sets Iǫup(x) and Iǫlow(x) is equivalent to use the exact ones
Iup and Ilow and we have that

mǫ(x) = m(x) and M ǫ(x) = M(x),

so that, for any ǫ ∈ (0, ǭ] and k ≥ k̄, (36) reduces to the concept of η-optimal
solution introduced in [14]. However this is not true far from a solution
and/or for a wrong value of ǫ, being ǭ unknown. Reducing ǫ to the machine
precision ǫmach is the best that we can do in a numerical implementation, so
that one can argue that for ǫ = ǫmach if Iǫup(x) = ∅ or Iǫlow(x) = ∅, a solution
has been reached within the possible tolerance.

Given a point xk ∈ F , we consider the MVP ǫ−step Sǫ
MVP

(xk) obtained by
using Iǫup(x

k) and Iǫlow(x
k) instead of Iup(x

k) and Ilow(x
k). As a consequence

of the definition itself, for any MVP ǫ−direction dk
MVP,ǫ we get that the feasible

ǫ−stepsize β̄k
ǫ defined as in (6) remains bounded from zero by ǫ.

It is easy to see that all results stated so far for Algorithm 3.1 are still valid
if we consider the ǫ−definition Sǫ

MVP
(xk) rather than SMVP(x

k). Furthemore we
have the following result, that fill the gap of convergence.

Theorem 6.2 Let ǫ > 0 and η > 0 be given. Let {xk} be a sequence of
feasible points such that Iǫup(x

k) 6= ∅, Iǫlow(xk) 6= ∅ and

lim
k→∞

Sǫ
MVP

(xk) = 0.

Then k̄ > 0 exists such that, for all k ≥ k̄, xk satisfies (36).

Proof. By definition of Sǫ
MVP

(xk) we get

0 = lim
k→∞

Sǫ
MVP

(xk) =
√
2 lim
k→∞

|αk
MVP,ǫ|. (37)

Since by construction β̄k
ǫ ≥ ǫ, by (4) we get that (37) implies that k̄ > 0 exists

such that, for all k ≥ k̄, we have −∇f(xk)Tdk
MVP,ǫ ≤ η, which implies (36). ��

7 Practical Algorithmic Realizations

Algorithm 3.1 includes a vast amount of specific strategies that may vary
according to several implementation choices. Various alternative may be
related to the blocks dimension, the blocks composition, the blocks selection,
the way to enforce convergence conditions and the methods used to solve the
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subproblems. Different algorithms can be designed exploiting these degrees
of freedom. In this section we discuss about some possible alternatives and
we suggest some practical implementations of Algorithm 3.1.

The dimension of the blocks is a key factor for the training performances.
It influences the way in which the subproblems can be solved so it should be
carefully determined according to the dataset nature. Mainly we can con-
sider two opposite strategies: blocks of minimal dimension (i.e. SMO-type
methods) and higher dimensional blocks. In SMO-type methods we can take
advantage of the fact that, for each block, the subproblem can be solved an-
alytically. On the other hand each SMO-block may yield a small decrease of
the objective function and slow identification of the support vectors, so that
to get fast convergence the simultaneous optimization of a great number of
SMO-blocks may be needed when dealing with high dimensional instances.
This choice could be well suited for an architecture composed of a great
amount of simple processing units, like that of the recent Graphic Processing
Unit (GPU). Higher dimensional blocks require the solution of the subprob-
lems by means of some optimization procedure hence the solution of each
block may need greater time consumption. On the other hand the decrease
of the objective function and the identification of the support vectors may
be faster so that less iterations should be needed. Hence this choice may
be suitable whenever powerful but, generally, not many processing units are
available. Algorithm 3.1 encompasses also the possibility of considering huge
blocks assigned at each processor and using a decomposition method to solve
the corresponding huge subproblems. This strategy essentially consists in it-
eratively splitting the original SVM instance into smaller SVMs, distributing
them to available parallel processes and then gathering their solutions points
in order to properly define the new iterate.

An efficient rule to partition the variables into blocks is crucial for the
rate of convergence of the algorithm. A lot of heurisitc methods (see e.g.
[13, 15, 29]) have been studied to obtain efficient rules for constructing sub-
problems that can guarantee a fast decrease of the objective function (e.g. by
determining the most violating pair). Such methods usaully make use of first
order information, implying that the gradient should be partially or entirely
updated at each iteration, and this could be overwhelming in a huge di-
mensional framework. However practical implementations with a (partially)
random composition of the blocks could be considered.

Once we have determined a blocks partition of the whole set of variables,
only a subset of the resulting subproblems may, in general, be involved in
the optimization process. Indeed, we may further restrict the blocks used to
update the current iterate by determining a subset J k. We need to keep in
mind that the main computational burden is due to the gradient update. In-
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deed at each iteration, the gradient update must be performed by computing
the columns of Q related only to those variables that are chosen to be in the
selected blocks J k. Hence the choice of J k may take into account both the
decrease of the objective function and the computational effort for updating
the gradient. A minimal threshold on the percentage of objective function
decrease associated to each block, with respect to the cumulative decrease
of every block, could be a possible discriminant for a blocks selection rule in
order to avoid useless computations.

The practical effectiveness of the algorithm is highly related to the way to
enforce convergence conditions stated so far. If, for example, we do not take
into account the rule of taking at least one descent block every L iterations,
we could take at each iteration the same partition of variables. This short-
sighted strategy would be totally ineffective, since, in this case, the algorithm
would lead only to an equilibrium of the generalized Nash equilibrium prob-
lem (see e.g. [6, 7, 8]) in which the players solve the fixed subproblems, but
not to a solution of the original SVM, see the following example.

Example 7.1 Let us consider a dual problem with four variables and in
which Q = I, y = (1 1 − 1 − 1)T and C = 1. The unique solution of this
problem is x∗ = (1 1 1 1)T . Let xk = (0 0 0 0)T and suppose to consider
a partition of two blocks: P = {(1, 2), (3, 4)}. Then the best responses are
x̂k
(1,2) = (0 0)T and x̂k

(3,4) = (0 0)T , but this implies that xk+1 = xk. Therefore
if we do not modify P we will never move from the origin, and then will
never converge to x∗. However, being the origin a fixed point for the best
responses of the two processes, it is, by definition, a Nash equilibrium for the
game involving these two players.

Regarding the choice of the steplenght αk we can use two different strate-
gies: a linesearch or a diminishing stepsize rule. In the first case, as showed
before, we can use the exact minimization formula (24). In the second case
a simple rule could be αk = 1

kξ
, with ξ ∈ (0, 1], but different choices are also

possible. Although preliminary tests showed that the exact minimization
is more effective than any other choice, the diminishing stepsize strategy,
besides being easy to implement, requires much less computations and this
could be of great practical interest for high dimensional instances (training
set with many samples and many dense features).

As mentioned above, when the dimension of the blocks is more than two,
an optimization algorithm is needed to obtain a solution of the subproblems.
Due to its particular structure (convex quadratic objective function over a
polyhedron), a lot of exact or approximate methods can be applied for the
solution of problem (10). We simply point out that, whenever the dimension
of the blocks is so big that each block can be considered a sort of smaller
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SVM, a slight modification of any efficient software for the sequential training
of SVMs (like LIBSVM) could be used to perform a single optimization step.

As a matter of example, we propose a SMO-type parallel scheme derived
from Algorithm 3.1 for which we developed two matlab prototypes. This
realization, that we call PARSMO, is based on using a partition P of min-
imal dimension blocks thus performing multiple SMO steps simultaneously
in order to build the search direction dk. Each SMO step is assigned to a
parallel process that analytically solves a two-dimensional subproblem. Thus
the computational effort of each processor is very light and communications
must be very fast thus being suitable for a multicore environment.
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Algorithm 7.2 PARSMO

Initialization Set x0 = 0, ∇f0 = −e, q ≥ 1, ǫ > 0, η > 0 and
k = 0.
Select

(i1, j1) ∈ Iǫ,MV P
up (xk)× Iǫ,MV P

low (xk).

Do while
(
−∇fki1yi1 +∇fkj1yj1 ≥ η

)

S.1 (Blocks definition)

Choose (q − 1) pairs {(i2, j2), (i3, j3), . . . , (iq, iq)}.
Set J k = {(i1, j1), (i2, j2), . . . , (iq, iq)}.

S.2 (Parallel computation)

For each pair (ih, jh) ∈ J k compute in parallel:

1. kernel columns Q∗ih and Q∗jh (if not available in the
cache),

2. thd
(ihjh) with d(ihjh) defined as in (5) and th as in

(8).

S.3 (Direction) dk =
∑

(ih,jh)∈J k

thd
(ihjh)

S.4 (Stepsize) Compute the steplenght αk as in (24).

S.5 (Update)

Set xk+1 = xk + αkdk.

Set ∇fk+1 = ∇fk + αk

q∑

h=1

th
(
dkihQ∗ih + dkjhQ∗jh

)
.

Set k = k + 1.
Select

(i1, j1) ∈ Iǫ,MV P
up (xk)× Iǫ,MV P

low (xk).

End While

Return xk.

Starting from the feasible null vector x0 = 0, which is a well known suitable
choice for SVM training algorithms beacuse allows to initialize the gradient
∇f0 to −e, the algorithm selects at each iteration the most violating pair
(i1, j1) ∈ Iǫ,MV P

up (xk)× Iǫ,MV P
low (xk) and further (q− 1) pairs that all together

make up J k. Search direction dk at S.3 is obtained by analytically com-
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puting stepsise th for the q subproblems of type (10) related to the pairs in
J k. Direction dk is simply computed by summing up all the SMO steps; it
has ‖dk‖0 = 2q with q ≥ 1 which depends on the number of parallel pro-
cesses that we want to activate. Finally at Step 4 steplenght αk that exactly
minimizes the objective function along dk is obtained by (24); note that this
step requires no further kernel evaluations. The same holds for the gradient
update. Of course as standard in SVM algorithms, a caching strategy can be
exploited to limit the computational burden due to the evaluation of kernel
columns.

In PARSMO it remains to specify how to select pairs forming blocks J k.
Since the most expensive computational burden is due to the calculation of
kernel columns, we want to analyse the impact of a massive use of the cache
with respect to a standard one. Indeed we propose two different matlab im-
plementations of PARSMO that use a cache strategy in two different ways.
We would compare the performance with a standard sequential MVP imple-
mentation in order to analyze possible advantages of the PARSMO scheme.

In the first implementation, the q − 1 pairs, in addition to a MVP, are
selected by choosing those pairs that most violate the first order optimal-

ity condition, like in the SVMlight algorithm [13]. Hence we select q pairs
(ih, jh) ∈ Iǫup(x

k)× Iǫlow(x
k) sequentially so that

−yi1∇f(xk)i1 ≥ −yi2∇f(xk)i2 ≥ · · · ≥ −yiq∇f(xk)iq ,

and
−yj1∇f(αk)j1 ≤ −yj2∇f(xk)j2 ≤ · · · ≤ −yjq∇f(xk)jq .

In this case, although we can use a standard caching strategy, we cannot
control the number of kernel columns evaluations at each iteration that in
the worst case can be up to 2q. The computation of kernel columns Q∗ih and
Q∗jh , ∀h ∈ {1, . . . , q}, can be performed in parallel by the processors empow-
ered to solve the subproblems. In this case the number of kernel evaluation
per iteration would be of course greater than those of a standard MVP, but
the overall number of iterations may decrease. Thus we keep the advantages
of performing simple analytic optimization, as in SMO methods, whilst mov-
ing 2q components at the time, as in SVMlight. We note that reconstruction
of the overall gradient ∇fk+1 can be parallelized among the q processors and
requires a synchronization step to take into account stepsize αk. Thus the
CPU-time needed is essentially equivalent to a gradient update of a single
SMO step. In this approach the transmission time among processors may be
quite significant and this strictly depends on the parallel architecture. We
refer to this implementation as PARSMO-1.
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The second implementation selects the q− 1 pairs, in addition to a MVP
(i1, j1) ∈ Iǫup(x

k) × Iǫlow(x
k), exclusively among the indices of the columns

currently available in the cache. To be more precise, let C be the index set of
the kernel columns available in the cache. The q − 1 pairs (ih, jh) in J k are
selected following the same SVMlight rule described above for PARSMO-1,
but restricted to the index sets C ∩ Iǫup(x

k) × C ∩ Iǫlow(x
k). We refer to it

as PARSMO-2. In this case the number of kernel evaluation per iteration is
at most two as in a standard MVP implementation. The rationale of this
version is to improve the performances of a classical MVP algorithm by using
simultaneous multiple SMO optimizations without increasing the amount of
kernel evaluations.

In order to have a flavour of the potentiality of these two parallel strate-
gies, we performed some simple matlab experiments for the two versions
PARSMO-1 and PARSMO-2. All experiments have been carried out on a
64-bit intel-Core i7 CPU 870 2.93Ghz × 8. Both PARSMO-1 and PARSMO-
2 make use of a standard caching strategy, see [3], with a cache memory of 500
columns. We perform experiments with q = 1, 2, 4 and 8 parallel processes.
Clearly the case with q = 1 corresponds to a classical MVP algorithm with
a standard caching strategy. It is worth noting that to preserve the good
numerical behavior of PARSMO-1 and PARSMO-2, it is necessary the use
of the “gathering” steplenght αk. In fact, further tests, not reported here,
showed that by removing the use of αk oscillatory and divergence phenomena
may occur when using multiple parallel processes. This enforce the practical
relevance of our theoretical analysis.

The major aim of the experiments in this preliminary contest is to high-
light the benefits of simultaneously moving along multiple SMO directions.
We tested both PARSMO-1 and PARSMO-2 on six benchmark problems
available at the LIBSVM site http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/, using a standard setting for the parameters (C = 1, gaussian pa-
rameter γ = 1/#features), see Table 1.

name #features #training data kernel type
a9a 123 32561 gaussian
gisette scale 5000 6000 linear
cod-rna 8 59535 gaussian
real-sim 20958 72309 linear
rcv1 47236 20242 linear
w8a 300 49749 linear

Table 1: Training problems description.

To evaluate the behavior of the algorithms we consider the “relative error”
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(RE) as

RE =
|f ∗ − f |
|f ∗| ,

where f ∗ is the optimal known value of the objective function. As regards
PARSMO-1, for each problem we plot the RE versus

i) the number of iterations (see Figure 1);

ii) the number of kernel evaluations per process, which is obtained by di-
viding the total number of kernel evaluations by the number of parallel
processes involved (see Figure 2).
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Figure 1: PARSMO-1: Relative Error versus iterations.
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Figure 2: PARSMO-1: Relative Error versus kernel evaluations per process.
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Our results show that the larger q is, the steeper the RE decrease is. This
emphasizes the positive effect of moving along multiple SMO directions at a
time.

As regards PARSMO-2, we note that, except for the MVP pair which
can require the computation of the kernel columns Q∗i1 and Q∗j1 , each SMO
process computes only the analytical solution of the two-dimensional sub-
problem, since kernel columns are already available in the cache. Thus,
PARSMO-2 may produce a cpu time saving even by running the algorithm
in a sequential fashion. In order to show the cheapness of its tasks, in Figure
3 we plot RE versus the CPU-time consumed.
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Figure 3: PARSMO-2: Relative Error versus (sequential) CPU-time.

PARSMO-2 with q > 1 seems to be faster than a classical MVP algo-
rithm. This is due the use of multiple search directions without suffering
from an increase of time consuming kernel evaluations or from the need of
iterative solutions of larger quadratic subproblems. It is important to outline
that PARSMO-2 achieves its good performances by combining a convergent
parallel structure with an efficient sequential implementation, and it seems
to be useful also in a single-core environment.
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