
A derivative–free approach for a 
simulation–based optimization problem in 
healthcare

Stefano Lucidi 
Massimo Maurici 
Luca Paulon 
Francesco Rinaldi 
Massimo Roma

Technical Report  n. 15, 2014

ISSN 2281-4299



A derivative–free approach for a simulation–based optimization

problem in healthcare

Stefano Lucidi1, Massimo Maurici2, Luca Paulon2
,

Francesco Rinaldi
3
, Massimo Roma

1
,

1 Dipartimento di Ingegneria Informatica,
Automatica e Gestionale “A. Ruberti”
SAPIENZA, Università di Roma
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Abstract

In this work a simulation–based optimization model is considered in the framework of the man-
agement of hospital services. Given specific parameters which describe the hospital setting,
the simulation model aims at reproducing the hospital processes and evaluating their efficiency.
The use of a simulation–based optimization approach is necessary since the model can not
be expressed as closed–form function. In order to obtain the optimal setting, we combine a
derivative–free optimization method with a discrete event simulation model. The resulting
framework has been tested on a real healthcare problem. More specifically, we study how to
optimize the performance of an obstetric ward of a big Italian hospital, from both an econom-
ical and clinical point of view, taking into account some relevant constraints. The resulting
optimization problem is a Mixed Integer Nonlinear Programming problem due to the presence
of some variables constrained to be integer.
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1 Introduction

The current economic climate, despite being challenging, presents an opportunity for improve-
ments. Particularly, more innovative approaches to health care should be developed by healthcare
professionals [1, 2, 3] and by those responsible for health management [4]. Substantial attention
should be placed on how to solve the cost crisis in health care [5] by considering what is value in
health care [6, 7] and different stakeholders standpoints [8].

Health spending is rising. For example, in Italy, in 2011 total health spending accounted for
9.2% of the Gross Domestic Product (GDP), slightly below the average (9.3%) of the Organization
for Economic Co-operation and Development (OECD) countries and significantly lower than in the
United States which spent 17.7% of its GDP [9].

In recent years hospital financing has changed from a budget oriented (lump sum) system to
a fee–for–service system in many National Health Services (NHS). The reimbursement for each
treatment is fixed, meaning that hospitals which provide the treatment for lower costs can realize
greater profits. As a consequence, hospitals should evaluate the optimal case mix, i.e., the optimal
number of patients to treat over a period of interest, and evaluate which services could be expanded
and which could be contained [10, 11].

Operations Research and related disciplines provide the necessary tools to determine, among
other computation, the optimal case mix. Indeed they enable health care managers to investigate
complex relationships among different parts of a hospital and to make rational administrative,
economic, and medical decisions [12]. In particular, Discrete Event Simulation (DES) has been
widely used over the last decades for modelling healtcare systems with a particular focus on the
performance modelling of hospitals (see [13, 14, 15] for a review of the literature on simulation
modelling in healtcare). The growing interest of DES models within healtcare systems is clearly
witnessed by the large and increasing number of papers published in the more recent years dealing
with this topic, focusing on specific healtcare applications. This is due to the fact that, in healtcare
systems, like in several real–life problems, the framework of interest is represented by a stochastic
model whose output is a random vector which can be sampled by computer simulation. This
enables to perform a “what–if” analysis, i.e., a number of input combinations (scenarios) are
simulated and the responses obtained are observed. However, often the number of combinations
examined is very small due to high computational costs and anyhow, in most cases, of course, the
set of possible decisions is too large to be enumerated. Nevertheless, usually in solving practical
problems, the best possible combination is sought. In the most recent years the latter demand
led to a merging between simulation modeling and optimization techniques and this enabled to
search for the optimal input for a stochastic (discrete event) simulation model, that is to determine
the best scenario according to some performance criteria. This approach is commonly known as
simulation optimization: the optimization procedure chooses the values for the decision variables
(input parameters of the simulation model), then the simulation is performed with these parameters
and an estimate of the performance of the system is obtained. Then the optimization procedure
uses these responses from the simulation for choosing new values of the decision variables and the
loop is carried on until a stopping criterion is satisfied.

In order to realize the simulation optimization approach, many simulation softwares often in-
clude a tool which implements an optimization procedure (see, e.g. [16] for a survey). The latter
procedure views the simulation model as a “black–box” used in order to evaluate the system perfor-
mance. Unfortunately most of these optimization procedure available in commercial packages are
heuristics. For instance, OptQuest developed by OptTek Systems, Inc., Boulder, Colorado, USA
(see http://www.opttek.com/OptQuest), which is one of the most popular optimizer embedded in

2



several simulation software, is based on the combined use of scatter search, tabu search and neural
networks (see, e.g. [17]).

This points out a significant gap existing between the current research in Optimization and the
optimization procedure usually used within the simulation optimization approach. In view of this,
in this paper we consider a specific healtcare application where the service delivery model can not be
expressed as closed–form function, thus requiring the use of simulation–based modelling approach
and where the optimal configuration is sought. Instead of using the optimization procedure available
within commercial simulation softwares, we propose the use of Derivative–Free Optimization (DFO)
techniques recently proposed in Optimization literature (see [18] for a survey on DFO). The use of
DFO methods is, of course, essential since all the information concerning the optimization problem
are obtained via simulation as a black-box problem. More precisely, a discrete event simulation
model representing the services delivery of the obstetric ward of a big Italian hospital has been
constructed by using Arena simulation software [19]. Then the simulation model was connected
by means of a suited interface to an external implementation of a DFO algorithm so that the
simulation–optimization procedure can be executed. This enabled to use an optimizer different
from OptQuest for Arena [20], which is the standard optimization engine embedded in Arena. Note
that the optimization problem in hand includes some variables constrained to be integer, so that
it is a Mixed Integer Nonlinear Programming (MINLP) problem.

The results obtained by using a DFO algorithm was compared with those obtained by using
OptQuest, showing that our proposal enables to obtain a “better” solution requiring a much lower
computational burden.

The paper is organized as follows: in Section 2 a description of the case study is reported
along with a brief illustration of the discrete event simulation model. The formal statement of the
optimization problem is given in Section 3, while Section 4 summarizes the DFO algorithm used.
Finally, Section 5 and 6 report the results obtained, some comments and conclusions.

2 The case study

Case mix optimization is particularly relevant for hospitals which provide services for pregnant
women and newborns health care. Particularly, in an efficient obstetrics ward the overall profit
should be maximized while, most important, the normal rate of Cesarean sections should be lower
than 10–15% of overall childbirths (due to higher risk to compromise mother or child’s health in
respect to the natural childbirth [21]). This is a relevant problem in many countries. Indeed,
although levels of 10–15% were considered high but acceptable at the time, average Caesarean
rates in most developed regions exceed 20% [22] probably due to health system factors such as the
human resources and financing profile whose optimization are in contrast with respect to a low
Caesarian section rate ([23]).

Thus, in this respect, we show how to perform a case mix optimization of an obstetrics ward,
that is, practically, how to evaluate the number of pregnant women that would be more efficient to
treat per year in respect to the actual, from both an economic and a clinical point of view, taking
into account different contrasting goals and some relevant constraints. The optimized case mix
would increase profits (an economic goal) while keeping the Caesarean section rate (a clinical goal)
under a threshold value.

The case study was carried out in the obstetrics ward of the Fatebenefratelli San Giovanni
Calibita (FBF-SGC) Hospital in Rome, one of the most important hospital of the Italian NHS
([24]) in terms of number of childbirth cases both at the regional and the national level. The
results of the study were critical for the hospital, both in qualitative and quantitative terms. A
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research group, designated the Business Simulation for Health Care (BuS-4H) team and composed
of doctors, engineers, statisticians and other experts in health care was formed. The services
under evaluation were classified as DRG 371 and DRG 373 using version 24 of the Diagnosis–
Related Groups (DRG) classification system [25]; they were, respectively, Cesarean section without
complications or comorbidities and vaginal childbirth without complications. The top managers
of the FBF-SGC Hospital, respectively, the Chief Executive Officer (CEO) and the Chief Hospital
Officer (CHO), were involved in the evaluation. It was necessary to support them in defining and
evaluating the actual case mix and the most important key performance indicators (KPIs) and goals
related to the services under evaluation, taking into account both national and regional government
recommendations regarding the most relevant indicators [26].

2.1 The conceptual model

From a system point of view, the main FBF-SGC Hospital data flow related to hospitalizations, such
as the hospital discharge forms and the hospital childbirth records, as well as some other services–
related data (such as costs and incomes) were imported and integrated into a single database made
expressly for this study. To build useful reports, including statistical analysis, queries were then
defined and used to create a sort of dashboard for the ward under evaluation. Such reports con-
tained, among other items, the following: Caesarean section rate, profit (difference between income
and costs), rate of low–length–of–stay admissions (considering the number of hospitalizations with
length of stay between 0 and 2 days), bed occupation rate, overall number of supplied births,
number of Caesarean sections, patient arrival time distributions, etc.

From a process point of view, pregnant women flow through the Emergency Room, i.e. phase 1
of the service delivery, and, if hospitalized, they arrive to the ward, i.e., phase 2. During each phase
specific monitoring, visits, preparation and interventions occur. In particular, at the beginning of
the health care nurses execute the triage after a rapid registration and verification, i.e. all patients
are prioritized. In case of pregnant woman a specialistic triage is performed by obstetricians which
eventually perform a fetal monitoring. Then, gynaecologists visit the patient and confirm the
assigned priority and the necessary intervention, including the hospitalization or not. Instead,
pregnant woman which require a scheduled Caesarian section flow directly to the ward, without
performing any triage (see Figure 2.1). The hospitalization in the ward lasts about 1 day before the
childbirth, and 1 day or 2 days after the childbirth for a natural childbirth or a Caesarian section,
respectively.

2.2 The simulation model

The simulation model was implemented by using Arena 14 simulation software by Rockwell Software
[19], one of the most popular DES software. Arena is a general–purpose simulation environment
which enables the full visualization of the simulation model structure by means of flowchart modules.
It allows the user to easy control the simulation parameters, providing useful input and output
analysis tools, too (see e.g., [27]).

The services delivery conceptual model of the FBF-SGC Hospital obstetric ward has been
implemented. The availability of an integrated database mentioned in the previous section allows
us to perform an accurate input analysis, mainly regarding probability distribution fitting the
processes operational time. The verification and the validation of the model enabled to ensure that
the model is performing properly and that it is an accurate representation of the real system. An
appropriate experimental design allows us to determine the length of the simulation run (365 days),
the number of replications (10) and the warm–up period (42 days).
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Figure 2.1: Services delivery conceptual model: pregnant woman health care in the FBF-SGC
hospital is implemented by the ER (whose main activities and resources is shown in this figure)
and the obstetric ward.
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3 Statement of the simulation optimization problem

Starting from the case mix statement, the KPIs and goals chosen by the top managers of the ward
under evaluation, the problem of finding a better case mix with respect to the actual one can be
mathematically stated in the following form

max f (z, t, y(z, t))

g1 (z, t, y(z, t)) ≤ 0

...

gm (z, t, y(z, t)) ≤ 0

0 ≤ lz ≤ z ≤ uz

0 ≤ lt ≤ t ≤ ut

where z ∈ Z
p and t ∈ R

q are the vectors of the services delivery decision variables and y ∈ R
r,

with yj : Z
p × R

q −→ R, j = 1, . . . , r, represents an estimate of the expected values of the output
of the service delivery discrete–event simulation model which depends on z and t. The functions
f and gi, i = 1, . . . ,m are real valued functions, f, gi : Z

p × R
q × R

r −→ R and lz, uz ∈ Z
p,

lt, ut ∈ R
q. A simulation–based modeling approach is used since the service delivery model cannot

be expressed as closed–form function of z and t. More precisely, z and t correspond to the resources
of the simulation model which can be controlled by the user. The vector y = y(z, t) represents the
KPIs of interest obtained as output of the simulation model. In practice, the values yj = yj(z, t),
j = 1, . . . , r, are obtained as an average over a certain number of independent replications of the
simulation. The resulting problem is a mixed integer nonlinearly constrained problem with box
constraints on the variables z and t.

In particular, in the case study the simulation model represents the services delivery of the
obstetrics ward of the FBF-SGC Hospital with p = 7 counters zi, i = 1, . . . , 7 of allocated resources
under control, q = 1 service demand indicator t1 under control (in hours), and r = 6 case mix
responses yj = yj(z, t), j = 1, . . . , 6 of the simulation model. More in detail, the component of the
vectors of the decision variables are the following: z1 is the number of stretchers, z2 is the number
of gynecologists, z3 is number of gynecologists who discharge a patient from the hospital, z4 is
number of nurses, z5 is number of midwives, z6 is the number of Hospital beds, z7 is the number
of operating rooms, t1 is the mean value of the patient interarrival times distribution. Note that,
t1 actually is not a resource. However, its value can be controlled by the hospital management due
to the possibility, in some cases, to reduce or rise admissions of patients by adopting appropriate
strategies.

The components of the output vector of the simulation model are the following: y1 is number
of Caesarean sections per year, y2 is the number of vaginal childbirths per year, y3 is the number
of “extra” Caesarean sections per year, y4 is the number of “extra” vaginal childbirths per year,
y5 is the number of hospitalized woman having as a result no childbirth, y6 is the number of
transferred woman before delivery, where “extra” means that, mainly due to the lack of resources
in the ward (e.g. all stretchers or beds are busy), both woman and newborn are not hospitalized
in the FBF-SGC hospital but after the delivery in the emergency room, they are transferred to
another hospital.

3.1 The constraints

We derive all the constraints mainly from the actual conditions of the specific ward of the FBF-SGC
Hospital under evaluation.
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In particular, regarding the decision variables and by considering their actual values, the box
constraints for zi , i = 1 . . . , 7 are mainly due to budget and logistic limits, while for t1 it is due to
specific clinical and managerial limits on patients admission. They are the following:

8 ≤ z1 ≤ 15 stretchers,

2 ≤ z2 ≤ 7 gynecologists,

1 ≤ z3 ≤ 3 gynecologists who discharge a patient,

1 ≤ z4 ≤ 5 nurses,

2 ≤ z5 ≤ 9 midwives,

33 ≤ z6 ≤ 45 beds,

1 ≤ z7 ≤ 3 operating rooms,

2.0 ≤ t1 ≤ 4.0 mean value of patients interarrival times distribution (in hours),

with z6 = 3`, ` ∈ Z number of rooms in the ward. Note that the actual value of t1 is an estimation
of the patients interarrival times obtained from a statistical analysis of the hospital database.

The general constraints are the following:

• a lower bound of the number of Caesarean sections per year, in order to avoid that it decreases
too much under the actual condition:

y1(z, t) ≥ 500

• a lower bound of the overall number of childbirths per year, in order to avoid that it decreases
too much under the actual condition:

y1(z, t) + y2(z, t) ≥ 3500

• a lower bound on the overall patient occupation rate (defined as the ratio between the effective
overall length of the patients stay and the theoretical stay available) in order to avoid the
underutilization of the ward:

3.3 ((y2(z, t) − y4(z, t)) + 5.0 (y1(z, t)− y3(z, t)) + 5.0y5(z, t)

365(z1 + z6)
≥ 0.75

• an upper bound on the number of transferred woman before delivery in order to minimize
clinical risks:

y6(z, t) ≤ 0.25 (y1(z, t) + y2(z, t))

• an upper bound on the rate of Cesarean sections which is a better (lower) value, i.e. 25% as
discussed in Section 2, with respect to the actual value (44%):

y1(z, t)− y3(z, t)

y1(z, t)− y3(z, t) + y2(z, t) − y4(z, t)
≤ 0.25 (3.1)
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3.2 The objective function

The optimal case mix which maximizes the overall net profit objective (difference between income
and costs) is sought. In particular, the aim is to obtain the values of the decision variables which
determine such a case mix improvement, comparing them with the actual conditions

(z0, t0) = (z01 , z02 , z03 , z04 , z05 , z06 , z07 , t01) = (10, 5, 1, 1, 6, 42, 1, 2.4). (3.2)

The resulting objective function can be stated as follows:

f(z, t, y) = 382 (y1(z, t)− y3(z, t)) + 309 (y2(z, t)− y4(z, t)) − 4500max{0, z1 − z01}

−10352max{0, z2 − z02} − 10352max{0, z3 − z03} − 9589max{0, z4 − z04}

−9589max{0, z5 − z05} − 5000max{0, z6 − z06} − 50000max{0, z7 − z07}

−2737z1 − 14600z6

where the first two terms correspond to the profit (in euros) due to Caesarean sections and vaginal
childbirths, the terms of the form cimax{0, zi − z0i } correspond to set up costs and the last two
terms correspond to some additional costs for stretchers and beds utilization. Its simulated actual
value is 400, 876.00 euros.

4 The optimization algorithm

In this section, we describe the algorithmic framework used to deal with the problem described
in the previous section. First, we note that, since the calculation of the objective function and
constraint functions is obtained via numerical simulations, and some of the variables in the model
are constrained to be integer, the given problem is basically a Black–Box Mixed Integer Nonlinear
Programming problem which we re–write in the following form

min f(x)

g1(x) ≤ 0

...

gm(x) ≤ 0

l ≤ x ≤ u

xi ∈ Z, i ∈ Iz,

(4.1)

where x, l, u ∈ R
n, f : Rn → R and gj : Rn → R, j = 1, . . . ,m and Iz ⊂ {1, . . . , n} is the set

of the indices of integer variables. Moreover, we denote by Ic the set of the index of continuous
variables, Ic = {1, . . . , n} \ Iz. The objective function f and the general nonlinear constraints
function g = (g1, . . . , gm)T , are assumed to be continuously differentiable with respect to xi, i ∈ Ic,
even thought the derivatives actually are not used.

In solving this problem we face with a twofold difficulty. On one hand, the objective and
constraint functions are of the black-box type, so that first order derivatives are not available (see
[18] for a recent survey on Derivative–Free methods). On the other hand, the presence of discrete
variables requires an ad-hoc treatment.

In literature, various Derivative–Free methods have been proposed for solving MINLP problems
(see e.g. [28, 29, 30, 31, 32, 33, 34, 35, 36]). In particular, we adopted the Derivative–Free Linesearch
(DFL) algorithm for MINLP problems described in [37].
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In order to give a detailed description of the procedure, we need to report some definitions and
theoretical results from [37]. We start by the definition of the following sets:

X := {x ∈ R
n : l ≤ x ≤ u}, F = {x ∈ R

n : g(x) ≤ 0} ∩ X , Z := {x ∈ R
n : xi ∈ Z, i ∈ Iz}.

Moreover, for any vector v ∈ R
n, vc ∈ R

|Ic| and vz ∈ R
|Iz| denote the subvectors

vc = [vi]i∈Ic , vz = [vi]i∈Iz .

Futhermore, since the characterization of local minimizers in mixed problems strongly depends on
the particular neighborhood used, we need to report different definitions of neighborhoods that
correspond to variations of continuous and discrete variables. Hence, for any point x̄ ∈ R

n and
ρ > 0, the following definitions are given:

Bc(x̄, ρ) = {x ∈ R
n : xz = x̄z, ‖xc − x̄c‖2 ≤ ρ} ,

Bz(x̄) = {x ∈ Z : xc = x̄c, ‖xz − x̄z‖2 = 1} .

Now we are ready to report the definition of local minimizer:

Definition 4.1 A point x? ∈ F ∩ Z is a local minimizer of Problem (4.1) if, for some ε > 0,

f(x?) ≤ f(x), for all x ∈ Bc(x
?; ε) ∩ F ,

f(x?) ≤ f(x), for all x ∈ Bz(x
?) ∩ F .

Under standard assumptions (see [37] for a complete description of the assumptions adopted),
it is possible to give stationary conditions for Problem (4.1). The latter conditions make use
of the Lagrangian function associated to Problem (4.1), namely L(x, λ) = f(x) +

∑m
i=1

λigi(x).
The following proposition (see [37]), reports the necessary optimality conditions for Problem (4.1).
Here the notation ∇cL(x, λ) is used to denote the gradient of the function L with respect to the
continuous variables.

Proposition 4.2 Let x? ∈ F ∩Z be a local minimizer of Problem (4.1). Then there exists a vector
λ? ∈ R

m such that
∇cL(x

?, λ?)T (x− x?)c ≥ 0, for all x ∈ X (4.2)

(λ?)T g(x?) = 0 λ? ≥ 0 (4.3)

f(x?) ≤ f(x) for all x ∈ Bz(x
?) ∩ F . (4.4)

Finally, we report the definition of stationary point for Problem (4.1).

Definition 4.3 A point x? ∈ F ∩ Z is a stationary point of Problem (4.1) if a vector λ? ∈ R
m

exists such that the pair (x?, λ?) satisfies (4.2), (4.3) and (4.4).

Now, in order to give a description of the Derivative–Free algorithm we use, we report the
penalty function used to handle the general constraints. As in [38], the following sequential penalty
function

P (x; ε) := f(x) +
1

ε

m
∑

i=1

max{0, gi(x)}
q, with q > 1
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is used and the original problem is solved by means of a sequence of penalty problems of the form

minP (x; ε)
x ∈ X ∩ Z,

where penalization of constraint violation is progressively increased.

Now we report the basic scheme of the Derivative–Free framework for MINLP problems we use.

A Derivative–Free MINLP framework

Input: an initial point x0 ∈ X , a decrease parameter ξ0 > 0, a penalty parameter ε0 > 0,
a set of stepsizes αi

0 > 0, i = 1, . . . , n and a set of search directions di0 = ei, i = 1, . . . , n .

Output: a stationary point of Problem (4.1).

Set k = 0.
repeat

Set y1k = xk
for i = 1, 2, . . . , n do

if i-th variable is continuous
then compute an α continuous stepsize along the i-th search direction enforcing

(αi
k)

2-sufficient decrease by Continuous search(αi
k, y

i
k, d

i
k;α)

else compute an α discrete stepsize along the i-th search direction enforcing
ξk-sufficient decrease by Discrete search(αi

k, y
i
k, d

i
k, ξk;α)

end if
Set new point yi+1

k
= yik + αdik and update αi

k+1
.

end for
Find xk+1 ∈ X ∩ Z s.t. P (xk+1, εk) ≤ P (yn+1

k , εk).
Use updating rule to obtain εk+1 and ξk+1.
Set k = k + 1.

until convergence

The described method, like many other Derivative–Free techniques, is based on a suitable sampling
strategy along a set of directions. This strategy is able to get, in the limit, sufficient knowledge of
the problem functions (by using the Continuous and Discrete Search) to recover both first order
information for the continuous variables, and some sort of local optimality for the discrete ones.
Anyway, since we are in a constrained context, we need to take also care of the penalty parameter
(i.e. the penalty parameter has to be updated and, as we said before, progressively driven to zero),
by somehow connecting it to the sampling technique. Roughly speaking, the penalty parameter
must converge to zero more slowly than the maximum stepsize used by the sampling scheme. This
is the reason why we need, other than the updating rules for the stepsizes αi and for the updating
of ξ (the parameter driving the sufficient decrease in the Discrete Search), a rule for the updating
of the parameter ε.

Summarizing, the main features of the algorithm are four:
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1. the Continuous Search, which performs a classic Derivative–Free linesearch (see e.g. [39])
guaranteeing a sufficient decrease of the objective function;

2. the Discrete Search, which performs a Derivative–Free linesearch in a “discrete fashion”;

3. the updating rule for the stepsizes αi;

4. the updating rule for the penalty parameter ε and the parameter ξ.

All these ingredients are needed to guarantee convergence of the algorithm to stationary points of
the original problem.

Now, we give some details about those features. The updating rule for the stepsizes αi is very
simple as either it sets the stepsize to the α given by the related search in case a sufficient decrease
is obtained, or it shrinks the stepsize in case of failure. The updating rule for the parameters ε and
ξ works as follows: if no discrete variable has been updated and all the tentative steps along discrete
coordinates are equal to one, the sufficient reduction parameter is decreased, and the procedure
further checks if the penalty parameter has to be updated.

We also report the detailed schemes of Continuous and Discrete Search below.

Continuous search(α̃, y, d;α).

Data. γ > 0, δ ∈ (0, 1).

Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 2. If α > 0 and P (y + αd) ≤ P (y)− γα2 then go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 4. If α > 0 and P (y − αd) ≤ P (y)− γα2 then set d = −d and go to Step 6.

Step 5. Set α = 0 and return.

Step 6. While

(

α < ᾱ and P

(

y +
α

δ
d

)

≤ P (y)− γ
α2

δ2

)

α← α/δ.

Step 7. Set α← min{ᾱ, α} and return.
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Discrete search(α̃, y, d, ξ;α).

Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 2. If α > 0 and P (y + αd) ≤ P (y)− ξ then go to Step 6.

Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z. Set α = min{ᾱ, α̃}.

Step 4. If α > 0 and P (y − αd) ≤ P (y)− ξ then set d = −d and go to Step 6.

Step 5. Set α = 0 and return.

Step 6. While ( α < ᾱ and P (y + 2αd) ≤ P (y)− ξ )

α← 2α.

Step 7. Set α← min{ᾱ, α} and return.

The Continuous search procedure is defined by specifying values for parameters γ and δ which
are used, respectively, in the sufficient reduction criterion and for the expansion of the step. The
main distinguishing feature of the Discrete search procedure with respect to the Continuous search
consists in the sufficient decrease criterion which employs the decrease parameter ξ instead of the
usual squared stepsize which, for a discrete variable, is bounded away from zero. Indeed, we say
that the new trial point (y ± αd) guarantees a sufficient decrease of the objective function value
when its value is better than P (y)− ξ.

As regards the convergence properties of the algorithm, we now report the main theoretical
result concerning the global convergence (see [37]).

Theorem 4.4 Let {xk} and {εk} be the sequences generated by the algorithm. Let

Kξ = {k : ξk+1 < ξk} ⊆ {1, 2, . . .} and Kε = {k : ξk+1 < ξk, εk+1 < εk} ⊆ Kξ

Then, the sequence {xk} admits limit points

(i) if lim
k→∞

εk = ε̄, every limit point of {xk}k∈Kξ
is stationary for Problem (4.1);

(ii) if lim
k→∞

εk = 0, every limit point of {xk}k∈Kε
is stationary for Problem (4.1).

5 Results and discussion

In order to determine an optimal solution of the MINLP problem in hand described in Section 3,
we used a Fortran 90 implementation of the DFO algorithm described in Section 4. Of course, it
was necessary to create an interface between the fortran code and Arena simulation software. To
this aim, we use the Visual Basic for Applications (VBA) tool included in Arena which enables to
build custom user interfaces to Arena models and to transfer data to/from Arena.
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The procedure used is the following: the DFO algorithm selects the values for the decision
variables (z, t) which represents the input parameters of the simulation model. These values are
transferred to Arena model and the simulation is run, for the prefixed number of independent
replications, in order to obtaining an estimate of the system performance, namely the component
of the output vector y. The DFO algorithm uses these responses from Arena to choose the next set
of values for the decision variables. The loop is carried on until the stopping criterion is satisfied.

We also used OptQuest for solving the problem we are considering. For both the algorithms we
used as starting point the one corresponding to the actual condition (z0, t0) reported in (3.2). It is
important to notice that such point is infeasible for the problem in hand since the constraint (3.1),
imposing an upper bound on the Cesarean sections rate, is not satisfied by the values of variables
corresponding to the actual condition. As regards the tolerance used in the stopping criterion we
use the same (10−6) for both the algorithms. We monitored the computational burden by counting
the number of simulations needed by an algorithm for satisfying the stopping criterion.

In Table 5.1 we report, for each algorithm, the optimal value of the decision variables, the
optimal objective function value (in euros) and the number of simulations needed. For a comparison
with the actual operating condition we also report the value of the variables corresponding to this
actual condition along with the value of the objective function. In Table 5.2 we report the values of
the responses obtained by the simulation model corresponding to the three configurations detailed
in Table 5.1.

number of
z1 z2 z3 z4 z5 z6 z7 t1 f simulations

Actual values (z0, t0) 10 5 1 1 6 42 1 2.4 400,876.00 —
OptQuest 14 5 2 1 5 42 1 1.738 548,672.00 1777
DFO Algorithm 15 5 1 1 6 39 1 1.822 565,368.00 215

Table 5.1: Resources and objective function values corresponding to the actual operating condi-
tions (z0, t0) and to the optimal value obtained by the two algorithms along with the number of
simulations needed.

y1 y2 y3 y4 y5 y6
Simulated actual values y0 883.40 2514.70 12.80 220.60 1080.00 551.70
OptQuest 944.60 3266.00 24.10 428.10 945.40 949.20
DFO Algorithm 909.30 3176.10 21.80 395.20 961.90 881.00

Table 5.2: Corresponding responses of the simulation model.

By observing Table 5.1 it can be clearly pointed out that the use of the DFO Algorithm allows
us to obtain a better solution in terms of objective function value (the net profit) with respect to
the one obtained by OptQuest. Moreover, DFO Algorithm clearly outperforms OptQuest in terms
of computational effort required. Indeed OptQuest needs 1777 simulations against 215 simulations
required by the DFO Algorithm. As regards the optimal solution determined by DFO Algorithm,
by comparing the optimal values of the decision variables with respect to those corresponding to the
actual condition, it can be observed that some of them remains unchanged (z2, z3, z4, z5, z7). They
concern human resources (number of gynecologist, nurses, midwives) and a structural resource (the
number of operating rooms) whereas changes are expected in the number of stretchers and beds.
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Moreover, the optimal values of t1 corresponds to an increase of the average number of patients
arriving in a day. In fact, the interarrival time between two subsequent patients passes from a value
of 2.4 hours to 1.822 hours. As already discussed, the hospital management can control the value of
this parameter by means of appropriate strategies. On the overall, it is important to note that the
optimal solution obtained by the DFO Algorithm is easy to adopt in practice since it only requires
few changes with respect to the actual condition and these changes do not regard human resources.
On the opposite, OptQuest suggests to increase the number of gynecologists who discharge patients
and to decrease the number of obstetricians.

As regards the values of the responses, Table 5.2 evidences that by adopting the solutions
obtained (by both the DFO Algorithm or OptQuest) a significant increase of y2 (number of natural
childbirths) is expected with respect to the actual situation. But the most interesting point in
both solutions is the increasing of y3, y4, y6 (which is slightly lower for the solution obtained by
DFO Algorithm, probably due to different human resource allocation). In any case the solution we
obtained suggests to the top managers to improve the ER emergency activities related to childbirth
in order to satisfy, among others, the constraint of a good rate of Caesarean sections (less than
25%), still improving the profit. This is a very interesting average condition (in terms of clinical risk
and economical benefits both for patients, hospitals and for the NHS) between hospitalization (i.e.
the common politics in Italy) and assisted childbirth at home which is the novel politics proposed
by the Lazio Region of Italy.

6 Concluding remarks

In this work we propose the use of a Derivative–Free Optimization within the Simulation Opti-
mization framework. With reference to a particular problem arising in the management of hospital
systems, we showed that the new approach we propose is effective and outperforms the standard
use of heuristic methods usually embedded within simulation software packages both in terms of
quality of the solution provided and in terms of efficiency. On the overall, the results obtained on
this case study indicate that the use of Derivative–Free Optimization algorithms within Simulation
Optimization is very promising. Future works concerns the use of a multiobjective formulation of
healthcare management problems, since very often contrasting goals arise in this context.
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