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Real-Time Map Building and Navigation for
Autonomous Robots in Unknown Environments
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Abstract—An algorithmic solution method is presented for the efficient algorithms that can guarantee real-time performance
problem of autonomous robot motion in completely unknown jn the presence of insufficient or conflicting data.
environments. Our approach is based on the alternate execution In this paper, we address the problem of autonomous

of two fundamental processes:map building and navigation C letel K . f b
In the former, range measures are collected through the robot Navigation in a completely unknown environment for a robot

exteroceptive sensors and processed in order to build a local equipped with ultrasonic range finders. If the robot must
representation of the surrounding area. This representation is perform several motion tasks in the same static workspace,
then integrated in the global map so far reconstructed by filtering may be convenient to perform a preliminary, exploratory

out insufficient or conflicting information. In the navigation h . d v th .
phase, an A*-based planner generates a local path from the phase in order to reconstruct accurately the environment [2,

current robot position to the goal. Such a path is safe inside Ch- 5]. The high cost of such operation will be compensated
the explored area and provides a direction for further explo- by the ease of planning on a globally known map. Moreover,
ration. The robot follows the path up to the boundary of the g global knowledge of the environment allows to plan paths
explored area, terminating its motion if unexpected obstacles are that optimize a given performance criterion

encountered. The most peculiar aspects of our method are the . . .
use of fuzzy logic for the efficient building and modification N Many cases, an exploratory phase is out of question, either
of the environment map, and the iterative application of A*, because the characteristics of the environment are subject
a complete planning algorithm which takes full advantage of to change over time, or simply because the nature of the
local information. Exp_erimental results for a NOMAD 200 mobile  ghot task would make it inefficient. The robot must then
L%t;ﬁtishsﬁgiéhgngeigmfa?ggﬂ%‘?ﬁi met/ri]r%npr;oep;]ﬁed method, be able to accomplish the motion in the absence of initial
knowledge. Various approaches to this problem have been
proposed. Despite their differences, most techniques can be
|. INTRODUCTION classified into two major streamseactive and deliberative

. . . navigation.
N RECENT years, an increasing amount of robotics re- g - . . .
. In reactive methods, there is a stimulus—response relation-
search has focused on the problem of planning and execut: : .
ship between sensors and actuators, with very limited or no

ing motion tasks autonomously, i.e., without human gwdan%eorld modeling at all [4]{9]. In deliberative techniques, a

[1}-13]. Such a faculty is essential for robotic systems Op_8rld model is used to formulate plans to which the robot

erating in hostile environments (space, sea, contaminatg | itted: le of this kind i
habitats) as well as in the emerging field s&rvice robotics IS more or less commitied, one exampie of this kind IS

which includes waste management, cleaning, luggage transEiY,er.]tm [1(?(]..tWh|Ie drelactlc;/e n avigation p;oytes 0 bfe .fllex;wble
disabled people assistance, and others. y virtue of its modular design approach, it may fail when

To reach a reasonable degree of autonomy, two bag&nfron.ted WI;If’] dn‘fflcult t::_sl:]s. On the qtherlhand:dehberatlv%
requirements arsensingand reasoning The first is provided navigation suffers from high computational requirements an

by an on-board sensory system that gathers information abBffformance degradation in dynamic environments. Based on
idea that “dynamically acquired world models can be used

the robot itself and the surrounding scene. The secondtki‘?, e )
accomplished by devising algorithms that exploit this informa® urcumvent"certaln pitfalls that re'presentatllonless methods
tion in order to generate appropriate commands for the rob8fé Subject to” [11], a number of mixed solutions have been
To make the use of robots feasible in real-life applicationB/0P0sed, aimed at an efficient integration of world modeling
it is necessary to reach a tradeoff between costs and benefif§ planning into reactive architectures [12], [13].
Often, this prevents the use of expensive sensors (e.g., vide@ur solution is somewhat in the line of mixed methods.
cameras) in favor of cheaper sensing devices, and calls farfact, it prescribes the incremental building of a dynamic
world representation and the formulation of local plans in
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may behave poorly in certain conditions [14]. Therefore, rath

than trying to reconstruct a deterministic model of the env

ronment, we have chosen to adopt an intrinsically uncerte i '|J""l‘" PO
= Laqu il

hiap Huih.:i[ng

map, defined as fuzzy seta real number is associated to eac . LY —_t
point, quantifying the possibility that it belongs to an obstacli

The resulting representation is similar to accupancy grigd
commonly obtained using stochastic techniques [15]-[18]. V

Tusdan

have found that fuzzy logic provides a more robust ar ™" F=t= o
efficient tool for managing the uncertainty introduced b Plavipgadinm

the ultrasonic sensing process. In fact, the underlying thec — |

is developed from less constraining axioms than probabili| | AT | path P UL o

theory, so that a wider choice of operators is available fi
modeling uncertainty and aggregating information comir
from multiple sources [19].

As the environment map is incrementally built, the loc ;
planner is repeatedly invoked in order to generate a robot pat?i
from the current position to the desired goal. Such a path
must be safe inside the area so far explored, and at the samilap Building:
time should provide directions for further exploration aimed at The map building process is in charge of gathering through
reaching the goal. This is realized by defining cost functionsthe sensors information about the environment at a given
that characterize the risk of collision along a path, and by robot position and of processing it in order to update the
choosing a proper instance of th&* class of graph search available map in accordance. The basic steps are as follows.
algorithms in order to obtain a minimum-cost path. Perceptiont The robot ultrasonic sensors are activated in

Our method represents an attempt to make use of strictly a proper sequence and a packetofange readings are
algorithmic techniques in the presence of unknown and/or collected.
dynamiC enVironmentS, with as little as pOSSible SOphiStication Processing Ultrasonic measures are processed in order
in the control structure of the robot. In fact, while it is pOSSibIe to build a local representation of the Surrounding scene
to devise general control architectures that behave robustly in in terms of empty and occupied space.

various situations [4], in this way one might be forced to give  Eysion: The local representation is integrated in the
up interesting formal properties such as completeness (i.e., global one by filtering out contradictory and insufficient
the capability of finding a solution whenever one exists), that  yformation. In particular, two gray-level bitmap$t,,

can instead be guaranteed by algorithmic approaches. Further g, M,, are computed. Unexplored areas are regarded
advantages of these are the possibility of analyzing complexity as dangerous inM,, (motion map, while they are

as well as the efficiency of the obtained paths. considered to be safe in, (planning map.

The paper is organized as follqws. In Section II, we presentAt the end of the last step, a new navigation process is
our solution approach and outline the overall structure of started

the navigation method. In Section IIl, we review the various Navigation:

phases of the fuzzy map building algorlthm frpm ultrasonic The navigation process generates robot motions on the basis
measures. In Section IV, cost functions are introduced formc the information provided by the map building one. It
characterizing safe paths on fuzzy maps and it is shown thabrescribes the two following phases.

the A* algorithm can be applied to find minimum-cost local . N

paths. Experimental results are presented in Section V to show Planning: An A -base.d. planner computes a path fr(_)m
the satisfactory performance of our approach both in static and the current robot po§|tlon to the goal on the planning
moderately dynamic environments. A short review of the basic map M. This path will be safe inside the area explored

concepts of fuzzy set theory is given in the Appendix. SO f_ar, and will aim directly _at the goal outside. o
Motion: The planned path is followed as long as it is

safe on the motion mapA,,, i.e., up to the boundary of
II. THE PROPOSEDAPPROACH the explored area. This phase is aborted if the proximity
sensors detect unexpected obstacles that obstruct the

1. The proposed solution approach.

Consider a mobile robot equipped with ultrasonic range motion
finders that must travel from its initial position to a final de- ' )
sired position across a completely unknown two-dimensional!f the goal has not been reached at the end of the motion
(2-D) environment. Throughout the paper, we assume thatPh@se, @ new map building process is started.

a localization system provides the robot with its absolute The two following comments arise with reference to the
position with respect to a fixed inertial frame. approach so far outlined.

Our approach is based on the use of two basic processes, Assume that the map building method provideseaact
map buildingand navigation that are alternately performed representation of the environment inside the explored
during the task execution (see Fig. 1). A short qualitative area. It is easy to understand that, if the environment
description of their functions is given below. is static, the proposed method é®mplete i.e., it pro-
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vides a solution whenever one exists and returns failure
otherwise. In fact, if a solution exists, the explored area
is increased until it contains the goal. At this point, the
completeness ofi* guarantees that a path inside this area
(that is limited by construction) is found. Conversely, if
the problem does not admit a solution, the robot will
explore all the connected region that can be reached
from the start position. When the map of this area is
completed, the planner will return a failure. Although the
underlying assumptions will not be satisfied in practice,
this reasoning provides a nice theoretical support to the
whole approach.

¢ In the above description, the robot is required to stop
in order to collect ultrasonic measures during the map
building process. For clarity of exposition, we shall keep
this separation between the two processes. However, to
reduce the time consumed by the perception phase—by
far the most expensive—the latter can be performed
during motion execution, provided that map building and
navigation are implemented as concurrent processes.

In the following, we shall detail the above approach with
reference to the NOMAD 200 mobile robot produced by
Nomadic Technologies. As shown in Fig. 2, NOMAD has
a cylindrical shape with an approximate radius of 0.23 m,
and a kinematic model equivalent to a unicycle. The upper
turret, which carries 16 Polaroid ultrasonic sensors, may be
independently rotated. The robot control software runs under
Unix on an IBM RISC 6000 that communicates with NOMAD
through a radio link. All the algorithms for map building and
navigation have been implemented in the C language.

I1l. THE MAP BUILDING PROCESS

The problem of building a map from ultrasonic measures is
made difficult by the large amount of uncertainty introduced
by the sensing process. This uncertainty consists leck of Fig. 2. The NOMAD 200 mobile robot.
evidencedue to the inherent limitations of ultrasonic sensors,
it is not always possible to decide whether a given point of
the area of interest is occupied or not by an obstacle. Rathet" the fuzzy logic context, the two sei$ and O are
than deciding (i.e., classifying points of the space as eith@pt complementary—the principle ¢értium non daturdoes
empty or occupied) in this unfavorable situation, a possibt hold. Therefore, for a given cell’, 1is(C) and po(C)
alternative approach is to convey all the available knowled§€nvey independent information. This situation is particularly
into an uncertain representation. convenient in view of the characteristics of the ultrasonic

Fuzzy logic offers a natural framework in which uncertai§ensing process (see Section lll-A). In fact, an ultrasonic
information can be handled. Studies on the theory of fuzzy sé@hsor detects the closest reflecting surface inside its radiation
started in the early 1970's, with the seminal papers of ZadéRne, thereby indicating the presence of an empty space up to a
[20]. A review of the basic concepts needed for our purpos@grtain distance. On the other hand, no information is provided
is presented in the Appendix. about the state of the area beyond such distance: the available

Define the empty and the occupied space as two fuzzy seg¥idence does not suggest emptiness or occupancy. Only by
£ and O over the universal sel/ (the environment), that is incorporating measures taken at different viewpoints it will be
assumed to be a two-dimensional subsetii®# discretized possible to discriminate between the two possibilities.
in ¥ = o1 x oo square cells of sidé. Their membership  As mentioned in the previous section, thi map building
functionspe(C) and o (C) quantify the degree of belief thatprocess consists of three phases, i.e., perception, processing
the cellC € U is empty or occupied, respectively. This degreand fusion (see Fig. 3). In the perception phase, a packet of

of belief should be computed on the basis of the availabldtrasonic measureg*} (i = 1,...,n) are collected from the
measures. same robot position and fed to the processing phase, that is
in charge of generating two local representations of the empty
1Hereafter, we denote fuzzy sets by calligraphic capital letters. and the occupied space, i.e., two local fuzzy s#tsand O,
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Fig. 4. Ultrasonic sensing: (a) objects in different positions can give the
same distance readingand (b) false reflections may occur for large angles
of incidence.

the azimuthal angle measured with respect to the beam central
axis. For the Polaroid sensor [21], it js= 0.01921 m and
¢ = ¢/v, wherec is the sound speed in air and= 49.410
kHz. For practical purposes, it is sufficient to take into account
only the principal lobe of the pattern. As a consequence, the
waves are considered to be diffused over a radiation cone of
25° width.

A single range reading is affected by three basic sources

During the fusion phase, the local information is aggregat&d uncertainty as follows.
to the global representation of the empty and the occupieds The sensor has a limited radial resolution. The standard

space, which is contained in two global fuzzy sétand O.
The final step is to elaborate the information contained in
and O so as to update two further fuzzy setd,, and M,,.

Both are gray-level bitmaps conveying information about the
risk of collision for each cell of the environment, but they are
based on a different definition of risk. In particular, unexplored

areas are dangerous.wt,,, (motion map, while they are safe
in M,, (planning map.

Below, each phase of the map building process is described

in detail.

A. Perception

Polaroid range finder can detect distances from 0.12 to
6.5 m with 1% accuracy over the entire range.

The angular position of the object that originated the echo
inside the radiation cone is not determined. For example,
all the three obstacles of Fig. 4 will give the same distance
reading.

If the incidence angle is larger than a critical valgie
the sensor reading is not significant because the beam
may reach the receiver after multiple reflections, or even
get lost (see Fig. 4). The angfedepends on the surface
characteristics, ranging fronf 7o 8° for smooth glass to
almost 90 for very rough materials.

L]

Ultrasonic range finders measure the distance from obstacle®uring the perception phase, ultrasonic sensors are fired in
in the environment by a simple conversion of the time dfuch a sequence that interference phenomena are minimized,
flight of the ultrasonic waves in air. As already mentionedtnd measures are recorded together with the position of the
the mobile robot NOMAD 200 is equipped with a ring of 1@~0orresponding sensor. At each robot position, the ultrasonic
Polaroid ultrasonic range finders. These are constituted byig undergoes two consecutive rotations of°7.&s a conse-
single transducer acting both as a transmitter and a receiv@#ence,16 x 3 = 48 range readings are obtained. Each point
a packet of ultrasonic waves is generated and the resultipfgsurrounding area falls inside a minimum of three radiation
echo is detected. The time delay between transmission des. This redundancy of measures will be exploited in the

reception is assumed to be proportional to the distance of
sensed obstacle.

fp@cessing phase in order to achieve a more accurate estimate
of the angular position of the detected obstacle.

The multilobed beam pattern of the transmitter can be
obtained from the radiation directivity function of a planq3 Processing

circular piston

J1(wpsin )
D) =2——7-—= 1
@) wpsind @)
where Ji(-) is the first-order Bessel functiony = 2x /¢

depends on the wavelengthyp is the piston radius, and is

The objective of this phase is to build two local fuzzy sets
EF andOF. £F (OF) is obtained by merging the sef§ (OF),
fori =1,...,n, each representing the evidence that a cell is
empty (occupied) provided by the single range readfhgrhe
membership functions of* and OF have a simple structure
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Fig. 5. The two certainty functions (&) and (b)f» for a range reading. ) ] ]
the degree of belief of the assertions “empty” and “occupied”

. o - s nonzero only inside a circular sector of radjyscentered
that reflects the previous qualitative description of the sensin . S . . o
. at the sensor position. The motivation behind this choice is
uncertainty. ) ) -
: . . . . the following. Due to the sensor wide radiation angle, narrow
A single readingr provides the information that one or .
passages (e.g., doors) would appear obstructed if seen from a
more obstacles are located somewhere along tlea2d of . .
large distance. By reducing, we guarantee that such passages

circumference of radius. Hence, while points located in the . .
o . : ) o are incorporated into the map only when they have been
proximity of this arc are likely to be occupied, there is evidence

. . : . correctly detected. An interesting side effect of the use of
that points well inside the circular sector of radiuare empty. : ) . :
. : . v(p) is to reduce the artifacts introduced in the map by false
To model this knowledge, we introduce the two functions S .
reflections; in fact, the latter typically produce longer range

ke , 0sp<r- Ar readings.
felp,r) = kg(’A;f’) r=—Ar<p<r 2 An appropriate value op, can be easily selected on the
0 p>r basis of qualitative characteristics of the environment. For
0 0<p<r—Ar example, in an office-like area it is reasonable to ask that the
folp,r) = ko [1 _ (%)2 r—Ar<p<r+Ar (3) Map building algorithm corrgctly detects passages of. the size
0 p =7+ Ar, of a door, say 0.7 m. To this end, the perception point must

) ) ) be sufficiently close to the opening, so that thé 2adiation
that describe, respectively, how the degree of belief of th@ne does not intersect the door features. A simple geometric
assertions “empty” and “occupied” vary with for a given construction shows that the maximum admissible distance is
range reading. Here,p is the distance from the senség and 1 5 m: therefore, it would be necessary to get< 1.5 m.
ko are two positive constants corresponding to the maximumpgor each range measur§, two fuzzy setss* and OF are
values attained by the functions, abdAr is the width of the generated by defining their membership functions as
area considered “proximal” to the arc of raditisThe value

of Ar should be selected in such a way to “augment” slightly pex(p,0) = fe(p,r)m(9)v(p)

the occupied area, providing a convenient safety margin for i (0.0) = Fnl 0. 78Vl

the navigation phase. The profile ¢§ and f» is displayed Hor (0, ) = Jo p:73)m(@)e(e)

in Fig. 5. i.e., byanding the previously introduced certainty functions.

Since the intensity of the waves decreases to zero at {heese sets represent, respectively, how the degrees of belief
borders of the radiation cone, the degree of belief of each the assertions “empty” and “occupied” vary inside the
assertion is assumed to be higher for points close to the betadiation cone. Note that the above membership functions are
axis. This is realized by defining modulationfunction expressed in local polar coordinates with respect to the sensor

o position, and assume nonzero values only inside the subset of
D) |9 <125 S . S~ . .
m(¥) = o the radiation cone within the visibility radius. Fig. 7 shows
0 [9] > 12.5 .
the typical shape of the two sets.
where D(9) is the radiation directivity function (1) (see The final step of the processing phase consists in the
Fig. 6). computation of the fuzzy set®® and ©*, that collect all the

Finally, we wish to limit the influence of the range readingpcal information about emptiness and occupancy acquired at

r to an area close to the sensor location. In particular, tiye kth perception point. This is simply realized by means of
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AT associative property of the union operatgf,and©* are

- T independent on the order of computations in (4) and (5).

* The membership degree of a cell inside the radiation cone
to the seté* (OF) is always increased with respect to
the membership degree to each original &5t (OF).
This fact, due to the use of the Dombi union operator,
is consistent with the perception strategy described in
Section Ill-A. In fact, assume that an obstacle cell is lo-
cated at”. Since( falls insideq radiation cones(= 3 or
4 in our implementation), there will bgconcordant range
readings—in the absence of false reflections—indicating
the presence of an obstacle along an arc of circle of
25° 4+ (g — 1) - 7.5° passing througi’. The membership
function e will be maximal where theg radiation
cones overlap, i.e., in a small area arou6d This
expedient allows to circumvent the poor directionality of
the ultrasonic sensor.

e The values of the parametets and ko in the certainty
functions and ofA in the Dombi union can be directly
chosen on the basis of the above reasoning. Consider a
cell C that, during thesth perception, falls in the “empty”
area ofg cones. Each sétf (i = 1,..., ¢) will contribute
to £(C) a nonzero value, that is computed according to
(4). Immediate saturation &(C) should be avoided, so
as to require the concordance @imeasures to build up
a high degree of certainty. To this end, it is necessary
to set an upper bound on the membership function of
EF by choosing a “small” value fokg in (2). Then, an
appropriatel can be selected for the Dombi union (see
also the plots in Fig. 21). Similar considerations can be
repeated for the choice dfp in (3).

C. Fusion

Fig. 7. Membership functions for (af* and (b) OF inside the sensor The ta§k of the_ fusion phase .IS twofold, I_'e" i) to integrate
radiation cone. The sensor reading is assumed to; be 0.5 m. the local information contained i&* and O into the global
fuzzy sets€ and O of empty and occupied pointadgrega-
tion), and ii) to combine appropriately these sets in order to
compute the two fuzzy maps1,, and M, that are used in
ek _ ek @) the navigation processn@p updatg
v 1) Aggregation: The fusion of data represented by fuzzy
ok =y, 0f. (5) sets can be performed using many differaggregationop-
erators (see Appendix). The selection of the most appropriate
In particular, for the above computation we have chosen tBgerator should be done on the basis of the specific nature and
Dombi union operator, whose aggregation strength can &6urce of the data. An interesting survey covering this issue
tuned by choosing a single parametefsee the Appendix, can be found in [22].
and specifically (18)]. We have already found an example of data aggregation in
Note the following points. the computation of the local fuzzy sef§ and©* by (4) and
« Since we intend to build a grid-based representation of t{®). The choice of the Dombi union operator (which is not
environment, during the computation 8f and O* it is idempotent) can be regarded from a more abstract point of
necessary to perform a conversion from polar coordinategsew as aconsensus buildupnechanism: for example, one
relative to each sensor location, to absolute Cartesieange reading indicating that a cell is empty induces a
coordinates. As a result, two numerical valyes. (C) certain degree of belief th&t belongs ta€*, and this degree of
andpo« (C) are associated with each céll respectively belief is increased as more range readings confirm this opinion.
quantifying its degree of membership £ and O, In order to incorporat&* into £ and OF into O, we can
» The membership functiongg. (C) and o« (C) may be choose among union and averaging operators. The incremental
nonzero only for cells contained in the circle of radiys consensus buildup obtained through the use of the Dombi
centered at théth perception point. Besides, due to theinion operator is still a suitable strategy in the presence of

a fuzzy union operator
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a stationaryenvironment. In this case, the global fuzzy séts to apply (8) and (9) it is necessary to memorize the
and O are updated as information relative to the number of measures for each
k cell, which is avoided with (6) and (7).

£:=8U¢ (6) * Even in the presence of a dynamic environment, we
0:=0u0" (7 shall keep the choice of union operators to perform the
processing phase [see (4) and (5)]. This is reasonable as
long as the characteristics of the scene do not change
appreciably during a perception phase. In other words, we
are assuming that the environmentriederatelydynamic.
Since per (C) and ppx(C) are nonzero only inside a
circle of radiusp, centered at the perception point, it is
E=ELEk necessary to update and O only inside the same area.
0= 0Lok This is true regardless of the chosen aggregation operator.

2) Map Update: The final step of the map building process
A simple choice for the operatarl is the weighted arith- consists in updating the two fuzzy mape(,,, and M, to
metic mean [see (19)]. In particular, the new values of treecount for variations irf and O.
membership functions for a cell are computed as Besides its computational efficiency, a fuzzy logic frame-
work presents the advantage of allowing the detection of
(Ni(C) = Die(C) + per (C) (8) conflicting or insufficient information. In fact, sincé€ and

When the environment is subject to changes over time, the
aggregation operator must be abledecreaseas well as to
increase the degree of belief of the assertions “empty” and
“occupied.” Hence, one is naturally led to make use of an,
averaging operator

Nsusk(c) =

Ni(©) O are not complementary, their intersection is the fuzzy set
o = Wa(©) = Dwo(C) + por(C) gy of ambiguouscells, with the corresponding membership value
touor(C) = 9) : P
N (C) representing the degree of contradiction
where N (C) is the number of perceptions (including then) A=€ENO. (11)

that have involved celC so far.
The above formulas can be interpreted as follows: the mopéMilarly, the fuzzy set oindeterminatesells can be defined as

concordant opinions have been recorded on the status of a T—Eno.

cell C (i.e., the greater isV,(C)), the more reliable become

the degrees of belief represented by the membership function® conservative maps,, of the safe-for-motioncells is

pne and up. At the same time, a large number of discordargbtained by “subtracting” th@ccupied the ambiguousand

opinions is needed to change appreciably the degrees of belieé indeterminatecells from thevery empty ones

This kind of behavior may be a drawback, because it affects the ~ = =

promptness of the map building method in recording changes Sm=€N0NANT (12)

of the surrounding scene. Besides, in dynamic environmentsthe motion mapM,,, is built by complementings,,, and

the number of concordant opinions is not a guarantee jientifies cells that must be avoided during robot motion
itself, unless they have been obtained over a uniform time

distribution. Mrn = Srn-

In order to reduce the inertia due to the number of measures
we have included a simplsaturation mechanism in the
computation ofN,(C). Namely, in (8) and (9) we have use
a modified valueN; (C) computed as

N (C) = min(Npax, Ne(C)) (10)

While indeterminate cells are penalized M,,,, for plan-

ing purposes we shall need a second fuzzy map in which
hey are regarded as admissible for planning. In particular, we
define thesafe-for-planningcells as

S,=EN0ONAUT (13)
where N,.,x iS an integer representing the maximum inertignd the
we attribute to past measures. According with the terminology ~
of [22], this implements a kind otontext-dependennean M, =S,

operator, i.e., an operator whose result does not depend onl;i_he complementation operator (16), the bounded product
on the value of the arguments but also on external knowledi%e P P ' P

(in this case, the number of measures) tersection operator (17) and the Dombi union operator (18)
Some con;ments are as follows ' are used to perform the above computations. For compactness,

. . the membership degree of a céll to M,, and M, will
* More sophisticated versions of context-dependent megQ simply denoted in the following byt,.(C) and ji,(C)
operators could be implemented by choosiNg(C) as respectively. B A

a function, say, of the amount of contradiction in the We emphasize that the sets of cells so far described (inde-

available mformatlon. quever, we have preferred tPerminate, ambiguous, etc.) dwt correspond to actual data
delay such filtering operations until the map update phase.

. Although mean Operators perform well also in stationar sz squaring the value of the membership function&fthe difference
k}/tween low and high values is emphasized: according to the fuzzy logic

. . . . . €
enylronmgnts, in this Cas_e their use is Somewhat |et§ﬁ'ninology, we are applying the linguistic modifier “very” to the “empty”
efficient with respect to union operators. In fact, in ordefoncept.

planning mapM,, is
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structures that are memorized during the map building proces
In fact, the mapsM,,, and M,, are directly computed from
the fuzzy set€ and© by expliciting the various terms in (12)
and (13), respectively, and exploiting the associative propert
of the various operators.

The worst-case time complexity of the corresponding algo
rithm is linear inX, that is the number of cells of the bitmap
representation. Note also that, sink¢,,, and M, need to be
updated only inside the visibility circle, the average complexity
is much smaller.

3) Map Building—Experimental Result8efore proceed-
ing with the exposition of the navigation process, we shal
present experimental results of the map building process i
a stationary environment. The experiment area, containin
a corridor and a room, was represented as a bitmap ¢
180 x 120 square cells of sidé = 0.1 m. Halfway along
the corridor there is an intersection with a small obstacle. Th
open space is delimited by flat surfaces (walls and closed gla:
cabinets) with poor diffraction properties, an adverse conditiol
for ultrasonic sensing. NOMAD performed 43 perceptions
at different positions attained along a path under operatc
guidance.

For the map building algorithm, we have used the following
set of parameter valuegz = 0.1, ko = 0.25, Ar = 0.15 m,

p» = 1.2 m, and A = 0.4. Being the environment stationary,
the Dombi union operator was used in the aggregation phas
[see (6) and (7)]. Fig. 8 shows the resulting motion nietp, .
The average time needed at each perception point to upde
M., from the range readings was approximately 0.2 s.

Note the satisfactory accordance of the map with the actu:
boundary of the open space. The small gray areas eXte”dli-ﬁQ 8. The motion map\.,, obtained for a stationary environment: darker
beyond the corridor walls are due to false reflections occurriagas correspond to higher values:gf. The actual profile of the corridor, the
for large angles of incidence. Nevertheless, the map buildifgm and the obstacle are superimposed. White spots indicate the perception
algorithm was able to reconstruct accurately the profile % nts.

the walls, by incorporating the range readings obtained for ) o
incidence angles smaller than the critical value. dependence between the random variables—this is exactly the

An extensive comparison of the proposed map buildigse for map building, since the occupied cells are not evenly

method with Bayesian techniques based on probability the g;tributed, but concentrated in clusters (obstacles). Moreover,

was performed in [23]. The experimental results indicated thikie prior probabilities needed to initialize the field are typically

the method based on fuzzy logic is more robust with respeeitimated with thenaximum entropyassumption, namely by

to the occurrence of false reflections in the measuring proce€darding emptiness and occupancy as equiprobable. As a con-
This is basically due to the fact that in our approach tedueNce, the convergence of the Bayesian updating procedure
information conveyed by and® is not complementary, thustowa_rd an acceptable characterization of the occupancy grid
allowing to identify areas for which contradictory evidenc&eduires a large number of measures.

has been gathered [see (11)] and to regard them as dangerous

[see (12)]. On the other hand, stochastic techniques based IV. NAVIGATION
on Bayesian updating are very sensitive to the occurrence ofWhen the kth map building process is completed, two
outliers in the measuring process. updated fuzzy maps,, and.M,, are available for the next

The reader is referred to [24]-[26] for a thorough discussiaravigation process. The latter is accomplished by means of two
of the relative benefits of fuzzy set theory and probabilitgequential phase@lanning and motion (see Fig. 9). During
theory as uncertainty calculus methods. However, we mehe first, anA*-based planner generates a subpath from the
tion here that existing stochastic techniques for ultrasorcarrent position (thekth perception point) to the goal. By
map building exhibit other shortcomings. In fact, to keepsing M,, the planner makes use of all the available local
the problem tractable, aero-order Markov fields typically information, but at the same time it is allowed to propose
assumed, i.e., that no relationship whatsoever exists betwg@aiths going through unexplored areas.
the states of two cell§’; and Cj;, even if they are adjacent. In the motion phase, the robot follows the planned subpath
However, it has been observed [25] that this assumption mamtil the goal is reached, unless one of tswp conditions
induce large errors in the presence of even a slight degreeiofrue; namely, either the robot is leaving the explored area
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be achieved by defining propeost functiondor a path P*,
and then searching for minimum-cost paths. For clarity of
exposition, we first consider the case of a point robot; this
assumption will be removed later.

The first and most intuitive cost function is defined as

that are identified by cells with large values @f. This may
@m map building proce%

planning
a(P*) = Z 1p(Ci),
pk Ciepk
motion that is, a measure of the integral risk along the path.

As a second possibility, we propose
elementary step

on Pk QQ(Pk) = Z N;Q)(Ci)'
C{EP’“

Again, this corresponds to applying the modifier “very” to the
“unsafe” concept. By doing so, the inclusion of cells with high
values ofy, in @ minimum-cost path is less likely.

\ Finally, consider

ky )
~ | 9ol = s ()
stop condition

which represents the maximum risk encountered on the path.
These cost functions may be interprete@asrgy measurés

[19], [27] of the fuzzy setM, over the pathP*, and

characterize the distance 6% from an ideally safe path, i.e.,

Y
to map building process a path for whichg; = 0 (i = 1,2,3). Their minimization s
p g process hence a reasonable objective.

Note thatg, g2, andgs measure the above distance accord-
Fig. 9. Thekth navigation process. ing to different metrics. For example, assume tG4tand G
are far, so that any admissible path connecting them consists

(which is clearly identifiable onA,,) or an unexpected of a large number of cells. A path minimizing will yield

obstacle obstructs its motion. In this case, a new map buildifig"adeoff between length and risk, and may traverse a cell
process takes place. with a large,, if in this way its length were significantly

reduced. A more conservative strategy would be to minimize
) g3, even if this might result in a longer path. The usegof
A. Planning will typically generate paths with intermediate characteristics

During thekth planning phase, a subpaftf is produced betweeng; and gs.
from the current robot position (corresponding to the &) On the other hand, consider a situation in whish is
to the goalG by applying a graph search algorithm aimedpcated in a region with uniform high values pf. An optimal
at minimizing the risk along the path. The fuzzy magd,, Path with respect toys might be unsatisfactory, since the
in which theindeterminatecells are regarded as safe, is use@aximum value ofy,, will probably be attained neas*.
in this step. The rationale for this choice is simple: in ordekhereafter, any subpath leading @is admissible as long as
to reach the goal, the robot will have to traverse regions thhdoes not increase the value @f. Minimization of g; or g»
are indeterminate at the beginning of the motion (recall thwill produce better results, since both these functions depend
the environment is a priori unknown). Thus, the planner mu@p thewholepath fromS* to G. The results of Section 1V-A3
be allowed to propose subpaths going through such regiowd!l further clarify this discussion.
providing directions for further explorations. 2) Planning on Fuzzy Maps with th&* Algorithm: In view
Below, we introduce various cost functions that characterigé the above discussion, tfigh planning phase must solve the
the risk associated to a path owi,,, corresponding to more Problem “Find a minimum-cosiy, g2, or gs) path fromS* to
or less conservative attitudes. It is then shown how to seléeton M,,.” As a planning method, we have adopted the
proper instances from the* class of graph search a|gorithm§|gorithm, which allows to incorporate heuristic information
in order to compute minimum-cost paths. when available, resulting in an efficient search. We shall not
1) Safe Paths on Fuzzy Map€onsider the problem of recall here the details of the algorithm, that are well known
finding a path fromS* to G (i.e., a sequence of adjacent cell$28].
{S*,...,@}) that is collision-free onAt,. The uncertain  To apply A*, we need as a basic tool a heuristic func-
nature of fuzzy maps does not provide a separation betwdi 2(C) estimating the cost of the optimal path from the

Fhe free ?‘nd the OCCUD'ed space. A natural p|6}ﬂﬂll:19 S'trategyln the terminology of [27]g1 andgs are, respectively, thpowerand the
is to avoid areas of\,, where the risk of collision is high, heightof M, over P%.

goal reached end
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generic cellC to the goalG. A* will be complete under the To satisfy the admissibility condition, it is necessary to set
admissibility condition hs3(C;) = 0; in fact, if the maximum value of:, on the path
. is attained on the subpath frofit to C;, the remaining part of
0<MC) <h7(C), VO (14 the path will not increase the cost functigg i.e., A5(C;) = 0.
whereh*(C) is theactual cost of the minimum-cost path from However, a non-informedi* may be dramatically inefficient,
C to G. Moreover, the heuristic functioh(.) is said to be due to the large number dfes that may occur during the

locally consistentf, for any pair of adjacent cell$C;, C;), algorithm expansion. To cope with this problem, we have
we have used a tie-resolution strategy privileging cells whose distance

d from G is smaller. With this modificationA* works like
0 < h(Ci) < h(C)) +w(Ci, Cy) a depth-firstsearch method whenever this is possible without

beingw(C;, C;) the cost of the arc betweet andC;. Under increasing the value afs. The algorithm just described will

this assumption, whenevér, is expanded during the algorithmbe ind.icated byA};. . .
visit, the current path frons* to C; is already optimal. The _ Having described the main features of the planning algo-

choiceh(-) = 0 is trivially admissible and locally consistent, 't"Ms. some remarks are in order regarding their iterative
resulting however in aon-informedalgorithm. application as a component of the real-time navigation process.

The use ofA* to generate paths minimizing on the fuzzy  « We can easily remove the point robot assumption as
map.M,, is immediate. The cost of the arc joining two adjacent ~ follows. Assume that the robot can be approximated by a

cells C; and C; is defined as circle of radiusy, whose center is located at (the center
of) cell C. Since each bitmap cell has side(é6 < ),
wi(Ci, Cj) = 1p(Cj) the robot body will be contained in a square pfx 7
so that the cost of a pati** coincides withg;(P*), except cells centered aC’, beingn = 2roundy/6) + 1, with
for the additive constant,(S*). As for the heuristic function, round.z) the nearest integer to. Hence, we can build an
we use augmentednap Mg by defining:;(C) as the maximum
) value ofy, attained in the square af x 7 cells centered
hi(C5) = d(C;) - pp™ (15) atC. Planning for a point in\2 is equivalent to planning

for the actual robot inM,. Such procedure may be
implemented by preliminarily processing the mag,,
but this is not necessary. In fact, it is sufficient to modify
A* so as to compute.(C) only whenC' is actually
visited.
« Due to the incremental nature of the map building process,
the planning mapM, searched by the planner will
typically include indeterminate areas containi6g As
mentioned above, cells inside these areas are charac-
terized by a constant valug;}li“, with u;}li“ > 0 by
construction. Therefore, outside the explored area, the
generated paths will aim directly at the goal in order to
minimize the heuristic function that takes into account
the distancel from the goal.
» It was already noted that, althoughi and A3 are
informed and produce better paths (they minimize an

in which d(C}) is the minimum number of cells that compose
a subpath fromC; to &, and u;}li“ is the smallest value of
1 over M, (a quantity that can be memorized during the
map building phase). The heuristic function (15) is clearly
admissible and locally consistent.

Two remarks are necessary at this point.

* The valued(C;) depends on the adjacency definition
on the map. If 1-adjacency is used, each cell has four
adjacents and thug(C;) = |z — z;| + lve — v,
being(z;,vy;) and(zq, ya) the coordinates of’; andG,
respectively. When using 2-adjacency, each cell has eight
adjacents and we gé{C;) = max(|zg — z;|, |[ve — y;|)-

* To obtain an informedi*, it must beu;}li“ > 0. Hence, it
is advisable to offset all values @f, by a small positive
constant. In the following, we shall directly assume that

> _0' . _ _ integral risk) thanA43, the maximum risk along the path
The resulting version of thet* algorithm will be denoted may be higher. To alleviate this problem, we have chosen
by Ajf. _The aIgoriFhm_Ag for minimization of g, is obtained to perform am- cut of M,, wheneverA? or A3 are used.
by obvious modifications ofif. That is, only cells belonging to the (crisp) subset

The computation of a minimurgz path via A* is some-
what nonstandard, the difficulty coming from the non-additive
nature of this cost function. In order to define the arc cost
ws(Ci, C;) in such a way that the cost of a pathgis we let

ws(C;, C;) = {/()‘p(cj) — ip(Ci)  if pp(Cy) > 1 (Cs)

Mg ={CeU:pu <a}

are considered admissible for planning. By choosing an
appropriate value fore, we can obtain a reasonable
tradeoff between the integral and the maximum risk.
where[i,(C;) denotes the maximum value pf, encountered + For a graph withn arcs andh nodes, the time complexity
on the optimal path fromS* to C;. With this definition, of A* is O(mlogn). Since our representation of the
the arc costs are not knowan priori. Nevertheless, they are environment is a bitmap of cells, the number of arcs
computable as the algorithm proceeds provided that a locally is m = 2X? — 3% + 1 when 2-adjacency is used. The
consistent functionhs is used, since in this case we have resulting worst-case time complexity fety, A3 and A3
simply 1,(C;) = g3(C;). is O(X?log¥).

else
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TABLE |
RESULTS FOR SIMULATION 1
g1 g2 g3 cells in the path | expanded cells | computing time (sec)
A | 2180 | 5.34 | 0.50 121 2066 3.13
A3 | 21.80 | 5.34 | 0.50 121 2394 6.21
Az | 45.50 | 17.13 | 0.50 145 378 0.08

Fig. 10. Simulation 1: Paths generated #y and A5 (continuous) andi;  Fig. 11. Simulation 2: Paths generated Hy (continuous),4% (dashed)
(dotted). and A3 (dotted).

3) Planning—Simulation Resultdn order to show the per- strategy, that induces a depth-first behavior when possible. As
formance of the planning algorithmds, A3, and A3, we a drawback, while 2-adjacency was chosen fgr and A3,
present below some simulation results of their application e had to use 1-adjacency fat;, to prevent the path from
a knownstatic environment. In particular, we have used thgrazing the walls.
fuzzy map of Fig. 8. Experimental results obtained with real- To better illustrate the different behavior of the algorithms,
time map building and navigation in unknown environmentge have considered a second simulation, with the start cell
will be presented in Section V. In order to take into accourt and the goal cells located on the opposite sides of the
the dimension of NOMAD, the aforesaid map augmentatiasmall obstacle, as shown in Fig. 11 on a magnified view. Here,
procedure was performed with= 0.1 m andy = 0.23 m, planning is performed for a point robot, and the risk value
giving n = 5. associated with the start cell is 0.5. Details on the performance

In the first simulation, the start cefl is located inside the of the algorithms are given in Table II. The path produced by
room, while the goal cell+ is at the end of the left branch of A} turns around the obstacle in the counterclockwise direction,
the corridor (see Fig. 10). The straight line distance betwewrile those generated byls and Aj take the clockwise
S and( is approximately 12 m. Details on the solution pathdirection. In particular,Af returns a (shorter) path with the
are given in Table I. Note that, even if the paths produced kywest possible value of integral rigk, but traversing more
A7 and A3 coincide, the computing time differs substantiallydangerous cells, as indicated by the valug-p£ 0.6. Instead,
for the two algorithms. As ford}, the solution path is more the risk over thed} path does never increase beyond the initial
dangerous in the integral sense (the valuegpfis roughly value 0.5. As expectedi} displays in this case an intermediate
doubled with respect toi; and A43), but the maximum risk behavior between the other two algorithms. In fact, while the
along the path is 0.5, as before. This value is encounteredniaximum risk attained along the path is again 0.5, the integral
correspondence of the narrow crossing between the room aist is lower than ford3, since each cell in the path contributes
the corridor (a forced passage since planning is performed tonthe cost functiongs.
the augmented map). In general A3 is faster in returning a solution path, provided

The algorithm A%, although non-informed, is much fasterthat nobacktrackingphase is necessary. On the other hand,
than the other two algorithms. This is due to the tie-resolutiofy and A3 produce generally safer and smoother paths.
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TABLE 1l
RESULTS FOR SIMULATION 2
g1 g2 g3 | cells in the path | expanded cells | computing time (sec)
A1 13.1]1.43 | 0.60 9 108 0.09
A5 1371069 050 25 168 0.16
A3 1 5.8 1.22 | 0.50 35 65 0.01

considerable increase in speed could be obtained by using!
suboptimal version ofA*, as proposed in [29].

NOMAD

2,

B. Motion

Once the choser*-based planner has produced a subpath
P* on M,, from the current robot positio§* to the desired |
robot goalG, the motion phase takes place. In particular, the
robot follows the path* up to the goal unless one of the two
following stop conditionds verified.

1) The robot is leaving the explored area. This condition i
indicated by the fact that the robot is leaving a specifie
(3-cut of the motion map\t,,,, i.e., the (crisp) subset of
cells defined as

MP ={CeU:pum<p}

Fig. 12. Actual map of the most significant stationary obstacles inside the
. . . ... experiment area.
In fact, indeterminate cells on the path are identified

by high values ofy,,. To account for the actual robot

dimensions, also the motion map can be augmented adn the navigation processl} is used as a planning algorithm

seen in Section IV-A2. on the mapM$ obtained through the augmentation procedure
2) The robot detects an “unexpected” obstacle that is clogdr Section IV-A2, withn = 5. Only cells havingu; < 0.6

than a minimum clearance. This can be realized #fe considered admissible for planning (i .+ 0.6). During

continuously monitoring the measures of proximity sednotion execution, the first stop condition is implemented on

sors, which may be either the ultrasonic range findéfe (augmented) motion map by choosifig= 0.9. Finally,

themselves or other available devices. For example, dnclearance of 12 cm has been selected for the second stop

our implementation on NOMAD we have exploited thé&ondition, a value that represents the minimum detectable
availability of a ring of 16 infrared sensors. The choicélistance for the ultrasonic sensors but is well-contained in the
of a small clearance is more hazardous, but may alld@frared sensing range.

the robot to go across narrow passages in very clutteredl he start position at the beginning of the first experiment
environments. and the desired goal position are shown in Fig. 13. All

If any of these is met, the robot stops and executes a nHif obstacles are stationary. Figs. 13-16 show the motion
map building process. map M_m obtained after 4, 5, 13, and 22 perception steps,
respectively, together with the path traced by the robot so far.
Positions where a map building process has taken place are
V. EXPERIMENTAL RESULTS marked by a 4 sign.

We shall now present experimental results obtained byAt the beginning of the experiment, NOMAD tries to
applying the proposed method to the mobile robot NOMADollow a direct path toG (Fig. 13) until the presence of
The robot is assigned two navigation tasks in a cluttered areaanf obstructing wall is detected and included in the fuzzy
7.6 x 6.3 m (the universal sal/) contained in our laboratory. map (Fig. 14). Thereafter, it backtracks in order to find a
NOMAD is constrained to plan and move inside this area onlgonvenient passage, driven by the heuristic information in
A profile of the most significant stationary obstacles is showhe A% planner. The robot correctly detects the presence of
in Fig. 12. In both experiments, the environmentaipriori an opening between the two large obstacles and crosses it
unknown. (Fig. 15). Afterwards, NOMAD proceeds toward the goal

As before, U is discretized into a bitmap of square cell€ircumnavigating the obstacle and crossing another narrow
of size0.1 m. The parameters of the map building algorithnpassage. The final robot path, shown in Fig. 16, is reasonably
areke = 04, ko = 04, Ar = 0.15 m, p, = 1.5 m, and efficient. Besides, the final map is fairly accurate.

A = 0.4. As an aggregation operator, we have selected theA careful examination of the figures shows that the robot
weighted arithmetic mean (8)—(9) together with the saturatie@nds to stop more frequently when crossing narrow passages.
mechanism (10), in whichV,,,, = 3. This is due to the first stop condition being triggered by the
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B s |

Fig. 13 Experiment 1: NOMAD tries a direct path to the goal. Fig. 15. Experiment 1: NOMAD tries an alternative path guided by the

heuristic function of theds planner.

Fig. 14. Experiment 1: A wall obstructing the direct path to the goal i
detected.

Fig. 16. Experiment 1: The final map and the path executed by NOMAD
to reach the goal.
proximity sensors during the motion. Erroneous measures,

frequently reported in such demanding operating conditions,

are however corrected by performing a new perception phaS&Jer to allow the robot to plan a path and, consequently, to
The start and the goal position for the second experimdAPVe in the environment detecting possible changes. Other,
are displayed in Fig. 17. In order to show that the proposé%es heur'lst|c.solut|0ns can be easily envisaged to handle this
method can cope with moderately dynamic environments, J§gd of situation.
have included a moving obstacle in the scene. The most direcf\S @ matter of fact, NOMAD is forced to come back toward
path to the goal, which would cross the channel between tH€ opening and recognizes that the way is now free because
two large obstacles, is obstructed by the presence of a perdif person has moved (Fig. 19). Hence, the robot can cross
(see Fig. 17). Therefore, NOMAD tries to find an alternativhe passage and reach the goal (Fig. 20). A comparison of
passage exploring the region on the left, until it reaches tHe final map with the map in Fig. 18 shows that the obstacle
boundary of the experiment area, as shown in Fig. 18 (ndterresponding to the moving person has been progressively
that the window is not reported into the map because it ésased as the robot performed new map building processes
located outside the experiment area). At this paitit,returns during its motion. This proves that the proposed aggregation
failure because there is no path connecting the current rolpoocedure based on the weighted mean operator is effective
position to the goal with maximum risk ol12 less than in recording real-time changes in the environment. Indeed,

p
0.6. The value ofa is then tentatively increased to 0.7 ina slight trace of the person is still present on the final
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Fig. 17. Experiment 2: The channel is currently obstructed. . . . ) .
Fig. 18. Experiment 2: NOMAD tries to find an alternative path.

map, essentially because the choi¥g ., = 3 results in an . . . L .
. ) ; . . fions, essentially due to the inherent limitations of ultrasonic
aggregation procedure that is relatively slow in forgettmgSensors

previous map values. However, our experience shows that it
is desirable to attribute a certain inertia to existing information
to eliminate the possibility of oscillations in the map.
Both in the first and the second experiment, the total time VI. CONCLUSION
needed to execute the given navigation task was around 2 minA new method for real-time map building and navigation in
However, it should be noticed that a remarkable portion of thifhknown environments has been presented. Its basic features
time (about 70%) is used by the perception phase. In turn, tae as follows.
biggest part of the latter is spent for the radio communication. Two fundamental processes are alternately executed: map
between the host computer and the robot. The procedure could pyilding and navigation. In the former, the robot collects
be sped up by bringing the whole control software on board the |ocal information about the surrounding scene through its
robot and by resorting to an architecture based on concurrent sensors, and updates accordingly the global representation
processes. so far reconstructed. In the latter, a suitable planning
The above satisfactory behavior was confirmed by several algorithm proposes a subpaf?f to the goal that avoids
other experiments [30], including nonstationary environments; collisions in the explored region and indicates new areas
failure to find a solution path was reported in very few situa- to be visited. The subpath is followed by the robot up to
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Fig. 20. Experiment 2: The final map and the path executed by NOMAD

Fig. 19. Experiment 2: The channel is now free. to reach the goal.

the boundary of the explored region, where a new map ) ) ) )
building process takes place. « In the motion phaseM,,, is used to identify unexplored

« An intrinsically uncertain representation of the environ- ~ aréas, where a new perception step should be performed.
ment is used. In particular, fuzzy set operators are usedExperimental results have been reported to illustrate the
to process ultrasonic sensor measures, updating the &@disfactory performance of the proposed technique, also in
gray-level bitmapsit, and M,,, that convey different the case of moderately dynamic scenes. The obtained maps
risk information. were quite accurate even in hostile environments, where false

« Three cost functionsy;, g» and gs; allow to quantify reflections often occur; in general, the paths followed by the
the risk of collision onA1, along the subpati*. All robot are safe and effective. Space for adaptation is provided
these may be interpreted as energy measurestgfon by the possibility of tuning various parameters as well by the
P, therefore characterizing the distancefof from an choice of the path cost function.
ideally safe path. A nice feature of the presented method is the homogeneity

* In the planning phaseM,, is searched for optimal paths.of its various components. Other modules (e.g., obstacle
Proper instances of thd* search algorithm have beenavoidance, localization) may be included in the overall control
identified for the minimization ofg;, g», and g3. The architecture of the robot in order to improve its performance.
three resulting algorithms correspond to different plartAmong the current research directions, we mention i) the
ning strategies. integration of information coming from other sensors (e.g.,
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laser and infrared range finders) in the map building phagbati is continuous, and sometimes that itidempotenti.e.,
that is straightforward within the fuzzy logic framework; ii) a:(b,b) = b. Standard intersection operators are
localization procedure [31] with respect to the reconstructed ) )

map M,, to correct possible odometry errors; (iii) the use i1(pa(), ps(r)) = min(pa(x), ps(z))

of a different planning methods. In [32] it was shown howhe algebraic product

navigation functionscan be built on fuzzy maps in order

to perform potential-based motion planning, extending the io(pa(x), ps(x)) = palz) - pslz),

method of [33]. and thebounded product

APPENDIX i3(pra(z), ps(r)) = max(0, pa(x) + ps(z) = 1).  (17)

A BRUSHUP OF FUzzY SET THEORY Setunion operators are obtained from functions

The very basic concepts of fuzzy set theory will be reviewed
here. The interested reader may refer, for example, to [19], w:[0,1] x [0,1] = [0,1]

[34], [35]. o . that are commutative, associative, monotonic, and satisfy the
Fuzzy sets may be easily introduced as extensions of St®Bundary conditiona:(0,0) = 0 and u(1,0) = w(0,1) =

dard cri;p sets.bForh_ari?p se_tA defined over the universalu(Ll) — 1. Again, one may require to be continuous and
set U, the membership function idempotent. Typical choices include

o U {01}, pale) = {(1): 1 ; ’ wr (pa(), s (@) = max(pa(z), ps(@))

. - the algebraic sum
identifies those elements &f that belong toA. g

For afuzzy set4 defined overV, the membership function
uz(pa(@), ps(@)) = pa@) + ps(x) — pa(w) - ps()
pa:lU— [07 1]

- . . and thebounded sum
may assume any real value within the interjéall], expressing

the degree of membership of any elementbfo .4. Such a )

formulation may be adopted to represent two different kinds of uz(pa(x), pa(x)) = min(l, pa(z) + ps()).

uncertainty, namely iyaguenessassociated with the difficulty )

of using a crisp set to characterize a particular concept Jpte that the triples(c,i,u1), (c,i2,u2), and (c, i3, u3)

property, or ii)lack of evidencethat does not allow to decide Satisfy De Morgan's law.

whether a given element belongs to a particular crisp set. _Another class of union operators has been introduced by
Basic fuzzy set operators (i.e., complementation, intersdeombi [36]

tion, and union) can be defined as generalizations of the

classical crisp set operators. In particular, it is necessary ux(pa(x), us(x))

to satisfy proper sets of axioms [34] that, however, do not 1 (18)
uniquely define the operators. As a consequence, several ~— _x A%
options for the same operation are available. This contributes 1+ {(ﬁ(m) - 1) + (m - 1)

to the richness and flexibility of fuzzy logic; on the other hand,
the selection of the most suitable operators requires spe%?tl
care.

Any monotonic function

h A € (0,00). One has

AL < A = “Al(ﬂA(ﬁU)aﬂB(ﬂU)) > UAz(NA(x)qu(ﬂU))-
c:[0,1] +~ [0,1]
that satisfies the boundary condition®) = 1 and ¢(1) = This means that the Dom_lm operator produces Iarg?r umor:
) . sets as\ is decreased. Equivalently, one may say that “weaker
0 may be used to define aomplementationoperator. In : : : )
) . : unions are obtained for smaller values Xf This behavior,
generalg is also required to be continuous. The most commaj - I . .
. . . . illustrated in Fig. 21, implies also that the Dombi operator is
complementation operator is obtained by letting .
not idempotent.
clpa(x)) =1 = pa(z). (16) The classical fuzzy set operators of union and intersection
o . . _ so far described can be regarded as subsets of the more general
Similarly, set intersection operators are defined throughclass ofaggregationoperators. These are defined by functions
functions
a:[0,1]" —[0,1], n>2
i:[0,1] x [0,1] — [0, 1] : : _
that are monotonic, non decreasing and satisfy the boundary
that are commutative, associative, and monotonic. Furtheenditions «(0,...,0) = 0 and «(1,...,1) = 1. Fuzzy
more, ¢ must satisfy the four boundary condition®,0) = union and intersection belong to this class because of their

#(1,0) = 4(0,1) = 0 andi(1,1) = 1. It is often requested associative property, but they do not exhaust the set of
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[17]

[18]

[29]

[20]

[21]
. . [22]
iteration
1 2 3 4 5 23]

Fig. 21. Behavior of the Dombi union operator for different valued ofhe
dots show the result of the iterated applicationugf to the valueb = 0.25.
[24]

all possible aggregation operators. In fact, there exists[z%]
third subclass of so-calledveragingoperators that produce
intermediate results. In particular, aggregate fuzzy sets have
membership function between the minimum and the maximuff!
membership function of the original sets. A typical instance
in this class is theveighted arithmetic mean [27]

A(lAys o A) = D Qifia, (19) [og]
=1

) " 29
wherew; < 1,7 =1,...,n, are positive real numbers. [29]

[30]
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