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Real-Time Map Building and Navigation for
Autonomous Robots in Unknown Environments

Giuseppe Oriolo,Member, IEEE, Giovanni Ulivi, Member, IEEE, and Marilena Vendittelli

Abstract—An algorithmic solution method is presented for the
problem of autonomous robot motion in completely unknown
environments. Our approach is based on the alternate execution
of two fundamental processes:map building and navigation.
In the former, range measures are collected through the robot
exteroceptive sensors and processed in order to build a local
representation of the surrounding area. This representation is
then integrated in the global map so far reconstructed by filtering
out insufficient or conflicting information. In the navigation
phase, anA?-based planner generates a local path from the
current robot position to the goal. Such a path is safe inside
the explored area and provides a direction for further explo-
ration. The robot follows the path up to the boundary of the
explored area, terminating its motion if unexpected obstacles are
encountered. The most peculiar aspects of our method are the
use of fuzzy logic for the efficient building and modification
of the environment map, and the iterative application of A?,
a complete planning algorithm which takes full advantage of
local information. Experimental results for a NOMAD 200 mobile
robot show the real-time performance of the proposed method,
both in static and moderately dynamic environments.

I. INTRODUCTION

I N RECENT years, an increasing amount of robotics re-
search has focused on the problem of planning and execut-

ing motion tasks autonomously, i.e., without human guidance
[1]–[3]. Such a faculty is essential for robotic systems op-
erating in hostile environments (space, sea, contaminated
habitats) as well as in the emerging field ofservice robotics,
which includes waste management, cleaning, luggage transfer,
disabled people assistance, and others.

To reach a reasonable degree of autonomy, two basic
requirements aresensingand reasoning. The first is provided
by an on-board sensory system that gathers information about
the robot itself and the surrounding scene. The second is
accomplished by devising algorithms that exploit this informa-
tion in order to generate appropriate commands for the robot.
To make the use of robots feasible in real-life applications,
it is necessary to reach a tradeoff between costs and benefits.
Often, this prevents the use of expensive sensors (e.g., video
cameras) in favor of cheaper sensing devices, and calls for
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efficient algorithms that can guarantee real-time performance
in the presence of insufficient or conflicting data.

In this paper, we address the problem of autonomous
navigation in a completely unknown environment for a robot
equipped with ultrasonic range finders. If the robot must
perform several motion tasks in the same static workspace,
it may be convenient to perform a preliminary, exploratory
phase in order to reconstruct accurately the environment [2,
ch. 5]. The high cost of such operation will be compensated
by the ease of planning on a globally known map. Moreover,
a global knowledge of the environment allows to plan paths
that optimize a given performance criterion.

In many cases, an exploratory phase is out of question, either
because the characteristics of the environment are subject
to change over time, or simply because the nature of the
robot task would make it inefficient. The robot must then
be able to accomplish the motion in the absence of initial
knowledge. Various approaches to this problem have been
proposed. Despite their differences, most techniques can be
classified into two major streams—reactive and deliberative
navigation.

In reactive methods, there is a stimulus–response relation-
ship between sensors and actuators, with very limited or no
world modeling at all [4]–[9]. In deliberative techniques, a
world model is used to formulate plans to which the robot
is more or less committed; one example of this kind is
given in [10]. While reactive navigation proves to be flexible
by virtue of its modular design approach, it may fail when
confronted with difficult tasks. On the other hand, deliberative
navigation suffers from high computational requirements and
performance degradation in dynamic environments. Based on
the idea that “dynamically acquired world models can be used
to circumvent certain pitfalls that representationless methods
are subject to” [11], a number of mixed solutions have been
proposed, aimed at an efficient integration of world modeling
and planning into reactive architectures [12], [13].

Our solution is somewhat in the line of mixed methods.
In fact, it prescribes the incremental building of a dynamic
world representation and the formulation of local plans in
accordance. Its originality stands mainly in two aspects. The
first is the use of a particular world model that is easily aggre-
gated and modified during the motion through a memoryless
algorithm that requires no post-processing. The second is the
iterative application of , which is a global planning method
but takes full advantage of the available local information.

In selecting an appropriate world model, one must face the
fact that ultrasonic sensors, although low-cost and easy to use,
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may behave poorly in certain conditions [14]. Therefore, rather
than trying to reconstruct a deterministic model of the envi-
ronment, we have chosen to adopt an intrinsically uncertain
map, defined as afuzzy set: a real number is associated to each
point, quantifying the possibility that it belongs to an obstacle.
The resulting representation is similar to anoccupancy grid,
commonly obtained using stochastic techniques [15]–[18]. We
have found that fuzzy logic provides a more robust and
efficient tool for managing the uncertainty introduced by
the ultrasonic sensing process. In fact, the underlying theory
is developed from less constraining axioms than probability
theory, so that a wider choice of operators is available for
modeling uncertainty and aggregating information coming
from multiple sources [19].

As the environment map is incrementally built, the local
planner is repeatedly invoked in order to generate a robot path
from the current position to the desired goal. Such a path
must be safe inside the area so far explored, and at the same
time should provide directions for further exploration aimed at
reaching the goal. This is realized by defining cost functions
that characterize the risk of collision along a path, and by
choosing a proper instance of the class of graph search
algorithms in order to obtain a minimum-cost path.

Our method represents an attempt to make use of strictly
algorithmic techniques in the presence of unknown and/or
dynamic environments, with as little as possible sophistication
in the control structure of the robot. In fact, while it is possible
to devise general control architectures that behave robustly in
various situations [4], in this way one might be forced to give
up interesting formal properties such as completeness (i.e.,
the capability of finding a solution whenever one exists), that
can instead be guaranteed by algorithmic approaches. Further
advantages of these are the possibility of analyzing complexity
as well as the efficiency of the obtained paths.

The paper is organized as follows. In Section II, we present
our solution approach and outline the overall structure of
the navigation method. In Section III, we review the various
phases of the fuzzy map building algorithm from ultrasonic
measures. In Section IV, cost functions are introduced for
characterizing safe paths on fuzzy maps and it is shown that
the algorithm can be applied to find minimum-cost local
paths. Experimental results are presented in Section V to show
the satisfactory performance of our approach both in static and
moderately dynamic environments. A short review of the basic
concepts of fuzzy set theory is given in the Appendix.

II. THE PROPOSEDAPPROACH

Consider a mobile robot equipped with ultrasonic range
finders that must travel from its initial position to a final de-
sired position across a completely unknown two-dimensional
(2-D) environment. Throughout the paper, we assume that
a localization system provides the robot with its absolute
position with respect to a fixed inertial frame.

Our approach is based on the use of two basic processes,
map buildingand navigation, that are alternately performed
during the task execution (see Fig. 1). A short qualitative
description of their functions is given below.

Fig. 1. The proposed solution approach.

Map Building:
The map building process is in charge of gathering through
the sensors information about the environment at a given
robot position and of processing it in order to update the
available map in accordance. The basic steps are as follows.

Perception: The robot ultrasonic sensors are activated in
a proper sequence and a packet ofrange readings are
collected.
Processing: Ultrasonic measures are processed in order
to build a local representation of the surrounding scene
in terms of empty and occupied space.
Fusion: The local representation is integrated in the
global one by filtering out contradictory and insufficient
information. In particular, two gray-level bitmaps
and are computed. Unexplored areas are regarded
as dangerous in (motion map), while they are
considered to be safe in (planning map).

At the end of the last step, a new navigation process is
started.
Navigation:
The navigation process generates robot motions on the basis
of the information provided by the map building one. It
prescribes the two following phases.

Planning: An -based planner computes a path from
the current robot position to the goal on the planning
map . This path will be safe inside the area explored
so far, and will aim directly at the goal outside.
Motion : The planned path is followed as long as it is
safe on the motion map , i.e., up to the boundary of
the explored area. This phase is aborted if the proximity
sensors detect unexpected obstacles that obstruct the
motion.

If the goal has not been reached at the end of the motion
phase, a new map building process is started.

The two following comments arise with reference to the
approach so far outlined.

• Assume that the map building method provides anexact
representation of the environment inside the explored
area. It is easy to understand that, if the environment
is static, the proposed method iscomplete, i.e., it pro-
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vides a solution whenever one exists and returns failure
otherwise. In fact, if a solution exists, the explored area
is increased until it contains the goal. At this point, the
completeness of guarantees that a path inside this area
(that is limited by construction) is found. Conversely, if
the problem does not admit a solution, the robot will
explore all the connected region that can be reached
from the start position. When the map of this area is
completed, the planner will return a failure. Although the
underlying assumptions will not be satisfied in practice,
this reasoning provides a nice theoretical support to the
whole approach.

• In the above description, the robot is required to stop
in order to collect ultrasonic measures during the map
building process. For clarity of exposition, we shall keep
this separation between the two processes. However, to
reduce the time consumed by the perception phase—by
far the most expensive—the latter can be performed
during motion execution, provided that map building and
navigation are implemented as concurrent processes.

In the following, we shall detail the above approach with
reference to the NOMAD 200 mobile robot produced by
Nomadic Technologies. As shown in Fig. 2, NOMAD has
a cylindrical shape with an approximate radius of 0.23 m,
and a kinematic model equivalent to a unicycle. The upper
turret, which carries 16 Polaroid ultrasonic sensors, may be
independently rotated. The robot control software runs under
Unix on an IBM RISC 6000 that communicates with NOMAD
through a radio link. All the algorithms for map building and
navigation have been implemented in the C language.

III. T HE MAP BUILDING PROCESS

The problem of building a map from ultrasonic measures is
made difficult by the large amount of uncertainty introduced
by the sensing process. This uncertainty consists in alack of
evidence: due to the inherent limitations of ultrasonic sensors,
it is not always possible to decide whether a given point of
the area of interest is occupied or not by an obstacle. Rather
than deciding (i.e., classifying points of the space as either
empty or occupied) in this unfavorable situation, a possible
alternative approach is to convey all the available knowledge
into an uncertain representation.

Fuzzy logic offers a natural framework in which uncertain
information can be handled. Studies on the theory of fuzzy sets
started in the early 1970’s, with the seminal papers of Zadeh
[20]. A review of the basic concepts needed for our purposes
is presented in the Appendix.

Define the empty and the occupied space as two fuzzy sets1

and over the universal set (the environment), that is
assumed to be a two-dimensional subset of discretized
in square cells of side. Their membership
functions and quantify the degree of belief that
the cell is empty or occupied, respectively. This degree
of belief should be computed on the basis of the available
measures.

1Hereafter, we denote fuzzy sets by calligraphic capital letters.

Fig. 2. The NOMAD 200 mobile robot.

In the fuzzy logic context, the two sets and are
not complementary—the principle oftertium non daturdoes
not hold. Therefore, for a given cell , and
convey independent information. This situation is particularly
convenient in view of the characteristics of the ultrasonic
sensing process (see Section III-A). In fact, an ultrasonic
sensor detects the closest reflecting surface inside its radiation
cone, thereby indicating the presence of an empty space up to a
certain distance. On the other hand, no information is provided
about the state of the area beyond such distance: the available
evidence does not suggest emptiness or occupancy. Only by
incorporating measures taken at different viewpoints it will be
possible to discriminate between the two possibilities.

As mentioned in the previous section, theth map building
process consists of three phases, i.e., perception, processing
and fusion (see Fig. 3). In the perception phase, a packet of
ultrasonic measures are collected from the
same robot position and fed to the processing phase, that is
in charge of generating two local representations of the empty
and the occupied space, i.e., two local fuzzy setsand .
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Fig. 3. Thekth map building process.

During the fusion phase, the local information is aggregated
to the global representation of the empty and the occupied
space, which is contained in two global fuzzy setsand .
The final step is to elaborate the information contained in
and so as to update two further fuzzy sets and .
Both are gray-level bitmaps conveying information about the
risk of collision for each cell of the environment, but they are
based on a different definition of risk. In particular, unexplored
areas are dangerous in (motion map), while they are safe
in (planning map).

Below, each phase of the map building process is described
in detail.

A. Perception

Ultrasonic range finders measure the distance from obstacles
in the environment by a simple conversion of the time of
flight of the ultrasonic waves in air. As already mentioned,
the mobile robot NOMAD 200 is equipped with a ring of 16
Polaroid ultrasonic range finders. These are constituted by a
single transducer acting both as a transmitter and a receiver;
a packet of ultrasonic waves is generated and the resulting
echo is detected. The time delay between transmission and
reception is assumed to be proportional to the distance of the
sensed obstacle.

The multilobed beam pattern of the transmitter can be
obtained from the radiation directivity function of a plane
circular piston

(1)

where is the first-order Bessel function,
depends on the wavelength, is the piston radius, and is

(a) (b)

Fig. 4. Ultrasonic sensing: (a) objects in different positions can give the
same distance readingr and (b) false reflections may occur for large angles
of incidence.

the azimuthal angle measured with respect to the beam central
axis. For the Polaroid sensor [21], it is m and

, where is the sound speed in air and
kHz. For practical purposes, it is sufficient to take into account
only the principal lobe of the pattern. As a consequence, the
waves are considered to be diffused over a radiation cone of
25 width.

A single range reading is affected by three basic sources
of uncertainty as follows.

• The sensor has a limited radial resolution. The standard
Polaroid range finder can detect distances from 0.12 to
6.5 m with 1% accuracy over the entire range.

• The angular position of the object that originated the echo
inside the radiation cone is not determined. For example,
all the three obstacles of Fig. 4 will give the same distance
reading.

• If the incidence angle is larger than a critical value,
the sensor reading is not significant because the beam
may reach the receiver after multiple reflections, or even
get lost (see Fig. 4). The angledepends on the surface
characteristics, ranging from 7to 8 for smooth glass to
almost 90 for very rough materials.

During the perception phase, ultrasonic sensors are fired in
such a sequence that interference phenomena are minimized,
and measures are recorded together with the position of the
corresponding sensor. At each robot position, the ultrasonic
ring undergoes two consecutive rotations of 7.5; as a conse-
quence, range readings are obtained. Each point
of surrounding area falls inside a minimum of three radiation
cones. This redundancy of measures will be exploited in the
processing phase in order to achieve a more accurate estimate
of the angular position of the detected obstacle.

B. Processing

The objective of this phase is to build two local fuzzy sets
and . is obtained by merging the sets ,

for , each representing the evidence that a cell is
empty (occupied) provided by the single range reading. The
membership functions of and have a simple structure
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(a)

(b)

Fig. 5. The two certainty functions (a)fE and (b)fO for a range readingr.

that reflects the previous qualitative description of the sensing
uncertainty.

A single reading provides the information that one or
more obstacles are located somewhere along the 25arc of
circumference of radius. Hence, while points located in the
proximity of this arc are likely to be occupied, there is evidence
that points well inside the circular sector of radiusare empty.
To model this knowledge, we introduce the two functions

(2)

(3)

that describe, respectively, how the degree of belief of the
assertions “empty” and “occupied” vary with for a given
range reading. Here, is the distance from the sensor, and

are two positive constants corresponding to the maximum
values attained by the functions, and is the width of the
area considered “proximal” to the arc of radius. The value
of should be selected in such a way to “augment” slightly
the occupied area, providing a convenient safety margin for
the navigation phase. The profile of and is displayed
in Fig. 5.

Since the intensity of the waves decreases to zero at the
borders of the radiation cone, the degree of belief of each
assertion is assumed to be higher for points close to the beam
axis. This is realized by defining amodulationfunction

where is the radiation directivity function (1) (see
Fig. 6).

Finally, we wish to limit the influence of the range reading
to an area close to the sensor location. In particular, by

Fig. 6. The modulation functionm(#).

defining thevisibility function

the degree of belief of the assertions “empty” and “occupied”
is nonzero only inside a circular sector of radiuscentered
at the sensor position. The motivation behind this choice is
the following. Due to the sensor wide radiation angle, narrow
passages (e.g., doors) would appear obstructed if seen from a
large distance. By reducing we guarantee that such passages
are incorporated into the map only when they have been
correctly detected. An interesting side effect of the use of

is to reduce the artifacts introduced in the map by false
reflections; in fact, the latter typically produce longer range
readings.

An appropriate value of can be easily selected on the
basis of qualitative characteristics of the environment. For
example, in an office-like area it is reasonable to ask that the
map building algorithm correctly detects passages of the size
of a door, say 0.7 m. To this end, the perception point must
be sufficiently close to the opening, so that the 25radiation
cone does not intersect the door features. A simple geometric
construction shows that the maximum admissible distance is
1.5 m; therefore, it would be necessary to set m.

For each range measure, two fuzzy sets and are
generated by defining their membership functions as

i.e., by and-ing the previously introduced certainty functions.
These sets represent, respectively, how the degrees of belief
of the assertions “empty” and “occupied” vary inside the
radiation cone. Note that the above membership functions are
expressed in local polar coordinates with respect to the sensor
position, and assume nonzero values only inside the subset of
the radiation cone within the visibility radius. Fig. 7 shows
the typical shape of the two sets.

The final step of the processing phase consists in the
computation of the fuzzy sets and , that collect all the
local information about emptiness and occupancy acquired at
the th perception point. This is simply realized by means of
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(a)

(b)

Fig. 7. Membership functions for (a)Ek
i

and (b) Ok

i
inside the sensor

radiation cone. The sensor reading is assumed to beri = 0:5 m.

a fuzzy union operator

(4)

(5)

In particular, for the above computation we have chosen the
Dombi union operator, whose aggregation strength can be
tuned by choosing a single parameter[see the Appendix,
and specifically (18)].

Note the following points.

• Since we intend to build a grid-based representation of the
environment, during the computation of and it is
necessary to perform a conversion from polar coordinates,
relative to each sensor location, to absolute Cartesian
coordinates. As a result, two numerical values
and are associated with each cell, respectively
quantifying its degree of membership to and .

• The membership functions and may be
nonzero only for cells contained in the circle of radius
centered at the th perception point. Besides, due to the

associative property of the union operator,and are
independent on the order of computations in (4) and (5).

• The membership degree of a cell inside the radiation cone
to the set is always increased with respect to
the membership degree to each original set .
This fact, due to the use of the Dombi union operator,
is consistent with the perception strategy described in
Section III-A. In fact, assume that an obstacle cell is lo-
cated at . Since falls inside radiation cones ( or

in our implementation), there will beconcordant range
readings—in the absence of false reflections—indicating
the presence of an obstacle along an arc of circle of

passing through . The membership
function will be maximal where the radiation
cones overlap, i.e., in a small area around. This
expedient allows to circumvent the poor directionality of
the ultrasonic sensor.

• The values of the parameters and in the certainty
functions and of in the Dombi union can be directly
chosen on the basis of the above reasoning. Consider a
cell that, during the th perception, falls in the “empty”
area of cones. Each set will contribute
to a nonzero value, that is computed according to
(4). Immediate saturation of should be avoided, so
as to require the concordance ofmeasures to build up
a high degree of certainty. To this end, it is necessary
to set an upper bound on the membership function of

by choosing a “small” value for in (2). Then, an
appropriate can be selected for the Dombi union (see
also the plots in Fig. 21). Similar considerations can be
repeated for the choice of in (3).

C. Fusion

The task of the fusion phase is twofold, i.e., i) to integrate
the local information contained in and into the global
fuzzy sets and of empty and occupied points (aggrega-
tion), and ii) to combine appropriately these sets in order to
compute the two fuzzy maps and that are used in
the navigation process (map update).

1) Aggregation: The fusion of data represented by fuzzy
sets can be performed using many differentaggregationop-
erators (see Appendix). The selection of the most appropriate
operator should be done on the basis of the specific nature and
source of the data. An interesting survey covering this issue
can be found in [22].

We have already found an example of data aggregation in
the computation of the local fuzzy sets and by (4) and
(5). The choice of the Dombi union operator (which is not
idempotent) can be regarded from a more abstract point of
view as aconsensus buildupmechanism: for example, one
range reading indicating that a cell is empty induces a
certain degree of belief that belongs to , and this degree of
belief is increased as more range readings confirm this opinion.

In order to incorporate into and into , we can
choose among union and averaging operators. The incremental
consensus buildup obtained through the use of the Dombi
union operator is still a suitable strategy in the presence of
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a stationaryenvironment. In this case, the global fuzzy sets
and are updated as

(6)

(7)

When the environment is subject to changes over time, the
aggregation operator must be able todecreaseas well as to
increase the degree of belief of the assertions “empty” and
“occupied.” Hence, one is naturally led to make use of an
averaging operator

A simple choice for the operator is the weighted arith-
metic mean [see (19)]. In particular, the new values of the
membership functions for a cell are computed as

(8)

(9)

where is the number of perceptions (including theth)
that have involved cell so far.

The above formulas can be interpreted as follows: the more
concordant opinions have been recorded on the status of a
cell (i.e., the greater is ), the more reliable become
the degrees of belief represented by the membership functions

and . At the same time, a large number of discordant
opinions is needed to change appreciably the degrees of belief.
This kind of behavior may be a drawback, because it affects the
promptness of the map building method in recording changes
of the surrounding scene. Besides, in dynamic environments
the number of concordant opinions is not a guarantee in
itself, unless they have been obtained over a uniform time
distribution.

In order to reduce the inertia due to the number of measures,
we have included a simplesaturation mechanism in the
computation of . Namely, in (8) and (9) we have used
a modified value computed as

(10)

where is an integer representing the maximum inertia
we attribute to past measures. According with the terminology
of [22], this implements a kind ofcontext-dependentmean
operator, i.e., an operator whose result does not depend only
on the value of the arguments but also on external knowledge
(in this case, the number of measures).

Some comments are as follows.

• More sophisticated versions of context-dependent mean
operators could be implemented by choosing as
a function, say, of the amount of contradiction in the
available information. However, we have preferred to
delay such filtering operations until the map update phase.

• Although mean operators perform well also in stationary
environments, in this case their use is somewhat less
efficient with respect to union operators. In fact, in order

to apply (8) and (9) it is necessary to memorize the
information relative to the number of measures for each
cell, which is avoided with (6) and (7).

• Even in the presence of a dynamic environment, we
shall keep the choice of union operators to perform the
processing phase [see (4) and (5)]. This is reasonable as
long as the characteristics of the scene do not change
appreciably during a perception phase. In other words, we
are assuming that the environment ismoderatelydynamic.

• Since and are nonzero only inside a
circle of radius centered at the perception point, it is
necessary to update and only inside the same area.
This is true regardless of the chosen aggregation operator.

2) Map Update: The final step of the map building process
consists in updating the two fuzzy maps and to
account for variations in and .

Besides its computational efficiency, a fuzzy logic frame-
work presents the advantage of allowing the detection of
conflicting or insufficient information. In fact, since and

are not complementary, their intersection is the fuzzy set
of ambiguouscells, with the corresponding membership value
representing the degree of contradiction

(11)

Similarly, the fuzzy set ofindeterminatecells can be defined as

A conservative map of the safe-for-motioncells is
obtained by “subtracting” theoccupied, the ambiguousand
the indeterminatecells from thevery empty2 ones

(12)

The motion map is built by complementing and
identifies cells that must be avoided during robot motion

While indeterminate cells are penalized in , for plan-
ning purposes we shall need a second fuzzy map in which
they are regarded as admissible for planning. In particular, we
define thesafe-for-planningcells as

(13)

and theplanning map is

The complementation operator (16), the bounded product
intersection operator (17) and the Dombi union operator (18)
are used to perform the above computations. For compactness,
the membership degree of a cell to and will
be simply denoted in the following by and ,
respectively.

We emphasize that the sets of cells so far described (inde-
terminate, ambiguous, etc.) donot correspond to actual data

2By squaring the value of the membership function ofE , the difference
between low and high values is emphasized: according to the fuzzy logic
terminology, we are applying the linguistic modifier “very” to the “empty”
concept.
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structures that are memorized during the map building process.
In fact, the maps and are directly computed from
the fuzzy sets and by expliciting the various terms in (12)
and (13), respectively, and exploiting the associative property
of the various operators.

The worst-case time complexity of the corresponding algo-
rithm is linear in , that is the number of cells of the bitmap
representation. Note also that, since and need to be
updated only inside the visibility circle, the average complexity
is much smaller.

3) Map Building—Experimental Results:Before proceed-
ing with the exposition of the navigation process, we shall
present experimental results of the map building process in
a stationary environment. The experiment area, containing
a corridor and a room, was represented as a bitmap of

square cells of side m. Halfway along
the corridor there is an intersection with a small obstacle. The
open space is delimited by flat surfaces (walls and closed glass
cabinets) with poor diffraction properties, an adverse condition
for ultrasonic sensing. NOMAD performed 43 perceptions
at different positions attained along a path under operator
guidance.

For the map building algorithm, we have used the following
set of parameter values: m,

m, and . Being the environment stationary,
the Dombi union operator was used in the aggregation phase
[see (6) and (7)]. Fig. 8 shows the resulting motion map .
The average time needed at each perception point to update

from the range readings was approximately 0.2 s.
Note the satisfactory accordance of the map with the actual

boundary of the open space. The small gray areas extending
beyond the corridor walls are due to false reflections occurring
for large angles of incidence. Nevertheless, the map building
algorithm was able to reconstruct accurately the profile of
the walls, by incorporating the range readings obtained for
incidence angles smaller than the critical value.

An extensive comparison of the proposed map building
method with Bayesian techniques based on probability theory
was performed in [23]. The experimental results indicated that
the method based on fuzzy logic is more robust with respect
to the occurrence of false reflections in the measuring process.
This is basically due to the fact that in our approach the
information conveyed by and is not complementary, thus
allowing to identify areas for which contradictory evidence
has been gathered [see (11)] and to regard them as dangerous
[see (12)]. On the other hand, stochastic techniques based
on Bayesian updating are very sensitive to the occurrence of
outliers in the measuring process.

The reader is referred to [24]–[26] for a thorough discussion
of the relative benefits of fuzzy set theory and probability
theory as uncertainty calculus methods. However, we men-
tion here that existing stochastic techniques for ultrasonic
map building exhibit other shortcomings. In fact, to keep
the problem tractable, azero-order Markov fieldis typically
assumed, i.e., that no relationship whatsoever exists between
the states of two cells and , even if they are adjacent.
However, it has been observed [25] that this assumption may
induce large errors in the presence of even a slight degree of

Fig. 8. The motion mapMm obtained for a stationary environment: darker
areas correspond to higher values of�m. The actual profile of the corridor, the
room and the obstacle are superimposed. White spots indicate the perception
points.

dependence between the random variables—this is exactly the
case for map building, since the occupied cells are not evenly
distributed, but concentrated in clusters (obstacles). Moreover,
the prior probabilities needed to initialize the field are typically
estimated with themaximum entropyassumption, namely by
regarding emptiness and occupancy as equiprobable. As a con-
sequence, the convergence of the Bayesian updating procedure
toward an acceptable characterization of the occupancy grid
requires a large number of measures.

IV. NAVIGATION

When the th map building process is completed, two
updated fuzzy maps and are available for the next
navigation process. The latter is accomplished by means of two
sequential phases:planning and motion (see Fig. 9). During
the first, an -based planner generates a subpath from the
current position (the th perception point) to the goal. By
using , the planner makes use of all the available local
information, but at the same time it is allowed to propose
paths going through unexplored areas.

In the motion phase, the robot follows the planned subpath
until the goal is reached, unless one of twostop conditions
is true; namely, either the robot is leaving the explored area
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Fig. 9. Thekth navigation process.

(which is clearly identifiable on ) or an unexpected
obstacle obstructs its motion. In this case, a new map building
process takes place.

A. Planning

During the th planning phase, a subpath is produced
from the current robot position (corresponding to the cell)
to the goal by applying a graph search algorithm aimed
at minimizing the risk along the path. The fuzzy map ,
in which theindeterminatecells are regarded as safe, is used
in this step. The rationale for this choice is simple: in order
to reach the goal, the robot will have to traverse regions that
are indeterminate at the beginning of the motion (recall that
the environment is a priori unknown). Thus, the planner must
be allowed to propose subpaths going through such regions,
providing directions for further explorations.

Below, we introduce various cost functions that characterize
the risk associated to a path on , corresponding to more
or less conservative attitudes. It is then shown how to select
proper instances from the class of graph search algorithms
in order to compute minimum-cost paths.

1) Safe Paths on Fuzzy Maps:Consider the problem of
finding a path from to (i.e., a sequence of adjacent cells

) that is collision-free on . The uncertain
nature of fuzzy maps does not provide a separation between
the free and the occupied space. A natural planning strategy
is to avoid areas of where the risk of collision is high,

that are identified by cells with large values of. This may
be achieved by defining propercost functionsfor a path ,
and then searching for minimum-cost paths. For clarity of
exposition, we first consider the case of a point robot; this
assumption will be removed later.

The first and most intuitive cost function is defined as

that is, a measure of the integral risk along the path.
As a second possibility, we propose

Again, this corresponds to applying the modifier “very” to the
“unsafe” concept. By doing so, the inclusion of cells with high
values of in a minimum-cost path is less likely.

Finally, consider

which represents the maximum risk encountered on the path.
These cost functions may be interpreted asenergy measures3

[19], [27] of the fuzzy set over the path , and
characterize the distance of from an ideally safe path, i.e.,
a path for which . Their minimization is
hence a reasonable objective.

Note that , , and measure the above distance accord-
ing to different metrics. For example, assume thatand
are far, so that any admissible path connecting them consists
of a large number of cells. A path minimizing will yield
a tradeoff between length and risk, and may traverse a cell
with a large , if in this way its length were significantly
reduced. A more conservative strategy would be to minimize

, even if this might result in a longer path. The use of
will typically generate paths with intermediate characteristics
between and .

On the other hand, consider a situation in which is
located in a region with uniform high values of. An optimal
path with respect to might be unsatisfactory, since the
maximum value of will probably be attained near .
Thereafter, any subpath leading tois admissible as long as
it does not increase the value of. Minimization of or
will produce better results, since both these functions depend
on thewholepath from to . The results of Section IV-A3
will further clarify this discussion.
2) Planning on Fuzzy Maps with the Algorithm: In view

of the above discussion, theth planning phase must solve the
problem “Find a minimum-cost ( , , or ) path from to

on .” As a planning method, we have adopted the
algorithm, which allows to incorporate heuristic information
when available, resulting in an efficient search. We shall not
recall here the details of the algorithm, that are well known
[28].

To apply , we need as a basic tool a heuristic func-
tion estimating the cost of the optimal path from the

3In the terminology of [27],g1 andg3 are, respectively, thepowerand the
heightofMp overP k.
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generic cell to the goal . will be complete under the
admissibility condition

(14)

where is theactualcost of the minimum-cost path from
to . Moreover, the heuristic function is said to be

locally consistentif, for any pair of adjacent cells ,
we have

being the cost of the arc between and . Under
this assumption, whenever is expanded during the algorithm
visit, the current path from to is already optimal. The
choice is trivially admissible and locally consistent,
resulting however in anon-informedalgorithm.

The use of to generate paths minimizing on the fuzzy
map is immediate. The cost of the arc joining two adjacent
cells and is defined as

so that the cost of a path coincides with , except
for the additive constant . As for the heuristic function,
we use

(15)

in which is the minimum number of cells that compose
a subpath from to , and is the smallest value of

over (a quantity that can be memorized during the
map building phase). The heuristic function (15) is clearly
admissible and locally consistent.

Two remarks are necessary at this point.

• The value depends on the adjacency definition
on the map. If 1-adjacency is used, each cell has four
adjacents and thus ,
being and the coordinates of and ,
respectively. When using 2-adjacency, each cell has eight
adjacents and we get .

• To obtain an informed , it must be . Hence, it
is advisable to offset all values of by a small positive
constant. In the following, we shall directly assume that

.

The resulting version of the algorithm will be denoted
by . The algorithm for minimization of is obtained
by obvious modifications of .

The computation of a minimum- path via is some-
what nonstandard, the difficulty coming from the non-additive
nature of this cost function. In order to define the arc cost

in such a way that the cost of a path is, we let

if
else

where denotes the maximum value of encountered
on the optimal path from to . With this definition,
the arc costs are not knowna priori. Nevertheless, they are
computable as the algorithm proceeds provided that a locally
consistent function is used, since in this case we have
simply .

To satisfy the admissibility condition, it is necessary to set
; in fact, if the maximum value of on the path

is attained on the subpath from to , the remaining part of
the path will not increase the cost function, i.e., .
However, a non-informed may be dramatically inefficient,
due to the large number ofties that may occur during the
algorithm expansion. To cope with this problem, we have
used a tie-resolution strategy privileging cells whose distance

from is smaller. With this modification, works like
a depth-firstsearch method whenever this is possible without
increasing the value of . The algorithm just described will
be indicated by .

Having described the main features of the planning algo-
rithms, some remarks are in order regarding their iterative
application as a component of the real-time navigation process.

• We can easily remove the point robot assumption as
follows. Assume that the robot can be approximated by a
circle of radius , whose center is located at (the center
of) cell . Since each bitmap cell has side ,
the robot body will be contained in a square of
cells centered at , being round , with
round the nearest integer to. Hence, we can build an
augmentedmap by defining as the maximum
value of attained in the square of cells centered
at . Planning for a point in is equivalent to planning
for the actual robot in . Such procedure may be
implemented by preliminarily processing the map ,
but this is not necessary. In fact, it is sufficient to modify

so as to compute only when is actually
visited.

• Due to the incremental nature of the map building process,
the planning map searched by the planner will
typically include indeterminate areas containing. As
mentioned above, cells inside these areas are charac-
terized by a constant value , with by
construction. Therefore, outside the explored area, the
generated paths will aim directly at the goal in order to
minimize the heuristic function that takes into account
the distance from the goal.

• It was already noted that, although and are
informed and produce better paths (they minimize an
integral risk) than , the maximum risk along the path
may be higher. To alleviate this problem, we have chosen
to perform an - cut of whenever or are used.
That is, only cells belonging to the (crisp) subset

are considered admissible for planning. By choosing an
appropriate value for , we can obtain a reasonable
tradeoff between the integral and the maximum risk.

• For a graph with arcs and nodes, the time complexity
of is . Since our representation of the
environment is a bitmap of cells, the number of arcs
is when 2-adjacency is used. The
resulting worst-case time complexity for and
is .
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TABLE I
RESULTS FOR SIMULATION 1

Fig. 10. Simulation 1: Paths generated byA?
1

andA?
2

(continuous) andA?
3

(dotted).

3) Planning—Simulation Results:In order to show the per-
formance of the planning algorithms , , and , we
present below some simulation results of their application in
a knownstatic environment. In particular, we have used the
fuzzy map of Fig. 8. Experimental results obtained with real-
time map building and navigation in unknown environments
will be presented in Section V. In order to take into account
the dimension of NOMAD, the aforesaid map augmentation
procedure was performed with m and m,
giving .

In the first simulation, the start cell is located inside the
room, while the goal cell is at the end of the left branch of
the corridor (see Fig. 10). The straight line distance between

and is approximately 12 m. Details on the solution paths
are given in Table I. Note that, even if the paths produced by

and coincide, the computing time differs substantially
for the two algorithms. As for , the solution path is more
dangerous in the integral sense (the value ofis roughly
doubled with respect to and ), but the maximum risk
along the path is 0.5, as before. This value is encountered in
correspondence of the narrow crossing between the room and
the corridor (a forced passage since planning is performed on
the augmented map).

The algorithm , although non-informed, is much faster
than the other two algorithms. This is due to the tie-resolution

Fig. 11. Simulation 2: Paths generated byA?
1

(continuous),A?
2

(dashed)
andA?

3
(dotted).

strategy, that induces a depth-first behavior when possible. As
a drawback, while 2-adjacency was chosen for and ,
we had to use 1-adjacency for , to prevent the path from
grazing the walls.

To better illustrate the different behavior of the algorithms,
we have considered a second simulation, with the start cell

and the goal cell located on the opposite sides of the
small obstacle, as shown in Fig. 11 on a magnified view. Here,
planning is performed for a point robot, and the risk value
associated with the start cell is 0.5. Details on the performance
of the algorithms are given in Table II. The path produced by

turns around the obstacle in the counterclockwise direction,
while those generated by and take the clockwise
direction. In particular, returns a (shorter) path with the
lowest possible value of integral risk , but traversing more
dangerous cells, as indicated by the value of . Instead,
the risk over the path does never increase beyond the initial
value 0.5. As expected, displays in this case an intermediate
behavior between the other two algorithms. In fact, while the
maximum risk attained along the path is again 0.5, the integral
risk is lower than for , since each cell in the path contributes
to the cost function .

In general, is faster in returning a solution path, provided
that nobacktrackingphase is necessary. On the other hand,

and produce generally safer and smoother paths.
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TABLE II
RESULTS FOR SIMULATION 2

Time efficiency was not stressed in our implementation. A
considerable increase in speed could be obtained by using a
suboptimal version of , as proposed in [29].

B. Motion

Once the chosen -based planner has produced a subpath
on from the current robot position to the desired

robot goal , the motion phase takes place. In particular, the
robot follows the path up to the goal unless one of the two
following stop conditionsis verified.

1) The robot is leaving the explored area. This condition is
indicated by the fact that the robot is leaving a specified

-cut of the motion map , i.e., the (crisp) subset of
cells defined as

In fact, indeterminate cells on the path are identified
by high values of . To account for the actual robot
dimensions, also the motion map can be augmented as
seen in Section IV-A2.

2) The robot detects an “unexpected” obstacle that is closer
than a minimum clearance. This can be realized by
continuously monitoring the measures of proximity sen-
sors, which may be either the ultrasonic range finder
themselves or other available devices. For example, in
our implementation on NOMAD we have exploited the
availability of a ring of 16 infrared sensors. The choice
of a small clearance is more hazardous, but may allow
the robot to go across narrow passages in very cluttered
environments.

If any of these is met, the robot stops and executes a new
map building process.

V. EXPERIMENTAL RESULTS

We shall now present experimental results obtained by
applying the proposed method to the mobile robot NOMAD.
The robot is assigned two navigation tasks in a cluttered area of

m (the universal set ) contained in our laboratory.
NOMAD is constrained to plan and move inside this area only.
A profile of the most significant stationary obstacles is shown
in Fig. 12. In both experiments, the environment isa priori
unknown.

As before, is discretized into a bitmap of square cells
of size m. The parameters of the map building algorithm
are m, m, and

. As an aggregation operator, we have selected the
weighted arithmetic mean (8)–(9) together with the saturation
mechanism (10), in which .

Fig. 12. Actual map of the most significant stationary obstacles inside the
experiment area.

In the navigation process, is used as a planning algorithm
on the map obtained through the augmentation procedure
of Section IV-A2, with . Only cells having
are considered admissible for planning (i.e., ). During
motion execution, the first stop condition is implemented on
the (augmented) motion map by choosing . Finally,
a clearance of 12 cm has been selected for the second stop
condition, a value that represents the minimum detectable
distance for the ultrasonic sensors but is well-contained in the
infrared sensing range.

The start position at the beginning of the first experiment
and the desired goal position are shown in Fig. 13. All
the obstacles are stationary. Figs. 13–16 show the motion
map obtained after 4, 5, 13, and 22 perception steps,
respectively, together with the path traced by the robot so far.
Positions where a map building process has taken place are
marked by a “ ” sign.

At the beginning of the experiment, NOMAD tries to
follow a direct path to (Fig. 13) until the presence of
an obstructing wall is detected and included in the fuzzy
map (Fig. 14). Thereafter, it backtracks in order to find a
convenient passage, driven by the heuristic information in
the planner. The robot correctly detects the presence of
an opening between the two large obstacles and crosses it
(Fig. 15). Afterwards, NOMAD proceeds toward the goal
circumnavigating the obstacle and crossing another narrow
passage. The final robot path, shown in Fig. 16, is reasonably
efficient. Besides, the final map is fairly accurate.

A careful examination of the figures shows that the robot
tends to stop more frequently when crossing narrow passages.
This is due to the first stop condition being triggered by the
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Fig. 13. Experiment 1: NOMAD tries a direct path to the goal.

Fig. 14. Experiment 1: A wall obstructing the direct path to the goal is
detected.

proximity sensors during the motion. Erroneous measures,
frequently reported in such demanding operating conditions,
are however corrected by performing a new perception phase.

The start and the goal position for the second experiment
are displayed in Fig. 17. In order to show that the proposed
method can cope with moderately dynamic environments, we
have included a moving obstacle in the scene. The most direct
path to the goal, which would cross the channel between the
two large obstacles, is obstructed by the presence of a person
(see Fig. 17). Therefore, NOMAD tries to find an alternative
passage exploring the region on the left, until it reaches the
boundary of the experiment area, as shown in Fig. 18 (note
that the window is not reported into the map because it is
located outside the experiment area). At this point,returns
failure because there is no path connecting the current robot
position to the goal with maximum risk on less than
0.6. The value of is then tentatively increased to 0.7 in

Fig. 15. Experiment 1: NOMAD tries an alternative path guided by the
heuristic function of theA?

2
planner.

Fig. 16. Experiment 1: The final map and the path executed by NOMAD
to reach the goal.

order to allow the robot to plan a path and, consequently, to
move in the environment detecting possible changes. Other,
less heuristic solutions can be easily envisaged to handle this
kind of situation.

As a matter of fact, NOMAD is forced to come back toward
the opening and recognizes that the way is now free because
the person has moved (Fig. 19). Hence, the robot can cross
the passage and reach the goal (Fig. 20). A comparison of
the final map with the map in Fig. 18 shows that the obstacle
corresponding to the moving person has been progressively
erased as the robot performed new map building processes
during its motion. This proves that the proposed aggregation
procedure based on the weighted mean operator is effective
in recording real-time changes in the environment. Indeed,
a slight trace of the person is still present on the final
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Fig. 17. Experiment 2: The channel is currently obstructed.

map, essentially because the choice results in an
aggregation procedure that is relatively slow in “forgetting”
previous map values. However, our experience shows that it
is desirable to attribute a certain inertia to existing information
to eliminate the possibility of oscillations in the map.

Both in the first and the second experiment, the total time
needed to execute the given navigation task was around 2 min.
However, it should be noticed that a remarkable portion of this
time (about 70%) is used by the perception phase. In turn, the
biggest part of the latter is spent for the radio communication
between the host computer and the robot. The procedure could
be sped up by bringing the whole control software on board the
robot and by resorting to an architecture based on concurrent
processes.

The above satisfactory behavior was confirmed by several
other experiments [30], including nonstationary environments;
failure to find a solution path was reported in very few situa-

Fig. 18. Experiment 2: NOMAD tries to find an alternative path.

tions, essentially due to the inherent limitations of ultrasonic
sensors.

VI. CONCLUSION

A new method for real-time map building and navigation in
unknown environments has been presented. Its basic features
are as follows.

• Two fundamental processes are alternately executed: map
building and navigation. In the former, the robot collects
local information about the surrounding scene through its
sensors, and updates accordingly the global representation
so far reconstructed. In the latter, a suitable planning
algorithm proposes a subpath to the goal that avoids
collisions in the explored region and indicates new areas
to be visited. The subpath is followed by the robot up to
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Fig. 19. Experiment 2: The channel is now free.

the boundary of the explored region, where a new map
building process takes place.

• An intrinsically uncertain representation of the environ-
ment is used. In particular, fuzzy set operators are used
to process ultrasonic sensor measures, updating the two
gray-level bitmaps and that convey different
risk information.

• Three cost functions and allow to quantify
the risk of collision on along the subpath . All
these may be interpreted as energy measures ofon

, therefore characterizing the distance of from an
ideally safe path.

• In the planning phase, is searched for optimal paths.
Proper instances of the search algorithm have been
identified for the minimization of , , and . The
three resulting algorithms correspond to different plan-
ning strategies.

Fig. 20. Experiment 2: The final map and the path executed by NOMAD
to reach the goal.

• In the motion phase, is used to identify unexplored
areas, where a new perception step should be performed.

Experimental results have been reported to illustrate the
satisfactory performance of the proposed technique, also in
the case of moderately dynamic scenes. The obtained maps
were quite accurate even in hostile environments, where false
reflections often occur; in general, the paths followed by the
robot are safe and effective. Space for adaptation is provided
by the possibility of tuning various parameters as well by the
choice of the path cost function.

A nice feature of the presented method is the homogeneity
of its various components. Other modules (e.g., obstacle
avoidance, localization) may be included in the overall control
architecture of the robot in order to improve its performance.
Among the current research directions, we mention i) the
integration of information coming from other sensors (e.g.,
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laser and infrared range finders) in the map building phase,
that is straightforward within the fuzzy logic framework; ii) a
localization procedure [31] with respect to the reconstructed
map to correct possible odometry errors; (iii) the use
of a different planning methods. In [32] it was shown how
navigation functionscan be built on fuzzy maps in order
to perform potential-based motion planning, extending the
method of [33].

APPENDIX

A BRUSH-UP OF FUZZY SET THEORY

The very basic concepts of fuzzy set theory will be reviewed
here. The interested reader may refer, for example, to [19],
[34], [35].

Fuzzy sets may be easily introduced as extensions of stan-
dard crisp sets. For acrisp set defined over the universal
set , the membership function

if
if

identifies those elements of that belong to .
For a fuzzy set defined over , the membership function

may assume any real value within the interval , expressing
the degree of membership of any element ofto . Such a
formulation may be adopted to represent two different kinds of
uncertainty, namely i)vagueness, associated with the difficulty
of using a crisp set to characterize a particular concept or
property, or ii) lack of evidence, that does not allow to decide
whether a given element belongs to a particular crisp set.

Basic fuzzy set operators (i.e., complementation, intersec-
tion, and union) can be defined as generalizations of the
classical crisp set operators. In particular, it is necessary
to satisfy proper sets of axioms [34] that, however, do not
uniquely define the operators. As a consequence, several
options for the same operation are available. This contributes
to the richness and flexibility of fuzzy logic; on the other hand,
the selection of the most suitable operators requires special
care.

Any monotonic function

that satisfies the boundary conditions and
may be used to define acomplementationoperator. In

general, is also required to be continuous. The most common
complementation operator is obtained by letting

(16)

Similarly, set intersection operators are defined through
functions

that are commutative, associative, and monotonic. Further-
more, must satisfy the four boundary conditions

and . It is often requested

that is continuous, and sometimes that it isidempotent, i.e.,
. Standard intersection operators are

the algebraic product

and thebounded product

(17)

Setunion operators are obtained from functions

that are commutative, associative, monotonic, and satisfy the
boundary conditions and

. Again, one may require to be continuous and
idempotent. Typical choices include

the algebraic sum

and thebounded sum

Note that the triples , and
satisfy De Morgan’s law.

Another class of union operators has been introduced by
Dombi [36]

(18)

with . One has

This means that the Dombi operator produces “larger” union
sets as is decreased. Equivalently, one may say that “weaker”
unions are obtained for smaller values of. This behavior,
illustrated in Fig. 21, implies also that the Dombi operator is
not idempotent.

The classical fuzzy set operators of union and intersection
so far described can be regarded as subsets of the more general
class ofaggregationoperators. These are defined by functions

that are monotonic, non decreasing and satisfy the boundary
conditions and . Fuzzy
union and intersection belong to this class because of their
associative property, but they do not exhaust the set of
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Fig. 21. Behavior of the Dombi union operator for different values of�. The
dots show the result of the iterated application ofu� to the valueb = 0:25.

all possible aggregation operators. In fact, there exists a
third subclass of so-calledaveragingoperators that produce
intermediate results. In particular, aggregate fuzzy sets have
membership function between the minimum and the maximum
membership function of the original sets. A typical instance
in this class is theweighted arithmetic mean

(19)

where , are positive real numbers.
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