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Efficient Computation of Inverse Dynamics and
Feedback Linearization for VSA-Based Robots

Gabriele Buondonno and Alessandro De Luca

Abstract—We develop a recursive numerical algorithm to com-
pute the inverse dynamics of robot manipulators with an arbitrary
number of joints, driven by variable stiffness actuation (VSA) of
the antagonistic type. The algorithm is based on Newton–Euler
dynamic equations, generalized up to the fourth differential order
to account for the compliant transmissions, combined with the
decentralized nonlinear dynamics of the variable stiffness actua-
tors at each joint. A variant of the algorithm can be used also for
implementing a feedback linearization control law for the accurate
tracking of desired link and stiffness trajectories. As in its simpler
versions, the algorithm does not require dynamic modeling in sym-
bolic form, does not use numerical approximations, grows linearly
in complexity with the number of joints, and is suitable for online
feedforward and real-time feedback control. A Matlab/C code is
made available.

Index Terms—Flexible Robots, Compliant Joint/Mechanism,
Direct/Inverse Dynamics Formulation, Motion Control of
Manipulators, Feedback Linearization.

I. INTRODUCTION

T HE USE of compliant transmission elements in
lightweight robotic devices is one of the current

trends in research and applications, motivated by the (mutually
non-exclusive) goals of realizing more natural robot behaviors,
improving safety in human-robot interaction, optimizing
energy consumption, or being capable of explosive tasks with
limited actuation torque [1], [2]. The explicit introduction
of (constant) elasticity at the joints, once considered only a
parasitic feature in industrial robots, provides a first response
to these objectives, as soon as its effects are modeled and
controlled. In fact, by suitable model-based control designs [3]
it is possible to obtain a desired compliant behavior of the robot
in response to contact forces, without giving away accuracy
in the execution of reference trajectories, provided these are
sufficiently smooth.

Even beyond this, one can achieve simultaneous control of
joint stiffness and link motion by taking inspiration from bio-
mechanical analogies. For this, two motors are used at each
robot joint, connected through nonlinear compliant transmis-
sions to the driven link. In the last ten years or so, there has
been a consistent activity in the design of Variable Stiffness
Actuation (VSA) [4]. For single-degree-of-freedom (single-
dof) devices, the two motors work either in antagonistic mode,
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collaborating in a similar way to both control objectives (as in
the VSA-II of the University of Pisa [5] and the MACCEPA [6])
or in serial mode, where the smaller, secondary motor is used
only to modulate stiffness on line (as in the DLR FVJ device [7]
and IIT AWAS series [8]). These elementary devices, suitably
combined, are currently paving the way to complete VSA-
based manipulators and humanoids, sometimes considered the
robots of the next generation. Multi-dof examples include the
DLR Hand Arm System (HASy) [9], the IIT CompAct arm
[10], and the VSA CubeBot modular series from Pisa, now
commercialized as low-cost qbmove kits [11]. Notably, a large
class of these single-dof or multi-dof VSA-based robots with
complex nonlinear dynamics turns out to satisfy, under mild
conditions, the necessary and sufficient conditions for feedback
linearization and input-output decoupling [12], [13], a result
that generalizes from the rigid case and from the case of robots
with finite, but constant joint stiffness [14].

Together with these technological developments, a need
arises to develop exact and efficient tools for addressing a ver-
sion of the inverse dynamics problem for VSA-based robots
with an arbitrary large number of joints, namely computing the
motor torque commands that smoothly execute desired link and
stiffness trajectories in nominal conditions. Similarly, we would
like to be able to evaluate in real time also the complex but
best performing feedback linearization control law, using state
measurements obtained on line to track in a stable way such
trajectories. Moreover, it would be convenient if both tasks did
not require the analytic development of a dynamic model in
symbolic form.

In a recent paper [15], we designed a solution algorithm, that
we called EJ-NEA (Elastic Joints Newton-Euler Algorithm),
that works for robots with elastic joints (of constant stiffness)
as a direct extension of the well-known recursive Newton-Euler
Algorithm (NEA) for rigid robots [16]. For generic VSA-based
robots with antagonistic actuation, we propose here a general-
ized version called Variable Stiffness Actuation Newton-Euler
Algorithm (VSA-NEA).

II. BACKGROUND

For a rigid robot consisting of an open kinematic chain with
N moving links and N joints, the dynamic model is

(M(q) +B) q̈ + n(q, q̇) = τ , (1)

where q ∈ R
N is the link position, τ ∈ R

N is the motor
torque, M(q) > 0 is the inertia matrix of the robot links,
B > 0 is the constant diagonal matrix with the drive iner-
tia moments (as reflected through the reduction ratios),
and n(q, q̇) = c(q, q̇) + g(q) +Dq̇ contains centrifugal,
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Coriolis, and gravitational terms, as well as viscous friction (as
a dissipative term, with diagonal D ≥ 0).

Given a twice-differentiable trajectory qd(t), we compute the
torques needed to execute the motion (inverse dynamics prob-
lem) in an efficient numerical way, especially when N is large,
using the recursive Newton-Euler Algorithm (NEA)

τd = NEA(qd, q̇d, q̈d) = (M(qd) +B) q̈d + n(qd, q̇d). (2)

To achieve feedback linearization (and input-output decou-
pling), it is sufficient to let

τ = NEA(q, q̇,a) = (M(q) +B)a+ n(q, q̇), (3)

where a = q̈d +KD(q̇d − q̇) +KP (qd − q), with diagonal
matrices KP > 0 and KD > 0, for trajectory stabilization.

In the presence of joint elasticity, the link positions are
distinct from the motor positions. A robot with N elastic
joints (of constant stiffness, and with one motor per joint)
will need 2N generalized coordinates Θ = (qT θT

m)T ∈ R
2N ,

where θm ∈ R
N is the motor position after the reduction gears.

Under the commonly used modelling assumptions introduced
by Spong [14], the dynamic model is

M(q)q̈ + n(q, q̇) = Σ(θm − q) (4a)

Bθ̈m +Dmθ̇m +Σ(θm − q) = τ (4b)

where Σ > 0 is the joint stiffness matrix and Dm > 0 is the
matrix of motor viscous coefficients, both diagonal. The elastic
torque τe = Σ(θm − q) couples the link equation (4a) and the
motor equation (4b). A Newton-Euler algorithm for computing
inverse dynamics and feedback linearization control of elastic
joint robots modeled by (4a)–(4b) has been introduced in [15].

III. VSA-BASED ROBOTS

A. Modeling

In robots having Variable Stiffness Actuation, two actuators
are present at each joint to command both link position and
joint stiffness. This will require 3N generalized coordinates
Θ = (qT θT

m1 θ
T
m2)

T ∈ R
3N , where θm1 and θm2 are now

the motor positions after the reduction. Many different VSA
designs exist, the most common being the decoupled agonistic-
antagonistic setup. Defining the transmission deflections φ1 =
θm1 − q and φ2 = θm2 − q, under the same assumptions as in
[14], the dynamic model becomes

M(q)q̈ + n(q, q̇) = τe1(φ1) + τe2(φ2) (5a)

B1 θ̈m1 +Dm1 θ̇m1 + τe1(φ1) = τ1 (5b)

B2 θ̈m2 +Dm2 θ̇m2 + τe2(φ2) = τ2, (5c)

where τe1 and τe2 are the flexibility torques, which are
nonlinear functions of φ1 and φ2, decoupled for each
joint. The 6N -dimensional state of the system is given by
(q,θm1,θm2, q̇, θ̇m1, θ̇m2). The total flexibility torque acting
on the links is

τe = τe1(φ1) + τe2(φ2) (6)

M(q)q̈ + n(q, q̇) = τe (7)

An analytic formulation of τe1 and τe2 can be obtained from
the expression of the total elastic energy Ue of the system:

τek =

(
∂Ue

∂φk

)T

, k = 1, 2, τe = −
(
∂Ue

∂q

)T

. (8)

The stiffness matrices are physically defined as

Σk(φk) =
∂τek
∂φk

, k = 1, 2, Σ(Θ) = −∂τe
∂q

. (9)

Since the motors dynamics are decoupled, these are diagonal
matrices, with diagonals elements that can be arranged in the
N -vectors σ1, σ2, and σ. From (6) and (9), it follows

Σ = Σ1 +Σ2 (10)

σ = σ1(φ1) + σ2(φ2) (11)

B. Inverse Dynamics

Given a desired four-times differentiable link trajectory qd(t)
and a desired twice-differentiable stiffness trajectory σd(t)
(with

....
q d and σ̈d possibly piecewise continuous), we can com-

pute the nominal input torques τd1(t) and τd2(t) that realize
this combined task trajectory. Both reference trajectories qd(t)
and σd(t) are chosen by the user, and thus all their needed time
derivatives are known by design. In the rest of this section,
we will omit time dependence and subscript d for notational
simplicity.

The first step is to compute the desired τe from (7). Its higher
order derivatives are obtained similarly by differentiating (7)
once1

M(q)
...
q + Ṁ(q)q̈ + ṅ(q, q̇) = τ̇e (12)

and twice

M(q)
....
q + 2Ṁ(q)

...
q + M̈(q)q̈ + n̈(q, q̇) = τ̈e, (13)

and by plugging in the desired values of q and its derivatives.
Next, from the desired values of τe and σ, we need to

compute the associated joint deflections φ1 and φ2. These
are obtained by solving the following system of 2N nonlinear
equations {

τe = τe1(φ1) + τe2(φ2)

σ = σ1(φ1) + σ2(φ2),
(14)

where τe1(·), τe2(·), σ1(·), and σ2(·) are seen as functions
expressed in their analytical forms. In general, system (14)
needs to be solved numerically, exploiting the joint decou-
pling property which causes the split into N separate 2× 2
subsystems (still nonlinear, though).

Next, we compute matrices Σ1, Σ2, Z1, Z2, Z, H1 and H2.
These quantities are all obtained from the underlying spring
model, using the solutions of (14). Matrices Z1, Z2, Z, H1,
and H2 are diagonal, with elements defined as:

1With Ṁ(q), we mean d
dt [M(q)]. Obviously, this quantity depends on q̇

as well as on q. Similar comments apply to ṅ and to higher derivatives.
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Zk,ii =
∂σki

∂φki
, k = 1, 2, Z = Z1 +Z2 (15)

Hk,ii =
∂2σki

∂φ2
ki

, k = 1, 2. (16)

From (6) and (9), we have then (with dependencies omitted)

τ̇e = Σ1φ̇1 +Σ2φ̇2. (17)

Exploiting the decentralized structure of τe1 and τe2 and
using (15), we can differentiate (11) and obtain

σ̇ = Z1φ̇1 +Z2φ̇2. (18)

Putting (17) and (18) together, we set up the linear system(
Σ1 Σ2

Z1 Z2

)(
φ̇1

φ̇2

)
= A(φ1,φ2)

(
φ̇1

φ̇2

)
=

(
τ̇e
σ̇

)
, (19)

where A(φ1,φ2) is the decoupling matrix [13], in which we
have emphasized the dependency from φ1 and φ2. Provided the
decoupling matrix is nonsingular, system (19) can be solved for
φ̇1 and φ̇2 as

(
φ̇1

φ̇2

)
=

(
Σ1 Σ2

Z1 Z2

)−1 (
τ̇e
σ̇

)
. (20)

Differentiating now (17) and rearranging terms yields

Σ1θ̈m1 +Σ2θ̈m2 = τ̈e −Z1φ̇
2
1 −Z2φ̇

2
2 +Σq̈ = β1, (21)

where vectors φ̇2
i (i = 1, 2) are squared component-wise. Using

(16), we can diffentiate also (18) and rearrange it as

Z1θ̈m1 +Z2θ̈m2 = σ̈ −H1φ̇
2
1 −H2φ̇

2
2 +Zq̈ = β2 (22)

Equations (21) and (22) provide another linear system,(
Σ1 Σ2

Z1 Z2

)(
θ̈m1

θ̈m2

)
=

(
β1

β2

)
, (23)

which has the same coefficient matrix A that appears in
eq. (19), making only one inversion necessary to obtain also
θ̈m1 and θ̈m2. Finally, the desired motor torques τ1 and τ2 are
obtained from (5b) and (5c). Also, τe1 and τe2 can be evaluated
from the spring model using the computed values of φ1 and φ2,
while θ̇m1 = φ̇1 + q̇ and θ̇m2 = φ̇2 + q̇.

Some remarks are now in order.
• Computation will be terminated if (14) has no solution.

This means that the desired combined motion-stiffness
task is not attainable by the given actuator model. Instead,
existence of multiple solutions is not a source of prob-
lems. In fact, when the system is solved for a (discretized)
time sequence of desired data, at each instant the solution
is found by a numerical search, starting from the result
obtained at the previous step. Since the search is a local
process, the new solution will always be close to the older
one achieving continuity.

• If A is not invertible, the system is in a dynamic singu-
larity, restricting the desired motion-stiffness task that can
be achieved. Thanks to the joint decoupling property, A

can be rearranged into a block-diagonal matrix with 2× 2
blocks, which can be inverted separately from each other.
Thus, matrix A is singular if and only if at least one of
these N blocks is singular. For instance, for a joint i with
two identical antagonistic springs, this will always happen
when φ1i = φ2i.

• If the initial values of φ1 and φ2 are known, we can avoid
the explicit solution of (14) at each time instant. Instead,
we can solve (19) and integrate for φ1 and φ2. Caution
must be taken, however, due to error drifts caused by
numerical integration.

We provide now some further insight on the solution of sys-
tem (14) in the case of identical springs with cubic flexible
torque on both sides of each joint

τe1(φ1) = Kφ1 +Kcφ
3
1 (24a)

τe2(φ2) = Kφ2 +Kcφ
3
2, (24b)

with constant, positive K = diag{Ki} and Kc = diag{Kci}.
Therefore, for each i = 1, . . . , N and k = 1, 2, we have

σki = Ki + 3Kci φ
2
ki (25)

ζ ki = 6Kci φki (26)

η ki = 6Kci (27)

The minimum possible stiffness for joint i is thus σi = 2Ki.
In order to avoid singularity problems, this lower bound should
never be reached. We solve now eq. (14) as follows. For each
joint i, consider the system

τei = Ki(φ1i + φ2i) +Kci(φ
3
1i + φ3

2i) (28)

σi = 2Ki + 3Kci(φ
2
1i + φ2

2i). (29)

Defining from (29)

R2
i = φ2

1i + φ2
2i =

σi − 2Ki

3Kci
, (30)

it can be seen that all solutions are parametrized by a scalar
ξi ∈ [0, 2π) such that φ1i = Ri cos ξi and φ2i = Ri sin ξi.
Replacing in (28) we get

(cos ξi + sin ξi) +
σi − 2Ki

3Ki
(cos3 ξi + sin3 ξi) =

τei
KiRi

,

(31)

which is a single trigonometric equation in ξi. This equation
is sufficiently smooth, and thus easily solvable by a numeri-
cal root finder. Note that at least one solution always exists
if |τe, i| ≤

√
2KiRi[1 + 0.5(σi − 2Ki)/(3Ki)]. Furthermore,

also slightly larger values of |τe, i| are admissible when σi >
4Ki. However, in the case of the cubic model (and also more
in general), it is recommended to set an upper bound to σi, in
order to keep spring deformations reasonably limited.

C. Feedback Linearization Control

The same procedure outlined in Sec. III-B can be used, with
minor modifications, to implement a feedback linearization law
for VSA robots. With the desired trajectories qd(t) and σd(t),
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we compute the linear control signals vq and vσ from the actual
values of q, q̇, q̈,

...
q , σ, and σ̇

vq =
....
q d +K3(

...
qd − ...

q ) +K2(q̈d − q̈) (32a)

+K1(q̇d − q̇) +K0(qd − q)

vσ = σ̈d +Kσ1
(σ̇d − σ̇) +Kσ0

(σd − σ), (32b)

where all six gain matrices are diagonal with their diago-
nal elements being such that the following two characteristic
polynomials are Hurwitz:

pq,i(s) = s4 +K3is
3 +K2is

2 +K1is+K0i (33a)

pσ,i(s) = s2 +Kσ1,is+Kσ0,i. (33b)

Then, the motor torques achieving feedback linearization
control are obtained using the previous inverse dynamics com-
putations, by only replacing

....
q d with vq and σ̈d with vσ . Use

of high gains and possible addition of an integral action to vq

and vσ (with similar requisites on the gain coefficients) can
contribute to the controller accuracy and robustness to dynamic
modeling errors.

However, the computations cannot be performed as such
since they require, instead of desired values, measures of q̈,

...
q ,

σ, and σ̇ that are difficult or impossible to obtain. In the fol-
lowing, we assume that full state measurements are available,
with the values of q, φ1, and φ2 given, and those of q̇, φ̇1, and
φ̇2 obtained by numerical differentiation.

First, the values of τe1, τe2, Σ1, Σ2, Z1, and Z2 (as well
as of H1 and H2) can be immediately computed from φ1 and
φ2. Next, τe, σ, τ̇e and σ̇ are obtained from (6), (11), (17),
and (18), respectively. We invert then (7) and (12) to find the
unknown values of q̈ and

...
q as

q̈ = M−1(q) [τe − n(q, q̇)] (34)
...
q = M−1(q)

[
τ̇e −

(
Ṁ(q)q̈ + ṅ(q, q̇)

)]
, (35)

where q̈ in (35) is the one just computed in (34). The solution of
(14) is no longer necessary. This means that no numerical root
finding is required for feedback linearization, which also elimi-
nates the possibility of failure at this step. Finally, equations (7),
(12), and (19) are also skipped as such.

IV. THE VSA-NEA ALGORITHM

Starting from the previous dynamic analysis in symbolic
form, we present now a numerical algorithm for computing the
desired motor torques τd1 and τd2 in the case of VSA-based
robots, starting from sufficiently smooth qd(t) and σd(t) and
without the need to have available a symbolic dynamic model
in closed form. The algorithm can be obtained as an extension
of the standard NEA. Indeed, τe itself can be computed by the
standard NEA, the only difference being that the input param-
eters do not include information about motor inertias. The
main difficulty lies in computing τ̈e, and for this higher-order
dynamic equations need to be considered —see (12) and (13).
In particular, the recursive algorithm VSA-NEA will go two
differentiation levels further than the NEA, computing higher
derivatives of the motion variables.

As usual, all quantities will be conveniently expressed in
the moving reference frame of the considered link, since all

dynamic parameters of the robot will be constant in these
frames. Before proceeding, we recall the notations used in the
presence of multiple reference frames. The symbol ixj denotes
a quantity x (e.g., a velocity) of link j expressed in frame i,
no superscript denoting by default i = 0. Thus, for instance,
we have iγi =

iR0
0γi = RT

i ω̇i. The orientation of frame i
with respect to i− 1 and the relative position of the two ori-
gins, expressed in frame i, are described, respectively, by i−1Ri

and ipi,i−1, using the the standard Denavit-Hartenberg conven-
tion. With ẑi, we mean the z-axis unit vector of frame i. It can
be easily seen that ẑ0 = (0 0 1)T , iẑi = ẑ0, ẑi = 0Riẑ0, and
iẑi−1 = iRi−1

i−1ẑi−1 = iRi−1ẑ0.
The final forward and backward recursion are outlined next,

while proofs are reported in the Appendix. In the following,
we give the complete inverse dynamics algorithm, enabling to
compute τ1 and τ2 from given values of q, q̇, q̈,

...
q ,

....
q , σ and σ̇

(all quantities are desired ones). At the end, we explain what to
change when computing the feedback linearization control law.

A. Forward Recursion

The following equations need to be propagated from the
robot base to the tip, for i = 1, . . . , N :

iωi =
iRi−1(

i−1ωi−1 + θ̇iẑ0) (36)
iγi =

iRi−1(
i−1γi−1 + θ̈iẑ0 +

i−1ωi−1 × θ̇iẑ0) (37)
iιi =

iRi−1[
i−1ιi−1 +

...
θ iẑ0 +

i−1 γi−1 × θ̇iẑ0

+ i−1ωi−1 × (2θ̈iẑ0 +
i−1 ωi−1 × θ̇iẑ0)] (38)

iςi =
iRi−1{i−1ςi−1 +

....
θ iẑ0 + 3 i−1γi−1 × θ̈iẑ0

+ 3 i−1ωi−1 × (
...
θ iẑ0 +

i−1ωi−1 × θ̈iẑ0)

+ 2 i−1γi−1 × (i−1ωi−1 × θ̇iẑ0)

+ i−1ωi−1 × [i−1ωi−1 × (i−1ωi−1 × θ̇iẑ0)

+ i−1γi−1 × θ̇iẑ0] +
i−1ιi−1 × θ̇iẑ0} (39)

iai =
iRi−1

i−1ai−1 +
iωi × ( iωi × ipi,i−1) (40)

+ iγi × ipi,i−1 + d̈i
iẑi−1 + 2ḋi(

iωi × iẑi−1)
iaci =

iai +
iωi × ( iωi × ipci,i) +

iγi × ipci,i (41)
iji =

iRi−1
i−1ji−1 + 2 iγi × ( iωi × ipi,i−1)

+ iωi × [ iγi × ipi,i−1 +
iωi × ( iωi × ipi,i−1)]

+ i ιi × ipi,i−1 +
...
d i

iẑi−1 + 3d̈i
iωi × iẑi−1

+ 3ḋi[
iγi × iẑi−1 +

iωi × ( iωi × iẑi−1)] (42)
ijci =

iji +
iιi × ipci,i + 2 iγi × ( iωi × ipci,i) (43)

+ iωi × [ iγi × ipci,i +
iωi × ( iωi × ipci,i)]

isi =
iRi−1

i−1si−1+
iςi× ipi,i−1 + 3 iιi×( iωi× ipi,i−1)

+ 3 iγi × [ iγi × ipi,i−1 +
iωi × ( iωi × ipi,i−1)]

+ iωi × [ iιi × ipi,i−1 + 2 iγi × ( iωi × ipi,i−1)]

+ iωi×{ iωi×[ iγi× ipi,i−1+
iωi×( iωi× ipi,i−1)]}

+
....
d i

iẑi−1+4ḋi
iιi× iẑi−1+8ḋi

iγi×( iωi× iẑi−1)

+ 4ḋi
iωi × [ iγi × iẑi−1 + iωi × ( iωi × iẑi−1)]

+ 6d̈i[
iγi × iẑi−1 +

iωi × ( iωi × iẑi−1)]

+ 4
...
d i

iωi × iẑi−1 (44)
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isci =
isi +

iςi × ipci,i + 3 iιi × ( iωi × ipci,i) (45)

+ 3 iγi × [ iγi × ipci,i +
iωi × ( iωi × ipci,i)]

+ iωi × [ iιi × ipci,i + 2 iγi × ( iωi × ipci,i)]

+ iωi×{ iωi×[ iγi× ipci,i +
iωi×( iωi× ipci,i)]}.

The following symbols have been used:

ωi angular velocity of frame i;
γi angular acceleration of frame i;
ιi angular jerk of frame i;
ςi angular snap of frame i;
ai acceleration of the origin of frame i;
aci acceleration of the center of mass (CoM) of link i;
ji jerk of the origin of frame i;
jci jerk of the CoM of frame i;
si snap of the origin of frame i;
sci snap of the CoM of frame i;
pci,i position of the CoM of augmented link i (i.e., of the link

plus the motor mounted on it) w.r.t. the origin of frame i.

The initialization of the forward recursion is zero for all
quantities, with the exception of 0a0, which is set to −�g to
account for gravitational effects, �g being the gravity acceler-
ation vector in frame 0. The above equations are valid both for
revolute and prismatic joints, with θi = qi in the former case
and di = qi in the latter. Moreover, if joint i is prismatic, θ̇i =
θ̈i =

...
θ i =

....
θ i = 0; if it is revolute, ḋi = d̈i =

...
d i =

....
d i = 0,

with considerable simplifications.

B. Backward Recursion

The following equations need to be propagated from the
robot tip to the base, for i = N, . . . , 1:

iFi =mi
iaci (46)

iḞi =mi
ijci (47)

iF̈i =mi
isci (48)

iNi =
iIi

iγi +
iωi × ( iIi

iωi) (49)
iṄi =

iωi × ( iIi
iγi +

iNi) +
iIi(

iγi × iωi +
i ιi)

+ iγi × iIi
iωi (50)

iN̈i =
iγi × ( iIi

iγi + 2 iNi) +
iιi × iIi

iωi (51)

+ iIi[2(
iιi × iωi) +

iωi × ( iωi × iγi) +
iςi]

+ iωi×[ iωi× iIi
iγi+2 iIi(

iιi+
iγi× iωi)+

iṄi]
ifi =

iRi+1
i+1fi+1 +

iFi (52)
iḟi =

iRi+1
i+1ḟi+1 +

iḞi (53)
if̈i =

iRi+1
i+1f̈i+1 +

iF̈i (54)
ini =

iRi+1
i+1ni+1 +

ipci,i × iFi +
ipi,i−1 × ifi

+ iNi (55)
iṅi =

iRi+1
i+1ṅi+1 + ( iωi × ipci,i)× iFi

+ ipci,i × iḞi + ( iωi × ipi,i−1 + ḋi
iẑi−1)× ifi

+ ipi,i−1 × iḟi +
iṄi (56)

in̈i =
iRi+1

i+1n̈i+1 + 2 ( iωi × ipci,i)× iḞi (57)

+ [ iγi × ipci,i +
iωi × ( iωi × ipci,i)]× iFi

+ [ iγi× ipi,i−1 +
iωi×( iωi× ipi,i−1) + d̈i

iẑi−1

+ 2ḋi
iωi × iẑi−1]× ifi +

ipci,i × iF̈i +
iN̈i

+ 2 ( iωi× ipi,i−1 + ḋi
iẑi−1)× iḟi +

ipi,i−1× if̈i

τei =

{
inT

i
iẑi−1 +Diq̇i if joint i is revolute

ifT
i

iẑi−1 +Diq̇i if joint i is prismatic
(58)

τ̇ei =

{
( iṅi +

ini × iωi)
T iẑi−1 +Diq̈i

( iḟi +
ifi × iωi)

T iẑi−1 +Diq̈i
(59)

τ̈ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[ in̈i+2( iṅi× iωi)+

ini× iγi

+( ini× iωi)× iωi]
T iẑi−1 +Di

...
q i

[ if̈i+2( iḟi× iωi)+
ifi× iγi

+( ifi× iωi)× iωi]
T iẑi−1 +Di

...
q i

(60)

〈τei , σi〉 �→ 〈φ1i , φ2i〉 (61)

τe1,i = τe1,i(φ1i) τe2,i = τe2,i(φ2i) (62)

σ1i = σ1i(φ1i) σ2i = σ2i(φ2i) (63)

ζ1i =
∂σ1i

∂φ1i
ζ2i =

∂σ2i

∂φ2i
(64)

ζi = ζ1i + ζ2i (65)

η1i =
∂2σ1i

∂φ2
1i

η2i =
∂2σ2i

∂φ2
2i

(66)

A−1
i =

1

σ1iζ2i − σ2iζ1i

(
ζ2i −σ2i

−ζ1i σ1i

)
(67)(

φ̇1

φ̇2

)
= A−1

i

(
τ̇ei
σ̇i

)
(68)

θ̇m1,i = φ̇1i + q̇i θ̇m2,i = φ̇2i + q̇i (69)

β1i = τ̈ei − ζ1iφ̇
2
1i − ζ2iφ̇

2
2i + σiq̈i (70)

β2i = σ̈i − η1iφ̇
2
1i − η2iφ̇

2
2i + ζiq̈i (71)(

θ̈m1,i

θ̈m2,i

)
= A−1

i

(
β1i

β2i

)
(72)

τ1i = B1i θ̈m1,i +Dm1,i θ̇m1,i + τe1,i (73)

τ2i = B2i θ̈m2,i +Dm2,i θ̇m2,i + τe2,i, (74)

where:
mi mass of augmented link i;
iIi central inertia tensor of link i, in frame i;
Fi total force acting on the CoM of link i;
Ni total torque acting on link i;
fi total force exerted on link i by link i− 1;
ni total torque exerted on link i by link i− 1;
σki is the i-th element of σk;
ζki is the i-th diagonal element of Zk;
ηki is the i-th diagonal element of Hk.

In (61), we denoted by the symbol �→ the resolution of the
i-th subsystem of (14). For the initialization of the backward
recursion, fN+1 and nN+1 are, respectively, the forces and
torques exerted by the end-effector on the environment, i.e.,
the opposite of the external forces and torques acting on the
end-effector. If present, these are passed to the algorithm as an
additional input, otherwise they are set identically to 0. If the
external forces/torques are already expressed in frame N , then
NRN+1 will be the 3× 3 identity matrix.
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TABLE I
KINEMATIC AND DYNAMIC PARAMETERS

While mi represents the mass of the whole augmented link,
iIi accounts for all of the inertial properties of link i, except for
the drive inertia moments.

C. Variant for Feedback Linearization

A variant of the VSA-NEA algorithm can be used to com-
pute a feedback linearization control, as explained in Sec. III-C.
Equations (62)–(66) are evaluated first in a separate initial
loop; next, (6), (11), (17), (18), (34) and (35) are evaluated.
Indications on how to compute efficiently (34) and (35) can
be found in [15]. During the execution,

....
q and σ̈ are replaced

by vq and vσ , respectively. Equations (58)–(59), (61)–(66) and
(68) are skipped.

V. NUMERICAL RESULTS

The algorithms have been validated by several numerical
tests. For illustration, we show here some meaningful results
of the inverse dynamics computation. We consider a spatial 3-
dof robot in the presence of gravity (acting on links 2 and 3),
with the three rotational joints driven by antagonistic VSA with
cubic profiles of flexibility torques. Its parameters are given in
Tab. I.

The link motion qd was specified by a smooth rest-to-rest
trajectory (polynomials of degree 7, with zero initial and final
boundary conditions on velocity, acceleration, and jerk) lasting
T = 4 s. In a first test, σd was also specified by a rest-to-rest
polynomial trajectory of degree 3, identical for all joints, with
zero boundary conditions on σ̇ at t = 0 and t = T . The stiffness
of each joint goes from σmin = 850 Nm/rad, which is close
to the physical minimum possible stiffness, to σmax = 1275
Nm/rad, achieving a 50% increase. Figure 1 shows the ref-
erence trajectories, while the obtained results are reported in
Figs. 2–3.

We performed two other tests with the same joint trajectory
qd shown in Fig. 1, but one with σi identically equal to σmin

for all i, and a second with σi identically equal to σmax. Since
the joint movement is the same, the elastic torque τe does not
change with respect to Fig. 3. However, all the motor torques
τ1 and τ2 have much larger absolute values in the second case.

Fig. 1. [Left] Joint position qd. Color codes for Figs. 1–3: solid black = joint
1, dashed red = 2, blue with “+” markers = 3. [Right] Joint stiffness σd (same
profile for all joints).

Fig. 2. [Left] Motor torque τd1. [Right] Motor torque τd2.

Fig. 3. Total elastic torque τe = τe1 + τe2.

Fig. 4. Comparison between the two motor torques τd1,1 and τd2,1 for joint 1
with σd1 = 850 Nm/rad (solid black lines) and σd1 = 1275 Nm/rad (dashed
red lines).

This shows how the motors spend considerable energy in order
to keep a higher level of stiffness. In Fig. 4, we compare the
desired nominal torques just for joint 1. It can be seen how
the initial values of τd1,1 and τd2,1 for σdi = σmin (i = 1, 2, 3)
coincide with the initial values in Fig. 2, while their final values
for σdi = σmax coincide the final values in the same figures.

The algorithm was implemented in Matlab, automatically
converted to C code, and then run as a mex function on a stan-
dard personal computer. The execution times were always in
the order of 10−5 ÷ 10−4 s per iteration. Very similar times
have been obtained also for more complex robots such as
a 7-dof manipulator with the kinematics of a KUKA LWR
arm. All source codes are available in the multimedia material
accompanying this letter.



914 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 1, NO. 2, JULY 2016

VI. CONCLUSIONS

An efficient numerical algorithm has been presented for solv-
ing the inverse dynamics problem in a class of robots with
Variable Stiffness Actuation, as a generalization of the one
recently proposed by us for robots with elastic joints.

The general procedure is conceptually divided in two distinct
parts. The first one, which is the same as in robots with elastic
joints, is an extension of the recursive Newton-Euler algorithm
for rigid robots. Recursive equations are defined up to the fourth
differential order for link motion variables, and up to the second
time derivative for forces/torques. The core of the second part
of the algorithm requires solving for each joint a two-by-two
nonlinear system in terms of the desired stiffness and computed
total transmission torque. This system depends on the specific
technology of the VSA device and its solution, which is in gen-
eral obtained numerically by a root finding method, has been
illustrated here for antagonistic transmissions with cubic torque
profiles. The overall complexity of the algorithm grows linearly
with the number of VSA joints.

A simple variant of the algorithm allows to compute also
the feedback linearization control law for the considered VSA-
based robots. Using full state measurements, this variant does
not require a numerical root finding method and can be easily
implemented as well in real time.

Just as their symbolic counterparts, the proposed numerical
algorithms are based on the knowledge of the robot dynamic
model. Thus, the quality of the results will depend on the accu-
racy of the kinematic and dynamic parameters, in particular for
what concerns the nonlinear spring model. Future work will
focus on sensitivity analysis to perturbed dynamic parameters
and on the extension to Variable Impedance Actuators (VIA),
including variable damping.

APPENDIX: DERIVATION OF THE ALGORITHM

Equations (36), (37), (40), (41), (46), (49), (52), (55) and
(58) are simply the standard NEA, applied to elastic robots.
Equations (38), (42), (43), (47), (50), (53), (56) and (59) first
appeared in [17]; derivation of these formulas can be found
there. Thus, the only proofs shown here will be those of (39),
(44), (45), (48), (51), (54), (57), and (60)–(74), along with some
auxiliary results from [17].

A. Angular Snap

Derivation of (39) can start from the expression of (38),
referred to base coordinates:

ιi = ιi−1 +
...
θ iẑi−1 + 2θ̈i(ωi−1 × ẑi−1)

+ θ̇iγi−1 × ẑi−1 + θ̇iωi−1 × (ωi−1 × ẑi−1). (75)

Differentiating it with respect to time, we obtain:

ςi = ςi−1 +
....
θ iẑi−1 +

...
θ i

˙̂zi−1 + 2
...
θ i(ωi−1 × ẑi−1)

+ 2θ̈i(γi−1 × ẑi−1) + 2θ̈i(ωi−1 × ˙̂zi−1)

+ θ̈i(γi−1 × ẑi−1) + θ̇i(ιi−1 × ẑi−1) + θ̇i(γi−1 × ˙̂zi−1)

+ θ̈iωi−1 × (ωi−1 × ẑi−1) + θ̇iγi−1 × (ωi−1 × ẑi−1)

+ θ̇iωi−1 × (γi−1 × ẑi−1 + ωi−1 × ˙̂zi−1). (76)

Considering that

˙̂zi−1 = 0Ṙi−1ẑ0 = S(ωi−1)
0Ri−1ẑ0 = S(ωi−1)ẑi−1

=ωi−1 × ẑi−1, (77)

we can rewrite the previous equation in the following form

ςi = ςi−1 +
....
θ iẑi−1 + 3

...
θ iωi−1 × ẑi−1 + 3θ̈iγi−1 × ẑi−1

+ 3θ̈iωi−1 × (ωi−1 × ẑi−1) + θ̇i(ιi−1 × ẑi−1)

+ θ̇iωi−1 × [γi−1 × ẑi−1 + ωi−1 × (ωi−1 × ẑi−1)]

+ 2θ̇iγi−1 × (ωi−1 × ẑi−1). (78)

Describing the preceding equation with respect to the frame i
and rearranging terms, we obtain (39).

B. Linear Snap

In the same way as done for ς , derivation of (44) can start
from the base frame form of j:

ji = ji−1 + ιi × pi,i−1 + 2γi × (ωi × pi,i−1) (79)

+ ωi × [γi × pi,i−1 + ωi × (ωi × pi,i−1)] +
...
d iẑi−1

+ 3d̈iωi×ẑi−1 + 3ḋiγi×ẑi−1 + 3ḋiωi×(ωi×ẑi−1).

Differentiating, we have

si = si−1 + ςi × pi,i−1 + ιi × ṗi,i−1 + 2ιi × (ωi × pi,i−1)

+ 2γi × (γi × pi,i−1) + 2γi × (ωi × ṗi,i−1)

+ γi × [γi × pi,i−1 + ωi × (ωi × pi,i−1)]

+ ωi × [ιi × pi,i−1 + γi × ṗi,i−1 + γi × (ωi × pi,i−1)

+ ωi × (γi × pi,i−1 + ωi × ṗi,i−1)] +
....
d iẑi−1

+
...
d i

˙̂zi−1 + 3
...
d iωi × ẑi−1 + 6d̈iγi × ẑi−1

+ 3d̈iωi × ˙̂zi−1 + 3ḋiιi × ẑi−1 + 3ḋiγi × ˙̂zi−1

+ 3d̈iωi × (ωi × ẑi−1) + 3ḋiγi × (ωi × ẑi−1)

+ 3ḋiωi × (γi × ẑi−1 + ωi × ˙̂zi−1). (80)

From (77) and (36), it is possible to rewrite ˙̂zi−1 as

˙̂zi−1 = ωi−1 × ẑi−1 = (ωi − θ̇iẑi−1)× ẑi−1 = ωi × ẑi−1.
(81)

Moreover, from geometrical considerations,

ṗi,i−1 = ωi × pi,i−1 + ḋiẑi−1. (82)

Substituting these and after some manipulations, we get

si = si−1 + ςi×pi,i−1+ιi×(ωi×pi,i−1+ḋiẑi−1) (83)

+ 2ιi × (ωi × pi,i−1) + 3γi × (γi × pi,i−1)

+ 2γi × [ωi × (ωi × pi,i−1 + ḋiẑi−1)]

+ γi × [ωi × (ωi × pi,i−1)] + ωi × (ιi × pi,i−1)

+ ωi × [γi × (ωi × pi,i−1 + ḋiẑi−1)]

+ ωi×[γi×(ωi×pi,i−1)] + ωi×{ωi×[γi×pi,i−1

+ ωi × (ωi × pi,i−1 + ḋiẑi−1)]}+
....
d iẑi−1

+ 4
...
d iωi×ẑi−1 + 6d̈i[γi×ẑi−1+ωi×(ωi×ẑi−1)]

+ 3ḋiιi × ẑi−1 + 6ḋiγi × (ωi × ẑi−1)

+ 3ḋiωi×(γi × ẑi−1) + 3ḋiωi×[ωi×(ωi×ẑi−1)].
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Rearranging the terms, collecting similar expressions, and
referring s to the link frame, we obtain (44).

The linear snap of the CoM, i.e., sci , can be computed from
si. Equation (45) can be obtained from (44), by simply letting
i instead of i− 1, ci instead of i, and considering that ḋci , d̈ci ,...
d ci , and

....
d ci are all equal to zero.

C. Force and Torque Derivatives on the Centers of Mass

Equation (48) is trivial, while (51) is obtained from

Ṅi =ωi × Iiγi + ωi ×Ni + Ii[γi × ωi] (84)

+ Iiιi + γi × Iiωi

Ni =
d

dt
(Iiωi) (85)

İi =S(ωi)Ii − IiS(ωi), (86)

where S(ωi) is a skew-symmetric matrix computed from ωi

such that S(ωi)v = ωi × v for every vector v. Equation (85)
is Euler’s law of motion, while (86) is obtained from Ii =
0R i

i I
i

i R0, using the result 0Ṙi = S(ωi)Ri. Then:

iN̈i =
iγi × iIi

iγi +
iωi × [S( iωi)

iIi − iIiS(
iωi)]

iγi

+ iωi × iI i
iιi + [S( iωi)

iIi](
iγi × iωi)

− [ iIiS(
iωi)](

iγi × iωi) +
iIi(

iιi × iωi)

+ [S( iωi)
iIi − iIiS(

iωi)]
iιi +

iI i
iςi

+ iιi × iI i
iωi + 2( iγi × iNi) +

iωi × iṄi

= iγi × iI i
iγi +

iωi × ( iωi × iI i
iγi) (87)

− iωi × iIi(
iωi × iγi) +

iωi × iI i
iιi

+ iωi × iIi(
iγi × iωi)− iIi[

iωi × ( iγi × iωi)]

+ iIi(
iιi × iωi) +

iω × iI i
iιi − iIi(

iωi × iιi)

+ iI i
iςi +

iιi × iI i
iωi + 2( iγi × iNi) +

iωi × iṄi.

The final expression is obtained by collecting similar terms.

D. Generalized Torques

Again, (54) is trivial, while (57) is computed from

ṗci,i =
0Ṙi

ipci,i = S(ωi)
0Ri

ipci,i = ωi × pci,i (88)

ṅi = ṅi+1 + (ωi × pci,i)× Fi + pci,i × Ḟi (89)

+ (ωi×pi,i−1+ḋiẑi−1)×fi + pi,i−1×ḟi+Ṅi. (90)

Differentiating (89), with the help of (82) and (88), yields

n̈i = n̈i+1 + [γi×pci,i + ωi×(ωi×pci,i)]×Fi (91)

+ (ωi×pci,i)×Ḟi+(ωi×pci,i)×Ḟi+pci,i×F̈i

+ [γi×pi,i−1 + ωi×(ωi×pi,i−1 + ḋiẑi−1) + d̈iẑi−1

+ ḋiωi × ẑi−1]× fi + (ωi × pi,i−1 + ḋiẑi−1)× ḟi

+ (ωi × pi,i−1 + ḋiẑi−1)× ḟi + pi,i−1 × f̈i + N̈i,

from which it is relatively easy to obtain (57). Finally, from the
base-frame form of (59) and using (81)

τ̈e, i =(n̈i + ṅi × ωi + ni × γi)
T ẑi−1

+ (ṅi + ni × ωi)
T (ωi × ẑi−1) +Di

...
q i

=(n̈i + ṅi × ωi + ni × γi)
T ẑi−1

+ [ṅi × ωi + (ni × ωi)× ωi]
T ẑi−1 +Di

...
q i (92)

where the well-known property of the scalar triple product
aT (b× c) = (a× b)T c has been used. Collecting for ẑi−1

and expressing all quantities into frame i will return (60). This
holds for revolute joints; for prismatic joints, the proof is almost
identical and is omitted.

Equations (62)–(63) are simply the model-based computa-
tions of the spring torques and stiffnesses for joint i, while
(64)–(66) are the joint-decoupled versions of equations (15) and
(16). Equation (67) gives the closed-form expression of the i-
th diagonal block of the rearranged matrix A, defined in (19).
Equations (68) solves (19) for joint i. Equations (70)–(74) are
the joint-decoupled versions of (21), (22), (23), (5b) and (5c),
in this order.
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