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Abstract

An integrated visual-based approach to motion
planning and control of a nonholonomic wheeled
mobile robot is presented. Vision is used to local-
ize the obstacles and the robot and for real-time
feedback control of the vehicle motion. An A∗-
based motion planner is used to search the dis-
cretized robot configuration space for collision-
free paths. Nonholonomic constraints are taken
into account by properly defining cell adjacency
in the discretized configuration space and in the
choice of the heuristic functions. Path planning
results for unicycle and car-like kinematics are
presented and compared in simulated environ-
ments. The whole system is tested with the mo-
bile robot SuperMARIO in an unknown indoor
environment. In the experiments, tracking of the
planned trajectories is achieved via visual feed-
back from a fixed camera and using a dynamic
linearizing control law.

1 Introduction

Mobile robot autonomy requires the integration
of sensing, planning, and control capabilities.
Typical sensors include rangefinders (infrared and
sonar) and more powerful vision systems [5].
Their (combined) use allows to build a map of an
unknown environment [18] and/or to localize the
mobile robot [2, 9]. Once a geometric description
of the environment is available, the motion plan-

ner define a feasible collision-free path joining the
start and goal robot postures. For wheeled mo-
bile robots, nonholonomic constraints due to the
perfect rolling assumption of the wheels on the
ground can be taken into account in the plan-
ning phase, as well as other physical or task-based
constraints such as maximum allowed path cur-
vature [13, 15, 21]. During motion execution, the
robot controller has to be designed in order to
guarantee path following and regulation to the fi-
nal configuration [6]. Typically, a combination of
feedforward and feedback commands are needed
and the availability of a single control law for
both motion tasks is highly desirable. In order
to overcome the control limitation due to non-
holonomy, time-varying [20], discontinuous [1], or
dynamic [7] state feedback have been used. Since
proprioceptive (i.e., odometric) feedback is sensi-
tive to slipping disturbances, the use of visual in-
formation for real-time motion control is becom-
ing more popular [4, 11, 12, 16].

In this paper, we present an integrated approach
to motion planning and control of a wheeled mo-
bile robot based on visual information. The 2D
indoor environment is completely unknown and a
camera mounted on the ceiling is used to deter-
mine the position of the obstacles and to local-
ize the robot. This information, together with a
given goal posture, is directly processed by a mo-
tion planner that generates an optimal nonholo-
nomic and collision-free path, using the A∗ algo-
rithm on a discretized robot configuration space
as in [17]. The objective function is related to the
path length while different heuristics can be used,
depending on the robot kinematic constraints.
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Collision-checking is efficiently performed in the
cartesian space. The mobile robot SuperMARIO
used in our experiments is a two-wheel differen-
tially driven vehicle and its kinematics is equiva-
lent to that of a unicycle. However, feasible paths
may be generated also taking into account addi-
tional curvature constraints, i.e., assuming that
the robot cannot rotate on place and thus cover-
ing also the case of a vehicle with car-like kine-
matics [14]. Path smoothing is then performed
using clothoids [10] and a timing law is assigned
so as to comply with bounds on vehicle veloc-
ity and acceleration. The resulting trajectory is
passed to the robot controller, which is based
on the recently developed dynamic feedback lin-
earization technique [19], with the current robot
state measured through the fixed camera as in [8].

The paper is organized as follows. In the next sec-
tion we briefly describe our experimental setup,
including the robot and the vision system, and
the visual processing for obstacle localization and
robot feedback control. In Sect. 3, we present
the nonholonomic motion planner and compare
the performance with different heuristics on simu-
lated environments, both for unicycle and car-like
kinematics. In Sect. 4, we report on the experi-
mental results with SuperMARIO.

2 System setup

The mobile robot SuperMARIO is a two-wheel
differentially-driven vehicle (see Fig. 1). The
driving wheels have radius r = 9.93 cm and their
axle is of length d = 29 cm; a small passive off-
centered wheel (castor) is placed near the vehicle
front. Incremental encoders are mounted on the
two wheels’ motors. SuperMARIO communicates
via radiomodem with a 300Mhz PC Pentium II,
where a library of C++ control algorithms is in-
stalled. The vision system is made by a digital
1/2” camera with 768 × 576 pixels, fixed on the
laboratory ceiling at an height of 2.9 m, and a Ma-
trox Meteor frame grabber on the PC. The cam-
era output signal (RGB or CCIR) is sent to the
frame grabber with a 25 Hz frame rate in CCIR
mode. The vision area (i.e., the workspace) di-

mensions are 2.90 × 2.10 m. As a result, 1 pixel
≈ 3.7 mm. A more detailed description of the
whole system is given in [19].

Figure 1: The mobile robot SuperMARIO

2.1 Kinematic model

The kinematic model of nonholonomic robot Su-
perMARIO is

ẋ = v cos θ

ẏ = v sin θ (1)

θ̇ = ω,

where the robot reference point (x, y) is the carte-
sian position of the wheel axle midpoint, θ is the
vehicle orientation w.r.t. the x-axis, v and ω are,
respectively, the linear and angular robot veloc-
ity. The actual input commands are the angular
velocities (ωR, ωL) of the right and left wheels;
these are one-to-one related to (v, ω) by

v = r
ωR + ωL

2
, ω = r

ωR − ωL
d

. (2)

Although SuperMARIO can rotate on place, and
is thus kinematically equivalent to a unicycle, one
may impose a car-like behavior by introducing a
constraint on the inputs. This is related to the
maximum curvature value κ allowed for paths to
be followed by the robot reference point, i.e.,

|ω| ≤ κ |v|. (3)



The inequality (3) leads to linear constraints also
on the actual commands (ωR, ωL).

2.2 Visual feedback

Visual feedback is used for determining the start
and current robot posture and to localize the ob-
stacles in the workspace.

For reconstructing the robot posture, we have
mounted on SuperMARIO a black surface with
three leds, located at the vertices of an isosceles
triangle pointing in the forward direction having
the upper vertex position in the robot reference
point (x, y). In order to localize this triangle
in the image, we proceed as follows. A binary
image is created first from the original 256-level
grayscale image, by using a fixed threshold (set to
240). Using a dilation operator, a more significant
image is obtained from which a list of light blobs
(in the range of 30÷120 pixels each) is extracted.
Upper and lower bounds on the blob area are used
to discard false reflections from the floor and the
robot chassis (especially, wheels)1. Next, an ap-
propriate algorithm based on relative distances
deletes from the list all the blobs that cannot be
candidate vertices (within some tolerance), and
builds with the remaining blobs all isosceles tri-
angles with consistent side length. Once a single
triangle is determined, let (xu, yu), (xl, yl), and
(xr, yr) be the coordinates of, respectively, the
upper, lower-left, and lower-right vertex. The es-
timate of the robot reference point is simply x̂ =
xu, ŷ = yu. The center (xc, yc) of the triangle
and its base midpoint (xm, ym) are then com-
puted from the three vertices. The estimate θ̂ of
the robot orientation is finally computed as

θ̂ =
θ1 + θ2 + θ3

3
,

with

θ1 = ATAN2{yu − yc, xu − xc}
θ2 = ATAN2{yu − ym, xu − xm}
θ3 = ATAN2{yc − ym, xc − xm}.

1This is done using the MIL Libraries that allow blob
detection and fast analysis of basic blob features, such as
center of mass, area, etc.

This averaging strategy is able to reduce the ef-
fects of image noise.

When using visual feedback during motion execu-
tion, the control sampling time is Tc = 55 ms, in-
cluding frame acquisition, elaboration and robot-
server communication. The small increase (5 ms)
in sampling time with respect to odometric feed-
back control [8] has been limited by making frame
acquisition asynchronous from other control rou-
tines and by restricting the above triangle search
to a 300×300 window centered around the previ-
ous robot posture estimate. A full window search
would have led to 80 ms sampling time.

For detecting the (static) obstacles, the robot is
removed from the image by first bounding its 3D
shape with a box centered on the robot reference
point, then projecting this box onto the cartesian
plane, and finally saturating the pixel values in
the obtained area. Pixels with gray level below a
given threshold (set to 55) are assumed to belong
to obstacles.

3 Motion planner

The path planning problem consists in find-
ing a path between a start configuration qS =
(xS, yS, θS) and a goal qG = (xG, yG, θG), which
avoids workspace obstacles (collision-free) and re-
spects the nonholonomic constraints of the vehi-
cle (feasible).

The workspace is represented by a bitmap with
r × c square cells of side δ. Each cell typically
contains about one hundred pixels. The cell is
labeled as an obstacle if at least one pixel is an
obstacle.

The path planner searches for collision-free paths
over the (discretized) configuration space. How-
ever, in order to increase efficiency, configuration
space obstacles are never built but collision is
checked at runtime in the workspace only for can-
didate robot configurations selected by the plan-
ner. For this collision check, SuperMARIO is rep-
resented by its bounding rectangle (see Fig. 2).
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Figure 2: Bounding rectangle and inscribed circle
used for SuperMARIO within the motion planner

3.1 Cell adjacency

To take into account the nonholonomic con-
straints, adjacency between cells in the configu-
ration space representation is defined by consid-
ering a discrete set of velocity inputs [15]:

v = {±v0, 0} ω = {±ω0, 0}. (4)

The adjacent successors of a given configura-
tion qi are generated by integrating the kine-
matic equations (1) on a unitary time interval,
with v and ω taking values in the finite veloc-
ity set (4). In particular, we have chosen v0 = δ
and ω0 = π/8 to guarantee that the next con-
figuration qi+1 will not be farther away than one
neighboring cell [17]. Note that, in the case of
our differentially-driven robot, it is sufficient to
consider combinations of inputs in which either v
or ω is zero, while in order to emulate a car-like
behavior ω is forced to zero if v = 0.

A feasible collision-free path P will then be
a sequence of adjacent robot configurations
{q0, . . . , qN} joining qS with qG (i.e., q0 = qS and
qN = qG) and such that, in these configurations,
the robot does not collide with obstacles in the
environment.

3.2 Search algorithm

Search in the discretized configuration space is
performed with the well-knownA∗ algorithm (see,
e.g., [15]), which returns, if it exists, a path min-
imizing a given cost function g(P ). The search is
made efficient by the use of an heuristic function
h(q) estimating the cost of the optimal path from

the configuration q to the goal qG.

3.2.1 Cost function

The cost of a path P is defined as

g(P ) =
N−1∑

i=0

w(qi, qi+1),

where w(qi, qi+1) is a measure of the space trav-
eled by the robot wheels. In particular we have
set: w(qi, qi+1) = v0, for linear displacements
(v = ±v0, ω = 0); w(qi, qi+1) = ω0d/2, for a reori-
entation on place (v = 0, ω = ±ω0); w(qi, qi+1) =
v0 + ω0d/2, for motion along an arc of a circle of
radius v0/ω0 = 1/κ (v = ±v0, ω = ±ω0). The
latter expression is a monotonic function of the
space traveled by the robot reference point.

3.2.2 Heuristic function

The simplest heuristic function to be used within
our application of A∗ is the distance he to the
goal, i.e., he(qi) is the euclidean distance between
(xi, yi) and (xG, yG). However, this heuristic leads
the search toward the goal without taking into
account i) the nonholonomic nature of the robot,
and ii) the presence of obstacles.

For the first issue, better results may be obtained
by using, in the definition of the heuristic func-
tion, the length of the time-optimal trajectories
computed in [3] for a differentially-driven robot
moving in free space. In fact, when q is suffi-
ciently far from qG, the optimal trajectory is com-
posed by two rotations on place (one at the begin-
ning and the other at the end) and a motion along
the linear segment joining the respective cartesian
positions. This also minimizes the length of the
path traveled by either one of the two wheels 2.

To incorporate in this framework the workspace
obstacles, the heuristic function hn replaces, in
the computation of the total length of the path-
to-go, the length of the linear segment (euclidean
distance) with the value of the numerical naviga-
tion function obtained by a cartesian wavefront

2By considering the cartesian path traced by the
wheels, we can also obtain an homogeneous measure of
combined angular and linear quantities.



expansion from the goal position (xG, yG) to the
position (x, y) [15, p. 318].

If (x, y) is closer than about d to the goal position,
the sequence of optimal maneuvers in [3] becomes
more complex and results in a computational load
which does not justify the benefits of getting a
more informed heuristic. Thus, when the robot
is very near to the goal, the heuristic function hn
will be simply given by the value of the navigation
function.

The efficiency of the planner can be further im-
proved by preliminarily growing the workspace
obstacles by the radius of the circle inscribed in
the SuperMARIO bounding rectangle (see again
Fig. 2) and then performing wavefront expansion.
Below this minimum distance from the robot ref-
erence point there will be certainly collision with
the obstacles.

Note finally that both he and hn are admissible
and locally consistent [15] heuristics. Hence, the
resulting A∗ instances will be resolution complete
and will gain the lowest n log n complexity (be-
ing n the total number of cells). Indeed, refining
the cell thickness δ will make the length of the
resolution-optimal path closer to the real (con-
tinuous) optimum.

3.3 Smoothing with clothoids

The A∗ algorithm outputs a path P made by a
sequence of configurations qi = (xi, yi, θi) which
projects into a polygonal line on the xy plane.
Depending on the local sequence of θi around the
vertices of this polygonal line, it may be con-
venient to join contiguous cartesian segments in
a smooth way. This will avoid practical prob-
lems when the robot needs to follow the result-
ing smoothed path with a continuous timing law
(trajectory tracking). In order to smooth corners,
when needed, we have used clothoid curves that
guarantee the following properties [10]:

• The smoothed curve never lies farther away
than a threshold ε from the original cartesian
segments (this condition enables to preserve
collision avoidance also for the smoothed

curve).

• The total change of orientation along the
curve equals the rotation at the corner be-
tween the two segments.

• The velocities of the robot wheels along the
curve can be made continuous and never zero
at the same time.

A typical clothoid smoothing is shown in Fig. 3,
where ε = |CP | can be regulated at will by the
choice of the clothoid parameters. For contiguous
segments to be executed with the same robot mo-
tion direction (forward or backward), the clothoid
allows the use of a timing law with non-vanishing
velocity. In the presence of a cusp (motion rever-
sal), the linear velocity should indeed go to zero.

C

X
0 x

y

P0 1

2

Figure 3: Example of clothoid smoothing

3.4 Planning results

We present numerical results on path plan-
ning using the A∗ algorithm with the two pro-
posed heuristics and the two wavefront expansion
strategies. We compare computational times in
the following three cases, for the unicycle kine-
matics or a car-like behavior of SuperMARIO:

C1 Heuristic function he (euclidean distance)

C2 Heuristic function hn, with wavefront expan-
sion on the cartesian obstacles

C3 Heuristic function hn, with wavefront expan-
sion on the grown obstacles

Figure 4 shows the test environment and the con-
sidered motion planning problem; note that a



‘trap’ for case C2 is present in the upper ob-
stacle. The workspace is discretized into cells
having δ = 4.4 cm. If taken into account (car-
like behavior), the maximum allowed curvature
is κ = π/(8δ) ≈ 0.088 cm−1.

Goal

Start

Figure 4: Test environment

Figures 5 and 6 show the wavefront expansions
for cases C2 and C3, respectively. For case C2
(Fig. 5), the wave expansion is fooled by the trap
and the A∗ planner search will be slowed down
accordingly. In case C3, the preliminary obstacle
growing closes the trap and so the heuristic hn
will provide a more correct information.

Figure 5: Wavefront expansion in case C2

Tables 1 and 2 report the A∗ computational times
in the three cases, using the cell adjacency for the
unicycle and, respectively, for the car-like kine-
matics. T1 is the wavefront expansion time (and
the obstacle growing for case C3) while T2 is the
search time (both expressed in seconds on the
Pentium II PC governing SuperMARIO).

Figure 6: Wavefront expansion in case C3

Heuristic T1 T2 Total
C1 0 156 156
C2 2 107 109
C3 6 13 19

Table 1: Computational times with A∗ and dif-
ferent heuristics: unicycle case

Heuristic T1 T2 Total
C1 0 102 102
C2 2 89 91
C3 6 38 44

Table 2: Computational times with A∗ and dif-
ferent heuristics: car-like case

The euclidean heuristic he used in C1 requires
the longest time, even if no wavefront expansion
is performed. In case C2, the heuristic hn im-
proves A∗ performance but it is affected by the
obstacle trap, while the best results are obtained
in case C3 with an overall significant improve-
ment, more pronounced indeed for the unicycle
kinematics. The resulting motions generated by
the planner, after the clothoid smoothing, are
presented in Figs. 7 (unicycle) and 8 (car-like).
Only the bounding rectangle is shown for Super-
MARIO.



Figure 7: Planned motion: unicycle case

Figure 8: Planned motion: car-like case

4 Experimental results

In this section we present the results of an ex-
periment in our Laboratory with the real robot
SuperMARIO. Figure 9 shows the initial situa-
tion captured by the camera on the ceiling. After
the preliminary elaborations, the obstacles can be
easily localized (Fig. 10).

The path planner is invoked under the same max-
imum curvature constraint (car-like behavior) of
Sect. 3, preliminary growing the obstacles and us-
ing the heuristic hn (case C3). The resulting path
is smoothed with clothoids. In order to generate
the reference trajectory used by the controller, a
timing law is associated to the path, so as to start
the robot from rest, reach the goal at rest, stop at
cusps along the path (for motion inversion), and
satisfy the following bounds on the robot actua-

tors angular velocity and acceleration:

|ωi| ≤ ωmax = 3.52 rad/s

|ω̇i| ≤ ω̇max = 8.35 rad/s2,

with i ∈ R,L (right and left wheels).

Figure 11 shows the motion executed by Super-
MARIO. Three motion inversions occur along the
path generated by the planner. Accurate tracking
of the trajectory is achieved using the following
dynamic feedback linearizing control law (see [8]):

ξ̇ = u1 cos θ + u2 sin θ

v = ξ (5)

ω =
1

ξ
[u2 cos θ − u1 sin θ] ,

where ξ is the (scalar) compensator state and
(u1, u2) is the auxiliary command input. It can
be easily shown that the closed-loop system (1)
and (5) is equivalent to two independent chains
of two integrators between (u1, u2) and (x, y).
Therefore, the auxiliary command input can be
defined as a linear PD stabilizing feedback on the
cartesian reference trajectory (xd(t), yd(t))

u1 = ẍd +Kp1(xd − x) +Kd1(ẋd − ẋ)
u2 = ÿd +Kp2(yd − y) +Kd2(ẏd − ẏ),

(6)

with Kpi > 0, Kdi > 0 (i = 1, 2). The ini-
tial compensator state in eq. (5) must be ξ0 �= 0
and this condition should be preserved also dur-
ing motion, in order to avoid control singular-
ity [19]. The actual values of (x, y, θ) needed in
eqs. (5–6) are evaluated by visual feedback every
Tc = 55 ms, while (ẋ, ẏ) in eq. (6) can be deter-
mined as (ξ cos θ, ξ sin θ), i.e., using the compen-
sator state.

The evolution of the cartesian tracking error
norm during motion is given in Fig. 12. The peaks
(2÷3 cm) occurr in correspondence to zero veloc-
ity points, due to the filtering effect of the control
saturation. The total length of the cartesian path
is approximately 3.2 m and the execution time is
rather long (65 s), just for safety reasons.
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Figure 9: Initial image captured by the camera

Figure 10: Detected obstacles (the robot is local-
ized first and the removed from the picture)

5 Conclusions

An integrated visual-based approach to motion
planning and control of a nonholonomic wheeled
mobile robot has been developed and experimen-
tally tested on the laboratory prototype robot
SuperMARIO. The motion planner is based on
the A∗ algorithm, defining cell adjacency and lo-
cally consistent heuristic functions so as to take
into account the robot nonholonomic constraints
(unicycle or car-like kinematics) as well as the
obstacle locations, that are reconstructed by the
vision system. The combination of these ideas
provides a considerable improvement in the over-
all computational load. The resulting smoothed
collision-free path (with an associated timing law)
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Figure 11: Motion execution: trace of the robot
reference point (x, y)
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Figure 12: Motion execution: norm of the carte-
sian tracking error

is then accurately executed in real-time, by using
a trajectory tracking controller based on visual
feedback.

Future work includes the consideration of dy-
namic obstacles, both at the planning and control
level. We are also pursuing the use of an on-board
pan-tilt camera. In this case, one should develop
incremental visual-based planning methods and
execute motion by visual servoing, i.e., with the
task/trajectory and the associated errors directly
defined in terms of features in the image plane.
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