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Abstract— We present a novel real-time motion generation
approach for mobile manipulators which maintains balance
even when the robot is called to execute aggressive motions.
The proposed approach is based on Nonlinear Model Predictive
Control (NMPC) and uses the robot full dynamics as prediction
model. Robot balance is maintained by enforcing a constraint
that restricts the feasible set of robot motions to those generat-
ing non-negative moments around the edges of the support poly-
gon. This balance constraint, inherently nonlinear, is linearized
using the NMPC solution of the previous iteration. In this way
we facilitate the solution of the NMPC and we achieve real-time
performance without compromising robot safety. We validate
our approach in scenarios of increasing difficulty and compare
its performance with two other methods from the literature. The
simulation results show that our method can generate motions
that maintain balance in challenging situations where the other
techniques fail.

I. INTRODUCTION

Mobile manipulators (MMs) are increasingly used in ap-
plications due to their inherent versatility, as they combine
the mobile base mobility and the manipulator dexterity.
Depending on the application, their structure and size varies.
MMs with a small base are suitable for narrow and clut-
tered spaces, like industrial or even domestic environments.
However, as the size of the base decreases, one has to focus
on the robot balance which becomes more fragile, especially
under the execution of aggressive motions.

In the literature there are many attempts to evaluate and
prevent the MM loss of balance. The motion planning
approach in [1] maintains the MM balance when the base
is stationary. The Force-Angle measure [2], [3] predicts and
prevents tip-over instabilities when the whole robot is in
motion. The extensively used in humanoids Zero Moment
Point (ZMP) [4] is applied to MMs in [5]–[7] neglecting
though the inertia effect of the robot bodies. In order to
reduce the computational effort [8] uses approximations of
the ZMP position gradient and Hessian matrix, while in [9]
such approximations are avoided using appropriate recursive
algorithms. In [10], [11] the Stability Twist Constraint (STC)
is used in an inverse kinematics solver implemented as a
Quadratic Program (QP) constraining the support wrench
on the robot base to produce non-positive power with an
imaginary twist along each axis of the robot support polygon.
Similarly, [12] introduces an algorithm that adjusts the robot
motion in order to recover from a loss of balance considering
the moment around the support polygon edges. Note that
in [8]–[12] a high-level planner is required.
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An increasingly used tool for motion generation is the
NMPC. The NMPC solves an Optimal Control Problem
(OCP) at each control cycle and obtains the control inputs
that will be applied to the dynamic system. An application
of linear MPC to an omnidirectional MM is presented
in [13]. The kinematic model of an MM moving under non-
holonomic constraints is considered in the NMPC of [14]
where a Sequential Linear Quadratic (SLQ) algorithm [15]
is used for the solution of the OCP. However, no inequality
constraints like control input limits and collision avoidance
constraints are considered. The SLQ algorithm is used also
in [16] including inequality constraints through relaxed bar-
rier functions and, unlike [13] and [14] where the robot bal-
ance is not considered, here the authors introduce a balance
constraint using an approximation of the ZMP position that
ignores the effect of the dynamics under the assumption of
slow motions. Nevertheless, an approximation like this can
be dangerous when the robot performs aggressive motions,
since in this case the effect of the dynamics is significant.

In this work we present an NMPC suitable for MMs
called to execute tasks that require aggressive motions (i.e.,
high accelerations). Unlike the aforementioned works ( [13],
[14], [16]) we enforce kinodynamic feasibility through the
use of the robot dynamics as a prediction model and via
input and state constraints. We also include state constraints
to guarantee collision free motions. The relatively small
base of the considered robot and the required fast motions
dictate the use of a balance constraint that fully considers
the effect of the dynamics. We adopt the STC constraint for
balance, which requires the moments exerted by the robot
around the support polygon edges to remain non-negative.
For the solution of the OCP we use a Sequential Quadratic
Programming (SQP)-based Real-Time Iteration (RTI) ap-
proach [17] implemented within ACADO [18]. To avoid the
memory overhead coming with software like ACADO, that
are based on the symbolic representation of the OCP, we
simplify the inherently nonlinear balance constraint. We do
so by linearizing the constraint using the solution from the
previous iteration of the NMPC, considering it as a satisfying
approximation of the current solution. The proposed NMPC
is compared with the approaches presented in [10] and [16].
The results show that the proposed method outperforms the
compared ones by effectively generating feasible motions in
real-time in a series of challenging scenarios that require the
execution of aggressive motions.

The paper is organised as follows. The considered problem
is formulated in Section II. In Section III we define the robot
equations of motion and we present the formulas for the
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computation of the contact forces. In Section IV we outline
the proposed NMPC approach and in Section V we introduce
the considered balance constraint. Simulation results for the
considered MM are offered in Section VI. Finally, some
concluding remarks are offered in Section VII.

II. PROBLEM FORMULATION

Consider a mobile manipulator whose configuration q
takes values in an n-dimensional space. The robot operates
in a 3-dimensional workspace W , populated by static and/or
dynamic obstacles. The volume occupied by the robot is
denoted by R(q) ⊂ W . By Oj(t) ⊂ W we denote the
volume occupied by the j-th obstacle at time t (j = 1, 2, ...).
The robot is assigned a task in terms of a vector y ∈ Y ,
which describes the pose (position and orientation) of the
end-effector and is related to the robot configuration via a
forward kinematics map y = σ(q). The task is assigned as
a desired end-effector trajectory yd(t) with t ∈ [0, tf ] where
tf the task duration.

We wish to generate in real-time a motion that:
1) starts from the robot initial configuration q(0) = qs

and tracks the assigned end-effector task as accurately
as possible;

2) is kinodynamically feasible, in the sense that it is
consistent with the robot dynamic model and respects
existing constraints on joint and velocity limits and
control input limits (e.g., torque bounds);

3) maintains the robot balance, in the sense that all wheels
maintain contact with the ground;

4) avoids collisions between the robot and the obstacles
as well as self-collisions.

Clearly, exact tracking of the end-effector task is not
required, because the safety requirements 2-4 take priority.

III. MODELING

We consider an MM consisting of a general wheeled mo-
bile base, carrying a manipulator with nm joints (see Fig. 1).
We assume that the robot moves on an horizontal ground,
which is generally the case for wheeled MMs especially
for indoor applications, and that its nw wheels are in point
contact with the ground. For the actuated wheels we assume
that the ground-wheel friction is sufficient to prevent slippage
while the rest of the wheels do not affect significantly the
robot motion and they only contribute to the robot balance.

In order to represent the pose of the mobile base we
consider 6 fictitious joints that connect the world frame Fw

with a frame Fb that is attached to the mobile base. The
joints are arranged as follows: 3 prismatic joints along the
xw, yw and zw axes followed by 3 revolute joints with axes
parallel to the yaw, pitch and roll axes of the mobile base
(see Fig. 1). Note that this arrangement is not unique. We
denote the base configuration by qb =

(
xb, yb, zb, θz, θy, θx

)
and the manipulator configuration by qm =

(
θ1, ..., θnm

)
.

So the robot configuration is q =
(
qb, qm

)
and n = 6+nm.

The constraints enforced by the contact with the ground
(including the pure rolling constraint) can be expressed in
Pfaffian form [19] as AT (q)q̇ = 0.

Fig. 1. A mobile manipulator consisting of a wheeled mobile base carrying
a nm joint manipulator.

The robot dynamics in the Lagrange formulation are:

B(q)q̈ + n(q, q̇) = S(q)u+A(q)λ, (1)

being B(q) ∈ Rn×n the inertia matrix, n(q, q̇) ∈ Rn the
vector of velocity and gravitational terms, u ∈ Rnu the vec-
tor of generalized forces applied by the nu robot actuators,
S(q) ∈ Rn×nu the matrix that maps the actuator forces
to forces performing work on the generalized coordinates,
and A(q)λ the vector of the forces exerted to the robot
by its contact with the ground expressed at the generalized
coordinates level, with λ being the vector of contact forces.

Due to the robot motion on the horizontal ground, the co-
ordinates zb, θy and θx, which correspond to the joints Jf3,
Jf5 and Jf6, are constant. We split the robot generalised
coordinates into qf =

(
zb, θy, θx

)
and qr =

(
xb, yb, θz, qm

)
for which we have: qf = Qfq and qr = Qrq, where Qf

and Qr are selection matrices. If we left multiply (1) by Qr,
and considering that since z̈b = 0, θ̈y = 0 and θ̈x = 0 the
relation q̈ = QT

r q̈r holds, we get:

QrB(q)QT
r q̈r+Qrn(q, q̇) = QrS(q)u+QrA(q)λ, (2)

while if we left multiply (1) by Qf we also get:

QfB(q)QT
r q̈r +Qfn(q, q̇) = QfA(q)λ. (3)

Note that in (3) QfS(q)u = 0, since the robot actuators do
not perform work on the generalized coordinates qf .

A. State Space reduced Model

Starting from (2) and after some manipulation [19], we
can express the robot state space reduced model as:

ẋ = ϕ(x,u) =

(
G(q)ν

M−1(q)(E(q)u−m(q,ν))

)
, (4)

with the state defined as x =
(
qr ,ν

)
, where ν =

(
νb , q̇m

)
is the robot velocity vector, with νb the base pseudoveloci-
ties1, G(q) a matrix whose columns span the null space of
AT (q)QT

r and

M(q) = GT (q)QrB(q)QT
r G(q)

m(q,ν) = GT (q)
(
QrB(q)QT

r Ġ(q)ν +Qrn(q, q̇)
)

E(q) = GT (q)QrS(q).

1In the MM used in our simulation, the base pseudovelocities are the
driving and steering velocity of the mobile base.
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B. Contact Forces
Since we already assumed that the wheel-ground friction

is adequate to balance the tangential to the ground forces
exerted by the robot, here we will only focus on the elements
of λ that are orthogonal to the ground. Their determination,
however, is not trivial since the balance problem is hyper-
static when the contact points are more than 3. Nevertheless,
in order to argue about the robot balance, we only need to
know the sum of the orthogonal to the ground forces and
the moments tangent to the ground that the robot exerts. In
(3) the vector QfA(q)λ represents the contact forces at the
generalized coordinates level that constrain the base motion
along the axes of the joints Jf3, Jf5 and Jf6. If we denote
by ff3 the force that the robot exerts along the joint Jf3 and
by µf5 and µf6 the moments that the robot exerts around
the joints Jf5 and Jf6 respectively we have:ff3

µf5

µf6

 = −QfA(q)λ. (5)

Given that q̈r = G(q)ν̇ + Ġ(q)ν and by substituting (3)
and (4) in (5), we get ff3, µf5 and µf6 as a function of the
robot state and the control inputs:ff3

µf5

µf6

 = −QfB(q)QT
r G(q)M−1(q)E(q)u

+QfB(q)QT
r G(q)M−1(q)m(q,ν)

−QfB(q)QT
r Ġ(q)ν −Qfn(q, q̇) (6)

Denote by Fv a frame with axes parallel to Fb that lies
on the projection of Fb on the ground (see Fig.1). The
orthogonal to the ground forces and the tangent to the ground
moments that the robot exerts at a point L of the ground can
be expressed in Fv as:

fv = Rv
w(q)ff3ẑ

w
f3, (7)

µv = Rv
w(q)

(
µf5ẑ

w
f5 + µf6ẑ

w
f6 + [c]× ff3ẑ

w
f3

)
(8)

where Rv
w(q) is the rotation matrix of Fv w.r.t. the Fw, ẑw

f3,
ẑw
f5 and ẑw

f6 are the unit vectors of the axes of Jf3, Jf5 and
Jf6 respectively, expressed in Fw, c is the position vector
that starts from the point of application of ff3ẑw

f3 and ends
at L expressed in Fw and [c]× is the cross product operator
which represents a skew-symmetric matrix built from the
elements of c.

IV. PROPOSED NMPC APPROACH

We will solve this real-time motion generation problem
using an appropriate NMPC algorithm. NMPC solves an
OCP at each discrete time instant. For an efficient numerical
solution, each OCP must be reduced to a Nonlinear Program
(NLP). For the solution of the problem, we assume that the
robot is always aware of its own state as well as the position
and velocity of each obstacle.

Denote by H the prediction horizon, by δ the sampling
interval and by N = H/δ the number of control inter-
vals in the prediction horizon. The decision variables of

the NLP to be solved at time tk are the control inputs
Uk = {uk|0, ...,uk|N−1} and the robot states Xk =
{xk|0, ...,xk|N}, where uk|i and xk|i are the predicted
control inputs and robot state at time tk+i respectively.

Our objective is to make the task error as small as possible
while guaranteeing the safety requirements, possibly using
the minimum control effort. Denote by yk|i the pose of
the end-effector at the predicted time instant tk+i, by ẏk|i
the velocity of the end-effector at tk+i for which holds
ẏk|i = J(qk|i)νk|i with J(q) = ∂σ(q)/∂qG(q) and by
ẏd(tk+i) the desired end-effector velocity at tk+i. Denoting
the predicted task error at time tk+i as ek|i = yd(tk+i)−yk|i
and its derivative as ėk|i = ẏd(tk+i)− ẏk|i, we express the
running and terminal cost, respectively, as:

Vk|i(xk|i,uk|i) = eTk|iQpek|i + ėTk|iQdėk|i

+ νT
k|iPνk|i + uT

k|iRuuk|i (9)

Vk|N (xk|N ) = eTk|NQp,Nek|N + ėTk|NQd,N ėk|N

+ νT
k|NPNνk|N . (10)

Here, Qp, Qd and Ru are the weighting matrices for the
task error, its derivative and the control effort throughout the
prediction horizon, while Qp,N and Qd,N are the weighting
matrices for the task error and its derivative at the final time
instant. Note that in order to deal with the robot redundancy,
we introduced damping in the robot motion by including
the terms νT

k|iPνk|i and νT
k|NPNνk|N in the cost functions,

where P and PN are the weighting matrices for the robot
velocity throughout the prediction horizon and at the final
time instant respectively.

The NLP that will be solved at time instant tk is then:

min
uk|0,...,uk|N−1,
xk|0,...,xk|N

N−1∑
i=0

Vk|i(xk|i,uk|i) + Vk|N (xk|N ) (11a)

subject to:
xk|0 − xk = 0 (11b)
xk|i+1 − ϕd-t(xk|i,uk|i) = 0, i = 0, ..., N − 1 (11c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (11d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (11e)
collision avoidance constraints at tk, ..., tk+N (11f)
balance constraints at tk, ..., tk+N−1 (11g)

where xk represents the current robot state, ϕd-t(·, ·) repre-
sents the discrete-time dynamics of the robot obtained via
numerical integration under the assumption of piecewise-
constant control inputs, while xmin, xmax and umin, umax are
respectively the lower/upper bounds on the state variables
and on the control inputs.

Regarding the collision avoidance constraints, we use
ellipsoids to envelop the nb robot bodies. Let rj(xk|i) be the
position of the center of the ellipsoid that envelops the j-th
body at time instant tk+i and αj , βj and γj be the length of
the ellipsoid principal semi-axes. Assuming the frame of the
j-th ellipsoid attached at its center with axes aligned with the
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ellipsoid principal axes, we denote by Rj(qk|i) the rotation
matrix of the ellipsoid w.r.t. Fw. To each robot body we
associate an obstacle, Oj , that we envelop with a sphere of
radius ρj , denoting its center by oj . The collision avoidance
constraint that is included in (11f) is:

(rj(xk|i)− oj)
THj(xk|i)(rj(xk|i)− oj) ≥ 1 (12)

for i = 0, ..., N and j = 1, ..., nb with

Hj(xk|i) = Rj(qk|i)LjR
T
j (qk|i)

and

Lj = diag{(αj + ρj)
−2, (βj + ρj)

−2, (γj + ρj)
−2}.

Note that in the collision avoidance constraints to be included
in (11f) we consider also self-collision avoidance constraints
for each pair of robot bodies susceptible to collision. The
constraints are built similarly to the robot-obstacle collision
avoidance constraints assigning appropriately the ellipsoid
and the sphere to the two robot bodies based on their shape.

V. BALANCE CONSTRAINT

In this section we first present the criterion that we will use
for the evaluation of the robot balance. Then, we derive the
constraint to be applied in (11g) and introduce an additional
term in the cost function to improve the robot balance.

A. Balance Criterion

As a criterion to evaluate the robot balance, we use the
moments that the robot applies around the support polygon
edges. The robot maintains its balance if the resulting mo-
ments are non-negative. Denote by ei the unit vector of the
i-th edge and by pi the position of its starting point, both
expressed in Fv (see Fig. 2). If µi is the moment that the
robot applies around the i-th edge of the support polygon
then the criterion for robot balance is expressed as:

µi = eTi (−p′
i × fv + µv) ≥ 0, ∀ i = 1, ..., ne, (13)

where p′
i = pi − lv , with lv the position vector of L w.r.t.

Fv and ne the number of support polygon edges. Note that
constraining the moments around the support polygon edges
to remain non-negative is equivalent to constraining the ZMP
to lie within the support polygon (see Appendix).

Substituting (7), (8) and (6) in (13) and after simple
manipulation we get the balance criterion in the form:

D(x)u ≤ b(x), (14)

where the expressions of D and b are easily derived from
the aforementioned equations.

B. Balance Constraint

As we mentioned we will use ACADO for the formulation
and solution of the OCP. Although ACADO is very effective
in solving an OCP in real-time, it requires a symbolic
representation of the OCP. This leads to a memory overhead
in cases where the prediction model and the considered
constraints are long and complex, as in the case of an MM.

Fig. 2. The robot support polygon. By ei we denote the unit vector of its
i-th edge and by pi the position of its starting point, all expressed in Fv .

In order to deal with this issue, instead of using the
inherently nonlinear balance constraint (14) directly in the
NLP, we take advantage of the recursive nature of the NMPC
in order to simplify it. Specifically, for the balance constraints
of the NLP to be solved at time instant tk we will use the
NLP solution Uk−1 obtained at time instant tk−1. Starting
form the initial state xk−1|0 and using the control sequence
Uk−1, we can integrate the robot equations to obtain its tra-
jectory throughout the prediction horizon computed at time
instant tk−1, that is Xk−1 = {xk−1|0,xk−1|1, ..,xk−1|N}.
Given that the predictive model is accurate, by applying
the control input uk−1|0 at time instant tk−1 we get the
robot initial state at time instant tk, i.e., xk|0 = xk−1|1.
Assuming no significant changes in the environment between
the consecutive time instants tk−1 and tk, we can use Xk−1

as an estimation of the first N − 1 states of the trajectory
Xk. We will use this estimation in order to evaluate D(x)
and b(x) in eq. (14) for each time instant throughout the
prediction horizon. The resulting balance constraints that will
be applied at (11g) of the NLP to be solved at tk are now
linear combinations of the control inputs:

D(xk|0)uk|0 ≤ b(xk|0)

D(xk−1|2)uk|1 ≤ b(xk−1|2)

...
D(xk−1|N )uk|N−1 ≤ b(xk−1|N )

Note that the solution of the NLP might entail some predicted
control inputs that lead to unbalanced states, due to the
obsolete information used by the previous solution. However,
the control input that will be applied to the robot at time
instant tk, namely uk|0, guarantees balance at time instant
tk since xk|0 is independent of the NMPC solution at tk.

C. Improving Balance

Even if the balance constraint is satisfied, the robot might
get dangerously close to losing balance, unless we introduce
an appropriate term in the cost function that improves the
robot balance. Thus, we add in the running cost the term
vT
k|iΛvk|i, where vk|i = D(xk−1|i+1)uk|i − b(xk−1|i+1)

and Λ the corresponding weighting matrix. This term helps
to evenly distribute the moments among the edges of our
support polygon.
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VI. SIMULATIONS

In order to show the effectiveness of the proposed method,
we conducted a series of simulations assigning to the
robot end-effector tasks that require aggressive motions. All
the simulations were implemented using Simscape within
Simulink on an Intel Core i9-9900K CPU running at
3.60GHz. For the numerical solution of the NLPs, we used
the RTI scheme [17] implemented within ACADO [18].

The robot used for our simulations is an MM consisting
of a differential-drive mobile base with two caster wheels
carrying a 3-link manipulator on top (see Fig. 3). The height
of the mobile base is 0.4 m and the length of the manipulator
is 1.35 m. The total robot weight is 44.5 kg. The robot is
torque controlled. By τr and τl we denote the torques at
the right and left driving wheels respectively and by τ1,
τ2 and τ3 the torques of the actuators at the manipulator
joints (the enumeration starts from the closest to the base
joint). The MM wheels form a support polygon with four
edges. If we locate the frame Fv along the axis of the robot
base, the position of the support polygon edges expressed
in this frame is: p1 =

(
0.2 ,−0.133

)
, p2 =

(
0.2 , 0.133

)
,

p3 =
(
−0.15 , 0.2

)
and p4 =

(
−0.15 ,−0.2

)
. However, for

safety reasons we will considered for the balance constraint a
restricted support polygon reducing its dimensions by 10%.

For the collision avoidance constraints, we assign to each
robot body its closest obstacle. Their closeness is evaluated
using the minimum weighted distance that is considered in
(12) between the ellipsoid that envelops the robot body and
the sphere that envelops the obstacle. We also include one
self-collision avoidance constraint between the base and the
third link of the manipulator, enveloping the base in a sphere.
The rest of the robot bodies are protected from self-collision
thanks to appropriate joint limits.

We wish to compare the proposed method with two ap-
proaches from the literature: (1) the NMPC proposed in [16]
and (2) the QP proposed in [10]. These methods, originally
applied to velocity controlled robots, were slightly modified
in order to be applied to the considered torque controlled
robot.

In the rest of this section we briefly present the compared
methods and then we show the simulation results.

A. Compared Methods

a) NMPC using a ZMP position approximation: The
NMPC presented in [16] uses a balance constraint built upon
the approximation of the ZMP position:

p̃zmp =
ng × (pcog × fg − pee × fee − µe)

ng · (fg − fee)
,

where ng is the ground normal vector, pcog and fg are the
position of the robot center of gravity and the gravitational
forces applied to the robot, pee the position of the end-
effector and fee and µe are the external forces and moments
applied to the end-effector, all expressed in Fv . The consid-
ered balance constraint takes the form:

gzmp(x) = ρ2sc − ∥p̃zmp∥2 ≥ 0 (15)

where ρsc is the radius of a circle enveloped by the support
polygon. In [16], the balance constraint (15) was included in
the cost function using a relaxed barrier function. However,
for the purpose of this comparison we will use an NLP as
the one proposed in (11) using (15) as balance constraint.
To improve the robot balance we include in the running and
terminal costs (9) and (10) the terms w(ln (gzmp(xk|i)/ρ

2
sc))

2

and wN (ln (gzmp(xk|N )/ρ2sc))
2 where w and wN are the

associated weights. In the simulation results we will refer to
this method as NMPC-CG (CG stands for center of gravity).

b) QP using the STC: The method in [10] uses a QP
in order to solve the inverse kinematics problem given an
end-effector task at the velocity level. For the purpose of
this comparison, we slightly modified the QP in order to
consider the robot dynamics. If qk+i, νk+i, xk+i and uk+i

are the robot configuration, velocity, state and control inputs
at time tk+i respectively, then the QP to be solved at tk is:

min
uk

νT
k+1Qνk+1 + vT

k Pvvk + uT
kRuuk

subject to:
ẏd(tk+1)− J(qk+1)νk+1 = 0

qmin ≤ qk+2 ≤ qmax

νmin ≤ νk+1 ≤ νmax

umin ≤ uk ≤ umax

D(xk)uk ≤ b(xk)

where qk+1, qk+2 and νk+1 result from the integration of
the equations of motion (4) using the Euler method and they
are functions of xk and uk. The balance is maintained using
(14) while the term vT

k Pvvk improves the robot balance with
vk = D(xk)uk−b(xk) and Pv the associated weight. Note
that here we cannot apply collision avoidance constraints
since in principle they are nonlinear functions of the state,
while the QP can only accept constraints formulated as linear
combinations of the control inputs. We will refer to this
method as QP-STC and for its solution we use quadprog.

B. Simulation Results

We compare the three methods in five different scenarios
of assigned end-effector tasks. For all methods the sampling
interval is δ = 23ms while the prediction horizon for the
proposed method and the NMPC-CG is H = 0.23 s, chosen
as large as possible to allow real-time performance. In Fig. 3
we offer a series of snapshot of the simulations while at
https://youtu.be/xp3qVcyYww8 we offer the full video
of the simulations. Note that the maximum iteration time for
the proposed method was less than 23ms in all considered
scenarios, showing that it can perform in real-time.

Scenario 1: The assigned end-effector task is to track
a linear path of length 1.45m following a trapezoidal ve-
locity profile. The task duration is 4 s and the maximum
acceleration along the path is 0.44m/s2. The environment is
obstacle-free. In this scenario all three methods generate fea-
sible motions (see Fig. 3 and video). However, Fig. 4 shows
that the proposed method and the NMPC-CG (inseparable in
the plot) give a smoother ZMP path than the QP-STC.
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Fig. 3. Snapshots of the motion generated by the proposed method and the two compared methods in the five scenarios.

Scenario 2: The assigned end-effector task is the same of
Scenario 1 only now the task duration is decreased to 1.2 s
while the maximum acceleration is increased to 4.84m/s2.
The environment is again obstacle-free. Fig. 3 (and the video)
shows that only the methods that consider the full robot
dynamics for the evaluation of the robot balance, i.e., the
proposed method and QP-STC, are able to generate feasible
motions while the NMPC-CG fails as the rear wheels of
the MM lose contact with the ground. It is apparent that,
unlike Scenario 1, here the high acceleration required at
the beginning of the robot motion makes the ZMP position
approximation of the NMPC-CG inadequate and the robot
loses balance immediately (see Fig. 5 for the ZMP position).

Scenario 3: The assigned end-effector task is the same
of Scenario 1 but now the desired path is obstructed by a
spherical obstacle of radius 0.1m (see Fig. 3). The presence
of the obstacle leads to an increase of the required acceler-
ation at its vicinity (see Fig. 7). In Fig. 3 (and the video)
we can see that while our method performs satisfactory, the
NMPC-CG fails and the robot loses its balance when it is
called to avoid the obstacle (see Fig. 6). Note that as we
mentioned in Section VI-A, the QP-STC cannot be applied
in this scenario since it does not support collision avoidance
constraints.

Scenario 4: The end-effector has to follow a circular path
completing two full circles in 7 sec. The radius of the circle
is 0.5m. The environment is obstacle-free. In this scenario,
only the proposed method and the QP-STC were able to
complete the task, while in Fig. 3 (and the video) we can
see the NMPC-CG losing balance as the rear wheels of the
robot detach from the ground at the beginning of the second
circle (see also Fig. 8 for the ZMP position). In Fig. 8 we
can also see that the proposed method generates motions that
result to a smoother ZMP path than the QP-STC.

Scenario 5: The end-effector has to follow a linear path of
length 0.7m followed by a second linear path of length 0.7m
that forms an angle of π/4 rad with the first one (see Fig. 3).
The desired velocity has again a trapezoidal profile. The task
duration is 4 s and the maximum acceleration along the path
is 0.44m/s2. The environment is obstacle-free. In Fig. 3
(and the video) we can see that due to the abrupt change
of direction, that leads to increased required accelerations
(see Fig. 10), only the proposed method is able to generate
feasible motions, while the rest lose balance (see also Fig. 9).

VII. CONCLUSION

In this work we presented a novel real-time motion gen-
eration approach for MMs using an NMPC. Kinodynamic
feasibility is enforced through the use of the robot dynamic
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Fig. 4. The ZMP position resulting in Scenario 1

Fig. 5. The ZMP position resulting in Scenario 2

model as prediction model and via input and state constraints.
To prevent the robot loss of balance in cases where it is called
to execute aggressive motions we included a constraint that
restricts the robot feasible motions to those that result to
non-negative moments around the support polygon edges.
To enable the solution of the proposed NMPC scheme with
off-the-self solvers that require symbolic representation of
the OCP, like ACADO, we lifted the inherent nonlinearity
of the balance constraint by linearizing it using the solution
of the previous iteration of the NMPC. The proposed method
was compared with two other methods in five scenarios.
The simulation results showed that the proposed method can
effectively handle end-effector tasks that require aggressive
motions even in cases where the other methods fail.

Future work aims at the experimental validation of the
proposed method as well as the extension of the proposed
method to consider additional aspects of the robot dynamics
(e.g., the effect of the wheel-ground friction).

Fig. 6. The ZMP position resulting in Scenario 3

Fig. 7. Control inputs resulting in Scenario 3

APPENDIX

Using Fig. 2 as a reference, we will show the relation
between the moment around the i-th support polygon edge,
µi and ZMP position, pzmp. We can obtain the ZMP position
from the static equilibrium:

R+ fv = 0 (16a)

pzmp ×R+ lv × fv + µv = 0 (16b)

where R the ground support force due to the contact of the
robot with the ground. Substituting (16a) and lv = pi − p′

i

in (16b) we get:

−p′
i × fv + µv = pzmp × fv − pi × fv (17)

Substituting (17) in (13) we get the relation between the
moment around the i-th edge of the support polygon and the
position of the ZMP, that is:

µi = fT
v (ei × (pzmp − pi)) (18)
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Fig. 8. The ZMP position resulting in Scenario 4

From this relation we can deduce that:
• if the ZMP lies on the half-plane that is defined by ei

and contains the support polygon, then µi > 0;
• if the ZMP lies on the half-plane that is defined by ei

but it does not contain the support polygon, then µi < 0;
• if the ZMP lies on the line generated by ei, then µi = 0.
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