
Prioritized Multi-Task Motion Control

of Redundant Robots under Hard Joint Constraints

Fabrizio Flacco∗ Alessandro De Luca∗ Oussama Khatib∗∗

Abstract— We present an efficient method for motion control
of redundant robots performing multiple prioritized tasks in
the presence of hard bounds on joint range, velocity, and ac-
celeration/torque. This is an extension of our recently proposed
SNS (Saturation in the Null Space) algorithm developed for
single tasks. The method is defined at the level of acceleration
commands and proceeds by successively discarding one at a
time the commands that would exceed their bounds for a task
of given priority, and reintroducing them at their saturated
levels by projection in the null space of a suitable Jacobian
associated to the already considered tasks. When processing all
tasks in their priority order, a correct preemptive strategy is
realized in this way, i.e., a task of higher priority uses in the best
way the feasible robot capabilities it needs, while lower priority
tasks are accommodated with the residual capability and do
not interfere with the execution of higher priority tasks. The
algorithm automatically integrates a multi-task least possible
scaling strategy, when some ordered set of original tasks is
found to be unfeasible. Simulation and experimental results on
a 7-dof lightweight KUKA LWR IV robot illustrate the good
performance of the method.

I. INTRODUCTION

The capability of handling multiple tasks is one of the

most appealing features of kinematically redundant robots.

Simultaneous control of a series of prioritized tasks is

typically achieved using generalized inversion (most often,

by pseudoinversion of the Jacobian) of the differential task

kinematics, combined with projections in suitable null spaces

so as to preserve as much as possible the execution of higher

priority tasks [1]–[3]. On-line (and thus local) solutions that

lend themselves to sensor-based control without the need of

future information are preferred, e.g., for dealing with the

time-varying and unpredictable nature of physical Human-

Robot Interaction (pHRI) tasks.

In this framework, hard constraints imposed in the joint

space (bounds on the joint range, velocity, acceleration, or

even torque) are barely taken into account, at least explicitly.

In fact, such hard bounds are typically converted into soft

ones, resolving redundancy by task constrained optimization

of suitable objective functions (e.g., keeping the joints closer

to their range centers [4], [5], or using the joint ranges

to weight the pseudoinversion [6] or to define an infinity

norm to be minimized at the velocity level [7]). However,

the commanded joint motion may still saturate some of

the bounds, producing then an unpredictable robot motion.

∗Dipartimento di Ingegneria informatica, automatica e gestionale An-
tonio Ruberti, Università di Roma “La Sapienza”, Via Ariosto 25,
00185 Rome, Italy {fflacco,deluca}@dis.uniroma1.it). ∗∗Artificial In-
telligence Laboratory, Stanford University, Stanford, CA 94305, USA
khatib@cs.stanford.edu. The work of the first two authors is supported by
the European Community, within the FP7 ICT-287513 SAPHARI project.

Furthermore, in case of multiple tasks, it may happen that the

command contribution needed to execute lower priority tasks

leads to exceeding some bounds. Their saturation destroys

also the execution of tasks in the correct priority.

A simple way to recover feasibility with respect to

the given bounds is by task scaling, i.e., reducing the

speed/acceleration of the (single or multiple) task commands.

Task relaxation by time scaling has been used for satisfying

joint velocity [8] and/or acceleration [9] bounds. In [10], the

velocity term in the one-dimensional null space of a 7-dof

robot is scaled so as to satisfy joint velocity bounds, if at

all possible. For multiple tasks, prioritization may still be

preserved (see, e.g., [11]), using again the mechanism of

projection in the null space of the task Jacobians.

Nonetheless, before resorting to task scaling, it would be

useful to verify whether we can generate alternative joint

motions that still execute the original task while satisfying

the hard joint constraints (and preserving prioritization in

case of multiple tasks). This obviously requires a smart

exploitation of the null space of the task Jacobian(s). A

method that explicitly handles joint velocity or acceleration

bounds in a redundant robot performing a single task has

been introduced in [12]. All joint commands exceeding their

bounds are simultaneously pushed back at their saturation

levels. This effect is then compensated by the selection

of a null space contribution intended to satisfy the task.

However, no solution is given in case of unfeasible tasks

and the method is not extended to multiple tasks. A similar

approach had been proposed for the case of multiple tasks in

the animation of avatars [13], where only joint range limits

were considered. Feasibility with respect to these bounds is

verified only after adding the contributions of all tasks, and if

not all tasks can be executed within the bounds, the resulting

task deformation is spanned to all tasks and not just to the

low priority tasks that produced the violation of bounds.

In [14], we proposed a new method, named SNS (Satu-

ration in the Null Space), for controlling the motion of a

redundant robot performing a single task under hard bounds

on the joint range, joint velocity, and joint acceleration. Com-

mands at the velocity or acceleration level were considered.

The SNS algorithm disables successively only one exceeding

command at the time, reintroducing it at its saturated level

through the projection in the null space of the task Jacobian.

Moreover, the algorithm automatically integrates the use of

the least possible task scaling, only when the original task

is found to be unfeasible.

The main goal of this paper is to extend the SNS approach

to the multi-task case, considering task priorities and the

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 3970

same previous set of hard joint constraints. In doing so,

we follow the idea of preemptive prioritization: A higher

priority task should use all the feasible robot capabilities it

needs, while a lower priority task must preserve the execution

of high priority tasks using only the residual capabilities

not used by all tasks of higher priority. This reasonable

requirement is very well addressed by our solution method.

As a matter of fact, the SNS algorithm typically ends up

with using a smaller number of saturated commands after

satisfying each task in the priority scale and this leaves more

room for the additional satisfaction of lower priority tasks.

Moreover, automatic scaling of task(s) is again seamlessly

embedded in the algorithm only when needed.

The considered problem can also be recast and tackled as

a constrained minimization of a quadratic objective function

under linear equality/inequality constraints with different

priorities, as done in [15], [16]. However, and in contrast to

these works, the inequality constraints imposed at the joint

level (including those on the commands) cannot and will

never be violated in our approach. These constraints, which

define what we call robot capabilities, are handled separately

and do not need to be allocated in the stack of prioritized

tasks. To guarantee feasibility, we include instead the possi-

bility of task scaling, which is not considered in [15], [16].

Moreover, the inequality constraints in our problem have the

form of elementary bounds (box constraints). This problem

structure, as well as the activation of one joint constraints at

the time in the SNS algorithm, is exploited so as to lead to

a computationally efficient numerical solution.

The paper is organized as follows. The redundancy for-

malism used throughout the paper is introduced in Sect. II.

Section III presents a simple motivating example where

the effects of joint acceleration saturation in a multi-task

scenario are correctly handled by our method. Section IV

recalls the SNS algorithm proposed in [14] for a single task.

This method is extended to multiple tasks in Sect. V. The

special case of (lower priority) tasks specified in the whole

configuration space of the robot is presented in Sect. VI. The

effectiveness of the SNS algorithm is shown by MatlabTM

simulations and experiments on a 7-dof KUKA LWR IV

robot, respectively in Sect. VII and Sect. VIII.

II. NOTATION AND BACKGROUND

Let q ∈ R
n be the vector of generalized (joint) coordinates

of a robot, x ∈ R
m the vector of variables describing a

generic m-dimensional task, with m < n, and J(q) the

associated m × n task Jacobian matrix. At a given (q, q̇),
the direct second-order differential relation and its (minimum

norm) inverse are

ẍ = J(q)q̈ + J̇(q)q̇, q̈ = J#(q)
(
ẍ − J̇(q)q̇

)
, (1)

where (·)# denotes pseudoinversion.

Consider l acceleration tasks ẍk, k = 1 . . . l, each of

dimension mk < n and ordered by priority, i.e., task i has

a higher priority than task j if i < j. The multi-task motion

control with priority can be described using the recursive

approach proposed in [1]. We have (dropping dependencies):

q̈0 = 0

q̈k = q̈k−1 + ak

= q̈k−1 + (JkP k−1)
#

(
ẍk − J̇kq̇ − Jkq̈k−1

)
,

(2)

In (2), Jk is the Jacobian associated to task k and P k is

the projector operator in the null space of the (augmented)

Jacobian of the first k tasks

JA,k =
(

JT
1 JT

2 · · · JT
k

)T
.

The generalized joint acceleration q̈k performs the first k
tasks with the given priority, while ak is the modification of

the acceleration needed to perform also task k, starting from

a solution for the first k − 1 tasks. The joint acceleration

addressing all l tasks is q̈ = q̈l.

The following recursive formula, useful for obtaining

the projector P k without recomputing the null space of

the augmented Jacobian for each additional task, has been

proposed in [13]:

P 0 = I

P k = P k−1 − (JkP k−1)
#

JkP k−1,
(3)

where I is the n × n identity matrix. To deal with singu-

larities, it is customary to use damped pseudoinversion, with

a selective damping on the lowest singular values (e.g., the

numerical filtering method of [17]).

III. ILLUSTRATIVE EXAMPLE

Consider a planar 4R manipulator with equal links of

unitary length performing a primary task specified by a

desired acceleration ẍ1 ∈ R
2 (m1 = 2) for its end-effector

and commanded by the joint acceleration q̈ ∈ R
4 (n = 4).

The degree of redundancy for this task is n−m = 2. Without

loss of generality assume the robot at rest, i.e., q̇ = 0.

Suppose that the joint accelerations are bounded as |q̈i| ≤ Ai,

i = 1, . . . , 4, with A1 = A2 = 2, A3 = A4 = 4 [rad/s2].

The 2 × 4 Jacobian J1(q) in the differential map (1)

evaluated at q =
(

π/2 −π/2 π/2 −π/2
)T

is

J1 =

(
−2 −1 −1 0
2 2 1 1

)
.

For a desired task acceleration ẍ1 =
(
−3 −1.5

)T
, the

minimum norm joint acceleration solution is

q̈1 = J
#
1 ẍ1 =

(
1.9091 −1.7727 0.9545 −2.7273

)T
,

which is within the joint acceleration bounds and thus

executable by the robot.

Consider a secondary scalar task (m2 = 1) specified by a

desired acceleration ẍ2 = 1 along the y direction for the tip

of the second link. At the given configuration q, the 1 × 4
Jacobian J2 associated to this secondary task is

J2 =
(

1 1 0 0
)
.

3971

By applying the task priority algorithm (2–3), the secondary

task is projected in the null space of the primary task

obtaining the joint acceleration

q̈ = q̈1 + (J2P 1)
#

(ẍ2 − J2q̈1)

=
(

2.125 −1.125 −0.125 −3.375
)T

,

which exceeds the acceleration bound at the first joint.

Indeed, if the robot is commanded in this way, the actual joint

acceleration applied to the robot would have the saturated

value q̈1 = A1 = 2 in place of the computed one and, as a

result, neither the first nor the second task will be achieved.

Since the higher priority task is by itself executable, the

standard solution that would preserve the priority of the two

tasks is to consider modified acceleration bounds for the task

of lower priority, taking into account the acceleration q̈1

already requested by the primary task, and then to scale the

desired acceleration for the secondary task so as to satisfy the

new bounds. We scale then the acceleration of the secondary

task by a factor s2 ∈ (0, 1) so that the joint acceleration

modification (see eq. (2))

a2 = (J2P 1)
#

(s2ẍ2 − J2q̈1) ,

satisfies the modified bounds −Ai−q̈1,i ≤ a2,i ≤ Ai−q̈1,i,

for i = 1, . . . , 4. This results in a scale factor s2 = 0.5 and

the final joint acceleration q̈1 + a2 is

q̈scaled =
(

2 −1.5 0.5 −3
)T

.

The primary task is fully executed, while only 50% of the

secondary task can be performed.

On the other hand, applying our SNS method (Algorithm 3

in Sect. V), it is still possible to find a joint acceleration

q̈SNS =
(

2 −1 0 −3.5
)T

that realizes exactly both original tasks while satisfying the

given joint acceleration bounds. In fact,

J1q̈SNS =
(
−3 −1.5

)T
= ẍ1, J2q̈SNS = 1 = ẍ2.

IV. SINGLE TASK SNS

In this section we recall the SNS method proposed in [14],

rewritten explicitly at the acceleration control level and for

a single task.

A. Shaping the joint acceleration bounds

We define the robot capabilities through the following

bounds on the joint ranges, joint velocities, and joint ac-

celerations:

Qmin ≤ q ≤ Qmax, −V max ≤ q̇ ≤ V max,

Amin ≤ q̈ ≤ Amax.
(4)

All the above inequalities are intended component-wise. Joint

ranges need not to be symmetric, while velocity bounds

typically are. If the accelerations bounds come from pure

kinematic reasoning, it is Amin = −Amax. If these bounds

arise instead from symmetric actuator torque bounds, i.e.,

|τi| ≤ Tmax,i, for i = 1, . . . , n, then at the robot state (q.q̇)

Amin = −M−1(q) (T max + n(q, q̇))

and

Amax = M−1(q) (T max − n(q, q̇)) ,

where M is the robot inertia matrix and n collects centrifu-

gal, Coriolis, and gravity terms.

In control implementations, the joint acceleration com-

mand is kept constant at the computed value q̈ = q̈h = q̈(th)
for a sampling time of duration T . Suppose that at th = hT
the current joint position q = qh and velocity q̇ = q̇h are

both feasible. The next joint velocity and position

q̇h+1 ≃ q̇h + q̈ T, qh+1 ≃ qh + q̇hT +
1

2
q̈ T 2

have to be kept within their bounds. Thus, we obtain

−
V max + q̇h

T
≤ q̈ ≤

V max − q̇h

T
(5)

and

2 (Qmin − qh − q̇hT)

T 2
≤ q̈ ≤

2 (Qmax − qh − q̇hT)

T 2
.

(6)

Considering the constraints given by the third set of

inequalities in (4), and those in (5) and (6), we obtain a box

constraint for the command q̈ at time t = th (see also [14])

Q̈min(th) ≤ q̈ ≤ Q̈max(th). (7)

B. The SNS algorithm for a single task

Consider a robot with n joints performing a single m1-

dimensional desired acceleration task ẍ1, with m1 < n. At

a given (q, q̇), the SNS algorithm for realizing the task at

the acceleration level under the box constraints (7) is given

in pseudocode form by Algorithm 1.

Therein, the n × n selection matrix W 1 = diag{W1,ii}
with 0/1 elements is used to specify which joints are cur-

rently enabled or disabled: if W1,ii = 0, then the acceleration

of joint i is set at its saturation level and the joint is

disabled (for norm minimization purposes). The algorithm

is initialized with W 1 = I (the identity matrix), a null-

space vector q̈N,1 = 0, and two scaling factors s1 = 1 and

s∗1 = 0. Also, we denote by q̈1 (with an additional bar) the

current guess of joint acceleration. The core (and final) joint

acceleration command computed by this algorithm uses the

SNS projection equation

q̈SNS = q̈N,1 + (J1W 1)
#

(
s1ẍ1 − J̇1q̇ − J1q̈N,1

)
. (8)

Another important aspect is the integrated use of the task

scaling factor s1, which is eventually chosen as the largest

possible one (i.e., equal to 1 if the task is feasible) that

is compatible with the box constraints (7). If some of the

joint accelerations (8) exceed their bounds, Algorithm 2 is

called to evaluate the best task scaling factor only among

the enabled joints. If the jth joint is the most critical for

task execution, i.e., its acceleration needs the largest relative

decrease to stay within the bounds, this acceleration is

saturated and we set W1,jj = 0. Algorithm 1 stops when

rank(J1W 1) < m1, providing as output the best feasible

solution found. Further analysis of the properties of this

algorithm and of the obtained solution is provided in [14].

3972

Algorithm 1 (SNS at the acceleration level for a single task)

W 1 = I , q̈N,1 = 0, s1 = 1, s∗1 = 0

repeat

limit exceeded = FALSE

q̈1 = q̈N,1 + (J1W 1)
#

(
ẍ1 − J̇1q̇ − J1q̈N,1

)

if

{
∃ i ∈ [1 :n] :

q̈1,i < Q̈min,i .OR. q̈1,i > Q̈max,i

}
then

limit exceeded = TRUE

a = (J1W 1)
#

ẍ1

b = q̈1 − a

getTaskScalingFactor(a, b) (∗call Algorithm 2∗)

if {task scaling factor} > s∗1 then

s∗1 = {task scaling factor}
W ∗

1 = W 1, q̈∗

N,1 = q̈N,1

end if

j = {the most critical joint}
W1,jj = 0

q̈N,1,j =

{
Q̈max,j if q̈1,j > Q̈max,j

Q̈min,j if q̈1,j < Q̈min,j

if rank(J1W 1) < m1 then

s1 = s∗1, W 1 = W ∗

1, q̈N,1 = q̈∗

N,1

q̈1 = q̈N,1 + (J1W 1)
#

(
s1ẍ1 − J̇1q̇ − J1q̈N,1

)

limit exceeded = FALSE (∗outputs solution∗)

end if

end if

until limit exceeded = TRUE

q̈SNS = q̈1

Algorithm 2 (Task scaling factor at the acceleration level)

function getTaskScalingFactor(a, b)

for i = 1 → n do

Smin,i =
(
Q̈min,i − bi

)
/ai

Smax,i =
(
Q̈max,i − bi

)
/ai

if Smin,i > Smax,i then

{switch Smin,i and Smax,i}
end if

end for

smax = mini {Smax,i}
smin = maxi {Smin,i}
the most critical joint = argmini {Smax,i}
if smin > smax .OR. smax < 0 .OR. smin > 1 then

task scaling factor = 0
else

task scaling factor = smax

end if

V. MULTIPLE TASKS SNS

Consider l acceleration tasks ẍk, of dimension mk < n
and with task Jacobian matrix Jk, for k = 1, . . . , l. Tasks are

ordered from the highest to the lowest priority. We extend the

algorithm proposed in Sect. IV to this situation, by imposing

a preemptive prioritization strategy: Higher priority tasks will

use in the best way all robot capabilities they need, while

lower priority tasks are accommodated with the residual

capability so as not to interfere with the execution of tasks

of higher priority. Algorithm 3 is the pseudocode of the

acceleration-level SNS method for the multi-task case.

In this algorithm, we denote with q̈k the joint acceleration

that satisfies at best the first k − 1 tasks (and is feasible

w.r.t. the joint constraints) and includes the current joint

acceleration guess for addressing task k. At each loop over

tasks (k = 1, . . . , l), the initializations of matrix W k, of null-

space vector q̈N,k, and of the two scaling factors sk and s∗k
are the same as in Algorithm 1. In addition, we define the

auxiliary projection matrix P̄ k = P k−1.

The joint acceleration q̈1 that satisfies the first (highest

priority) task is the same obtained with Algorithms 1 and 2,

since P̄ 1 = P 0 = I . When attacking the generic task

k, the joint acceleration command is computed with the

SNS projection equations

q̈N,k = ((I − W k) P 1)
#

q̈N,k

¨̃qk = q̈k + q̈N,k

q̈k = ¨̃qk +
(
JkP̄ k

)#
(
skẍk − J̇kq̇ − Jk

¨̃qk

)
.

(9)

Similarly to the single task algorithm, we check first if the

task can be executed within the joint acceleration bounds (7).

If not, the task scaling factor and the most critical joint

are computed using again Algorithm 2. When the obtained

scaling factor is the largest computed so far, the current

solution parameters (sk, W k, q̈N,k, P̄ k) are saved. At this

point, the most critical joint j is disabled for the execution

of the current task (Wk,jj = 0), and the acceleration

contribution of this saturated joint is assigned as null-space

vector component q̈N,k,j . The auxiliary null-space projector

is then obtained using eq. (3)

P̄ k =
(
I − ((I − W k) P k−1)

#
)

P k−1, (10)

by considering q̈N,k as an auxiliary task (at the configuration

space level), and thus with associated Jacobian (I − W k).

If the rank of JkP̄ k is strictly less than mk, the kth loop

of the algorithm terminates with the best parameters saved

so far, and the acceleration command is provided as output

by (9). Otherwise, the joint acceleration is recomputed with

the current parameters and the process is repeated. Note that

when (9) is used with saturated commands, the auxiliary null-

space vector q̈N,k forces the disabled joints to their saturated

values without modifying the previous k−1 tasks. Once task

k is satisfied (with scaling, if needed), the algorithm moves

to the next task k + 1. The final output q̈SNS = q̈l of the

algorithm is obtained after processing the (last) task l.

3973

Algorithm 3 (SNS at the acceleration level for multiple tasks)

P 0 = I , q̈0 = 0

for k = 1 → l do

W k = I , q̈N,k = 0, sk = 1, s∗k = 0, P̄ k = P k−1

repeat

limit exceeded = FALSE

q̈N,k = ((I − W k) P k−1)
#

q̈N,k

¨̃qk = q̈k−1 + q̈N,k

q̈k = ¨̃qk +
(
JkP̄ k

)#
(
ẍk − J̇kq̇ − Jk

¨̃qk

)

if

{
∃ i ∈ [1 :n] :

q̈k,i < Q̈min,i .OR. q̈k,i > Q̈max,i

}
then

limit exceeded = TRUE

a =
(
JkP̄ k

)#
ẍk

b = q̈k − a

getTaskScalingFactor(a, b) (∗call Algorithm 2∗)

if {task scaling factor} > s∗k then

s∗k = {task scaling factor}
W ∗

k = W k, q̈∗

N,k = q̈N,k, P̄
∗

k = P̄ k

end if

j = {the most critical joint}
Wk,jj = 0

q̈N,k,j =

{
Q̈max,j − q̈k−1,j if q̈k,j > Q̈max,j

Q̈min,j − q̈k−1,j if q̈k,j < Q̈min,j

P̄ k =
(
I − ((I − W k) P k−1)

#
)

P k−1

if rank(JkP̄ k) < mk then

sk = s∗k, W k = W ∗

k, q̈N,k = q̈∗

N,k, P̄ k = P̄
∗

k

q̈N,k = ((I − W k) P k−1)
#

q̈N,k

P̄ k =
(
I − ((I − W k) P k−1)

#
)

P k−1

¨̃qk = q̈k−1 + q̈N,k

q̈k = ¨̃qk +
(
JkP̄ k

)#
(
ẍk − J̇kq̇ − Jk

¨̃qk

)

limit exceeded = FALSE (∗outputs solution∗)

end if

end if

until limit exceeded = TRUE

P k = P k−1 − (JkP k−1)
#

(JkP k−1)

end for

q̈SNS = q̈l

Remark 1: Equation (9) collapses into the kth step of the

prioritized multi-task motion control scheme (2), as long as

there are no saturations (W k = I) and no scaling (sk = 1)

involved in the execution of the additional task k. In particu-

lar, if all tasks can be realized without command saturation,

then Algorithm 3 is equivalent to eqs. (2–3). Moreover,

matrix W k is rebuilt independently of the obtained matrices

W i at steps i < k. As a result, even if the acceleration

of a joint has been saturated for the execution of a higher

priority task, the joint is still enabled in principle and could

be reused by a lower priority task, which might then push

this joint acceleration away from its saturation level.

Remark 2: An expensive operation in the multi-task

SNS algorithm is the computation of ((I − W k) P k−1)
#

,

which has to be done every time a new command saturates.

Computational savings are obtained by considering the r×n
matrix W̄ k composed only by the rows of (I − W k) whose

diagonal element is 1, being r the number of saturated joints.

We have then

((I − W k) P k−1)
#

= P T
k−1W̄

T

k

(
W̄ kP T

k−1W̄
T

k

)
−1

W̄ k

so that only the inversion of a nonsingular r×r sub-matrix of

P k−1 is needed rather than pseudoinversion of the original

rank-deficient n × n matrix.

VI. CONFIGURATION SPACE TASKS

As a special case, we analyze tasks that request to control

robot behavior directly in the configuration space (CS). This

is of interest when the redundant robot is commanded at the

acceleration level, in order to damp otherwise uncontrolled

self-motion velocities or to include a Projected Gradient

optimization of auxiliary criteria (e.g., manipulability).

The multi-task SNS algorithm provides a computationally

simple and effective solution that executes only that part

of a CS task which preserves higher priority tasks without

violating the constraints on the joint acceleration commands.

At the acceleration level, a CS task of priority k is specified

simply by a desired q̈CS . We have then

ẍk = q̈CS ⇒ Jk = I. (11)

It is easy to check that the special structure (11) simpli-

fies considerably some steps of the multi-task Algorithm 3

(we leave the details to the reader). We present here as

Algorithm 4 an even simpler version of the SNS algorithm

for a CS task. This algorithm just replaces the kth loop of

Algorithm 3 when task k is of the CS type.

Algorithm 4 (Simplified SNS for task k of the CS type)

W CS = I

for i = 1 → n do

if q̈k−1,i = Q̈min,i .OR. q̈k−1,i = Q̈max,i then

W CS,ii = 0
end if

end for

P̄ CS =
(
I − ((I − W CS)P k−1)

#
)

P k−1

a = P̄ CS q̈CS

b = q̈k−1

getTaskScalingFactor(a, b) (∗call Algorithm 2∗)

sCS = {task scaling factor}

q̈k = q̈k−1 + sCSP̄ CS q̈CS

In this simplified version, we take into account that CS

tasks are typically used at a low priority level, so as to shape

the joint self-motion whenever still possible. Therefore, all

3974

acceleration commands that are saturated up to task k − 1
are disabled together for task k. By calling Algorithm 2 only

once, the whole CS task is scaled by a common factor in

order to fulfill the bounds (4).

We provide two examples of typical CS tasks. Suppose

that one of the robot tasks is to maximize a configuration-

dependent performance criterion H(q). For this, the Pro-

jected Gradient (PG) method [4] specifies a joint velocity

along the gradient direction

q̇ = α∇qH(q), (12)

with a scalar stepsize α > 0, to be then projected in the null

space of a suitable Jacobian (depending on the priority of

this CS task). The associated CS task acceleration will be

q̈CS = α∇2
q
H(q)q̇ + β (α∇qH(q) − q̇) , (13)

with a gain parameter β > 0. For stabilizing undesired self-

motion velocities in any acceleration control scheme [18],

the CS acceleration task is formulated instead as

q̈CS = −kdq̇, (14)

with a gain parameter kd > 0. We note that the choice of

design parameters in (13) and (14) is not critical. Thanks

to the embedded task scaling feature of the SNS algorithm,

they can be set at arbitrarily large values. The algorithm

will automatically scale them to the largest values compatible

with the robot joint constraints.

VII. SIMULATION RESULTS

The method has been tested in simulation using a kine-

matic model of the KUKA LWR IV robot (n = 7).

From the data sheet, all joint range limits are symmet-

ric Qmax = (170, 120, 170, 120, 170, 120, 170) [deg] =
−Qmin and the maximum joint velocities are V max =
(100, 110, 100, 130, 130, 180, 180) [deg/s]. Further, a maxi-

mum acceleration Amax = 300 ·I [deg/s2] has been chosen,

equal for all joints. A sampling time T = 1 [ms] is used,

also for shaping the joint acceleration constraints (7).

In the first simulation, only a primary task of dimen-

sion m1 = 3 is specified. The robot end-effector position

x1 = f1(q) should cycle twice through a series of six

Cartesian points connected by linear paths, starting from

q(0) = (0, 45, 45, 45, 0, 0, 0) [deg]. The points are vertices of

an hexagon inscribed in a circle lying in the (Y, Z) vertical

plane, and having center in
(

0.1 0.35 0.6235
)T

[m]

and radius 0.2 [m]. At the time instant th = hT , the desired

velocity ẋ1,h = ẋ1(th) is chosen so as to head toward the

next desired Cartesian point, say xr, with speed Vh, i.e.,

ẋ1,h = Vh

xr − f1(qh)

‖xr − f1(qh)‖

Vh = kP ‖xr − f1(qh)‖ − kD‖J1(qh−1)q̇h−1‖,

(15)

where kP = 10, kD = 0.1, and J1(q) is the 3× 7 Jacobian

associated to the robot end-effector velocity. The desired

acceleration ẍ1,h = ẍ1(th) is then obtained by discrete time

differentiation of (15) as

ẍ1,h =
ẋ1,h − J1(qh−1)q̇h−1

T
. (16)

Note that this task trajectory is particularly demanding at the

vertices xr (reached within a tolerance ε) of the hexagon,

where large accelerations are required to change suddenly

direction. As a measure of the directional error in executing

the task, we use the angle between the desired and the

obtained velocity direction, both normalized:

ed = arccos

(
xr − f1(q)

‖xr − f1(q)‖
·

J1(q)q̇

‖J1(q)q̇‖

)
. (17)

−0.3

−0.2

−0.1

0

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6

0.7

0.8

0.9

1

1.1

XY

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

Time [s]

D
ir
e
c
ti
o
n
a
l
E

rr
o
r

[r
a
d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Time [s]

S
c
a
le

 F
a
c
to

r

Fig. 1. Simulation 1. Single task performed using standard task scaling:
[left] 3D plot of the end-effector (black) and elbow (blue) trajectory; [right]
directional error (top) and task scaling factor (bottom)

Figure 1 shows the result of task execution at the accelera-

tion level using pseudoinversion, see (1), and a standard task

scaling method. In this case, only the limits ±Amax on joint

acceleration have been considered. The actual path executed

by the end-effector is deformed, in particular at t = 4.5 s, as

can be also evaluated on the error angle ed. The narrow peeks

in this directional error are due to the discontinuous change

of direction when a desired point xr is reached. Accordingly,

each time the end-effector departs from a point xr (including

the starting point f1(q(0))), the task acceleration needs to

be scaled (see the right-bottom plot in Fig. 1). In addition,

uncontrolled self-motion velocities in the null space of the

task Jacobian result in a Cartesian drift of the robot elbow

position (the blue trajectory in the 3D plot of Fig. 1).

In the second simulation, the same task is performed with

the SNS algorithm under the full set of box constraints (4) on

joint accelerations. From the results in Fig. 2 we can see that

the desired task trajectory is much better reproduced. The

narrow peeks on the directional error are still there, due to the

discontinuities of the desired task velocity, but the error ed is

eliminated away from the hexagon vertices xr. On the other

hand, when self-motion velocities are not damped, the elbow

will drift and the robot will approach a bad manipulability

configuration. Thus, higher joint acceleration will be needed

to perform the task and this may violate the bounds (4). Such

a situation occurs in fact just before t = 2.5 s, producing a

large directional error even if the desired task direction is

continuous at this time. By introducing self-motion velocity

damping as a secondary task, i.e., as the CS task (14) with

kd = 1000 (as mentioned, this value can be chosen very

3975

large), a considerable reduction in both elbow displacement

and elbow joint velocity is obtained.

−0.3

−0.2

−0.1

0

0.1

0

0.2

0.4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

XY

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Time [s]
D

ir
e

c
ti
o

n
a

l
E

rr
o

r
[r

a
d

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Time [s]

E
lb

o
w

 V
e

lo
c
it
y
 [

ra
d

/s
]

Fig. 2. Simulation 2. Single task performed using the SNS algorithm: [left]
3D plot of the end-effector (black) and of the elbow trajectory with (blue)
and without (red) self-motion damping; [right] directional error (top) and
elbow velocity (bottom) with (solid blue) and without (dashed red) self-
motion damping

In the third and fourth simulations, we consider two Carte-

sian tasks with priority. Beside the same previous primary

task for the robot end-effector, the secondary task requires

to keep the robot elbow close to the (X, Z) vertical plane

so as to reduce the workspace occupation by the robot arm

while performing the primary task. This second requirement

is formulated as a task on the position x2 = f2(q) of the

robot elbow along the (vertical) y-direction (m2 = 1), with

an associated 1 × 7 Jacobian J2(q). At the time instant

th = hT , the desired task velocity is

ẋ2,h = −kef2(qh), (18)

with gain ke = 50, and the associated desired acceleration

for this second task is obtained as in (16):

ẍ2,h =
ẋ2,h − J2(qh)q̇h

T
. (19)

Figure 3 shows the results obtained in the execution of the

two tasks using the task priority scheme (2) and a standard

task scaling method. Both tasks are badly performed, and

in particular the primary task has been deteriorated by the

presence of the secondary one (compare the directional error

with that for the single task in Fig. 1). Figure 4 shows the

execution of the two tasks with the SNS algorithm. In this

case, the secondary task does not modify the execution of

the primary task and is also correctly executed.

Table I summarizes quantitative measures of task execu-

tion in all performed simulations, using the SNS method

(rows 2, 3, and 5) or not (rows 1 and 4). Ttot is the total

time needed to go twice through the six desired Cartesian

points. The other three columns provide average values of

the directional error (quality of execution of the single or

primary task), of the norm of the Cartesian velocity ẋel of the

elbow (related to the presence of self-motion in the null space

of the primary task in simulations S1 and S2), and of the

absolute value of the y-position of the elbow (representing

the quality of execution of the secondary task in S3 and S4).

VIII. EXPERIMENTAL RESULTS

A number of experiments have been performed with a 7-

dof KUKA LWR IV commanded at the acceleration level.

−0.3

−0.2

−0.1

0

0.1

0

0.2

0.4

0.6

0.7

0.8

0.9

1

1.1

XY

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Time [s]

D
ir
e
c
ti
o
n
a
l
E

rr
o
r

[r
a
d
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.02

0

0.02

0.04

0.06

Time [s]

E
lb

o
w

 y
 p

o
s
it
io

n
 [

m
]

Fig. 3. Simulation 3. Two tasks with priority performed using standard
task scaling: [left] 3D plot of the end-effector (black) and elbow (blue)
trajectory; [right] directional error for the primary task (top) and secondary
error on the elbow y-position x2 (bottom)

−0.3

−0.2

−0.1

0

0.1

0

0.2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

XY

Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Time [s]

D
ir
e

c
ti
o

n
a

l
E

rr
o

r
[r

a
d

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4
x 10

−4

Time [s]

E
lb

o
w

 y
 p

o
s
it
io

n
 [

m
]

Fig. 4. Simulation 4. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow (blue)
trajectory; [right] directional error for the primary task (top) and secondary
error on the elbow y-position x2 (bottom)

TABLE I

SUMMARY OF THE SIMULATION RESULTS

time average average average
Ttot ed ‖ẋel‖ |x2|
[s] [rad] [m/s] [m]

S1 4.972 0.0769 0.2764 0.0348

S2 (SNS) 4.917 0.0157 0.3287 0.1430

S2 (SNS + damp) 4.740 0.0066 0.2513 0.0445

S3 5.286 0.1376 0.3121 0.0045

S4 (SNS + elbow) 5.018 0.0138 8.8 ×10
−4 2.6×10

−5

The experiments are illustrated also by the accompanying

video.

In the first experiment, the primary task requires to move

the end-effector along linear paths with constant speed V ,

passing through 20 equidistant points distributed uniformly

on a circle in the vertical (Y,Z) plane, having center at(
−0.5 0 0.5

)T
[m] and radius 0.3 [m]. As secondary

task, the robot should be attracted to a preferred configuration

q0 (having good manipulability) using the Projected Gradient

method. The performance criterion to be maximized is thus

H(q) = −
1

2
(q − q0)

T
(q − q0) ,

and the desired CS task acceleration is given by eq. (13).

Figure 5 shows the results obtained using the SNS method,

with q0 =
(

0 1.0472 0 1.5708 0 0 0
)T

[rad],

αβ = 0.5, α + β = 10, and V = 0.3 [m/s]. After an initial

approaching transient, the primary task is correctly executed.

This can be seen also from the overlap of the desired and

actual end-effector velocities, despite the several saturations

3976

−0.4

−0.2

0

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
Y

Z

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

E
n

d
−

E
ff

e
c
to

r
V

e
lo

c
it
y
 [

m
/s

]

˙x ee ,x ˙x ee , y ˙x ee , z

0 5 10 15 20 25 30 35
−1

0

1

2

3

Time [s]

J
o

in
t

P
o

s
it
io

n
 [

ra
d

]

q 1 q 2 q 3 q 4 q 5 q 6 q 7

Fig. 5. Experiment 1. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow trajectory
(blue); [top right] end-effector desired (dashed black) and actual (solid)
velocity; [bottom right] joint evolutions

of the acceleration command occuring during motion. The

good attractive effect on joint configurations realized by the

PG method as a secondary task can be appreciated in the

plot at the bottom right of Fig. 5.

In the second experiment, the primary task is specified

as before, but only through 3 desired end-effector positions

xr. For this trajectory, joint limits are reached when using a

simple pseudoinverse acceleration control, as well as when

adding a configuration-attracting PG scheme in the null

space of the primary task. Figures 6 and 7 show the good

results obtained instead with the same control method and

parameters used in the first experiment. As in the simulations,

the narrow peeks (now smaller) in the directional error are

caused by the discontinuity of the desired velocity when

moving out of each xr point. The joint positions remains

within their ranges, despite joint 4 reaches several times its

upper limit (as shown also in the fourth frame of Fig. 7).

−0.6
−0.4

−0.2
0

0.2

−0.5

0

0.5

0.2

0.4

0.6

X
Y

Z

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

Time [s]

D
ir
e

c
ti
o

n
a

l
E

rr
o

r
[r

a
d

]

0 2 4 6 8 10 12 14 16 18
−1

0

1

2

3

Time [s]

J
o

in
t

P
o

s
it
io

n
 [

ra
d

]

q 1 q 2 q 3 q 4 q 5 q 6 q 7

Fig. 6. Experiment 2. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow trajectory
(blue); [right] directional error (top) and joint evolutions (bottom)

Fig. 7. Snapshots from Experiment 2 with the KUKA LWR IV

IX. CONCLUSIONS

We have extended our single-task SNS algorithm [14] for

motion control of redundant robots under hard constraints on

joint variables/commands to the case of multiple prioritized

tasks. The basic idea is an efficient search in the task

Jacobian(s) null space(s), obtained by saturating one at the

time the acceleration commands, compensating their effect in

the null space, and possibly introducing task scaling when

strictly needed. In the multi-task case, the SNS algorithm

realizes conveniently a preemptive prioritization strategy, let-

ting first the higher priority tasks use all the robot capabilities

they need at the joint level. Finally, our method can be

used with simple modifications also at the generalized force

control level within the operational space framework [2].

REFERENCES

[1] B. Siciliano and J. J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Proc. 5th Int.

Conf. on Advanced Robotics, 1991, pp. 1211–1216.
[2] O. Khatib, “The operational space framework,” JSME Int. J. Ser. C:

Dynamics, Control, Robotics, Design and Manufacturing, vol. 36,
no. 3, pp. 277–287, 1993.

[3] S. Chiaverini, G. Oriolo, and I. Walker, “Kinematically redundant
manipulators,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 245–268.

[4] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. on Systems, Man

and Cybernetics, vol. 7, no. 12, pp. 868–871, 1977.
[5] C. Samson, M. L. Borgne, and B. Espiau, Robot Control: The Task

Function Approach. Clarendon, Oxford, UK, 1991.
[6] T. Chanand and R. Dubey, “A weighted least-norm solution based

scheme for avoiding joint limits for redundant joint manipulators,”
IEEE Trans. on Robotics, vol. 11, no. 2, pp. 286–292, 1995.

[7] A. S. Deo and I. D. Walker, “Minimum effort inverse kinematics for
redundant manipulators,” IEEE Trans. on Robotics and Automation,
vol. 13, no. 5, pp. 767–775, 1997.

[8] P. Chiacchio and S. Chiaverini, “Coping with joint velocity limits
in first-order inverse kinematics algorithms: Analysis and real-time
implementation,” Int. J. of Robotics Research, vol. 13, no. 5, pp. 515–
519, 1995.

[9] G. Antonelli, S. Chiaverini, and G. Fusco, “A new on-line algorithm
for inverse kinematics of robot manipulators ensuring path tracking
capability under joint limits,” IEEE Trans. on Robotics, vol. 19, no. 1,
pp. 162–167, 2003.

[10] R. V. Dubey, J. A. Euler, and S. M. Babcock, “Real-time implementa-
tion of an optimization scheme for seven-degree-of freedom redundant
manipulators,” IEEE Trans. on Robotics and Automation, vol. 7, no. 5,
pp. 579–588, 1991.

[11] F. Arrichiello, S. Chiaverini, G. Indiveri, and P. Pedone, “The null-
space-based behavioral control for mobile robots with velocity actuator
saturations,” Int. J. of Robotics Research, vol. 29, no. 10, pp. 1317–
1337, 2010.

[12] D. Omrcen, L. Zlajpah, and B. Nemec, “Compensation of velocity
and/or acceleration joint saturation applied to redundant manipulator,”
Robotics and Autonomous Systems, vol. 55, no. 4, pp. 337–344, 2007.

[13] P. Baerlocher and R. Boulic, “An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels,” The Visual

Computer, vol. 6, no. 20, pp. 402–417, 2004.
[14] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant

robots under joint constraints: Saturation in the null space,” in IEEE

Int. Conf. on Robotics and Automation, 2012, pp. 285–292.
[15] O. Khanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of

redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[16] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of
hierarchized inverse kinematics with inequality constraints,” in Proc.

IEEE Int. Conf. on Robotics and Automation, 2010, pp. 3733–3738.
[17] A. Maciejewki and C. Klein, “Numerical filtering for the operation of

robotic manipulators through kinematically singular configurations,”
J. of Robotic Systems, vol. 5, no. 6, pp. 527–552, 1988.

[18] A. De Luca, G. Oriolo, and B. Siciliano, “Robot redundancy resolution
at the acceleration level,” Laboratory Robotics and Automation, vol. 4,
no. 2, pp. 97–106, 1992.

3977

