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Prioritized Multi-Task Motion Control
of Redundant Robots under Hard Joint Constraints

Fabrizio Flacco*

Abstract— We present an efficient method for motion control
of redundant robots performing multiple prioritized tasks in
the presence of hard bounds on joint range, velocity, and ac-
celeration/torque. This is an extension of our recently proposed
SNS (Saturation in the Null Space) algorithm developed for
single tasks. The method is defined at the level of acceleration
commands and proceeds by successively discarding one at a
time the commands that would exceed their bounds for a task
of given priority, and reintroducing them at their saturated
levels by projection in the null space of a suitable Jacobian
associated to the already considered tasks. When processing all
tasks in their priority order, a correct preemptive strategy is
realized in this way, i.e., a task of higher priority uses in the best
way the feasible robot capabilities it needs, while lower priority
tasks are accommodated with the residual capability and do
not interfere with the execution of higher priority tasks. The
algorithm automatically integrates a multi-task least possible
scaling strategy, when some ordered set of original tasks is
found to be unfeasible. Simulation and experimental results on
a 7-dof lightweight KUKA LWR IV robot illustrate the good
performance of the method.

I. INTRODUCTION

The capability of handling multiple tasks is one of the
most appealing features of kinematically redundant robots.
Simultaneous control of a series of prioritized tasks is
typically achieved using generalized inversion (most often,
by pseudoinversion of the Jacobian) of the differential task
kinematics, combined with projections in suitable null spaces
so as to preserve as much as possible the execution of higher
priority tasks [1]-[3]. On-line (and thus local) solutions that
lend themselves to sensor-based control without the need of
future information are preferred, e.g., for dealing with the
time-varying and unpredictable nature of physical Human-
Robot Interaction (pHRI) tasks.

In this framework, hard constraints imposed in the joint
space (bounds on the joint range, velocity, acceleration, or
even torque) are barely taken into account, at least explicitly.
In fact, such hard bounds are typically converted into soft
ones, resolving redundancy by task constrained optimization
of suitable objective functions (e.g., keeping the joints closer
to their range centers [4], [5], or using the joint ranges
to weight the pseudoinversion [6] or to define an infinity
norm to be minimized at the velocity level [7]). However,
the commanded joint motion may still saturate some of
the bounds, producing then an unpredictable robot motion.
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Furthermore, in case of multiple tasks, it may happen that the
command contribution needed to execute lower priority tasks
leads to exceeding some bounds. Their saturation destroys
also the execution of tasks in the correct priority.

A simple way to recover feasibility with respect to
the given bounds is by task scaling, i.e., reducing the
speed/acceleration of the (single or multiple) task commands.
Task relaxation by time scaling has been used for satisfying
joint velocity [8] and/or acceleration [9] bounds. In [10], the
velocity term in the one-dimensional null space of a 7-dof
robot is scaled so as to satisfy joint velocity bounds, if at
all possible. For multiple tasks, prioritization may still be
preserved (see, e.g., [11]), using again the mechanism of
projection in the null space of the task Jacobians.

Nonetheless, before resorting to task scaling, it would be
useful to verify whether we can generate alternative joint
motions that still execute the original task while satisfying
the hard joint constraints (and preserving prioritization in
case of multiple tasks). This obviously requires a smart
exploitation of the null space of the task Jacobian(s). A
method that explicitly handles joint velocity or acceleration
bounds in a redundant robot performing a single task has
been introduced in [12]. All joint commands exceeding their
bounds are simultaneously pushed back at their saturation
levels. This effect is then compensated by the selection
of a null space contribution intended to satisfy the task.
However, no solution is given in case of unfeasible tasks
and the method is not extended to multiple tasks. A similar
approach had been proposed for the case of multiple tasks in
the animation of avatars [13], where only joint range limits
were considered. Feasibility with respect to these bounds is
verified only after adding the contributions of all tasks, and if
not all tasks can be executed within the bounds, the resulting
task deformation is spanned to all tasks and not just to the
low priority tasks that produced the violation of bounds.

In [14], we proposed a new method, named SNS (Satu-
ration in the Null Space), for controlling the motion of a
redundant robot performing a single task under hard bounds
on the joint range, joint velocity, and joint acceleration. Com-
mands at the velocity or acceleration level were considered.
The SNS algorithm disables successively only one exceeding
command at the time, reintroducing it at its saturated level
through the projection in the null space of the task Jacobian.
Moreover, the algorithm automatically integrates the use of
the least possible task scaling, only when the original task
is found to be unfeasible.

The main goal of this paper is to extend the SNS approach
to the multi-task case, considering task priorities and the
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same previous set of hard joint constraints. In doing so,
we follow the idea of preemptive prioritization: A higher
priority task should use all the feasible robot capabilities it
needs, while a lower priority task must preserve the execution
of high priority tasks using only the residual capabilities
not used by all tasks of higher priority. This reasonable
requirement is very well addressed by our solution method.
As a matter of fact, the SNS algorithm typically ends up
with using a smaller number of saturated commands after
satisfying each task in the priority scale and this leaves more
room for the additional satisfaction of lower priority tasks.
Moreover, automatic scaling of task(s) is again seamlessly
embedded in the algorithm only when needed.

The considered problem can also be recast and tackled as
a constrained minimization of a quadratic objective function
under linear equality/inequality constraints with different
priorities, as done in [15], [16]. However, and in contrast to
these works, the inequality constraints imposed at the joint
level (including those on the commands) cannot and will
never be violated in our approach. These constraints, which
define what we call robot capabilities, are handled separately
and do not need to be allocated in the stack of prioritized
tasks. To guarantee feasibility, we include instead the possi-
bility of task scaling, which is not considered in [15], [16].
Moreover, the inequality constraints in our problem have the
form of elementary bounds (box constraints). This problem
structure, as well as the activation of one joint constraints at
the time in the SNS algorithm, is exploited so as to lead to
a computationally efficient numerical solution.

The paper is organized as follows. The redundancy for-
malism used throughout the paper is introduced in Sect. II.
Section III presents a simple motivating example where
the effects of joint acceleration saturation in a multi-task
scenario are correctly handled by our method. Section IV
recalls the SNS algorithm proposed in [14] for a single task.
This method is extended to multiple tasks in Sect. V. The
special case of (lower priority) tasks specified in the whole
configuration space of the robot is presented in Sect. VI. The
effectiveness of the SNS algorithm is shown by Matlab™
simulations and experiments on a 7-dof KUKA LWR IV
robot, respectively in Sect. VII and Sect. VIIL

II. NOTATION AND BACKGROUND

Let g € R™ be the vector of generalized (joint) coordinates
of a robot, * € R™ the vector of variables describing a
generic m-dimensional task, with m < n, and J(q) the
associated m x n task Jacobian matrix. At a given (g, q),
the direct second-order differential relation and its (minimum
norm) inverse are

i =J@i+Jaa  a=T(0) (s I(@a), o)

where (-)# denotes pseudoinversion.

Consider [ acceleration tasks &, £ = 1...[, each of
dimension mj, < n and ordered by priority, i.e., task 4 has
a higher priority than task j if ¢+ < j. The multi-task motion
control with priority can be described using the recursive

approach proposed in [1]. We have (dropping dependencies):
g, =0
4, = g, +ay 2)
1 + (JuPr_1)” (wk —Jrq — Jkiik_l) ,

In (2), Jj is the Jacobian associated to task k£ and Py is
the projector operator in the null space of the (augmented)
Jacobian of the first k tasks
Jap=(J7 Jb g

The generalized joint acceleration g, performs the first k
tasks with the given priority, while ay, is the modification of
the acceleration needed to perform also task k, starting from
a solution for the first & — 1 tasks. The joint acceleration
addressing all [ tasks is ¢ = q;.

The following recursive formula, useful for obtaining
the projector Pj without recomputing the null space of
the augmented Jacobian for each additional task, has been
proposed in [13]:

Py, =1

3
Py = Py — (JpPp_1)" T Py_y, ©)

where I is the n x n identity matrix. To deal with singu-
larities, it is customary to use damped pseudoinversion, with
a selective damping on the lowest singular values (e.g., the
numerical filtering method of [17]).

III. ILLUSTRATIVE EXAMPLE

Consider a planar 4R manipulator with equal links of
unitary length performing a primary task specified by a
desired acceleration #; € R? (m; = 2) for its end-effector
and commanded by the joint acceleration § € R* (n = 4).
The degree of redundancy for this task is n—m = 2. Without
loss of generality assume the robot at rest, i.e., g = O.
Suppose that the joint accelerations are bounded as |§;| < A;,
i=1,...,4, with A=Ay =2 A3 =A, =14 [rad/sQ].

The 2 x 4 Jacobian J;(q) in the differential map (1)
evaluated at ¢ = ( 7/2 —7w/2 w/2 —m/2 )T is

-2 -1 -1 0
J1_<2 2 1 1)'

. L T
For a desired task acceleration &; = ( —3 —1.5 )", the
minimum norm joint acceleration solution is

Gy = JTé = (19091 —1.7727 0.9545 —2.7273)",

which is within the joint acceleration bounds and thus
executable by the robot.

Consider a secondary scalar task (mo = 1) specified by a
desired acceleration 2o = 1 along the y direction for the tip
of the second link. At the given configuration q, the 1 x 4
Jacobian J4 associated to this secondary task is

Jo=(1 10 0).
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By applying the task priority algorithm (2-3), the secondary
task is projected in the null space of the primary task
obtaining the joint acceleration

i = @+ (JoP)7 (32 — i)
— (2125 1125 -0.125 -3.375 )",

which exceeds the acceleration bound at the first joint.
Indeed, if the robot is commanded in this way, the actual joint
acceleration applied to the robot would have the saturated
value §; = A; = 2 in place of the computed one and, as a
result, neither the first nor the second task will be achieved.

Since the higher priority task is by itself executable, the
standard solution that would preserve the priority of the two
tasks is to consider modified acceleration bounds for the task
of lower priority, taking into account the acceleration g,
already requested by the primary task, and then to scale the
desired acceleration for the secondary task so as to satisfy the
new bounds. We scale then the acceleration of the secondary
task by a factor sz € (0,1) so that the joint acceleration
modification (see eq. (2))

as = (JoP1)¥ (s2iia — Jady)

satisfies the modified bounds —A4; —g1; < a2; < A;—q1,
for = 1,...,4. This results in a scale factor sy = 0.5 and
the final joint acceleration g, + as is

éscaled = ( 2 —-15 05 -3 )T.

The primary task is fully executed, while only 50% of the
secondary task can be performed.

On the other hand, applying our SNS method (Algorithm 3
in Sect. V), it is still possible to find a joint acceleration

dsvs=(2 -1 0 =35)7

that realizes exactly both original tasks while satisfying the
given joint acceleration bounds. In fact,

Jigsns = (=3 —15) =&, Jagsys =1= o
IV. SINGLE TASK SNS

In this section we recall the SNS method proposed in [14],
rewritten explicitly at the acceleration control level and for
a single task.

A. Shaping the joint acceleration bounds

We define the robot capabilities through the following
bounds on the joint ranges, joint velocities, and joint ac-
celerations:

QTTLi7L S q S QTVL(L"L'7 _Vmaw S q S Vmaza

4
Amin S q S Amam- ( )

All the above inequalities are intended component-wise. Joint
ranges need not to be symmetric, while velocity bounds
typically are. If the accelerations bounds come from pure
kinematic reasoning, it is Ay, = —Apmaz- If these bounds
arise instead from symmetric actuator torque bounds, i.e.,
|7i| < Thaw,i» for i =1,...,n, then at the robot state (g.q)

Amin = —M_l(Q) (Tmaw + n(q, q))

and

Amaaz = M_I(Q) (Tmax - n(qv Q)) )

where M is the robot inertia matrix and n collects centrifu-
gal, Coriolis, and gravity terms.

In control implementations, the joint acceleration com-
mand is kept constant at the computed value g = q,;, = G(t5)
for a sampling time of duration 7'. Suppose that at t;, = AT
the current joint position g = q;, and velocity g = q;, are
both feasible. The next joint velocity and position

. 1.
an1 ~4aq,+q, T+ 3 q1°

have to be kept within their bounds. Thus, we obtain

qpi1~=4q,+qT,

L max + "Ih . ‘ max ~ Qh
— = P < — -
T =9= T ©®)
and
2 (szn —dqp — th) 2 (Qmax —qp — th)

T2 <q< T2 :
(6)

Considering the constraints given by the third set of
inequalities in (4), and those in (5) and (6), we obtain a box

constraint for the command g at time ¢ = t;, (see also [14])

szn(th) S q S Qmam(th)' (7)
B. The SNS algorithm for a single task

Consider a robot with n joints performing a single m;-
dimensional desired acceleration task &1, with m; < n. At
a given (q, q), the SNS algorithm for realizing the task at
the acceleration level under the box constraints (7) is given
in pseudocode form by Algorithm 1.

Therein, the n x n selection matrix Wy = diag{W1;;}
with 0/1 elements is used to specify which joints are cur-
rently enabled or disabled: if W ;; = 0, then the acceleration
of joint ¢ is set at its saturation level and the joint is
disabled (for norm minimization purposes). The algorithm
is initialized with W1 = I (the identity matrix), a null-
space vector g, ; = 0, and two scaling factors s; = 1 and
s7 = 0. Also, we denote by g, (with an additional bar) the
current guess of joint acceleration. The core (and final) joint
acceleration command computed by this algorithm uses the
SNS projection equation

dsns =dn; + (J1W1)# (51531 —Jiq— JlijNJ) . (8)

Another important aspect is the integrated use of the task
scaling factor s;, which is eventually chosen as the largest
possible one (i.e., equal to 1 if the task is feasible) that
is compatible with the box constraints (7). If some of the
joint accelerations (8) exceed their bounds, Algorithm 2 is
called to evaluate the best task scaling factor only among
the enabled joints. If the jth joint is the most critical for
task execution, i.e., its acceleration needs the largest relative
decrease to stay within the bounds, this acceleration is
saturated and we set Wy ;; = 0. Algorithm 1 stops when
rank(J1 W) < my, providing as output the best feasible
solution found. Further analysis of the properties of this
algorithm and of the obtained solution is provided in [14].
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Algorithm 1 (SNS at the acceleration level for a single task)

Wi=1,qy,=0,5=15=0
repeat

1imit,exceeded = FALSE _
@ = iy + (W7 (81— J1d— iy,

. [ Jielin]: }

if ¢ - - - - then
{ q1,; < sznz .OR. qi; > Qmaz,i
limit_exceeded = TRUE
a=(J, W% i
b - al —a
getTaskScalingFactor(a, b) (xcall Algorithm 2x)
if {task scaling factor} > s} then

s7 = {task scaling factor}
WT =Wi, iﬁ\/,l = ‘le,l

end if
j = {the most critical joint}
Wi =0, ) )
H Qmin,j if q1,j < Qmin,j

if rank(J1 W) < m; then
s1 =51, Wi =W, 4y =4n,
q =dy, + (J1 W) (315?1 —Jig— quN,l)
limit_exceeded = FALSE  (xoutputs solutionx)
end if
end if
until limit_exceeded = TRUE

dsns =

Algorithm 2 (Task scaling factor at the acceleration level)

function getTaskScalingFactor(a, b)
for i=1—n do

Smin,i = (sznz - bi> Ja;

Smaa:,i = (Qmam,i - bz) /ai
if Smin,i > Smuw,’i then
{switch Synin,; and Syazi}
end if
end for
Smaz = Min; {Smaa:,i}
Smin = MaX; {Smin,i}
the most critical joint = argmin; {Syaz}
if Siin > Smaz -OR. Sinae < 0 .OR. S;in > 1 then
task scaling factor = 0
else
task scaling factor = s;,44
end if

V. MULTIPLE TASKS SNS

Consider [ acceleration tasks &, of dimension m; < n
and with task Jacobian matrix Jg, for k = 1,...,1[. Tasks are
ordered from the highest to the lowest priority. We extend the
algorithm proposed in Sect. I'V to this situation, by imposing
a preemptive prioritization strategy: Higher priority tasks will
use in the best way all robot capabilities they need, while
lower priority tasks are accommodated with the residual
capability so as not to interfere with the execution of tasks
of higher priority. Algorithm 3 is the pseudocode of the
acceleration-level SNS method for the multi-task case.

In this algorithm, we denote with g, the joint acceleration
that satisfies at best the first K — 1 tasks (and is feasible
w.r.t. the joint constraints) and includes the current joint
acceleration guess for addressing task k. At each loop over
tasks (k = 1,...,1), the initializations of matrix W, of null-
space vector ¢ ., and of the two scaling factors s and s,
are the same as in Algorithm 1. In addition, we define the
auxiliary projection matrix Pj, = Pj_;.

The joint acceleration él that satisfies the first (highest
priority) task is the same obtained with Algorithms 1 and 2,
since P, = P, = I. When attacking the generic task
k, the joint acceleration command is computed with the
SNS projection equations

61\7,1@ = ((I - Wk)Pl)# ‘jN,k
4, = Q. N )
q, = q,+ (Jkpk)# <Skfik —Jrq - Jkak) .

Similarly to the single task algorithm, we check first if the
task can be executed within the joint acceleration bounds (7).
If not, the task scaling factor and the most critical joint
are computed using again Algorithm 2. When the obtained
scaling factor is the largest computed so far, the current
solution parameters (sx, Wk, qn j» P;,) are saved. At this
point, the most critical joint j is disabled for the execution
of the current task (Wj ;; = 0), and the acceleration
contribution of this saturated joint is assigned as null-space
vector component ¢y, ;. The auxiliary null-space projector
is then obtained using eq. (3)

Pp= (I-(I-Wo)Pe)*) Pr, (10)
by considering gy ; as an auxiliary task (at the configuration
space level), and thus with associated Jacobian (I — Wy,).

If the rank of J, Py, is strictly less than my, the kth loop
of the algorithm terminates with the best parameters saved
so far, and the acceleration command is provided as output
by (9). Otherwise, the joint acceleration is recomputed with
the current parameters and the process is repeated. Note that
when (9) is used with saturated commands, the auxiliary null-
space vector g i forces the disabled joints to their saturated
values without modifying the previous k£ —1 tasks. Once task
k is satisfied (with scaling, if needed), the algorithm moves
to the next task k + 1. The final output ggyg = q; of the
algorithm is obtained after processing the (last) task [.
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Algorithm 3 (SNS at the acceleration level for multiple tasks)
Py=1,4,=0
for k=1—1do
W,=1, iij =0,s,=1,s; =0, P, =P,
repeat
limit_exceeded = FALSE

ANk = ('(I* Wk)Pk—l)# dN,k
q, = Qr—1 +dnk )
@ = G+ (P (- Dha - 744

if { Jie(ln]: . .
Qk,i < Qmin,i .OR. @w > Qmax,i
limit_exceeded = TRUE
a = (Jkpk) # .’ik
b=gq,—a
getTaskScalingFactor(a, b) (xcall Algorithm 2x)

} then

if {task scaling factor} > s; then
s; = {task scaling factor} B
Wi =Wy, d}k\f,k = qN,k’ P = Py

end if

j = {the most critical joint}

Wk,jj - 0 " b . ..

4Nk = Q-mam’j ~ k-1 if g, ; > Qmam,j

Qmin,j — Qp—1,5 if gy, ; < Qmin,j

P = (I — (I -Wy) Pk_l)#) P,
if rank(J;, P},) < my, then ) )
sk = sp, Wi = Wi, dn = ‘ﬁv,m P, =Py

dNk = (I - Wk)Pk—l)# an i
Py = (I-((I-Wy)Pr1)*) Py
q = ?kq +4qn )
q, = q,+ (JkPk># (wk —Jrq— Jkak)
limit_exceeded = FALSE  (xoutputs solutionx)
end if
end if

until limit_exceeded = TRUE

Py =P — (J Py )" (JuPr_1)
end for )
dsns = q;

Remark 1: Equation (9) collapses into the kth step of the
prioritized multi-task motion control scheme (2), as long as
there are no saturations (W, = I) and no scaling (s; = 1)
involved in the execution of the additional task k. In particu-
lar, if all tasks can be realized without command saturation,
then Algorithm 3 is equivalent to eqs. (2-3). Moreover,
matrix W, is rebuilt independently of the obtained matrices
W, at steps ¢ < k. As a result, even if the acceleration
of a joint has been saturated for the execution of a higher
priority task, the joint is still enabled in principle and could

be reused by a lower priority task, which might then push
this joint acceleration away from its saturation level.

Remark 2: An expensive operation in the multi-task
SNS algorithm is the computation of ((I — W) Py_1)%,
which has to be done every time a new command saturates.
Computational savings are obtained by considering the r X n
matrix W, composed only by the rows of (I — W,) whose
diagonal element is 1, being r the number of saturated joints.
We have then

e -l
(I = Wy) Pry)* =P W (WkaAW;}F) Wi

so that only the inversion of a nonsingular r X r sub-matrix of
Pj,_, is needed rather than pseudoinversion of the original
rank-deficient n X n matrix.

VI. CONFIGURATION SPACE TASKS

As a special case, we analyze tasks that request to control
robot behavior directly in the configuration space (CS). This
is of interest when the redundant robot is commanded at the
acceleration level, in order to damp otherwise uncontrolled
self-motion velocities or to include a Projected Gradient
optimization of auxiliary criteria (e.g., manipulability).

The multi-task SNS algorithm provides a computationally
simple and effective solution that executes only that part
of a CS task which preserves higher priority tasks without
violating the constraints on the joint acceleration commands.
At the acceleration level, a CS task of priority k is specified
simply by a desired g~g. We have then

= J.=1 (11)

It is easy to check that the special structure (11) simpli-
fies considerably some steps of the multi-task Algorithm 3
(we leave the details to the reader). We present here as
Algorithm 4 an even simpler version of the SNS algorithm
for a CS task. This algorithm just replaces the kth loop of
Algorithm 3 when task k is of the CS type.

Tk =qcs

Algorithm 4 (Simplified SNS for task k of the CS type)
Wes =1
fori=1—ndo )
if Qk—lyi = Qm,in,i .OR. Qkfl,i = Qmam,i then
Wesii =0
end if

tind for
Pgg = (I — (I —-Wgs) Pk—l)#> Py

a=P csldcs

b=7q;_,

getTaskScalingFactor(a, b) (xcall Algorithm 2:x)
scs = {task scaling factor}

G, =qy_1 +scsPesics

In this simplified version, we take into account that CS
tasks are typically used at a low priority level, so as to shape
the joint self-motion whenever still possible. Therefore, all
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acceleration commands that are saturated up to task &k — 1
are disabled together for task k. By calling Algorithm 2 only
once, the whole CS task is scaled by a common factor in
order to fulfill the bounds (4).

We provide two examples of typical CS tasks. Suppose
that one of the robot tasks is to maximize a configuration-
dependent performance criterion H(q). For this, the Pro-
jected Gradient (PG) method [4] specifies a joint velocity
along the gradient direction

q=aVgeH(q), (12)

with a scalar stepsize a > 0, to be then projected in the null
space of a suitable Jacobian (depending on the priority of
this CS task). The associated CS task acceleration will be

dos = aVoH(q)q+ (aVaH(q) — q),

with a gain parameter 3 > 0. For stabilizing undesired self-
motion velocities in any acceleration control scheme [18],
the CS acceleration task is formulated instead as

13)

qdcs = —kaq, (14)

with a gain parameter k; > 0. We note that the choice of
design parameters in (13) and (14) is not critical. Thanks
to the embedded task scaling feature of the SNS algorithm,
they can be set at arbitrarily large values. The algorithm
will automatically scale them to the largest values compatible
with the robot joint constraints.

VII. SIMULATION RESULTS

The method has been tested in simulation using a kine-
matic model of the KUKA LWR IV robot (n = 7).
From the data sheet, all joint range limits are symmet-
ric Q,,,. = (170,120,170,120,170,120,170) [deg] =
—Q,,;n, and the maximum joint velocities are V., =
(100,110, 100, 130, 130, 180, 180) [deg/s]. Further, a maxi-
mum acceleration A,,,,, = 300-T [deg/sz] has been chosen,
equal for all joints. A sampling time 7" = 1 [ms] is used,
also for shaping the joint acceleration constraints (7).

In the first simulation, only a primary task of dimen-
sion m; = 3 is specified. The robot end-effector position
x1 = f,(q) should cycle twice through a series of six
Cartesian points connected by linear paths, starting from
q(0) = (0,45,45,45,0,0,0) [deg]. The points are vertices of
an hexagon inscribed in a circle lying in the (Y, Z) vertical
plane, and having center in ( 0.1 0.35 0.6235 )T [m]
and radius 0.2 [m]. At the time instant ¢;, = AT, the desired
velocity @15 = @1(f),) is chosen so as to head toward the
next desired Cartesian point, say x,, with speed V}, i.e.,

x, — f1(qp)
lzr — f1(an)ll

Vi = kplz: = fi(an)ll = kpllJ1(gn-1)@n-1ll,

where kp = 10, kp = 0.1, and J(q) is the 3 x 7 Jacobian
associated to the robot end-effector velocity. The desired

T = Vi
(15)

acceleration &1 5, = &1 (ty) is then obtained by discrete time
differentiation of (15) as

Z1h — J1(qr-1)qn—

T .
Note that this task trajectory is particularly demanding at the
vertices @, (reached within a tolerance ¢) of the hexagon,
where large accelerations are required to change suddenly
direction. As a measure of the directional error in executing
the task, we use the angle between the desired and the
obtained velocity direction, both normalized:

o, —fi(q) J1(t1)t'1>
e — for(@)ll IT2(@)dll )

Zih = (16)

a7)

€4 = arccos (

LLyllLl’kLLLLl

(]

Time [s]

25 3 35 4 45
Time [s]

Fig. 1. Simulation 1. Single task performed using standard task scaling:
[left] 3D plot of the end-effector (black) and elbow (blue) trajectory; [right]
directional error (top) and task scaling factor (bottom)

Figure 1 shows the result of task execution at the accelera-
tion level using pseudoinversion, see (1), and a standard task
scaling method. In this case, only the limits £ A,,,,, on joint
acceleration have been considered. The actual path executed
by the end-effector is deformed, in particular at ¢t = 4.5 s, as
can be also evaluated on the error angle e4. The narrow peeks
in this directional error are due to the discontinuous change
of direction when a desired point x, is reached. Accordingly,
each time the end-effector departs from a point x,- (including
the starting point f,(g(0))), the task acceleration needs to
be scaled (see the right-bottom plot in Fig. 1). In addition,
uncontrolled self-motion velocities in the null space of the
task Jacobian result in a Cartesian drift of the robot elbow
position (the blue trajectory in the 3D plot of Fig. 1).

In the second simulation, the same task is performed with
the SNS algorithm under the full set of box constraints (4) on
joint accelerations. From the results in Fig. 2 we can see that
the desired task trajectory is much better reproduced. The
narrow peeks on the directional error are still there, due to the
discontinuities of the desired task velocity, but the error ey is
eliminated away from the hexagon vertices ,. On the other
hand, when self-motion velocities are not damped, the elbow
will drift and the robot will approach a bad manipulability
configuration. Thus, higher joint acceleration will be needed
to perform the task and this may violate the bounds (4). Such
a situation occurs in fact just before ¢ = 2.5 s, producing a
large directional error even if the desired task direction is
continuous at this time. By introducing self-motion velocity
damping as a secondary task, i.e., as the CS task (14) with
kq = 1000 (as mentioned, this value can be chosen very
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large), a considerable reduction in both elbow displacement
and elbow joint velocity is obtained.

Directional Error [rad]

Elbow Velocity [rads]

3 35 4 45

25
Time [s]

Fig. 2. Simulation 2. Single task performed using the SNS algorithm: [left]
3D plot of the end-effector (black) and of the elbow trajectory with (blue)
and without (red) self-motion damping; [right] directional error (fop) and
elbow velocity (bottom) with (solid blue) and without (dashed red) self-
motion damping

In the third and fourth simulations, we consider two Carte-
sian tasks with priority. Beside the same previous primary
task for the robot end-effector, the secondary task requires
to keep the robot elbow close to the (X, Z) vertical plane
so as to reduce the workspace occupation by the robot arm
while performing the primary task. This second requirement
is formulated as a task on the position o = f3(q) of the
robot elbow along the (vertical) y-direction (mo = 1), with
an associated 1 x 7 Jacobian J3(g). At the time instant
tn, = hT, the desired task velocity is

Eo.n = —kef2(qy), (18)

with gain k. = 50, and the associated desired acceleration
for this second task is obtained as in (16):
Fop = W (19)

Figure 3 shows the results obtained in the execution of the
two tasks using the task priority scheme (2) and a standard
task scaling method. Both tasks are badly performed, and
in particular the primary task has been deteriorated by the
presence of the secondary one (compare the directional error
with that for the single task in Fig. 1). Figure 4 shows the
execution of the two tasks with the SNS algorithm. In this
case, the secondary task does not modify the execution of
the primary task and is also correctly executed.

Table I summarizes quantitative measures of task execu-
tion in all performed simulations, using the SNS method
(rows 2, 3, and 5) or not (rows 1 and 4). T}, is the total
time needed to go twice through the six desired Cartesian
points. The other three columns provide average values of
the directional error (quality of execution of the single or
primary task), of the norm of the Cartesian velocity a.; of the
elbow (related to the presence of self-motion in the null space
of the primary task in simulations S1 and S2), and of the
absolute value of the y-position of the elbow (representing
the quality of execution of the secondary task in S3 and S4).

VIII. EXPERIMENTAL RESULTS

A number of experiments have been performed with a 7-
dof KUKA LWR IV commanded at the acceleration level.

25
Time [s]

Fig. 3. Simulation 3. Two tasks with priority performed using standard
task scaling: [left] 3D plot of the end-effector (black) and elbow (blue)
trajectory; [right] directional error for the primary task (fop) and secondary
error on the elbow y-position x2 (bottom)

[HWLZ
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x10* Time [s]
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Elbow y position [m]

25
Time [s]

Fig. 4. Simulation 4. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow (blue)
trajectory; [right] directional error for the primary task (fop) and secondary
error on the elbow y-position x2 (bottom)

TABLE I
SUMMARY OF THE SIMULATION RESULTS
time average average average
Tiot ed [E |2
[s] [rad] [m/s] [m]
S1 4972 | 0.0769 0.2764 0.0348
S2 (SNS) 4917 | 0.0157 0.3287 0.1430
S2 (SNS + damp) || 4.740 | 0.0066 0.2513 0.0445
S3 5.286 | 0.1376 0.3121 0.0045
S4 (SNS + elbow) || 5.018 | 0.0138 | 8.8 x10~% | 2.6x10~—°

The experiments are illustrated also by the accompanying
video.

In the first experiment, the primary task requires to move
the end-effector along linear paths with constant speed V,
passing through 20 equidistant points distributed uniformly
on a circle in the vertical (Y, Z) plane, having center at
(-05 0 05 )T [m] and radius 0.3 [m]. As secondary
task, the robot should be attracted to a preferred configuration
q, (having good manipulability) using the Projected Gradient
method. The performance criterion to be maximized is thus

1

H(q)=—5(a-49)" (@~ 40),

and the desired CS task acceleration is given by eq. (13).
Figure 5 shows the results obtained using the SNS method,
with g; = (0 1.0472 0 1.5708 0 0 0 )T [rad],
af =0.5, a+ ¢ =10, and V = 0.3 [m/s]. After an initial
approaching transient, the primary task is correctly executed.
This can be seen also from the overlap of the desired and
actual end-effector velocities, despite the several saturations
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Fig. 5. Experiment 1. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow trajectory
(blue); [top right] end-effector desired (dashed black) and actual (solid)
velocity; [bottom right] joint evolutions

of the acceleration command occuring during motion. The
good attractive effect on joint configurations realized by the
PG method as a secondary task can be appreciated in the
plot at the bottom right of Fig. 5.

In the second experiment, the primary task is specified
as before, but only through 3 desired end-effector positions
x,. For this trajectory, joint limits are reached when using a
simple pseudoinverse acceleration control, as well as when
adding a configuration-attracting PG scheme in the null
space of the primary task. Figures 6 and 7 show the good
results obtained instead with the same control method and
parameters used in the first experiment. As in the simulations,
the narrow peeks (now smaller) in the directional error are
caused by the discontinuity of the desired velocity when
moving out of each x, point. The joint positions remains
within their ranges, despite joint 4 reaches several times its
upper limit (as shown also in the fourth frame of Fig. 7).

Directional Error [rad]

Joint Position [rad]

8 10 12 14 16 18
Time [s]

Fig. 6.  Experiment 2. Two tasks with priority performed using the
SNS algorithm: [left] 3D plot of the end-effector (black) and elbow trajectory
(blue); [right] directional error (fop) and joint evolutions (bottom)

Fig. 7.

Snapshots from Experiment 2 with the KUKA LWR IV

IX. CONCLUSIONS

We have extended our single-task SNS algorithm [14] for
motion control of redundant robots under hard constraints on
joint variables/commands to the case of multiple prioritized

tasks. The basic idea is an efficient search in the task
Jacobian(s) null space(s), obtained by saturating one at the
time the acceleration commands, compensating their effect in
the null space, and possibly introducing task scaling when
strictly needed. In the multi-task case, the SNS algorithm
realizes conveniently a preemptive prioritization strategy, let-
ting first the higher priority tasks use all the robot capabilities
they need at the joint level. Finally, our method can be
used with simple modifications also at the generalized force
control level within the operational space framework [2].
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