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SUMMARY

We consider some theoretical aspects of the control problem for rigid link robots having some joints rigid
and some with non-negligible elasticity. We start from the reduced model of robots with all joints elastic
introduced by Spong, which is linearizable by static feedback. For the mixed rigid/elastic joint case, we give
structural necessary and sufficient conditions for input—output decoupling and full-state linearization via
static state feedback. These turn out to be very restrictive. However, when a robot fails to satisfy these
conditions, we show that a physically motivated dynamic state feedback will always guarantee the same
result. The analysis is performed without resorting to the state-space equation format. As a result, the
explicit form of the exact linearizing and input—output decoupling controllers is provided directly in terms of
the robot dynamic model terms. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Joint flexibility is present in many current industrial robots. When harmonic drives, belts or long
shafts are used as motion transmission elements, a dynamic displacement is introduced between
the position of the driving actuators and that of the driven links, which is the output to be
controlled. This small deflection concentrated at the robot joints is a major source of oscillatory
problems, when accurate trajectory tracking or high sensitivity to cartesian forces is required.

The experimental findings of Reference 1 on the GE P-50 arm first showed that one should
include joint elasticity in the model used for control design in order to overcome the above effects.
An early study on the modelling of robots with joint elasticity can be found in Reference 2.
A more detailed analysis of the model structure was later presented in Reference 3.

Motion control of robots with elastic joints represents a sort of benchmark problem for
different control strategies. In general, the use of linear controllers for this class of robot arms is
limited to quasi-static operations, as in the conventional design of Reference 4, or to regulation
tasks—see, e.g. the Lyapunov-based approach of Reference 3. When considering the performance
of nonlinear control techniques for trajectory tracking, such as feedback linearization or
input—output decoupling, the first reported results were of negative flavour. In particular, it was
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shown in Reference 5 that a 3R elbow-type arm with all joints being elastic fails to satisfy the
necessary conditions for linearization or for decoupling via static state feedback.

Since rigid joints are the limit case of a flexible behaviour, with stiffness going to infinity, the
dynamic model of robots with elastic joints lend itself to a singularly perturbed format. Based on
the intrinsic two-time-scale nature of the robot dynamics, several approximate tracking
controllers have been proposed (see, e.g. Reference 6). Performance of these methods is quite
satisfactory when the joints are sufficiently stiff.

A solution to the problem of exact tracking of smooth trajectories defined for the robot links
(i.e. beyond the elasticity) can be obtained via dynamic state feedback. In this approach, there is no
limitation on joint stiffness, which may be large or very small. The method was proposed first in
Reference 7 for a 3R elbow-type arm, while a general approach to dynamic linearization and
decoupling of robots with all joints being elastic has been described in Reference 8. Recently, it
has been proven that robots with elastic joints are invertible nonlinear systems with no zero
dynamics,’® a sufficient condition for full linearization and decoupling via dynamic state
feedback.!® For the resulting linear and decoupled closed-loop system, the trajectory tracking
problem is then easily solved.

Despite the above remarkable theoretical properties, the actual design of a linearizing dynamic
state-feedback control is still very complex and it has been performed only on simple cases (robots
with up to three joints). Furthermore, the physical obstruction asking for dynamic feedback is the
presence of inertial coupling terms that are usually of small magnitude. These considerations have
opened the way to simpler approaches with a similar provably good performance. A reduced
model for robots with arbitrary joint elasticity was introduced in Reference 11, assuming that the
kinetic energy of the electrical actuators is due only to their own rotor spinning (gyroscopic effects
are neglected). This assumption is very reasonable, especially when the reduction gear ratios are
large. It was shown in Reference 11 that this reduced model of robots with elastic joints satisfies
the conditions for full-state linearization and decoupling via static state feedback.

Both dynamic models—the reduced and the complete one—have been used extensively by
researchers working on the control of robots with joint elasticity. For instance, the reduced model
was used to develop robust control schemes!? and nonlinear adaptive laws with global
convergence properties.!® On the other hand, the complete model was used for studies on state
observers'* and on regulation and feedforward-based tracking controllers.’>® A review of the
modelling assumptions and of various proposed control techniques can be found in Reference 17.
It should be also pointed out that the distinction between complete and reduced models vanishes
for some common robot kinematic arrangements.

In this paper, we consider a different class of robot arms having some joints that can be
considered completely rigid and some other where elasticity is relevant. This mixed picture is the
common rule rather than an exception for industrial arms (e.g. in the SCARA family), because the
actuator/transmission mechanical design is usually different from joint to joint. Some kinematic
arrangements with mixed joints have been studied in Reference 18, where it was found that
dynamic state feedback is still needed for obtaining a linear and decoupled closed-loop
behaviour. We generalize here the approach to the whole class of robot arms with mixed
rigid/elastic joints and study the structural situations that arise from the point of view of
applicability of feedback linearization and decoupling control techniques.

Differently from Reference 18, we will assume the same hypothesis of Reference 11 in the
modelling phase. The purpose of this choice is twofold: (i) to obtain results based on a model that
is as practical as possible; (ii) to show that the need of dynamic compensation for this class of

© 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 965-977 (1998)



DECOUPLING AND FEEDBACK LINEARIZATION OF ROBOTS 967

robots is not related to the use of a complete or of a reduced model. We shall see that, in the
presence of joints of mixed types, static state feedback may or may not suffice to obtain full-state
linearization and input—output decoupling. In the latter case, a physically based dynamic
feedback law will always solve the problem.

By avoiding the use of a state-space approach (i.e. working directly with the Euler—Lagrange
dynamics), we will provide a complete answer to the question whether static or dynamic state
feedback is needed, depending on the actual structure of the robot inertia matrix. Moreover, the
closed-form expression of the required controllers can be given explicitly in terms of the inertial,
centrifugal, Coriolis, and gravity components of the model, making the control implementation
and verification steps easier.

The paper is organized as follows. The dynamic modelling issues are presented in Section 2. In
Section 3, we show how to compute the nominal torque for reproducing a reference link
trajectory for robots with mixed elastic/rigid joints. Linearization and decoupling via static
feedback is treated in Section 4, while Section 5 is devoted to the use of dynamic feedback. In the
concluding section, extensions and open problems are briefly discussed.

A preliminary version of this work was presented in Reference 19.

2. DYNAMIC MODELLING AND PRELIMINARIES

Consider an open-chained robot arm with » rigid links and all joints being elastic. Let g be the
n-vector of link positions and 6 the n-vector of actuator (viz., rotor of electrical motor) positions,
as reflected through the gear reduction ratios. The difference ¢; — 6; is the ith joint deformation.
The rotors of the actuators are modelled as uniform bodies having their centre of mass on the
rotation axis, implying that both the inertia matrix and the gravity term in the dynamic model are
independent from the motor position.

The complete dynamic model of a robot arm with all elastic joints is>

[B(q) Bl(q)] [q] 4 [C(q, g+ Ci(q,0) Ca(q, 6})} [61} N [Q(Q)} n [K(q - 9)} _ [OJ (1)
Big) J 0 Ci(a.9) 0 0 0 K(0 —q) u
where B is the matrix of the rigid arm, J is the constant diagonal inertia matrix of the actuators
(reflected through the reduction ratios), matrix B, represents inertial couplings between actuators
and links, C and C; (i = 1,2,3) are matrices of Christoffel symbols (related to Coriolis and
centrifugal terms), g is the gravity vector of the rigid arm, K is the constant diagonal joint stiffness
matrix, and u is the n-vector of torques provided by the actuators (performing work on 0). In
general, the dynamic model (1) fails to be linearizable by static state feedback. It has been shown
in Reference 9 that this model can always be linearized and, defining as output y = ¢, also
input—output decoupled by means of a dynamic state feedback law.

Assuming that the regular part of the kinetic energy of each rotor is due only to its own
spinning, the reduced dynamic model of a robot arm with all elastic joints introduced in
Reference 11 is

B(9)§ + C(q.9)4 + 9(q) + K(qg —0) =0 2
JO+KO—-q =u (3)
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where the dynamic terms left over in equations (2) and (3) are the same appearing in (1). In the
following, we set for compactness n(q, §) = C(q,q)q + g(q). Neglecting the inertial term B, in the
system kinetic energy automatically yields C; = 0 (i = 1,2,3).? If, for some arrangements of the
robot joint axes, the inertial couplings between links and motors vanish (B; = 0), the complete
dynamic model collapses into the reduced one (no approximation needed). Moreover, when the
gear reduction ratios become large (say, above hundred motor turns per link turn) there is no
practical difference between the dynamic behaviour of equation (1) and of equations (2)~3). The
reduced model (2)—(3) can be transformed into a linear one through a static state feedback and
a change of coordinates.!' Moreover, this feedback transformation gives a decoupled
input—output behaviour between the external input v and the output y = ¢, with uniform relative
degrees equal to four.

Assume now that r out of the n robot joints are rigid while the remaining n — r are elastic. By
reordering the generalized coordinates, we can write the reduced dynamic model of a robot arm
with mixed rigid/elastic joints as follows:

B (q)  B:e(q) || G: n.(q,q) 0 Uy
= 4
[Ber(q) Bee(q)] [J " [ne(q, q‘)] * [Ke(qe — HE)J [0} @
Jege + Ke (ee - Qe) = Ue. (5)

The r-vector ¢, collects the generalized coordinates of the rigid joints, at which the position of the
driven link equals the position of the motor, as reflected through the reduction ratio. The
(n — r)-vector ¢. contains the positions of the links driven by elastic joints, while the motor
positions at these joints are collected in the (n — r)-vector .. The inertia matrix, Coriolis,
centrifugal, and gravity terms have been partitioned according to the dimensions of ¢, and ¢.. In
particular, B,, = B;.. Being diagonal blocks of the symmetric inertia matrix, matrices B,, and
B.. are always invertible. The torques produced by the motors at rigid and at elastic joints are
labelled u, and u., respectively. Finally, the constant diagonal matrices of joint stiffness K. and
actuator inertia J, have now dimension n — r.

In equation (4), the blocks of the arm inertia matrix depend, in general, on the whole link
position vector q = (¢,,q.). The particular arrangement of the robot kinematics may lead to
special internal structures, in much the same way as in the model of a fully rigid robot. The
structure of the partitioned blocks of the inertia matrix plays a main role in the following analysis.

3. INVERSE DYNAMICS COMPUTATION

By a natural choice of the output, we show first that system (4)—(5) is invertible from the
input—output point of view. As a consequence, we can explicitly compute the nominal torque
input that enables exact reproduction of a desired smooth output trajectory (the so-called inverse
dynamics problem in robotics). The desired trajectory is specified in terms of link motion for the
links driven through rigid joints as well as for those driven through elastic joints, i.e.
q*(t) = (¢: (1), g2 (1))-

The first set of equations in (4) can be directly used to determine the nominal torques to be
applied at the rigid joints

uf(t) = Brr(qd(t))LI?(t) + Bre(qd(t))q-(ej(t) + nr(qd(t)a qd(t)) (6)
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The desired trajectory 02(t) of the motors at the elastic joints is solved from the second set of
equation in (4) as

02(t) = q£(1) + Ko ' (Ber(g® (1)) () + Bee(g®(1))G(t) + ne(q®(2), 4°(1))) (7)

In order to compute the nominal torques to be applied at the elastic joints, we need to
differentiate twice equation (7) and then replace 0. in equation 5, evaluated along the trajectory.
Using the shorthand notation ¢ = d’q/dt’, this gives

ug (1) = Ke(02(0) — ge(0) + JK (Berlg® () g (1) + Beelg* (1) g™ (1)
+ 2e(q(0), 44 (1), G (1), ¢ (1)) @)
where (dropping dependencies)
te = 2(Berqt” + Beeq”) + Berdiy + Beelie + e + Kefie

Equations (6) and (8) solve the inverse dynamics problem for robots with mixed rigid/elastic
joints. The inverse system has no internal dynamics and this computation is purely algebraic. We
remark that:

e The reference link trajectories should be smooth enough to guarantee perfect tracking in
nominal conditions, when the initial state of the robot is matched with the initial conditions
of the trajectory. In particular, the link trajectories associated to both rigid and elastic joint
types should be, in general, four times differentiable. The higher order requirement for ¢%(t),
instead of an expected value of two, results from the inertial cross-couplings represented by
matrix B.,.

o Equations (6)—(8) show that the state trajectory and the input commands associated with
a generic output trajectory can be fully determined, without any integration procedure, from
the output function and its derivatives. This has been recently labelled as the differential
flatness property of a system.?° In particular, y = (¢;,4.) is a flat output for robots with
mixed rigid/elastic joints. This property corresponds to the robot system being invertible
from y and having no zero dynamics (see also Reference 9). The above developments indicate
that such a property can be checked without resorting to state-space equations.

e The previous formulas are useful for deriving feedforward terms in a nonlinear regulator
approach for trajectory tracking problems, to be combined with a local (linear) stabilizing
feedback (see, ¢.g. Reference 15).

4. DECOUPLING AND LINEARIZATION VIA STATIC FEEDBACK
We analyse next the input—output decoupling properties of the mixed rigid/elastic joint robot

model. In doing so, we will find that a static state feedback is sufficient to this purpose only for
a special class of robots. As a by-product, the decoupling controller will also give linearity of the

closed-loop dynamics.
y= [q] ©
qe

Let the output be defined as
© 1998 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 8, 965-977 (1998)
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Taking twice the derivative of (9) gives the link accelerations. These can be solved directly from

equation (4) as
. qr [Brr - BreBe_elBer]71 0 u, .
= = 0 10
Y |:(:ie:| |:[Bee - BerBr:lBre]_lBerB;l 0 Ue - y(q’ q, e) ( )

= A(qQ)u + y(q,4,0.)

where standard formulas for the inverse of a block partitioned matrix have been used. The two
inverses in square brackets in equation (10) certainly exist, as Schur complements of the invertible
matrices B,. and B,,, respectively, Reference 21, p. 656.

Since the first r rows of A(g) are of full rank none of them is identically zero, being also rows of
the decoupling matrix 7 (q). For the last n — r rows of A(gq), we have

rank {[B.. — Bo;By; 'B;c]” ' BB '} = rank{B,,} < min{r,n —r} (11)

If rank { B., } > 0 at least one of the last n — r rows of A(q) is non-zero, coinciding with a row of
the decoupling matrix but being also linearly dependent from the first r rows. Thus, when B,, # 0
the decoupling matrix .7 (q) is always singular, violating the necessary condition for input—output
decoupling by static state feedback.??

Consider then the case B, = 0. The dynamic equations (4)-(5) become in this case

Brr(q)q} + nr(qa q) = U (12)
ee(q)qe +n (q’ ) + K ( ee) =0 (13)
Jege + Ke(ge - qe) = Ue (14)

As a stronger assumption, let the term n.(q,q) in equation (13) be independent from 4, i.e.

ne = n.(q,q.). As shown in Appendix A, this happens if and only if the diagonal blocks of the

inertia matrix in equations (12)-(13) have a dependence of the form B,, = B,.(q,) and

B.. = B..(q.). In turn, this implies also that n, = n.(q, ¢,). Therefore, we assume a complete inertial

separation between the dynamics of the rigidly driven links and that of the elastically driven links.
Define the control law as

u, = Bi(q:)ve + ne(q, ) (15)
te = Je K¢ (Bee(qe)ve + %s(9, ds Ge» 46) + Ke(0e — qe) (16)
with v, and v, as new inputs, and where (dropping dependencies)
o = (Ke + Bee)ge + 2Beeqt?

In equation (16), the following expressions should be used in sequence for eliminating
higher-order derivatives:

q.e = - Be_el(qe)(Ke(qe - He) + ne(qa qe)) (17)

qs’) = _B;I(qe)(Bee(qe)q'e + Ke(ée - ée) + ﬁe(‘ls Lje)) (18)
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Therefore, equations (15)—(16) can be implemented as a static feedback from the robot state of the

form u = a(q, 4, 0., 0.) + B(g)v. On the other hand, the assumptions on B,, and B., are necessary

to ensure that the term 7i.(q, .) in equation (18), and therefore ¢'*, will not depend on §,. Such

dependence would lead again to a singular decoupling matrix, thus invalidating the static
feedback approach.
Applying control (15)—(16), a linear and input—output decoupled closed-loop system is obtained

Gr = (19)
q = v, (20)

This result is summarized in the following

Theorem 1

The dynamic model (4)—(5) of robots with mixed rigid/elastic joints, with output (9), can be
input—output decoupled and fully linearized by static state feedback if and only if:

(i) B, =0;
(ii) BI'I" = Brr(qr) a'nd BEC = Bee(qe)~

Whenever it applies, the required static state feedback law is given by equations (15)16).

We remark that:

e The torque input u, at rigid joints depends only on the external input v,, while the torque
input u, at elastic joints may or may not depend on v,, beside v.. In fact, the actual
decoupling matrix of the system is

_ Brr(qf) O -
tsz/(q)—[ [%] JeKelBee(qe)j|

where the block [«] is different from zero if and only if the gravity force components acting
on the elastically driven links depends also on g, i.e., g. = ¢g.(¢:»q.) (see Appendix A).

® The computed torque technique for full rigid robots and the linearizing static state feedback
control of Reference 11 for all elastic joint robots are recovered from equations (15)—-16) in
the two extreme cases of r = n and 0, respectively.

It is interesting to check how Theorem 1 applies to some examples of robot arms.

Example 1 (PRP cylindrical robot)

The arm inertia matrix takes on the diagonal structure

by 0 0
B(g)=| 0 biy(q5) O
0 0 bis

When the second and third joints are of the same kind (rigid or elastic), the system can be
completely linearized and input—output decoupled by static state feedback.
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Example 2 (3R elbow-type robot)

The arm inertia matrix has the structure

b11(q2,43) 0 0
B(q) = 0 b12(q3) b23(q3)
0 b>3(q3) b33

If the base joint is rigid and the shoulder and elbow joints are elastic (or vice versa), this robot
satisfies condition (i) of Theorem 1, but not condition (ii). If the shoulder and the elbow joints are
of a different kind, both conditions are violated. Static feedback will then always fail for
linearization and decoupling purposes.

Example 3 (2P Cartesian robot)

Consider a Cartesian robot moving on a horizontal plane, with the two prismatic joint axes
forming a twist angle o. Let the first joint be rigid and the second elastic. The (constant) arm

inertia matrix is
B my +m, M, COSA b,y b
M, COS o nm, bey bee

with m; being the mass of the ith link. Condition (ii) of Theorem 1 holds indeed, but condition (i)
fails except for « = 7/2. On the other hand, the robot equations are already linear in this case

brrql + bre‘jZ = U
berql + bre(:jZ + k2(612 - 02) =0
Dol + k3 (0, — q2) = uy

This implies that a static state feedback will not suffice to decouple the dynamics. As shown in the
next section, a dynamic (here, linear) state feedback will allow to obtain this result.

As apparent from the above examples, the necessary and sufficient conditions of Theorem 1 are
rather restrictive. The third example raises also the question on the necessity of these conditions
for obtaining separately either input—output decoupling or full-state linearization alone. From
the arguments proving Theorem 1, we can easily see that condition (i) is certainly necessary for
input—output decoupling. On the other hand, nothing can be concluded on the necessity of either
condition (i) or condition (ii) (or both) for achieving full-state linearization, independent from
a specific output choice (see example in Appendix B).

5. DECOUPLING AND LINEARIZATION VIA DYNAMIC FEEDBACK

Consider the general case in which one or both conditions of Theorem 1 are violated. In these
cases the decoupling matrix will always be singular. Input-output decoupling and full-state
linearization may still be obtained, but we need to pursue a more general strategy based on
dynamic state feedback. We will show this in a constructive and physically motivated way.
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Define a linear dynamic feedback compensator for the inputs at the rigid joints
U, = Kr(gr - qr) (21)
Jrgr + Kr(er - Qr) = Uye (22)

with (arbitrary) diagonal matrices K, >0 and J, >0, and where the 2r states have been
conveniently denoted as 0, ; and 9“ (i=1, ...,r). The above control structure minics the
dynamic behaviour of fictitious elastic joint transmissions, with joint stiffnesses and motor
inertias left as control design parameters. It requires a preliminary feedback from the position of
those robot links which are driven by rigid joints.

The resulting extended system made by equations (4)~(5) and equations (21)~(22)

B..(q) B:(q) || d (g, 4) (q: — 0;) 0
[Ber(q) Bee(q)][' ] [ < )} [ (e—He)} [0} )
K0 —qc) | | e
[ [ } [K 0, — J‘[uj 24

is formally equivalent to the dynamic model (2)~(3) of robots with all joints elastic, by setting
J =diag{J,,J.}, K =diag{K,,K.}, and 0 =(0,,0.). Since this model is known to be
input—output decoupable and fully linearizable by static state feedback,!! the original one shares
the same features under dynamic state feedback.

The linearizing dynamic controller can be obtained without making explicit use of the
state-space format, by differentiating equation (2) (or equation (23)) twice with respect to time and

setting ¢'¥ = v, a new input, and combining the result with equations (21)~(22). This gives for
control u = (u,, u,)

U, = Kr(ar - qr) (25)
[” — JKHB@o + %a(d.d.5.4°) + KO — g 6)
Jrg'r + Kr(er - qr) = Uye (27)

where (dropping dependencies)
ag = (K + B)g + 2Bg"® + i

The nominal dependence of o4 in equation (26) on § and ¢‘® can be transformed into a depend-
ence on ¢, 4,0, (the original state of the robot) and on 6, and 6, (the state of the dynamic
compensator) by means of

4§ =—B"'(q)(K(g — 0) + n(q.9)) (28)
q® =—B Y(q)(B(q)§ + K(¢ — 0) + 7i(q, 4)) (29)

used in the proper sequence.
This result is summarized in the following:
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Theorem 2

When the conditions of Theorem 1 are violated, the dynamic model (4)«5) of robots with
mixed rigid/elastic joints, with output (9), can be input—output decoupled and fully linearized by
a dynamic state feedback of dimension 2r, where r is the number of rigid joints. The required
dynamic state feedback law is given by equations (25)—(27).

Therefore, the role of dynamic feedback in robots with mixed rigid/elastic joints appears to be
the balancing of input—output relative degrees of all channels (uniformly equal to four), so that the
robot behaves as a fully elastic joint one. We stress, however, that the analysis performed in
Section 4 indicates that such a balancing is not needed if the original robot dynamics is inertially
separated between rigid joint and elastic joint components.

6. CONCLUSIONS

We have analysed the theoretical aspects of the problem of input—output decoupling and
full-state linearization by feedback for robots having some joints rigid and some elastic. It was
proved that static state feedback works successfully if and only if no couplings are present in the
robot inertia matrix between the variables of the rigid joints and those of the elastic joints. When
these rather strict conditions are not met, dynamic state feedback will guarantee a linear and
decoupled closed-loop dynamics. In this case, the dimension of the dynamic compensator is
always equal to 2r, where r (with 0 < r < n) is the number of rigid joints.

When needed, the dynamic feedback control method should be considered as dual to a singular
perturbation approach. In the latter, the time-scale difference between the rigid and the elastic
motion is handled through an approximate analysis so as to have a reduced set of ‘rigid’ robot
equations. Here, dynamic feedback is used to ‘soften’ the rigid transmissions inducing an
elastic-like motion for all robot joints. Decoupling is achieved by slowing down the effects of
torques applied at the rigid joints with respect to those acting on the motor side of the elastic
joints.

All results were obtained using, for the elastic joint modelling part, the reduced model of
Spong'! which neglects small inertial terms. Indeed, a similar analysis can be performed starting
from the complete dynamic model of robots with mixed joints. This extension is not trivial and
requires further exploitation of the upper triangular structure of the matrix B; representing the
actuator-link inertial couplings (see, e.g. Reference 23). In any case, for mechanical systems the
direct use of the Euler—Lagrange equations, as done in this paper, simplifies considerably the
analysis and synthesis of nonlinear feedback controllers.

Finally, when the conditions of Theorem 1 fail, the question of whether the dynamics of a robot
with mixed rigid/elastic joints can be exactly linearized by static state feedback is still open. If we
wish to avoid a case-by-case study based on the standard involutivity conditions defined on the
system state equations, further investigation on the dynamic properties of the robot model is
needed.
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APPENDIX A

We show here that independence of n.(q,q) from ¢, in the dynamic model (12)~(14) is equivalent to
assumption (ii) of Theorem 1. For this, the definition of Christoffel symbols for the Coriolis and centrifugal
terms will be used.

In equations (12)—(13), let

B 0
B(q)—[ ; Bee(q)}—[bl(q) ()]
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and
n(g.d) = ["’“” ".)} - [cﬁ(q’ q.)] + [gf(ﬂ — c(g.d) + 9(@) (30)
n(q,q) (4,9 g.(q)

Dependence on generalized velocities ¢ arises only within the components of vector ¢(g, §) of Coriolis and
centrifugal terms, which are computed from the columns and elements of the inertia matrix B(q) as

ci(q,9) = %q’TCi(q)q'

Cilq) = <612;q)> + <al;i;q)> - <a§f)>, i=1,..,n

Forie{r + 1, ...,n} = e, independence of ¢;(q,§) from ¢, implies

C. cT q
S 1r.T -T i,rr i,er L . 1 .TC~ . 31
(’l 2 [qr qe ] |:Ci,er Ci,eei| |:q.ei| 2 qe l,eeqe ( )
On the other hand, from b, = [0" b, ;]" we have
Obee.i\" 0B,
0 < Se,l) 0
6qr 5‘11
C = - (32)
abee,i abee,i + abee.i T 0 6'Bee
C’;qr aQe aQr aQi
so that
abcc i
—=0< Bcc = Bcc(qc)
0.
aBrr .
=0(ice) = B, = Brr(qr)
g

From this equivalence, using similar arguments, it follows also that n, = n.(q, 4,).

In addition, under the assumptions of Theorem 1, the dependence of Coriolis and centrifugal terms on
configuration variables is also particularized. From equations (31) and (32), we have, in fact, ¢, = ¢c¢(qe, 4e)-
Similarly, ¢, = ¢,(¢. 4;).- Nonetheless, in the expressions of the control law (15)-(16) we have left a general
dependence on ¢q = (¢;,¢.) in both n, and n,, because there is no restriction on the contribution of the
gravitational terms g(q) to n(q, 4) (see equation (30)).

APPENDIX B

A simple example of a robot with mixed rigid/elastic joints violating condition (i) of Theorem 1 is given,
whose nonlinear dynamics can still be linearized via static state feedback.

Consider a PR robot moving on a horizontal plane, with the first (prismatic) joint elastic and the second
(rotational) joint rigid. Let 0, be the motor position of the first joint, ¢, the first-link position, and ¢, the
second-link position. With the general notation used in the paper, we have ¢, = ¢, 9. = q1, and 0. = 6, (all
scalar). From the Euler-Lagrange equations, the dynamic model organized in the form (4)~5) is

I A K R U W B
—b,sing, bs G — b, cos fhfi% ki(g; — 04) 0

Ji0 + k(01 — q1) = uy
with

by=Jy + 1+ myds, by=mydy, by=my+my+my,
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where m; is the mass of the ith link, J; is the effective inertia of the rotor of the ith motor, m,,, is the mass of
the second motor, I, is the baricentral inertia of the second link, d, > 0 is the distance of the center of mass of
the second link from the second joint axis, and k4 is the finite stiffness of the first joint. The above dynamic
model is also the complete one, since the second motor does not rotate due to the linear motion of the first

DECOUPLING AND FEEDBACK LINEARIZATION OF ROBOTS

prismatic joint; thus, no simplifying assumptions are introduced in this case.

Let

x=1[q1 42 01 41 G2 0,1"eR®, u=T[u,

The state-space representation of the system is

with

Jx) =

$=100)+ ¥ g9

Xa
X5

X6

b10(x2)[bacax3 + kyi(x3 — x1)]
b2520(x2)[bacax3 + ki (x3 — x1)]

Jiki(xy — x3)

gi(x) =

O O O O O

Ji |

UZ]TE Rz

g2(x) =

by5,0(x5)
b30(x>)
0

where we defined s, = sinx,, ¢, = c08X», j; = 1/J;, and §(x,) = 1/(b;b5 — b3s3) > 0.

It is lengthy but straightforward to verify that the conditions for feedback linearization via static state
feedback (see, e.g., [22, Theorem 5.2.3, p. 233]) are satisfied. For, we need to compute a sequence of
distributions G; (i =0, 1,...,4) and check for constant dimension and involutivity at x°. Denoting by
ad,g = [ f, g] the Lie Bracket of two vector fields f and g, with ad%* g = [ f,ad%¢] (k = 1,2, ...), we have:

dim(Go) = dim(span{g;.g.}) = 2,

dim(G,) = dim(span{g;,g>,ad,g,}) = 3,

Moreover, it can be shown that

G, involutive,

G, involutive,

Vx,
Vx

dim(G;) = dim(span{g;, g5, ad;gs,...,ad g, }) =i+ 2, i=23,4,

and G,, G5, and G, are involutive in the neighborhood of a generic point x°, being

ad;gz =

- bzszé(xz)-
— b3d(x2)
0
X5 Pa(x2)
X5¢5(x2)

adfgz =

0

01(X1, X2, X3, Xs)

62(X1, X2, X3, X5)

— jik1b28;8(x3)
04(x)
o5(x)

L Jikixs[W1(x2) + b20(520(x2))/0x5] ]

with suitable functions ¢;, Y;, o, and w;.
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ad}gz =

ad;gz =

— Xxs1(x2)
— Xs2(x2)

0

VX1, X2, X3, Xs5)
Vs(x1, X2, X3, Xs5)
J1k1b2526(x3)

— jikixs[1(x2) + 2b30(5,0(x2))/0x, ]
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04(x)
ws(x)
we(X1, X2, X3, Xs5)




