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Stabilization of an underactuated planar 2R manipulator
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SUMMARY

We describe a technique for the stabilization of a 2R robot moving in the horizontal plane with a single
actuator at the base, an interesting example of underactuated mechanical system that is not smoothly
stabilizable. The proposed method is based on a recently introduced iterative steering paradigm, which
prescribes the repeated application of an error contracting open-loop control law. In order to compute
e$ciently such a law, the dynamic equations of the robot are transformed via partial feedback linearization
and nilpotent approximation. Simulation and experimental results are presented for a laboratory prototype.
Copyright ( 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Underactuated robotic systems (i.e. with less control inputs than generalized co-ordinates) are
attracting a lot of attention, consistently with the minimalistic trend in the "eld [1]. Mechanisms
that can perform complex tasks with a small number of actuators are desirable in view of their
reduced cost, weight and failure rate. On the other hand, innovative approaches are required in
order to synthesize e!ective control strategies for such systems.

In general, underactuated mechanical systems may be controllable via either kinematic or
dynamic coupling. Typical examples of the "rst class are "rst-order nonholonomic systems, such
as wheeled mobile robots and dextrous robotic hands under pure rolling constraint (e.g. see [2]
and the references therein). The equations of these systems are nonlinear and driftless when
generalized velocities are considered as control inputs. As a consequence, controllability of the
linear approximation is lost, and smooth time-invariant stabilization is not possible in view of
a celebrated result by Brockett [3]. Use of standard feedback techniques is then ruled out; the
stabilization problem for such systems has been solved using time-varying [4] and/or discontinu-
ous feedback [5}7].
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The second class includes, among others, overhead cranes [8], manipulators with #exible
elements [9] and gymnast robots, e.g., the Acrobot [10]. The corresponding system equations are
still nonlinear, but a drift term accounting for gravitational or elastic forces is now present. All the
above systems are smoothly*in particular, linearly-stabilizable.

However, some underactuated mechanisms that are controllable via dynamic coupling inherit
the limitations of kinematic nonholonomic systems, namely the lack of smooth stabilizability.
This situation arises whenever the drift term tends to zero when the generalized velocities do.
Examples are provided by manipulators with some passive joints in the absence of gravity [11] or
redundant manipulators driven by end-e!ector generalized forces [12]. The aforementioned
control techniques for "rst-order nonholonomic systems cannot be applied in these cases,
essentially due to the presence of a nontrivial drift. Another hint at the intrinsic di$culty of the
control problem for these mechanisms comes from the observation that they are subject to
second-order di!erential constraints which are not integrable [11]. Other examples of systems of
this kind can be found in References [13, 14].

In this paper, we address the stabilization problem for an underactuated 2R robot moving in
the horizontal plane. Control methods for this speci"c mechanism have been presented by Suzuki
et al. based on a PoincareH map analysis [15], and using averaging techniques [16]. Our solution
relies on the following general scheme: devise an open-loop control which can steer the system
closer to the desired equilibrium point in "nite time, and apply it in an iterative fashion (i.e. from
the state attained at the end of the previous iteration). Under appropriate hypotheses, this
strategy provides robust exponential convergence to the equilibrium [17]. To perform the
computation of an open-loop control, we approximate the system equations by a nilpotent form
[18, 19], which can be easily integrated and, at the same time, preserves the controllability
properties of the original system. Nilpotent approximations have been used for non-holonomic
motion planning [20].

The paper is organized as follows. In the next section, we outline the main steps of our
approach to the control of underactuated manipulators, which include a partial feedback
linearization, a nilpotent approximation and an iterative stabilization procedure. In Section 3, we
apply the proposed approach to a 2R planar robot equipped with a single actuator at the base
and present simulation as well as experimental results. Possible extensions are brie#y mentioned
in the concluding section. For the reader's convenience, the main features of the nilpotent
approximation procedure and of the iterative steering technique are summarized in two
appendices.

2. THE GENERAL APPROACH

Consider a manipulator with n joints, only m of which are actuated. Denote by q3Rn the joint
co-ordinates vector, and by q3Rm the vector of generalized forces.

2.1. Partial feedback linearization

Partition vector q as (q
a
, q

b
), being q

a
3Rm the active joints and q

b
3Rn~m the passive joints. The

dynamic model of the system can be written as

C
B
aa

BT
ab

B
ab

B
bb
D C

qK
a

qK
b
D#C

h
a

h
b
D"C

q
0D (1)

182 A. DE LUCA, R. MATTONE AND G. ORIOLO

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:181}198



with the corresponding partitions of the n]n inertia matrix B(q) and of the n-vector h (q, qR ),
which collects centrifugal, Coriolis and possibly gravitational terms. The last n!m equations
represent a second-order di!erential constraint which is satis"ed by the robot during its motion.
Conditions under which such constraint is non-integrable (i.e. non-holonomic) are given in
Reference [11].

Choosing the generalized forces q as

q"(B
aa
!B

ab
B~1
bb

BT
ab

)u#h
a
!B

ab
B~1

bb
h
b

(2)

with u3Rm an auxiliary input vector, one obtains

qK
a
"u (3)

qK
b
"!B~1

bb
h
b
!B~1

bb
BT
ab
u

"f
b
(q, qR )#G

b
(q)u (4)

In the absence of gravity, vector h in Equation (1) is a pure quadratic form in qR , and the same is
true for the drift term f

b
in Equation (4); as a consequence, the linear approximation of system

(3)}(4) around equilibrium points turns out to be not controllable [11]. Besides, accessibility of
the system*which may be tested via the Lie algebra rank condition [21]*does not imply
controllability, due to the presence of the non-trivial drift f

b
. Hence, the only way to prove

controllability is to apply the su$cient conditions for small-time local controllability (STLC)
given in Reference [22] and then re"ned in Reference [23]. Based on these results, STLC tests for
systems in form (3)}(4) have been given in References [12, 24]; however, relying on su$cient
conditions, such tests may not be conclusive (as in example of Section 3).

2.2. Nilpotent approximation

Nilpotent approximations [18] of control systems are higher-order approximations that prove
useful when linearization does not preserve the original controllability properties. In particular,
in Reference [20] a systematic approximation procedure is proposed, which can be applied to any
driftless system provided that the accessibility property is satis"ed. The procedure is brie#y
summarized in Appendix A. The extension to systems of the form

xR "f (x)#
m
+
i/1

g
i
(x)u

i
, x3Rn (5)

i.e. containing a non-zero drift term f (x), can be worked out in a straightforward fashion.
The procedure is based on the existence of a set of privileged co-ordinates z"¹ (x), locally

de"ned around any point x0 where the system is accessible. In these co-ordinates, the approxima-
tion is obtained by expanding each component of the system vector "elds in Taylor series and
truncating it at a proper order. Thus, the approximating vector "elds fK, gL

1
,2, gL

m
are polynomial.

Moreover, they generate a nilpotent Lie algebra which is full rank around x0, so that also the
approximating system is locally accessible.
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As the ith component (i"1,2, n) of the vector "elds fK, gL
1
,2, gL

m
depends at most on

z
1
,2, z

i~1
, the approximating polynomial system has the triangular form

zR
i
" fK

i
#

m
+
j/1

gL
ji
u
j
, i"1,2, l (6)

zR
k
" fK

k
(z

1
,2, z

k~1
)#

m
+
j/1

gL
jk
(z

1
,2, z

k~1
)u

j
k"l#1,2, n (7)

being l the dimension of span M f, g
1
,2, g

m
N at x0, and fK

i
, gL

1i
,2, gL

mi
constant values, for

i"1,2, l. Equations (6)} (7) generalize Equations (27)} (28) of Appendix A by including a drift
term.

One can prove that, if the original system (5) contains a linear subsytem (e.g. Equation (3)), the
latter is preserved by the approximation (6)} (7). This suggests to perform the partial feedback
linearization of Section 2.1 before proceeding with the nilpotent approximation.

2.3. Stabilization

We now address the problem of "nding a feedback controller (necessarily time-varying and/or
discontinuous) that transfers the system from an initial point x0"(q0, qR 0 )"(q0

a
, q0

b
, qR 0

a
, qR 0

b
) to

a desired equilibrium x$"(q$, 0)"(q$
a
, q$

b
, 0, 0).

Our method prescribes the execution of two phases:

I. Drive in "nite time ¹
1

the active joint variables q
a
to their desired values q$

a
. At the end of

this phase it will be q
a
(¹

1
)"q$

a
and qR

a
(¹

1
)"0. Correspondingly, q

b
(¹

1
)"qI

b
and

qR
b
(¹

1
)"qR I

b
, being in general qI

b
Oq$

b
and qR I

b
O0.

II. Obtain asymptotic convergence of the passive joint variables q
b

to their desired values
q$
b

while guaranteeing that q
a

returns to q$
a
.

The "rst phase, referred to as alignment, can be performed in feedback using a standard terminal
controller [25] for the m chains of double integrators represented by Equation (3).

For the second phase, called contraction, we adopt the iterative state steering approach [17],
whose main features are summarized in Appendix B. The basic tool is a contracting open-loop
control, that steers the system closer to the desired equilibrium x$ in a "nite time ¹. If such
a control can be computed, its iterated application guarantees exponential convergence to x$,
provided that ¹ is bounded and that the open-loop control is HoK lder-continuous with respect to
the initial conditions (see Equation (B4)). Moreover, non-persistent perturbations are rejected,
while ultimate boundedness of the error is guaranteed in the presence of persistent perturbations.
The resulting control is given by a time-varying law whose expression depends on a sampled
feedback action.

To apply the above technique, one should compute a contracting open-loop control u (t) for
system (3)} (4). One possibility is to perform a cyclic motion of duration ¹

2
on the q

a
variables

(i.e. a motion such that qII
a
"q

a
(¹

1
#¹

2
)"q

a
(¹

1
) and qR II

a
"qR

a
(¹

1
#¹

2
)"0) resulting in a "nal

passive joints position qII
b
"q

b
(¹

1
#¹

2
) closer to q$

b
than the initial condition qI

b
, with "nal

velocity qR II
b

smaller in norm than qR I
b
. If such a cycle can be produced by a control law u that is

HoK lder-continuous with respect to the initial conditions, the passive joints will converge expon-
sentially over the iterations to their desired value q$

b
.
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Figure 1. A 2R planar robot with a single actuator at the base.

The search for u may be conveniently performed within a parameterized class of inputs. In
some cases (e.g. when the system can be put in second-order triangular or C[ aplygin form [12]),
the computation of the parameters identifying u in the chosen class can be directly performed by
forward integration of the passive joints (Equation (4)). In general, however, one can resort to the
nilpotent approximation (6)}(7) of the dynamic equations, which is polynomial and hence always
integrable.

In the next section, we illustrate the above approach by designing a stabilizing controller for
an underactuated 2R robot moving in the horizontal plane.

3. CASE STUDY: A PLANAR 2R ROBOT

Consider the planar robot of Figure 1, having two revolute joints and a single actuator at the
base. The dynamic model is

C
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#a
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with the three dynamic parameters

a
1
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where I
i
is the baricentral inertia of link i, m

i
is the mass of link i, d

i
is the distance between the

centre of mass of link i and the joint axis i, and l
1

is the length of the "rst link. Note that neither
gravity nor friction are present at the joints.

3.1. Design of a stabilizing controller

Assume now that we wish to steer the underactuated 2R robot from q0"(q0
1
, q0

2
) to qd"(qd

1
, qd

2
),

with "nal zero velocity. We apply the stabilization strategy proposed in Section 2.3, with q
a
"q

1
and q

b
"q

2
.
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3.1.1. Partial feedback linearization. De"ning the state vector x"(q
1
, q

2
, qR

1
, qR

2
)3R4, and

choosing the "rst joint torque in accordance with Equation (2) as

q
1
"Aa1#2a

2
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2
!

(a
3
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2
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2
)2

a
3

B u!a
2
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2 A(qR 1#qR

2
)2#

a
2

a
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cos q
2
qR 2
1B (9)

with u3R, we obtain a partially linearized model in the form

xR "C
qR
1

qR
2
0

!K sin q
2
qR 2
1
D#C

0

0

1

!1!K cos q
2
D u"f (x)#g (x)u (10)

having set K"a
2
/a

3
.

Since the vector "elds Mg, [ f, g], [g, [ f, g]], [g, [g, [ f, g]]]N span R4 at any x such that
q
2
Okn/2, k"0, 12, the system is locally accessible. However, one may verify that the su$cient

conditions of Reference [12, Proposition 2] for STLC are not satis"ed.

3.1.2. Nilpotent approximation. In order to devise a contracting open-loop controller to be
applied iteratively after the alignment phase, we need to compute the nilpotent approximation of
the system at states such that qR I

1
"0 and qR I

2
O0. The nilpotent approximation technique of

Appendix A (modi"ed so as to account for the drift vector) has been applied to Equation (10), with
the vector "elds M f, g, [ f, g], [g, [ f, g]]N spanning R4 at the points of interest. The change of
coordinates x"¹~1(z) required to transform the system in privileged co-ordinates is

q
1
"qI

1
!z

3

q
2
"qI

2
#qR I

2
z
1
#bz

3 (11)
qR
1
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2
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3
!dz

4
#cz

1
z
2

with b"1#K cos qI
2
, c"KqR I

2
sin qI

2
, d"K2sin 2qI

2
, while the nilpotent approximation (6)}(7)

is obtained as
zR
1
"1

zR
2
"u

zR
3
"!z

2
(12)

zR
4
"

1

2Kcos qI
2

z2
2
!A

(qR I
2
)2

4K sin qI
2

z2
1
#

b
2K cos qI

2

z
3Bu

As expected, the dynamics of q
1

and qR
1

(which correspond to the dynamics of !z
3

and z
2
,

respectively) is exactly recovered, thanks to the partial feedback linearization. Instead, the use of
the nilpotent dynamics (12), in place of the exact model (10), for computing the "nal value of q

2
and qR

2
after the application of a command u(t) for a period ¹

2
will induce an approximation

error. However, the magnitude of this error can be made arbitrarily small by reducing ¹
2
. By

enforcing su$cient contraction on the approximate system, one can guarantee that the contrac-
tion property is preserved for the original one.
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3.1.3. Synthesis of an open-loop contracting control law. The above nilpotent approximation is
now used to compute a contracting control law u. To simplify the notation, we reset time so that
t"0 at the start of the contraction phase.

The "rst requirement on u is that after one period ¹
2

the "rst joint position and velocity must
go back at the values (qR I

1
, 0) attained at the end of the alignment phase. In the following, we call

cyclic this kind of open-loop control. In view of the partially linearized model (10), u must satisfy
the conditions

P
¹

2

0

u(t) dt"0 and P
¹

2

0
P

t

0

u(q) dq dt"0

If u is cyclic, Equations (11) give

qR II
1
"qR I

1
"0 N z

2
(¹

2
)"0 and qII

1
"qI

1
N z

3
(¹

2
)"0
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*q

2
"qII

2
!qI

2
"qR I

2
z
1
(¹

2
)"qR I

2
¹

2
(13)

since z
1
(t)"t from the "rst of Equations (12). This shows that the variation *q

2
of the passive

joint position along the cycle does not depend on the particular cyclic control used, but only on
its period and on the initial velocity qR I

2
. As for the passive joint velocity, we have

*qR
2
"qR II

2
!qR I

2
"!dz

4
(¹

2
)

From the last of Equations (12), we get

z
4
(¹

2
)"P

¹
2

0

1

2K cos qI
2
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2
(t) dt!P

¹
2

0
A

(qR I
2
)2
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2

z2
1
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b
2K cos qI

2

z
3
(t)B u(t) dt

Integrating by parts we obtain

P
¹

2

0

z2
1
(t)u(t) dt"!2P

¹
2

0

z
3
(t) dt, P

¹
2

0

z
3
(t)u(t) dt"P

¹
2

0

z2
2
(t) dt.

and "nally

*qR
2
"K2 sin qI

2
cos qI

2 P
¹

2

0

z2
2
(t) dt!K cos qI

2
(qR I

2
)2 P

¹
2

0

z
3
(t) dt. (14)

The sign of the "rst term in the above expression does not depend on the choice of the speci"c
cyclic input, but only on qI

2
, while the second term is o ((qR I

2
)2).

We now adopt a speci"c class of cyclic control inputs as

u(t)"G
!A cos

4pt

¹
2

, t3C0,
¹

2
2 B

A cos

4pAt!
¹

2
2 B

¹
2

, t3C
¹

2
2

, ¹
2D

(15)

with duration ¹
2

and amplitude A (see Figure 2). From Equations (12) we get zK
3
"!u, and thus

P
¹

2

0

z
3
(t) dt"!P

¹
2

0
P

t

0
P

p

0

u(o) dodpdt"0
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Figure 2. Pro"le of the cyclic open-loop control u used in the contraction phase.

having used Equation (15). Moreover

P
¹

2

0

z2
2
(t) dt"P

¹
2

0
AP

t

0

u(p) dpB
2
dt"

¹3
2

32p2
A2

so that Equation (14) implies

*qR
2
"

A2¹3
2
K2

64p2
sin 2qI

2
. (16)

This shows that, at each iteration, we obtain *qR
2

of the same sign of sin 2qI
2
, i.e. positive for qI

2
in

the interior of the "rst and third quadrant and negative in the interior of the second and the fourth
(see Figure 3).

In order to meet the iterative steering paradigm, we must guarantee that the error contracts, i.e.

Dq$
2
!qII

2
D)g

1
Dq$

2
!qI

2
D (17)

DqR II
2
D)g

2
DqR I

2
D (18)

with g
1
, g

2
3[0, 1). In view of Equations (13) and (16), we expect that the above conditions can be

directly satis"ed only in particular situations.
Assume the period and the amplitude of u in Equation (15) are chosen as

¹
2
"(1!g

1
)
q$
2
!qI

2
qR I
2

, 0)g
1
(1 (19)

A"

8p
K¹

2
S

qR I
2
(g

2
!1)

¹
2
sin 2qI

2

, 0)g
2
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Straightforward calculations give
q$
2
!qII

2
"g

1
(q$

2
!qI

2
) (21)

qR II
2
"g

2
qR I
2

(22)
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Figure 3. The sign of the achievable *qR
2

depends on the second link posture at the
beginning of the control iteration.

i.e. the required contraction. However, for Equations (19)} (20) to be well posed, we must require
¹

2
'0, that is

G
qI
2
(q$

2
qR I
2
'0

or G
qI
2
'q$

2
qR I
2
(0

(23)

as well as the argument of the square root in Equation (20) to be positive, which implies

G
qI
2
3Q

1
qR I
2
(0

or qI
2
3Q

3 or G
qI
2
3Q

2
qR I
2
'0

or qI
2
3Q

4 (24)

Putting together conditions (23)} (24) one obtains the conditions under which contraction can be
obtained using Equations (19)}(20):

G
q$
2
3Q

1
qI
2
3Q

1
qI
2
'q$

2
qR I
2
(0

or G
q$
2
3Q

2
qI
2
3Q

2
qI
2
'q$

2
qR I
2
'0

or G
q$
2
3Q

3
qI
2
3Q

3
qI
2
'q$

2
qR I
2
(0

or G
q$
2
3Q

4
qI
2
3Q

4
qI
2
'q$

2
qR I
2
(0

(25)

A compact picture of these is given in Figure 4. In view of Equations (21)} (22), which show
that the position and velocity errors do not change sign, we also conclude that each of the
conditions (25), once satis"ed, holds continuously over the iterations. Note that the design of
a contracting law is not possible if q$

2
"$p/2.

The requirement that the control law u is HoK lder-continuous with respect to the initial state is
always guaranteed under the contraction conditions (25). Moreover, boundedness of ¹

2
is
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Figure 4. The conditions under which contraction is possible. For each quadrant, the bold line
represents the desired q$

2
while the gray area shows the admissible initial positions qI

2
. The

direction of the admissible velocities is also shown.

ensured by letting g
1
)g

2
, so that the fraction in Equation (19) admits a "nite limit as qR I

2
tends to

zero. These two properties imply that the contraction phase produces exponential convergence to
the desired equilibrium point (q$

2
, 0).

If the conditions in Equation (25) do not hold, it is not possible to satisfy both Equations
(17)}(18) while approaching the desired con"guration. Therefore, it is necessary to attain
a modi"ed initial condition (qI

2
, qR I

2
) that satis"es Equation (25) before switching to the contraction

phase. This transition phase can be always executed in "nite time. For example, assume that
q$
2
3Q

1
but at least one of the relative conditions for contraction does not hold. An admissible

situation can be recovered as follows: if the initial velocity of the second joint is negative, keep it
constant until q

2
enters Q

1
, else keep it constant until q

2
enters Q

2
or Q

4
, where qR

2
can be made

negative. Note that in order to keep qR
2

constant one simply sets u"0 in Equation (10), resulting
also in zero motion for the "rst joint. Similarly, one may device simple transition phases for the
other cases q$

2
3Q

2
, Q

3
or Q

4
. As a result, the convergence domain of the proposed control

strategy can be made global.

3.1.4. The resulting control strategy. We summarize the overall structure of our stabilizing
controller in pseudocode as follows.

Program Stabilization
begin

Alignment /* ends with q
1
"q$

1
, qR

1
"0, q

2
"qI

2
, qR

2
"qR I

2 */
if Need

}
Transition then /* veri,es the contraction conditions */

Transition
Contraction /* computes iteratively u using Equations (19) and (20) */

end
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We also give a partial coding of the procedure which implements the transition phase.

Procedure ¹ransition
begin

if q$
2
3Q

1
then

begin
if qR I

2
'0 then

u"0 until q
2
3Q

2
or Q

4
apply u using (13) so as to obtain qR II

2
(0 /* regardless of qII

2 */
u"0 until q

2
3Q

1
/* now with negative qR

2 */
end

F /* similar maneuvers for q$
2
3Q

2
, Q

3
or Q

4 */
end

3.2. Simulation results

To illustrate the performance of the proposed method, we present "rst a simulation for the
partially linearized model (10) of the 2R robot with K"0.5. We assume that, at the end of the
alignment phase, it is qI

1
"q$

1
"0, qR I

1
"03/s, qI

2
"22.53 and qR I

2
"13.23/s. The desired con"gura-

tion of the passive joint is q$
2
"453.

Being q$
2
3Q

1
but qR I

2
'0, the control strategy of Section 3.1 prescribes the execution of

a transition phase, in which qR
2

is "rst kept constant until q
2

enters Q
2
, where qR

2
can be made

negative. When q
2

returns in Q
1
, the contraction phase takes over.

While the control amplitude A is computed by Equation (20), for ease of implementation we
used a constant ¹

2
during the contraction phase. By doing so, it is not possible to choose

arbitrarily the position contraction rate, for g
1

will depend on qR I
2

only (see Equation (13)).
However, applying iteratively Equations (13) and (22) (which is still valid), one can easily verify
that, if a su$ciently small ¹

2
is used and the velocity contraction rate g

2
is chosen as

g
2
"1#

¹
2
qR
2
(0)

q
2
(0)!q$

2

(1

one gets g
1
"g

2
(1 constant over the iterations. Here, q

2
(0) and qR

2
(0) are, respectively, the

second joint position and velocity at the beginning of the "rst iteration of the contraction phase.
In particular, we could use ¹

2
"1 s as an admissible value in our simulation.

The time history of the joint position errors q
i
!q$

i
, (i"1, 2), during transition and contraction

is reported in Figure 5. Note the constant velocity of the second joint during the "rst part of the
transition phase and the exponential convergence rate during the contraction phase. The long
time needed to complete the recon"guration is due to the fact that motion of the passive joint is
not damped by friction in the simulated model.

3.3. Experimental results

We have applied the proposed stabilization method to the FLEXARM, a lightweight 2R planar
manipulator available in our laboratory (see Reference [26] for a description of the robot). The
second link, which is #exible, has been sti!ened for our purposes by appropriately bonding the
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Figure 5. Simulation results: Errors on q
1

(dashed) and q
2

(solid).

forearm, and its driving motor has been switched o!. As a nominal model, we have used Equation
(8) with a

1
"0.867, a

2
"0.195, and a

3
"0.42 (all in kg m2). Using the partially linearizing

feedback (9), a model in the form (10) is obtained, with K"0.4643.
The accuracy of the nominal model is quite poor, due to unmodelled dynamics such as dry and

viscous friction on both joints, the second link residual elasticity, and the presence of a bound on
the "rst joint torque (to avoid saturation of the actuator). Besides, no direct measure is available
for the joint velocity, which is reconstructed by numeric "ltering.

Before proceeding with the experiment, we have simulated the control of the nominal model.
The arm is required to move from q0

1
"743, q0

2
"913 to q$

1
"03, q$

2
"453. The result is shown in

Figure 6. The alignment phase (performed with a simple PD control law on the "rst joint position,
see the remark below) lasts approximately 2.5 s, after which the contraction phase is started. Note
that no transition phase is needed in this case and that a constant ¹

2
"1 has been used for

contraction (as in the simulation of Section 3.2).
When implementing the method on our experimental set-up, we introduced some modi"ca-

tions to the basic strategy:

f To avoid chattering, the alignment phase was performed by a PD control law on the "rst
joint position (with gains KI

P
and KI

D
). Although the convergence is only asymptotic, any

desired error tolerance can be met in "nite time.
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Figure 6. Simulation results on the nominal model of the FLEXARM: Errors on q
1

(dashed) and q
2

(solid).

f During the contraction phase, in view of the model inaccuracy, the "rst link was controlled
via high-gain PD feedback on the second joint position (with gains KII

P
and KII

D
) in place of

the partially linearizing feedback (9). The position reference signal is obtained by integrating
twice the acceleration pro"le (15).

f Due to the system perturbations, the "rst joint may not perform exactly a cyclic motion
during the iterations of the contraction phase*a small displacement may occur. To prevent
the "rst link from drifting away from its desired position, each iteration was actually
implemented as a re-alignment phase followed by a contraction phase.

Figures 7 and 8 show the results of an experiment with the same initial and "nal desired
conditions of Figure 6. During each alignment phase, the PD control law on the "rst joint
position used the gains KI

P
"20 and KI

D
"0.3. Instead, we have set KII

P
"70 and KII

D
"2 for the

contraction phase, whose period is again chosen as ¹
2
"1 s.

Joint errors and the "rst joint torque q
1

are reported, respectively, in Figures 7 and 8. For the
sake of clarity, each contraction phase is marked in bold on the time axis. A comparison with
Figure 6 shows that, due to the presence of friction, stabilization of the robot is obtained in
a smaller time. For the same reason, the amplitude of the oscillations in the contraction phase is
reduced. Note also that q

1
saturates during the "rst alignment phase. In spite of all the

unmodelled e!ects, the results support the claim of a satisfactory robustness of the proposed
control strategy, a by-product of the iterative steering approach.

193STABILIZATION OF UNDERACTUATED 2R MANIPULATOR

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:181}198



Figure 7. Experimental results on the FLEXARM: errors on q
1

(dashed) and q
2

(solid).

4. CONCLUSIONS

We have presented a solution method for the stabilization of underactuated manipulators. Such
systems are not smoothly stabilizable in the absence of gravity. Moreover, the presence of a drift
term in the dynamic equations complicates remarkably the control synthesis. The stabilization
strategy consists of three phases, namely (i) alignment, in which the active joints are brought to
their desired position, (ii) transition, where simple maneuvers are executed to obtain the correct
initial condition for (iii) contraction, based on the iterative application of a suitable open-loop
control designed on a nilpotent approximation of the system.

The proposed approach has been illustrated with reference to a planar 2R robot with a single
actuator at the base. The presented simulation and experimental results show the satisfactory
performance of the method. In principle, the underlying general approach can be applied to most
underactuated mechanisms of interest in robotic applications. However, the application to
speci"c systems or classes of systems must be worked out on a case-by-case basis, and may prove
di$cult or even impossible for higher degrees of underactuation. The critical point is the
closed-form evaluation of parameter values in the chosen parameterized class of open-loop
controls that guarantee the contraction conditions for the state error.
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Figure 8. Experimental results on the FLEXARM: joint torque q
1
.

Indeed, we have successfully applied the same iterative steering approach for the stabilization
of the Acrobot [27], as well as for the robust stabilization of a rigid spacecraft with two control
torques [28]. Moreover, the use of nilpotent approximations in conjunction with iterative
steering has given encouraging preliminary results also for the control of non-nilpotentizable
driftless systems, such as the car with o!-hooked trailers [29].
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APPENDIX A: NILPOTENT APPROXIMATION PROCEDURE

We brie#y review here the nilpotent approximation procedure of Reference [19], to which the
reader is referred for details. The extension to systems with drift is straightforward.

Consider a driftless system

xR "
m
+
i/1

g
i
(x )u

i
, x3Rn (A1)
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satisfying the Lie algebra rank condition almost everywhere. Denote by (g
i12

g
is~1

) f the Lie
derivative of order s!1 of f along g

i12
g
is~1

, and by ¸s(x0) the space spanned at x0 by the
brackets of g

1
,2, g

m
of length )s. The smallest integer r (x0) such that ¸r(x0) (x0) spans the

tangent space of system (26) at x0 is called the degree of non-holonomy at x0.

De,nition 1
A function f3R is of order *s at x0 if the function (g

i12
g
iq
) f vanishes at x0, for any i

1
,2, i

q
and q)s!1.

De,nition 2
A vector "eld g is of order *q at x0 if, for every s and every function f having order s at x0, the

Lie derivative g f has order *q#s at x0.

De,nition 3
The weight w

j
of a co-ordinate y

j
is the smallest integer s such that dy

j
is not identically zero on

¸s(x0) (s"1,2, r ).

De,nition 4
Local co-ordinates z

1
,2, z

n
centred at x0 form a system of privileged co-ordinates if the order of

z
j
at x0 is equal to w

j
( j"1,2, n).

Let c
1
(x0),2, c

n
(x0) be a basis of ¸r (x0)(x0 ). Through a linear change of co-ordinates, it is

always possible to "nd a system of coordinates y
1
,2, y

n
centred at x0 such that (c

i
y
j
) (x0 )"d

ij
,

with d
ij

the Kronecker delta. From this, a system of privileged co-ordinates z
1
,2, z

n
around x0 is

obtained by the recursive formula

z
q
"y

q
! +

Ma:w(a)(w(q)N

1

a
1
!2a

q~1
!
(ca1

12
ca

q~1

q~1
y
q
) (x0)za

1
1 2za

q~1
q~1

with a"(a
1
,2, a

n
) and w(a)"+n

1
w

i
a
i
. Co-ordinates z

1
,2, z

n
have order w

1
,2,w

n
by construc-

tion. With the system in privileged co-ordinates, the order of a smooth function f at x0 is the least
weighted-degree monomial actually appearing in the Taylor expansion f (z )"+aaaz

a
1
12

za
n
n

of f at
x0. The order of a vector "eld g can be computed in the same algebraic way as above, i.e., using
the Taylor expansion g (z)"+

a,j
aaz

a
1
12

za
n
n

L
zj
, assigning to L

zj
the weight !w

j
and considering

terms like aaz
a
1
12

za
n
n

as products.
In privileged co-ordinates, each g

i
can be expanded in terms of vector "elds homogeneous with

respect to the weighted degree as g
i
"g(~1)

i
#g(0)

i
#g(1)

i
#2. The nilpotent approximation of

system (A1) is derived by replacing the vector "elds g
i
with their principal component g(~1)

i
. One

obtains the triangular form

zR
i
"

m
+
j/1

gL
ji
u
j
, i"1,2, l (A2)

zR
k
"

m
+
j/1

gL
jk

(z
1
,2, z

k~1
)u

j
, k"l#1,2, n (A3)

being l the dimension of span Mg
1
,2, g

m
N at x0, gL

1i
,2, gL

mi
constants for i"1,2, l, and

gL
jk

(z
1
,2, z

k~1
) polynomial functions of homogeneous degree w

k
!1 for k"l#1,2, n.
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APPENDIX B: STABILIZATION VIA ITERATIVE STEERING

In this section, the stabilization technique based on iterative state steering is summarized (see
Reference [17]) for details and proofs).

Consider the control system

xR "f (x, u) x3Rn, u3Rm (B1)

Without loss of generality, we assume that f (0, 0)"0, i.e. the origin is an equilibrium.
Consider a sequence of time instants Mt

k
N (k"0, 1, 2,2) with t

k`1
"t

k
#¹

k`1
, and

0(¹
m
)¹

k`1
)¹

M
(R. For compactness, let x (t

k
)"x

k
. On each time interval

I
k`1

"[t
k
, t

k`1
], apply the steering control law

u (t)"u
k`1

(t)"a (x,x
k
, t), t3I

k`1
(B2)

Let

xR "f (x, a(x,x
k
, t))"fI (x,x

k
, t), t3I

k`1
(B3)

be the closed-loop dynamics of system (B1) within the (k#1)th interval I
k`1

.

Assumption A
The steering control function a is such that:

a) a(x, 0, t)"0, for any (x, t)3Rn]I
k`1

;
b) fI is locally lipschitz in x, continuous in x

k
and piecewise-continuous in t, for t3I

k`1
;

c) Dx
k`1

D)gDx
k
D, g(1, ∀x

k
(contraction).

The requirement that fI (and hence, the steering control a) is continuous in x
k
is essential for the

proposed stabilization strategy.

¹heorem 1
Under Assumption A, for the controlled system (B3):

1. The origin is a uniformly asymptotically stable equilibrium point.
2. If the additional condition holds

D fI (0, x
k
, t )D)kDx

k
Dr, t3I

k`1
, k*0, r'0 (B4)

then the rate of convergence is exponential. In particular, if r*1, then the origin is an
exponentially stable equilibrium point.

In particular, the convergence rate is rDloggD/¹
M

if r(1 or DloggD/¹
M

if r*1. Condition (B4)
is referred to as HoK lder-continuity of order r at the origin.

For a characterization of the robustness of the iterative steering approach, see Reference [17].
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