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Abs t rac t  

The   purp3se   o f  t h i s  pape r  i s  t o  show t h a t   a n y  
s q u a r e   i n v e r t i b l e   n o n l i n e a r   s y s t e m   w h o s e   i n v e r s e  i s  
" s t a t e - f r e e "   c a n   b e   t u r n e d   i n t o  a f u l l y   l i n e a r  
c o n t r o l l a b l e  and  observable   system by means of dynamic 
s t a t e - f e e d b a c k   a n d   c o o r d i n a t e s   t r a n s f o r m a t i o n s .  A 
n o n l i n e a r   s y s t e m  has an  inverse   which i s  " s t a t e f r e e "  
i f   t he   va lue   o f  t h e  i n p u t   ( a t   t i m e  t )  can be e x p r e s s e d  
a s  a f u n c t i o n  o f   t h e   v a l u e s   ( a t  t )  of   the  output  and a 
f i n i t e  number of its d e r i v a t i v e s .  

1 .  I n t r o d u c t i o n  

Consider a nonl inear   system  descr ibed by equa t ions  
of the  form 

i = f ( x )  + g ( x ) u  ( 1  . l a )  

y = h ( x )  ( 1  . l b )  

where xcRn, U E R ~  and ycRm f and t h e  m columns  of g a r e  
a n a l y t i c   v e c t o r   f i e l d s ,  h is an  analyt ic   mapping.   Note  
t h a t  t h i s  s y s t e m   h a s  t h e  same   number   o f   i npu t   and  
output  components. 

The   purpose   o f  t h i s  pape r  i s  t h e   d e s i g n   o f  a 
d y n a m i c   s t a t e - f e e d b a c k   c o m p e n s a t o r ,   n a m e l y  a system 
desc r ibed  by equat ions   o f   the   form 

= a ( c , x )  + b ( S , x ) v   ( 1 . 2 a )  

u = C ( ~ , X )  + d ( S , x ) v   ( 1 . 2 b )  

w h e r e  ScR" a n d  V E R  , i n   s u c h  a way a s   t o   o b t a i n  a 
c l o s e d   l o o p   ( i . e .   t h e   c o m p o s i t i o n   o f  ( 1 . 1 )  and  ( 1 . 2 ) )  
w h i c h ,   a f t e r  a s u i t a b l e   ( l o c a l )  change  of  coordinates 
i n  t h e  s t a t e   s p a c e  z = @ ( c , x ) ,  i s  d e s c r i b e d   b y  
equat ions  of   the   form 

m 

1 = Az + B V  (1 .3a )  

y = cz   (1 .3b )  

T h e   p r i n c i p l e   o f  t h e  l i n e a r i z a t i o n   m e t h o d  
d e v e l o p e d   h e r e i n  i s  t h e  f o l l o w i n g   o n e .  I t  i s  known 
t h a t  any   squa re   i nve r t ib l e   l i nea r   sys t em  can   a lways   be  
d e c o u p l e d   ( f r o m   a n   i n p u t - o u t p u t   p o i n t   o f   v i e w )   v i a  
dynamic   s ta te - feedback   ( see  [ 2 ] )  and t h a t  any  decoupled 
s y s t e m ,   m o d u l g   a n   u n o b s e r v a b l e   p a r t ,   c a n   a l w a y s  be 
t r a n s f o r m e d   ( v i a   f e e d b a c k   a n d   c h a n g e   o f   c o o r d i n a t e s )  
i n t o  a s y s t e m   o f  t h e  f o r m   ( 1 . 3 )   ( s e e  1 4 1 ) .  T h u s ,  
l o o s e l y   s p e a k i n g ,   t h e   m a t t e r  i s  t o   i d e n t i f y   s y s t e m s   i n  
w h i c h   s u c h  a d e c o u p l i n g   p r o c e d u r e   d o e s   n o t   i n d u c e  
unobservable pats. 

I t  i s  k n o w n   t h a t   f e e d b a c k   c a n   i n d u c e  

u n o b s e r v a b i l i t y  i f  a n d   o n l y  i f  A ( t h e   s o - c a l l e d  
m a x i m a l   c o n t r o l l e d   i n v a r i a n t   d i s t r i b u t i o n   c o n t a i n e d   i n  
t h e  d i f f e r e n t i a l  of h )  is  nonze ro .   Thus ,   t he   i s sue  i s  
t o   c o n s i d e r   s y s t e m s   w h i c h   h a v e  A = 0 and t o  be s u r e  
t h a t   s u c h  a cond i t ion  is n o t   l o s t   a l o n g   t h e   d e c o u p l i n g  
procedure ,  

* 

* 

Based  on a r e c e n t   u n d e r s t a n d i n g  of t h e   n o n l i n e a r  
e q u i v a l e n t s   o f   t h e   n o t i o n   o f   " t r a n s m i s s i o n   z e r o s , "  
d e s c r i b e d   i n  [SI, i t  is  shown h e r e   t h a t  t h e  r i g h t   c l a s s  
o f   s y s t e m s   t o   l o o k   a t  is  t h a t  of systems whose i n v e r s e s  
a r e   " s t a t e f r e e . "  As we s h a l l   s e e   m o r e   p r e c i s e l y   i n  
t h e   n e x t   s e c t i o n ,  a system  has a s t a t e - f r e e   i n v e r s e   i f  
i t s  own s t a t e   ( a t   t i m e  t )  c a n   b e   r e c o v e r e d   f r o m   t h e  
v a l u e s   o f  a f i n i t e  number o f   d e r i v a t i v e s  of t h e  ou tput  
( a t  time t ) .  As a r e s u l t   o f   t h i s ,  i t  i s  shown t h a t  
i n v e r t i b l e   s y s t e m s  whose i n v e r s e s   a r e   s t a t e - f r e e   c a n  be 
f u l l y   l i n e a r i z e d   v i a  d y n a m i c   f e e d b a c k   a n d   c o o r d i n a t e s  
t r ans fo rma t ions .  

2 .  Computation  of a r educed   i nve r se  
v i a   S i n g h ' s   a l g o r i t h m  

F o l l o w i n g  [SI, we b r i e f l y   d e s c r i b e  how t h e  
g e n e r a l i z e d   i n v e r s i o n   p r o c e d u r e   d e v e l o p e d  by Singh [71 
w h i c h   c o n s i s t s   o f  a m o d i f i c a t i o n   o f   t h e   s o - c a l l e d  
s t r u c t u r e   a l g o r i t h m ,   c a n  be   u sed   i n   o rde r   t o   compute  
a l s o  a "reduced"  inverse   of  ( 1 . 1  1. 

Consider  the  mapping: 

S , ( y , x )  = h(x ) -y  

and set  

~ , ( y ( ' ) , X , u )  = ~ ( a s , / a ~ ) f ( x ) - y ( ' ) ~ + ~ ( a s , / a x ) g ( x ) ~ u  

= F , ( y ( ' ) , x )  + G,(x)u 

No te   t ha t  2, is  l i n e a r   i n  u .  Le t  p o  denote   the  rank  of  
g o   a n d   s e t   p o = m ,   p l = p o - p o = m - p o .   L e t  K , ( x )  be a p,xp, 
matr ix   of   rank  p1  such  that  

k , ( x )  G , ( X )  = 0 

and s e t  
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T h i s  c o n c l u d e s   t h e   z e r o - t h   s t e p .  A t  t h e  k - t h  s t e p ,  

cons ide r  t h e  mapping S k ( y ( '   ' , - - , Y ( ~ ) , X )  and s e t :  
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Let p k  deno te   t he   r ank   o f  Ck and set  p k + l =  pk-(p -p ) k k-1 
= WPk. 

Le t :  

( k )  

be a mat r ix   in   which  T is P ~ + ~  x ( P ~ + . . . + P ~ - ~ )  and V k  
i s  pk+l x pk and  has  rank p s u c h   t h a t :  k+l ' 

T k ( y ( ' ) , - - , y  (k) , X ) G ~ ~ ( Y ( ' ) , - - , Y  ( k - 1 )  , x )  

+ vk(y(l),--,y(k)x)Kk(y(l),--,y(k),x) = 
0 

and set: 

= T k ( Y  

conc lud ing   t he   k - th   i t e r a t ion .  
* 

I f   a t  some k t h e  m a t r i x  C * h a s   r a n k  p * = m ,  

t h e n  t h e  a l g o r i t h m   s t o p s   a n d  i t  i s  e a s y   t o   c o n c l u d e  
t h a t   t h e   e q u a t i o n :  

k k 

is  s o l v a b l e   i n  u ( s e e   [ 7 ] ) .   M o r e o v e r ,  i t  i s  a l s o  
p o s s i b l e   t o  show ( s e e   [ 6 ] )   t h a t   t h e   J a c o b i a n   m a t r i x :  

h a s   r a n k  )J = p,, + p l + . .  .+ p * ( n a m e l y ,   e q u a l   t o  t h e  

number  of i t s  rows) .   Thus ,   u s ing   t he   Impl i c i t   Func t ion  
Theorem,  from  the  equation: 

k 

1 
I 

I l = G  

! s * ( Y ( l ) , - - , Y ( k * ) , x )  
~k j 

o n e   c a n   r e c o v e r  u c o m p o n e n t s   o f   x ,   e x p r e s s e d   a s  a 

f u n c t i o n   o f   y , y ( ' ) - -  , Y  ( k * )  a n d   o f  t h e  remain ing  n-u 
s t a t e  components  denoted by z. S u b s t i t u t i n g   t h e s e   i n t o  
( 2 . 1 )  a n d   t h e n   i n t o  ( l . l a ) ,  o n e   o b t a i n s  a "reduced" 
inve r se   sys t em  in   t he   fo rm:  

* 
i = F(y , - - ,y  

u = C(y,--,y 

(k (2 .2a )  

( k * + l  ) , z )  (2 .2b)  

T h i s  i n v e r s e   s y s t e m  i s  d e f i n e d   f o r   a l m o s t   a l l  
o u t p u t   f u n c t i o n s .  The dimension  of i t s  d y n a m i c s   i . e .  
d i m  z ,  l o o s e l y   s p e a k i n g ,  i s  a r e d u c e d  number  of 
d i f f e r e n t i a l   e q u a t i o n s   n e e d e d   t o   r e c o v e r  t h e  i n p u t  
f u n c t i o n  u o f  ( 1 )  s t a r t i n g   f r o m  the  knowledge  of i ts  
o u t p u t   f u n c t i o n  y and  of i ts  i n i t i a l   s t a t e  X,, .  

I f   p = n   t h e n  x ( t )  can be comple te ly   expressed  a3 a 

func t ion  of y ( t  1,. . . , y  (k + ' ) ( t ) .  A c c o r d i n g l y ,   i n   t h e  
r e d u c e d   i n v e r s e   ( 2 . 2 )  t h e  dynamics   (2 .2a)   d i sappears  
a n d   u ( t )  can ,&  comple te ly   expressed   as  a f u n c t i o n   o f  

y ( t ) , . , . , ~ ( ~  '"(t). Whenever t h i s  happens,   the   system 
is s a i d   t o  have a "state-free"  dynamics.  

3. Main Results 

I t  i s  well known t h a t   a n y   s q u a r e   i n v e r t i b l e   s y s t e m  
c a n   a l w a y s  be t u r n e d ,  by  means of a s u i t a b l e  dynamic 
e x t e n s i o n ,   i n t o  a s y s t e m   w h i c h   c a n   b e   d e c o u p l e d   v i a  
s t a t i c   s t a t e - f e e d b a c k .  A dynamic   ex tens ion   cons is t s  of 
a d d i t i o n   o f   i n t e g r a t o r s   o n   s o m e   i n p u t   c h a n n e l   a n d  
s t a t e - d e p e n d e n t   c o o r d i n a t e s   t r a n s f o r m a t i o n s   i n  t h e  

i n p u t   s p a c e   [ 2 ] .  The o v e r a l l   p r o c e d u r e   o f   d y n a m i c  
e x t e n s i o n   a n d   s t a t i c   s t a t e - f e e d b a c k   ( o n  t h e  extended 
s y s t e m )  i s  s o m e t i m e s   r e f e r r e d   t o  as d y n a m i c   s t a t e -  
feedback. 

I t  is  a l s o   w e l l  known t h a t   s y s t e m s   w h i c h   c a n   b e  

d e c o u p l e d   v i a   s t a t i c   s t a t e - f e e d b a c k ,   i f  A = 0 ,  a r e  
f e e d b a c k - e q u i v a l e n t   t o   l i n e a r   c o n t r o l l a b l e   a n d  
o b s e r v a b l e   s y s t e m s .   I n  view  of t h i s ,  i t  i s  clear t h e  
i n t e r e s t   i n   s e e k i n g   w h e t h e r   o r   n o t  t h e r e  a r e  cases i n  
w h i c h   t h e   d y n a m i c   e x t e n s i o n   r e q u i r e d   i n   o r d e r   t o  
f u l f i l l   t h e   d e c o u p l i n g   c o n d i t i o n s  i s  such as t o  produce 
a s y s t e m   i n   w h i c h  A = 0 .  F o r ,  i f  t h i s  i s  t h e  case, 
then   the   ex tended   sys tem will be f e e d b a c k   e q u i v a l e n t   t o  
a l i n e a r   c o n t r o l l a b l e   a n d   o b s e r v a b l e   o n e .  

* 

* 

A n a t u r a l   c a n d i d a t e  i s  t h e   c l a s s  of sys t ems   wh ich  

a l r e a d y   h a v e  A = 0 ( i  . e .   b e f o r e  dynamic  extension) .  
However, t h i s   c o n d i t i o n   a l o n e   d o e s   n o t  seem t o  be t h e  
g o o d   o n e   b e c a u s e ,   a s   s h o w n   e . g .   i n   [ 5 1 ,   t h e   p r o p e r t y  

t h a t  A = 0 may n o t  be p r e s e r v e d   u n d e r   a d d i t i o n   o f  
i n t e g r a t o r s   o n   t h e   i n p u t .  A f i r s t   a t t e m p t   t o   f i n d  

add i t iona l   cond i t ions   wh ich  make t h e  p r o p e r t y  A = 0 
i n v a r i a n t  under  dynamic  extension was g i v e n   i n   [ l ] [ 5 ] ,  
where  a s e t  of s u f f i c i e n t   c o n d i t i o n s  ( b a s e d  o n  a 
p r o p e r t y   o f  t he  so -ca l l ed  maximal c o n t r o l l e d   i n v a r i a n t  
d i s t r i b u t i o n  algorithm) w a s   f o u n d .   I n  t h i s  pape r  we 
p r e s e n t  a f u l l   s o l u t i o n   t o  t h i s  problem, i n   t h e   s e n s e  
t h a t  we g i v e   n e c e s s a r y   a n d   s u f f i c i e n t   c o n d i t i o n s .  

* 

* 

* 

The r e s u l t   i n   q u e s t i o n  i s  a consequence   o f   t he  
fol lowing  two lemmas, 

Lemma 3.1 [61 

S u p p o s e   t h e   s y s t e m  ( 1 . 1 )  c a n   b e   d e c o u p l e d   v i a  
s t a t i c   s t a t e - f e e d b a c k .   T h e n   t h e   d i m e n s i o n   o f  A and 
the   d imens ion  of t h e   d y n a m i c s   o f   t h e   r e d u c e d   i n v e r s e  
( 2 . 2 )  a r e  e q u a l .   I n   p a r t i c u l a r ,  

* 
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* 
A = 0 i f  a n d  o n l y  if d im(z)  = 0 .  

Lemma 3.2 
Y l  = x2 

Y 2  - x3 

Suppose  the  system ( 1 . 1 )  i s  i n v e r t i b l e .   T h e n   t h e  x3 = xzu1 
d imens ion   o f  t h e  dynamics  of the r educed   i nve r se  ( 2 . 2 )  * 
i s  invar ian t   under   dynamic   ex tens ion .  T h i s  s y s t e m   h a s  A = 0 b u t   d o e s   n o t   s a t i s f y  t h e  

s u f f i c i e n t   c o n d i t i o n s   g i v e n   i n  [ l ] ,  a s  a s i m p l e  
The  proof  of t h i s  Lemma, which  i s  s i m p l e   b u t  a computa t ion   shows.  However, t h i s  System s a t i s f i e s  t h e  

l i t t l e   t e d i o u s ,   c a n  be f o u n d   i n   t h e   A p p e n d i x .   c o n d i t i o n   o f   T h e o r e m   3 . 1   a n d   c a n   t h e r e f o r e   b e   f u l l y  
l i n e a r i z e d   v i a   d y n a m i c   s t a t e - f e e d b a c k   ( n o t e   a l s o   t h a t  

R e m a r k  3.1 span ( g l , g 2 )  i s  n o t   i n v o l u t i v e   a n d   t h e r e f o r e  t h e  s t a t e  
e q u a t i o n  i s  n o t   ( s t a t i c ) - f e e d b a c k   e q u i v a l e n t   t o  a 

Suppose t h e  fo l lowing   sys t em  l i nea r   con t ro l l ab le   one ) .  

i = @ ( S , Y , . . . r Y  
0)) 

u = Y ( C , Y ,  ... S Y  
0)) (3 .1b)  

( 3 . l a )  
C a r r y i n g   o u t   S i n g h ' s  algorithm one   ob ta ins  

is an   i nve r se  of ( 1 . 1 ) .  Then i t  i s  v e r y   e a s y   t o   f i n d  S o  = [ 1: 1 I:] KO = ( x 2  - x l )  
a n   i n v e r s e   f o r   t h e  dynamic  extension  of ( 1 . 1 )  ob ta ined  
by a d d i t i o n   o f   a n   i n t e g r a t o r   o n   s o m e   i n p u t ,   s a y  u 
For, set  i '  

S l  = X l Y Z  - X Z Y l  

5 = v i , u i = 5  

T h e n ,   d i f f e r e n t i a t e  w i t h  r e s p e c t   t o   t i m e  t h e  i - t h  
l i n e  o f   ( 3 . l b ) :  - x l Y l  Yz 

T h e  m a t r i x  C ,  h a s  g e n e r i c a l l y   r a n k  m=2  and 
p = p o + p l = 3   ( i . e .   d i m ( z ) = O ) .   T h u s ,   b o t h   c o n d i t i o n s   o f  
Theorem  3.1 a r e   s a t i s f i e d .  

I n   o r d e r   t o   g e t   f u l l   l i n e a r i z a t i o n   v i a   d y n a m i c  
T h u s  a n  i n v e r s e  f o r  t h e  e x t e n d e d  sys tem i s  f e e d b a c k  we u s e  f i r s t  t h e   d e c o u p l i n g   p r o c e d u r e  

r ep laced  by t h e   l a t t e r   e x p r e s s i o n .  
Provided by (3 .1a ) - (3 .1b )1   w i th   t he  i - t h  l i n e  of ( 3 . l b )   d e s c r i b e d   i n   [ 2 ] .   s i n c e  t h e  d e c o u p l i n g   m a t r i x   o f  t h e  

system  has  the  form 

T h e  r e a s o n  why t h e  proof   o f  Lemma 3.2  was q u i t e  
l o n g e r  i s  t h a t   i n  view  of t h e  o p p o r t u n i t y   o f   u s i n g  
Lemma 3 . 1 ,  we h a d   t o   r e f e r   e x p l i c i t l y   t o   S i n g h ' s  
algorithm. 

A ( x )  = L h ( x )  = 
g 

Knowing t h a t   f r o m   a n   i n v e r t i b l e   s q u a r e   s y s t e m ,  
a f t e r  dynamic  extension,   one  can  obtain a sys tem  which  
c a n   b e   d e c o u p l e d   v i a   s t a t i c   s t a t e   f e e d b a c k ,  we can now 
eas i ly   p rove   t he   ma in  result. 

Theorem  3.1 

Suppose t h e  system ( 1 . 1 )  i s  such   t ha t :  

i )  p * = m  
k 

i i )  d im(z )  = 0 

Then i t  can  be f u l l y   l i n e a r i z e d   v i a   d y n a m i c   s t a t e -  
feedback. 

P r o o f .   S i m p l y   u s e  t h e  decoupl ing  procedure described 
i n  [Z] .  A t  e a c h   s t a g e ,  a d y n a m i c   e x t e n s i o n  i s  f o u n d  
w h i c h ,   i n   v i e 9   o f  Lemma 3 . 2 ,   l e a v e s  t h e  c o n d i t i o n  
d im(z )  = 0 u n c h a n g e d .   B e c a u s e   o f   t h e   i n v e r t i b i l i t y  
a s s u m p t i o n  ( p  * = m ) ,  a f t e r  a f i n i t e  number  of s t a g e s  

t h e  procedure  ends up w i t h  an  extended  system  which  can 
b e   d e c o u p l e d   v i a   s t a t i c   s t a t e   f e e d b a c k .  T h i s  system, 
i n  view  of Lemma 3.1,   has  now A = 0 a n d   t h e r e f o r e  i s  
f e e d b a c k   e q u i v a l e n t   t o  a l i n e a r   c o n t r o l l a b l e   a n d  
observable   one .  

k 

* 

we h a v e   t o   a d d   a n   i n t e g r a t o r   o n  t h e  f i r s t   i n p u t  
channel .  

The system  thus  extended 

x1 = wz Y 1  = x2 

x 2  = X l X *  Y 2  = x3 

x 3  = X P X *  

x *  = w1 

has  now a (gene r i ca l ly )   nons ingu la r   decoup l ing   ma t r ix  

A e ( x e )  = L eL ehe = 
g f  

and A = 0 .  T h u s ,   t h e   l a t t e r  i s  f e e d b a c k   e q u i v a l e n t  
t o  a sys tem  cons is t ing   o f  two chains   of  two i n t e g r a t o r s  
each. Namely, t he   f eedback  

* e  

w = [Ae(xe)]-'  (-Lfehe + v)  

and  t h e  ( l o c a l )   c h a n g e   o f   c o o r d i n a t e s  ( C o , c 1 )  = 

(he ,Lfehe )   t u rn  t h e  sys t em  in to  

5 0  = 51 
5 1  = v 

Y = 5 0  

4 .  Examples 

Example 4 . 1 ,  

Consider   the  fol lowing  system,  taken  f rom [3] :  
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i n v e r t i b i l i t y   o f  t h e  given  system ( p  * = m )  and  no 

dynamics   for   the   reduced   inverse   sys tem (dim z = 0). 
One could ask whether or not   these   two  condi t ions   could  
be  weakened. 

k 
Example  4.2 

Consider   the  system,  taken  f rom E81 

x1 = x1 + x,  + u1 

x, = x2 + x, + 2X3Ul 

X 3  = X 3  + 3U1 
i ,  = X l X , X ,  + (1+2X,)2Ul + 2x,u, 

Y 1  = x1 9 Y 2  - x2 
* 

T h i s  system  has  A = 0. C a r r y i n g   o u t   S i n g h ' s  
a lgo r i thm  one   ob ta ins  

The mat r ix  G ,  h a s   g e n e r i c a l l y   r a n k  01-2, bu t  
p=po+pl  = 3 and   t he re fo re  t h e  second  condition  of 
Theorem  3.1 is n o t   s a t i s f i e d .  The dynamics  of the  
reduced   inverse   (2 .2)   has   d imens ion  1 :  an  easy 
computa t ion   shows  tha t ,   t ak ing  z = z , ,  one   ge t s  t h e  
dynamics 

; = 22 + 3 ( i 1 - y 1 )  

No te   t ha t  the two condi t ions   o f  Theorem  3.1 a r e  
o n l y   s u f f i c i e n t   o n e s   ( f o r   f u l l   l i n e a r i z a b i l i t y ) .   T h i s  
example  shows  exactly why t h e y   a r e   n o t   n e c e s s a r y .  
Suppose we use t h e  decoupl ing  procedure of [2 ] ;   t hen ,  
we have t o  add  an i n t e g r a t o r  on t h e   f i r s t   i n p u t  
channe l ,  i . e .  we have t o   s e t  u1 = x s ,   x s  = w1 and 
u,=wl. The  system  thus  obtained has a decoupl ing  
ma t r ix  

which i s  now g e n e r i c a l l y   n o n s i n g u l a r ,   b u t  dim(A ) = I .  * e  

However, i t  happens   tha t   the   (decoupl ing)   feedback  

w = [Ae(xe)]-l (-L;ehe + v)  

toge the r  w i t h  t he   ( l oca l )   change   o f   coo rd ina te s  

t u r n   t h e   s y s t e m   i n t o  

5 0  = 51 
i l  = v 

t 2  = -252 + ( 1  - 2 ) c 0  + ( 0  l ) v  

which is  f u l l y   l i n e a r   ( e v e n s t h o u g h   n o t   o b s e r v a b l e ) .  
As a m a t t e r   o f   f a c t ,  A = 0 is  not   needed   in   o rder  

t o  have f u l l   l i n e a r i t y   u n d e r   f e e d b a c k   e q u i v a l e n c e   ( s e e  
[ 9 1   f o r   f u r t h e r   d e t a i l s )  when the  dynamics  of t h e  
r educed   i nve r se  is  a l r e a d y  a l i n e a r   o n e .  

5. Concluding R e m a r k s  

The f i r s t   o n e ,  p * = m ,  is c l e a r l y   a l s o   n e c e s s a r y  

i f  we w a n t   e v e n t u a l l y   t o   o b t a i n  a l inear   sys tem  which  
is a l s o   i n v e r t i b l e .  The second   cond i t ion   imp l i e s   t ha t  
the   l inear   sys tem  obta ined   v ia   dynamic   feedback  i s  a 
system  without   t ransmission  zeros .   Hence,   th is  
c o n d i t i o n  i s  n o t   n e c e s s a r y   f o r   f u l l   l i n e a r i z a t i o n  as 
one   can   immedia te ly   rea l ize  by t a k i n g  a system which i s  
a l r eady   l i nea r   bu t   w i th   d im(z )+O.  

k 

If dim(z)+O,  then  the  dynamic  extension  procedure 
deve loped   i n  [2]  y i e l d s  a system  with  dim(A*)tO (Lemma 
3 . 1 ) .  T h i s  extended  system  could still  be made l i n e a r  
v ia   feedback   and   coord ina tes   t ransformat ions ,   p rovided  
e . g .   t h a t   t h e   n e c e s s a r y   a n d   s u f f i c i e n t   c o n d i t i o n s  
e s t a b l i s h e d   i n   [ 9 1  are s a t i s f i e d .  The c o n d i t i o n s   i n  
q u e s t i o n   e s s e n t i a l l y   s a y   t h a t   t h e   d y n a m i c s   a s s o c i a t e d  
wi th   the   inverse   sys tem  must  be d i f f e o m o r p h i c   t o  a 
l i nea r   one .  

Appendix 

Proof  of Lemma 3.2 

F i r s t  of all, n o t e  t h a t  a nonsingular  x-dependent 
t r a n s f o r m a t i o n   i n   t h e   i n p u t   s p a c e  B ( x )  does   no t   a f f ec t  
the  computat ion  of   the  reduced  inverse  dynamics.  For,  

c h a n g i n g   g ( x )   i n t o   g ( x )  = g(x )B(x )   imp l i e s   chang ing  

G ( x )   i n t o  G k ( x )  = G k ( x ) B ( x ) ,   w h i l e   F k ( x ) ,  T k ( k )  and 

V (x)   remain   unchanged.   In  view  of t h i s ,  wi thout  loss 
o f   g e n e r a l i t y  we can  prove  the Lemma f o r  the  a d d i t i o n  
o f   j u s t   o n e   i n t e g r a t o r  on t h e  f irst  input   channel .  We 
r e f e r   h e r e a f t e r   t o   t h e   s y s t e m  t h u s  o b t a i n e d   a s   t o   t h e  
"extendedr1  system. 

- 
- 

k 

k 

Let us u s e   t h e   s u p e r s c r i p t   " e t 1  when d e a l i n g  w i t h  
such  a system and set 

L z J  

Let q d e n o t e   t h e   l e a s t   i n t e g e r   s u c h  t h a t  
Y=(aS  /ax)g l tO.   Moreover ,   l e t  G;, and K;, d e n o t e   t h e  

m a t r i c e s   c o n s i s t i n g   o f  t h e  l as t  (m-1)  columnq  of G 

a n d ,   r e s p e c t i v e l y ,  

q 

k 

K k  * 

I t  i s  e&qy t o   s e e  t h a t  one may c a r r y   o u t   t h e  
invers ion   a lgor i thm on the   ex tended   sys tem  in   such  a 
way a s   t o   o b t a i n  

se = s k k  
f o r  all 0 5 k 5 q. T h i s  i s  because  one may c h o o s e   a t  
e a c h   s t a g e   t h e  same t r ans fo rma t ion   ma t r i ces  as t h o s e  
used when dea l ing  w i t h  t h e   o r i g i n a l   s y s t e m .  

A t  t he  q-th i t e r a t i o n   o n e   h a s  

S u f f i c i e n t   c o n d i t i o n s   f o r  f u l l  l i n e a r i z a t i o n  of 
n o n l i n e a r   a f f i n e   s y s t e m s  via dynamic s t a t e   f e e d b a c k  
have   been   descr ibed .   These   condi t ions   requi re   the  
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a n d ,   r e s p e c t i v e l y ,  

T h e  r a n k   o f  G e  can  be e i ther  e q u a l   t o   t h a t  of G 
o r  one unit less. A p p o s e  we a r e   i n  t h e  f i r s t  case! 
Then pe - pq+l  and  one may choose 

q+ 1 

T h i s  y i e l d s  

(because  V Y = 0 ,  by d e f i n i t i o n ) .  A t  t h g  n e x t   s t a g e  we 
encounter  9 similar s i t u a t i o n ,   b e c a u s e  F 
have   the   form q + l '  cq+l  q+l Ce 

I f  t h e   r a n k   o f  C e  is e q u a l   t o   t h a t   o f  G one 

may s t i l l  use t h e  same t r a n s f o r m a t i o n   m a t r i c e s  as t h e  
one  used when working  on t h e  o r ig ina l   sys t em  and   ob ta in  

q+ 1 9+ 1 

se  = s 
q+1 9 

T h u s ,   t h e   r e a l   d i f f e r e n c e   a p p e a r s   w h e n e v e r ,  a t  
some s 2 q ,  p s  = P, - 1 ( a n d ,   a c c o r d i n g l y ,  P , + ~  

+ 1 ) .  A t  t h i s   s t a g e ,  Fs, Gs, FZ, G z  will have 

e e 

= ps+1 
the  form 

( t h e   b l o c k s   i n  t h e  middle   of   each  matr ix  are p r e s e n t   i f  
s>q and   cons i s t  of  ps-l +. . . +pq  rows) .  

I f  ( T  T Ks) i s  a m a t r i x   w h i c h   a n n i h i l a t e s  C s  ( K s  

i s  (ps+l ) x p, and  has  rank  ps+l 1, t hen  a m a t r i x   o f   t h e  

form 

9 

will a n n i h i l a t e  G : .  T h e   e x t r a   r o w  ( A  A A s )  cannot  a 
a n n i h i l a t e  Gs a n d ,   t h e r e f o r e  

A Q  + A s Q s  * 0 

A c c o r d i n g l y   t h i s   c h o i c e ,  Sz+, has  the  form 

(A.2) 

( w h e r e   $ , ( x ) t O )   a n d ,   c o n s e q u e n t l y ,   a n d  G t + l w i l l  
have   the   form 

G' 

0 K' i i 

- %  * 

One  may e a s i l y   c o n c l u d e   t h a t  p s + l  = p s + l  a n d ,  e 

t h e r e f o r e ,   t h a t   p z + 2  = p,+2 * 

From t h i s   s t a g e   o n ,  i t  i s  p o s s i b l e   t o   c o n t i n u e  
keeping 

se = s 
k k  

f o r  all k P+2. 

T h i s  i s  b e c a u s e   i f  w i s  a r o w   v e c t o r   w h i c h  

a n n i h i l a t e s  Cs+l  (namely a row  of  ( T  s+l V s + l  1 1 ,  t h e n  

( w  0 )  will a n n i h i l a t e  C z + l .  T h e r e f o r e ,   l o o k i n g  a t  
F:+l , whose  form is  

one   concludes   tha t  ( w  0 

ss+2. 

+ 

r 

I n   c o n c l u s i o n ,  we  may s a y  t h a t  i t  i s  p o s s i b l e   t o  
c a r r y   o u t  the  a lgor i thm on t h e  ex tended   sys tem  in   such  
a way t h a t  ( A . 1 )  h o l d s   f o r  all k t s + l ,  whe reas   fo r  k-s+l  
(A.2)   holds .   Since O 2  is  nonze ro ,   t hen   c l ea r ly  

and 

111 

121 

[: 31 

c 41 

C5l 

[: 61 

171 

e u = u+1 

t h i s  concludes   the   p roof .  
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