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Abstract

The purpose of this paper is to show that any
square invertible nonlinear system whose inverse is
"state~-free" can be turned into a fully linear
controllable and observable system by means of dynamic
state~-feedback and coordinates transformations. A
nonlinear system has an inverse which is "state-free"
if the value of the input (at time t) can be expressed
as a function of the values (at t) of the output and a
finite number of its derivatives.

1. Introduction

Consider a nonlinear system described by equations
of the form

X (1.1a)

f(x) + g(x)u

n{x)

y (1.1b)
n m m

where xeR™, ueR and yeR., f and the m columng of g are

analytic vector fields, h is an analytic mapping. Note

that this system has the same number of input and

output components.

The purpose of this paper is the design of a
dynamic¢ state-feedback compensator, namely a system
described by equations of the form

3

a(g,x) + b(g,x)v (1.2a)

u= c(g,x) + d{g,x)v (1.2b)
where EeRV and vsRm, in such a way as to obtain a
closed loop (i.e. the composition of (1.1) and (1.2))

which, after a suitable (local) change of coordinates

in the state space 2z = ¢(£,x), is described by
equations of the form
z = Az + Bv (1.3a)
y = Cz (1.3b)

The principle of the linearization method
developed herein is the following one. It is known
that any square invertible linear system can always be
decoupled (from an input-output point of view) via
dynamic state-feedback (see [2]) and that any decoupled
system, modulo an unobservable part, can always be
transformed (via feedback and change of coordinates)
into a system of the form (1.3) (see [4]). Thus,
loosely speaking, the matter is to identify systems in
which such a decoupling procedure does not induce
unobservable perts.
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It is known that feedback can induce

*
unobservability if and only if A (the so-called
maximal controlled invariant distribution contained in
the differential of h) is nonzero., Thus, the issue is

*
to consider systems which have A = 0 and to be sure
that such a condition is not lost along the decoupling
procedure,

Based on a recent understanding of the nonlinear
equivalents of the notion of "transmission zeros,"
described in [6], it is shown here that the right class
of systems to look at is that of systems whose inverses
are "state-free." As we shall see more precisely in
the next section, a system has a state-free inverse if
its own state (at time t) can be recovered from the
values of a finite number of derivatives of the output
(at time t). As a result of this, it is shown that
invertible systems whose inverses are state—free can be
fully linearized via dynamic feedback and coordinates
transformations.

2. Computation of a reduced inverse
via Singh's algorithm

Following [6], we briefly describe how the
generalized inversion procedure developed by Singh [7]
which consists of a modification of the so-called
structure algorithm, can be used in order to compute
also a "reduced" inverse of (1.1).

Consider the mapping:
Soly,x) = hi{x)~y

and set

y(W)

S0 xu) = LS/ r(x)-y VI [ (88 0/ 8x)g(x) Tu

= Foly 7,%) + Go(x)u

Note that éo is linear in u., Let p, denote the rank of
go and set po=m, D;=P-po,=M~p,. Let K,(x) be a p,xp,
matrix of rank p, such that

ko(x) Gol(x) =0
and set
Sl(y(1), X) = Kc(x)Fo(y(1), x)

This concludes the zero-th step.

(1),__’y(k)

At the k—th step,

consider the mapping Sk(y ,X) and set:
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Sk(y(1)9——yy<k)y y(k+1),xyu) = [(as /Bx)f‘(x)
. z (38 /By(g))y(lﬂ)]
=0
+ [(BSk/ax)g(x)]u
(1) — (k+1)
= Hk( %)
K (v (1)"y %) %)
Set also:
Fk—T r Gk-1
F = .G o=
Kk H k I K
k Lok

Let Py denote the rank of Gk and set Prsq™ pk—(pk-pk_1)

= mp,.

Let:
(1, =50 v (5 ==y )

be a matrix in which Tk is p v X (po ...+pk 1) and V

is pk+1 x pk and has rank pk , such that: K

k[y(1)’- (k) )Gk“1( (1)3—_1y(k—1)’x)
+ Vk(y(1),--.y(k)XJKk(y(1),‘",y(k),XJ -
0
and set:
Sk+1(y(1),-—,y(k+1),XJ
Tk[y(1),'“,y(k3x)Fk_1( (1 __y( x)
+ Vk(y(1),-—,y(k3X)Hk(y(1>,~-,y(k+1),X)

concluding the k-th iteration.

*
If at some k the matrix G , has rank p , = m,
k k
then the algorithm stops and it is easy to conclude

that the eguation:
(1) (K1) (N __
+
F oy =y x) + G,y =y Y x)u
K K

is solvable in u (see [7]). Moreover, it is also
possible to show (see [6]) that the Jacobian matrix:

=0 (2.1)

So(YyX)

o) | s, (v 0

*
s *(y“)’—-;y(k ),X).

K d

has rank u = py * p*...+ p , (namely, equal to the
k
number of its rows), Thus, using the Implicit Function

Theorem, from the eguation:

-
!

: *
% s *(ym,--.y(k ) %)
Lok

Soly,x) ]
|

one can recover yu components of x, expressed as a

*
(1) (k)

function of y,y —-—,y
state components denoted by z.
(2.1) and then into (1.1a),
inverse system in the form:

and of the remaining n-u
Substituting these into
one obtains a "reduced"

*
z = F(y,"-,y(k +1),z) (2.2a)

*
(k+1) ) (2.2b)

u = G{y,—,y

This inverse system is defined for almost all

output functions. The dimension of its dynamics i.e.

dim z, loosely speaking, is a reduced number of

differential equations needed to recover the input

funetion u of (1) starting from the knowledge of its
output function y and of its initial state x,.

If p=n then x(t) cgn be completely expressed as a

function of y(t),...,y(k +1)(‘('.). Accordingly, in the
reduced inverse (2.2) the dynamics (2.2a) disappears
and u(t) can,be completely expressed as a function of

y(t,),...,y(k H)(t). Whenever this happens, the system
is said to have a "state-free" dynamics.

3. Main Results

It is well known that any square invertible system
can always be turned, by means of a suitable dynamic
extension, into a system which can be decoupled via
static state-feedback. A dynamic extension consists of
addition of integrators on some input channel and
state-dependent coordinates transformations in the

input space [2]. The overall procedure of dynamic
extension and static state-feedback (on the extended
system) is sometimes referred to as dynamic state-
feedback.

It is also well known that systems which can be

decoupled via static state-feedback, if A* = 0, are
feedback-equivalent to linear controllable and
observable systems. In view of this, it is clear the
interest in seeking whether or not there are cases in
which the dynamic extension required in order to
fulfill the decoupling conditions ig such as to produce

*
a system in which &4 = 0. For, if this is the case,
then the extended system will be feedback equivalent to
a linear controllable and observable one.

A natural candidate is the class of systems which

*
already have A = 0 (i.e. before dynamic extension).
However, this condition alone does not seem to be the
good one because, as shown e.g. in [5], the property

*
that A = 0 may not be preserved under addition of
integrators on the input. A first attempt to find

*
additional conditions which make the property A = 0
invariant under dynamic extension was given in [11(5],
where a set of sufficient conditions (based on a
property of the so-called maximal controlled invariant
distribution algorithm) was found. In this paper we
present a full solution to this problem, in the sense
that we give necessary and sufficient conditions.

The result in question is a consequence of the
following two lemmas,

Lemma 3.1 [6]

Suppose the system (1.1) can be decoupled via

*
static state~feedback. Then the dimension of A and
the dimension of the dynamics of the reduced inverse
(2.2) are equal. In particular,
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*
A =0 if and only if dim(z) = 0.
Lemma 3.2

Suppose the system (1.1) is invertible. Then the
dimension of the dynamics of the reduced inverse (2.2)
is invariant under dynamic¢c extension.

The proof of this Lemma, which is simple but a
little tedious, can be found in the Appendix.

Remark 3.1

Suppose the following system

(Y))

2= ¢(2,¥seeuny (3.1a)

() (3.1b)

u = Y[i)yl"'ly
is an inverse of (1.1). Then it is very easy to find
an inverse for the dynamic extension of (1.1) obtained
by addition of an integrator on some input, say Uy
For, set

Then, differentiate with respect to time the i-th
line of (3.1b):

R RS LAF W S D
SRS ST . oY
j=0 3y
= Yi[va"-':y(Y+1)J

Thus an inverse for the extended system is
provided by (3.1a2)-(3.1b), with the i-th line of (3.1b)
replaced by the latter expression.

The reason why the proof of Lemma 3.2 was quite
longer is that in view of the opportunity of using
Lemma 3.1, we had to refer explicitly to Singh's
algorithm., g

Knowing that from an invertible square system,
after dynamic extension, one can obtain a system which
can be decoupled via static state feedback, we can now
easily prove the main result.

Theorem 3.1

Suppose the system (1.1) is such that:

ii) dim(z) =0

Then it can be fully linearized via dynamic state-
feedback.

Proof. Simply use the decoupling procedure described
in [2]. At each stage, a dynamic extension is found
which, in view of Lemma 3.2, leaves the condition

dim(z) = 0 unchanged. Because of the invertibility
assumption (p , = m), after a finite number of stages
K

the procedure ends up with an extended system which can
be decoupled via static state feedback. This system,

*
in view of Lemma 3.1, has now A = 0 and therefore is
feedback equivalent to a linear controllable and
observable one. @

4. Examples
Example 4.1,

Consider the following system, taken from [3]:

Xy = U Y1 = Xz
.

X = X3\ Y2 = X5
.

X3 = XU,

This system has A* = 0 but does not satisfy the
sufficient conditions given in [1], as a simple
computation shows, However, this system satisfies the
condition of Theorem 3.1 and can therefore be fully
linearized via dynamic state-feedback (note also that
span {g,,g,} is not involutive and therefore the state
equation is not (static)-feedback equivalent to a
linear controllable one).

Carrying out Singh's algorithm one obtains
X2 ™ N
S, =
X3 T Y2

Si = x1¥2 T X2¥y

Ko = (%, =x;)

f X, 0
Gi(x,y) = L X2 0
-xlil iz

The matrix G‘ has
u=petp,=3 (i.e. dim(z)=0).
Theorem 3.1 are satisfied.

generically rank m=2 and
Thus, both conditions of

In order to get full linearization via dynamic
feedback we use first the decoupling procedure
described in [2]. Since the decoupling matrix of the
system has the form

x, 0
A(x) = Lgh(x) = [ J

X, 0

we have to add an integrator on the first input
channel.
The system thus extended

Xy = W, Y1 = X;
X3 = XX, Y2 = X3
Xs = XaX,
X, = W,
has now a (generically) nonsingular decoupling matrix
e e e X1 X7
A(x7) =L eLfeh = { i
g %X, O J
*
and A €. 0. Thus, the latter is feedback equivalent

to a system consisting of two chains of two integrators
each., Namely, the feedback

we [%:®]T (—L;ehe + V)

and the (local) change of coordinates (£,,£,) =

(he,Lfehe) turn the system into

éo =&
éx =V
y =&
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Example 4.2
Consider the system, taken from [8]
il = X, +t X3t u,
§2 = X, * X, * 2X3u,
X5 = X3 + 3y,
Xo = X1XpXs + (1#2%,)2u; + 2X,u,

Yi =X 5, Y2 = Xz
*
This system has A = 0, Carrying out Singh's
algorithm one obtains

X1 ™ N
So = Ko = (2X3 -1)
X2 7 Y2

Sy = 2x5(%, *+ X, - },) ~ (X, * X, ~ 92)

. 1 0
Gl(X:Y) = 2X3 0
¥ -2x2
The matrix G, has generically rank m=2, but
U=De*p, = 3 and therefore the second condition of
Theorem 3.1 1is not =satisfied. The dynamics of the
reduced inverse (2.2) has dimension 1: an easy
computation shows that, taking 2z = z,;, one gets the
dynamics
z = 2z + 3(&1-Y1)
Note that the two conditions of Theorem 3.1 are
only sufficient ones (for full linearizability). This

example shows exactly why they are not necessary.
Suppose we use the decoupling procedure of [2]; then,
we have to add an integrator on the first input
channel, i.e. we have to set u, = x,, Xxg = W, and
Up=W,;. The system thus obtained has a decoupling
matrix
e, e e [ ! 0 ]
A7(x") =L eLfeh =
g 2x, 2x2

=1,

which is now generically nonsingular, but dim(A*
However, it happens that the (decoupling) feedback
W= [Ae(xe)]_1 [-L;ehe + v)
together with the (local) change of coordinates
(£0,61,82) = (0%, Leen® , x,)

turn the system into

=&
= v

~2E, + (1 =2)g, + (O

¥rie rie
o

-

1)v

e
»
L

which is fully linear (even,though not observable).

As a matter of fact, A = 0 is not needed in order
to have full linearity under feedback equivalence (see
[9] for further details) when the dynamics of the
reduced inverse is already a linear one.

5. Concluding Remarks

Sufficient conditions for full linearization of
nonlinear affine systems via dynamic state feedback
have been described. These conditions require the

invertibility of the given system (p , = m) and no

dynamics for the reduced inverse systeﬁ (dim z = 0).
One could ask whether or not these two conditions could
be weakened.

The first one, p 4, = m, 1s clearly also necessary

if we want eventuall§ to obtain a linear system which
is also invertible. The second condition implies that

the linear system obtained via dynamic feedback is a
system  without transmission 2€eros, Hence, this
condition 1is not necessary for full linearization as

one can immediately realize by taking a system which is
already linear but with dim(z)=0.

If dim(z)=0, then the dynamic extension procedure

developed 1in [2] yields a system with dim(A*):O (Lemma
3.1). This extended system could still be made linear
via feedback and coordinates transformations, provided
e.g. that the necessary and sufficient conditions
established in [9] are satisfied. The conditions in
question essentially say that the dynamics associated
with the inverse system must be diffeomorphic to a
linear one.

Appendi x

Proof of Lemma 3.2

First of all, note that a nonsingular x-dependent
transformation 1in the input space B{(x) does not affect
the computation of the reduced inverse dynamies. For,

changing g(x) 1into g(x) = g{(x)g(x) implies changing

Gk(x) into Gk(x) = Gk(x)e(x), while Fk(x), Tk(k) and

Vk(x) remain unchanged. In view of this, without loss

of generality we can prove the Lemma for the addition
of Jjust one integrator on the first input channel. We
refer hereafter to the system thus obtained as to the
"extended" system,

Let wus wuse the superscript "e" when dealing with
such a system and set

X I+ g,z 0 (g
e e e e i
X = [ ] ’ r = * 81 = gi = 122
z 0 1 Lo
h™ = h
Let q denote the least integer such that
Y=(BSq/ax)gl¢O. Moreover, let GL and K& denote the

matrices consisting of the last (m~1) columns of Gk

and, respectively, Kk'

It is easy to
inversion algorithm

way as to obtain

see that one may carry out the
on the extended system in such a

Sk = Sk (A1)
for all 0 <k £g. This is because one may choose at
each stage the same transformation matrices as those

used when dealing with the original system.
At the g-th iteration one has
Fq-T Gq-T

q y q Y K!
q - q
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and, respectively,

1

e Gq-1
Tl H vz ¢ 1o x
q q

The rank of e can be elther equal to that of G
or one unit less, §hppose we are in the first case!
Then p and one may choose

(T: V:) - (7 Vq)

g+ ~ Pg+1

This yields

e

=TF +V(H +vYz) =38
a1 7 Tefgmt * Yl g+
(because V Y = 0, by definition). At thg next stageewe
encounter g similar situation, because F , G , G
q+1’ Tg*1’ gt
have the form
1) 1
. Fq_1 0 Gq_1 . 0 Gq_1
= = ] = '
Fq+1 Hq + Yz , Gq+1 Y Kq , Gq+1 0 Kq
1 t
Hq+1 + 8z § Kq+1 0 Kq+1
If the rank of Ge+ is equal to that of G one

q+1 q+1
may still use the same transformation matrices as the
one used when working on the original system and obtain

e
S¢r1 7 %
Thus, the real difference appears whenever, at
e e
some s > q, Pg = Pg ~ 1 {and, acco:diifly, Pasq
Po+ + 1), At this stage, FS, Gs’ FS, Gs will have
the form
) ]
F e . F o 0 Gy, . 0 G,
Fg=' H | F_=|Hez |, G =|6 K' |, G =0 K
H H +6 2z - 6_ K! T 10 K!
8 8 s s s s

(the blocks in the middle of each matrix are present if
s>q and consist of ps_1+...+pq rows),
If (Tq T KQ) is a matrix which annihilates Gs (Ks

is (p_,,) x pg and has rank ps+1), then a matrix of the

s+1
form

will annihilate G:' The extra row (Aq Iy As) cannot
annihilate GQ and, therefore
A0+ A 8 =0
8’8

Accordingly this choice, s® has the form

8+1
S_.,(x)
e s+1
Seep = (A.2)
$,(x) + ¢,(x)z
(where ¢,(x)=0) and, consequently, Gq+1 and G:+1will
have the form N
0 G¢' . 0 G!
q=1 | q-1
C] K' i 0 K'
e
Gs+1 = es Ké ' s+1 = | O Ké
] 1
g1 Xouq | 0 Kaiy
¢L * J

One may easily conclude that p:+ =

1 and,

. s+1
therefore, that Pgsn = Pgine

From this stage on,
keeping

it is possible to continue

for all k > s+2,

This is because if w is a row vector which

(namely a row of (T )), then

e

annihilates Gs+1 o+ Vs+1

(w 0) will annihilate G Therefore, looking at

e s+1°
Fs+1’ whose form is
o °
. Fs+1 0z
Far1 = * oz !
0 s+1zq
d
e
one concludes that (w 0) Fs+1 = wFs+1 , 1.e. a row of

Ss+2.

In conclusion, we may say that it is possible to
carry out the algorithm on the extended system in such
a way that (A.1) holds for all k=s+1, whereas for k=s+i
(A.2) holds. Since ¢, is nonzero, then clearly

ue = u+l

and this concludes the proof. 0O

References

[1] A. De Luca, A. Isidori, F. Nicolo: Control of
robot arm with elastic joints via nonlinear
dynamic feedback, 24th IEEE Conf. on Decision and
Control (1986), pp. 1671-1679,

[2] J. Descusse, C.H. Moog: Decoupling with dynamic
compensation for strong invertibdle affine
nonlinear systems, Int. J. Control, 42 (1985), pp.
1387~1398,

[3] M, Fliess: Some remarks on nonlinear
invertibility and dynamic state-feedback, Theory
and Applications of Nonlinear Control Systems

(C.I. Byrnes and A, Lindquist, eds.), North
Holland (1986), pp. 115-122.
[4] A, Isidori: Nonlinear control systems: an

introduction, Lecture Notes in Control and
Information Sciences, Vol, 72, Springer Verlag
(1985).

[5] A. 1Isidori: Control of nonlinear systems via
dynamic state~feedback, Algebraic and Geometric
Methods in Nonlinear Control Theory (M. Hazewinkel
and M, Fliess, eds.), Reidel (1986).

[6] a. Isidori, C,H., Moog: On the nonlinear
equivalent of the notion of transmission zeros,
Modeling and Adaptive Control, (C.I. Byrnes and A.
Kurszanski, eds.), Lecture Notes in Control and
Information Sciences, to appear.

[7] S.N. Singh: A modified algorithm for
invertiblility in nonlinear systems, IEEE Trans.
Autom. Control, AC-26 (1981), pp. 595-598.

207



s8]

€9l

S.N. Singh: Generalized decoupled~control
synthesis for invertible nonlinear systems, IEEE
Proc., 128, Pt. D, U4 (1981), pp. 157-161.

D, Cheng, A. Isidori, W. Respondek, T.J. Tarn, On
the linearization of nonlinear systems with
outputs, in preparation.

208



