

Robotics 1

Inverse differential kinematics

Prof. Alessandro De Luca

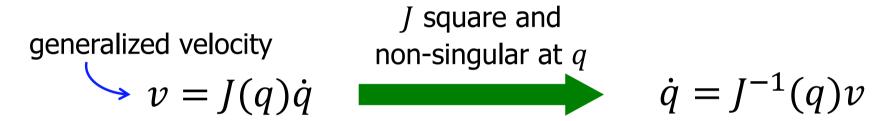
DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robotics 1

STONM YES

Inversion of differential kinematics

 find the joint velocity vector that realizes a desired task/ end-effector velocity ("generalized" = linear and/or angular)



e.g., for a twist $V = {V \choose \omega} \in \mathbb{R}^6$, with velocity $v \in \mathbb{R}^3$ and angular velocity $\omega \in \mathbb{R}^3$, the matrix J(q) is the geometric Jacobian

- problems
 - near a singularity of the Jacobian matrix (too high \dot{q})
 - for redundant robots (no standard "inverse" of a rectangular matrix)

in these cases, more robust inversion methods are needed

Incremental solution

to inverse kinematics problems

- joint velocity inversion can be used also to solve on-line and incrementally a "sequence" of inverse kinematics problems
- each problem differs by a small amount dr from previous one

$$r = f_r(q)$$

direct kinematics

$$dr = \frac{\partial f_r(q)}{\partial q} dq = J_r(q) dq$$

differential kinematics (here with a square, analytic Jacobian)

current

current next

$$r \rightarrow \hat{r} = r + dr$$

$$r + dr = f_r(q)$$

first, increment the desired task variables next

$$r + dr = f_r(q)$$
 \Rightarrow $\hat{q} = f_r^{-1}(r + dr)$

then, solve the inverse kinematics problem (possibly, with a numerical method from the current configuration)

$$dq = J_r^{-1}(q)dr$$

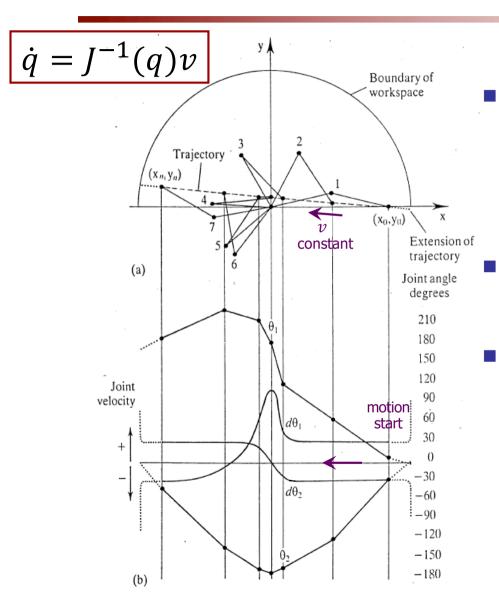
first, solve the inverse differential kinematics problem next

$$dq = J_r^{-1}(q)dr \longrightarrow q \longrightarrow \hat{q} = q + dq$$

then, increment the original joint variables

industrial robots are programmed to work in one (or both) of these ways!

Behavior close to a singularity



problems arise only when commanding joint motion by inversion of a given Cartesian motion task

here, a linear Cartesian trajectory for a planar 2R robot

there is a sudden increase of the displacement/velocity of the first joint near $\theta_2 = -\pi$ (endeffector close to the origin), despite the required Cartesian displacement is small

Robotics 1

Moving close to a singularity

STATE OF THE PARTY OF THE PARTY

in inverse (differential) kinematics problems

- on-line inversion of velocities or incremental inverse kinematics
- singular configurations for a 6R robot with spherical wrist

wrist

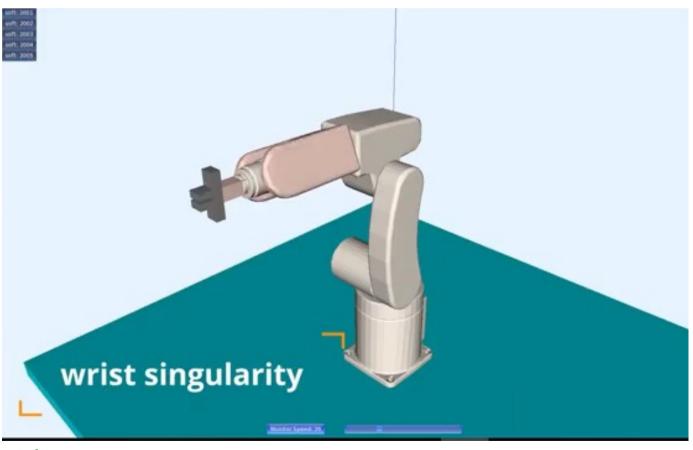
joint axes 4 & 6 aligned

elbow

arm stretched (or folded)

shoulder

wrist center on first joint axis



video

Moving close to a singularity

6R KUKA Agile (with spherical wrist)

 wrist, shoulder and elbow singularities: feasible joint motions versus end-effector (linear) paths crossing/coming close to critical points

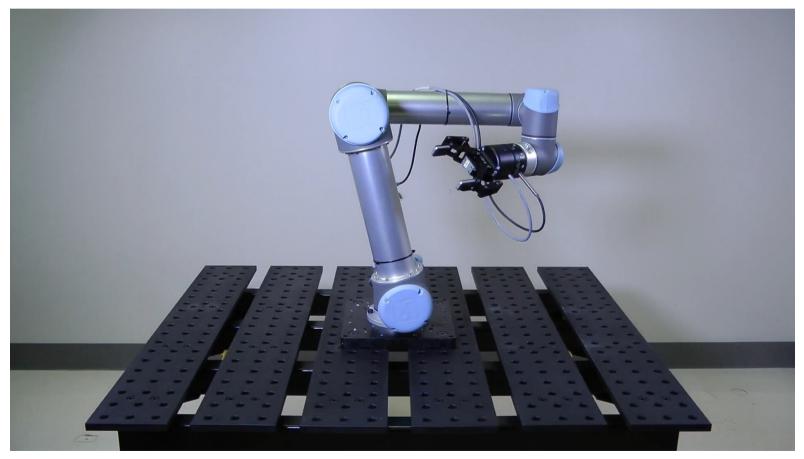
video

Ecole de Technologie Supérieure, CoR Lab, Montreal

Moving close to a singularity

6R Universal Robots UR5 (no spherical wrist)

 same 'wrist', shoulder, and elbow singularities, though with slightly different configurations and full rotation of joints 4 & 6 in first case



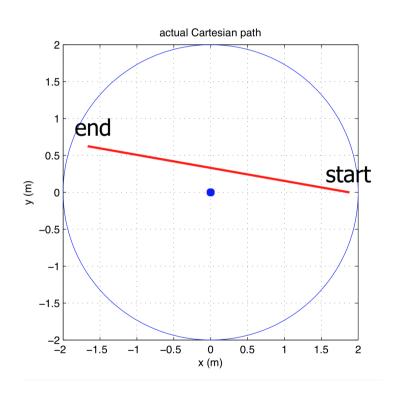
video

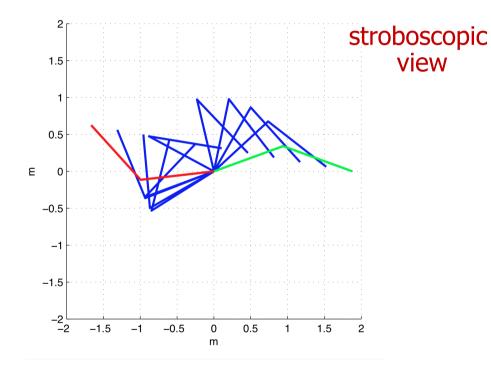
Ecole de Technologie Supérieure, CoR Lab, Montreal

planar 2R robot in straight line Cartesian motion

$$\dot{q} = J^{-1}(q)v$$

regular case

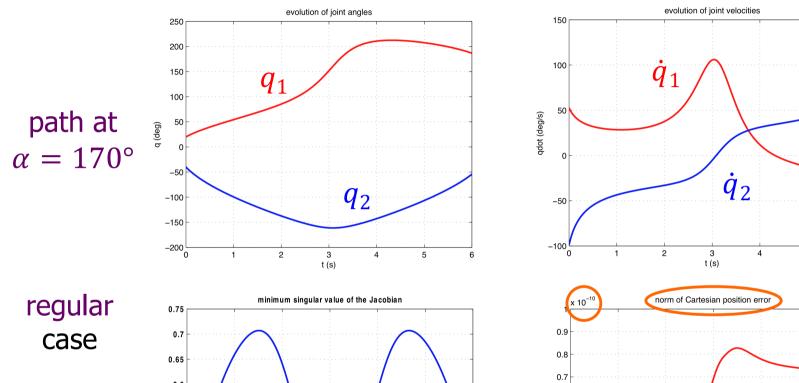




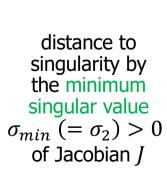
a line from right to left, at $\alpha=170^\circ$ angle with x-axis, executed at constant speed $\|v\|=0.6$ m/s for T=6 s

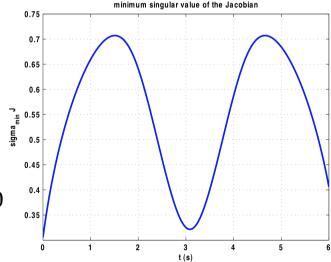
STORY MARK

planar 2R robot in straight line Cartesian motion



error due only to numerical integration (10^{-10})



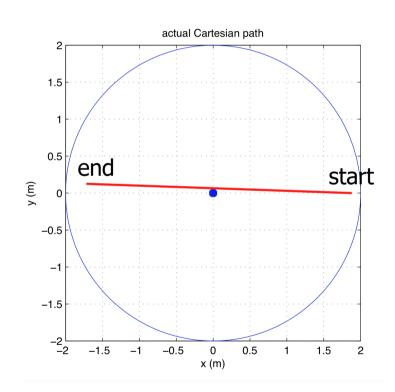


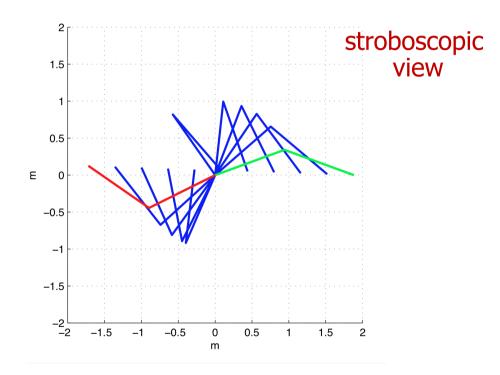
0.4

planar 2R robot in straight line Cartesian motion

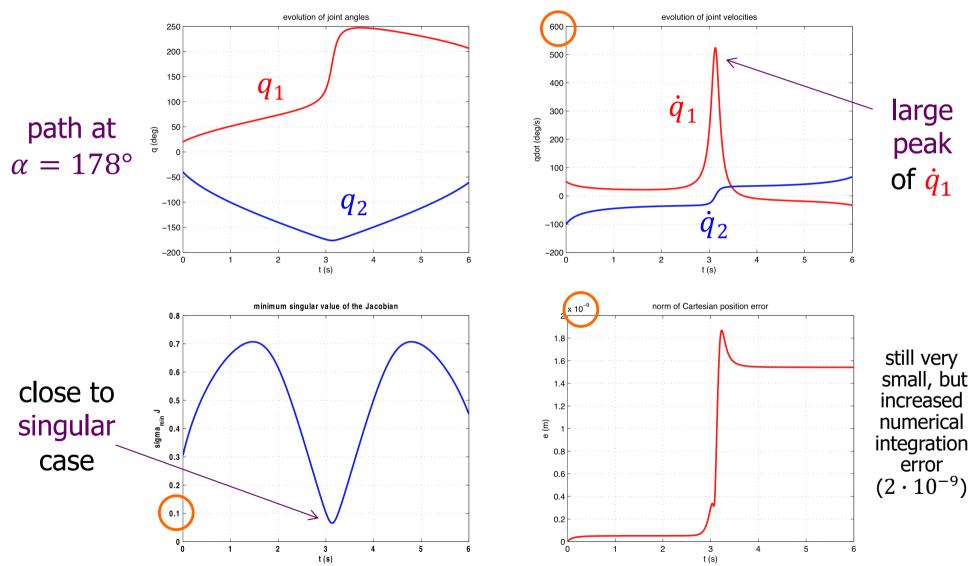
$$\dot{q} = J^{-1}(q)v$$

close to singular case





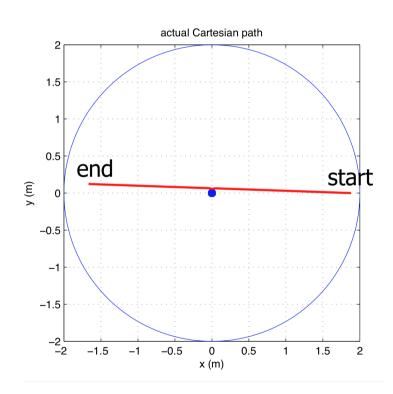
a line from right to left, at $\alpha=178^\circ$ angle with x-axis, executed at constant speed $\|v\|=0.6$ m/s for T=6 s

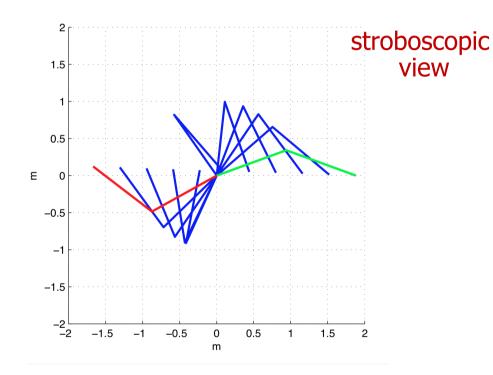


planar 2R robot in straight line Cartesian motion

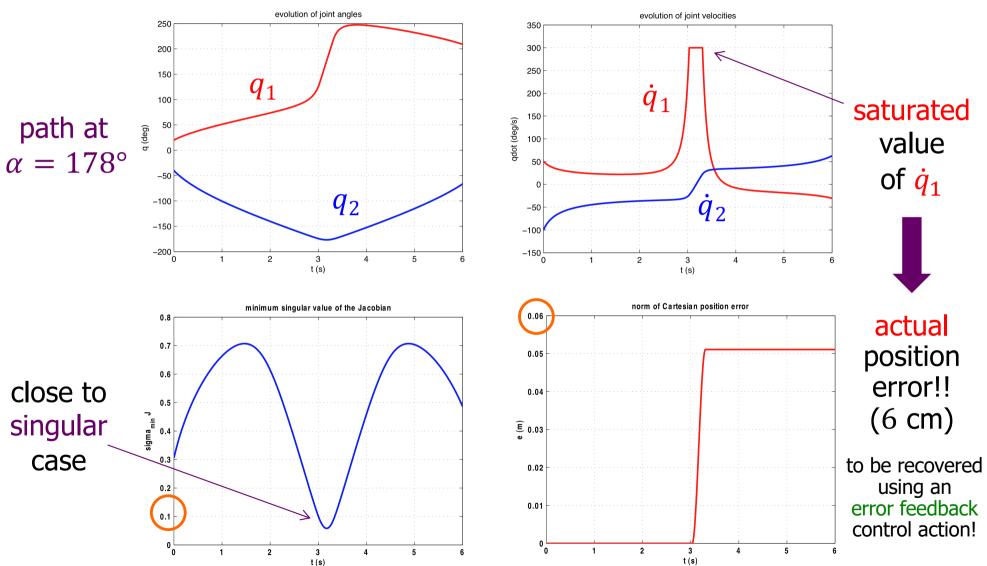
$$\dot{q} = J^{-1}(q)v$$

close to singular case with joint velocity saturation at $V_i = 300^{\circ}/s$





a line from right to left, at $\alpha = 178^{\circ}$ angle with x-axis, executed at constant speed ||v|| = 0.6 m/s for T = 6 s



prove it!
$$\min_{\dot{q}} H = \frac{\lambda}{2} ||\dot{q}||^2 + \frac{1}{2} ||J\dot{q} - v||^2, \quad \lambda \ge 0$$
prove it! $\dot{q} = (\lambda I_n + J^T J)^{-1} J^T v = J^T (\lambda I_m + J J^T)^{-1} v = J_{DLS} v$

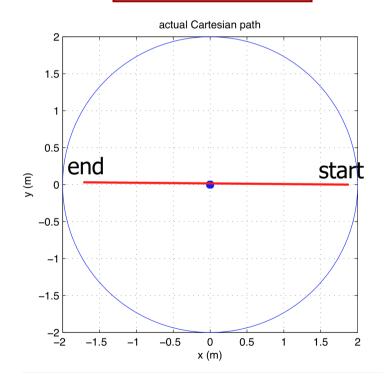
two equivalent expressions, but the second is more convenient in redundant robots!

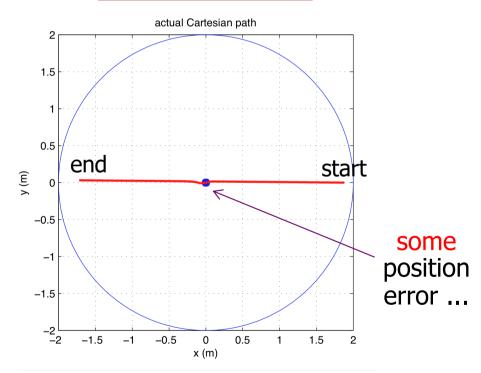
- inversion of differential kinematics as unconstrained optimization problem
- function H = weighted sum of two objectives (norm of joint velocity and error norm on achieved end-effector velocity) to be minimized
- J_{DLS} can be used for both cases: m = n (square) and m < n (redundant)
- $\lambda = 0$ when "far enough" from singularities: $J_{DLS} = J^T (JJ^T)^{-1} = J^{-1}$ or $J^{\#}$
- with $\lambda > 0$, there is a (vector) error $\epsilon (= v J\dot{q})$ in executing the desired end-effector velocity v (check that $\epsilon = \lambda(\lambda I_m + JJ^T)^{-1}v!$), but the joint velocities are always reduced ("damped")

planar 2R robot in straight line Cartesian motion

a comparison of inverse and damped inverse Jacobian methods even closer to singular case (removing joint velocity saturation)

$$\dot{q} = J^{-1}(q)v$$



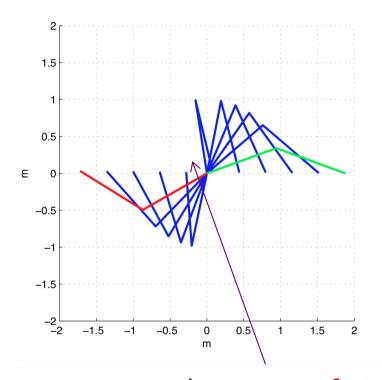


a line from right to left, at $\alpha = 179.5^{\circ}$ angle with x-axis, executed at constant speed ||v|| = 0.6 m/s for T = 6 s

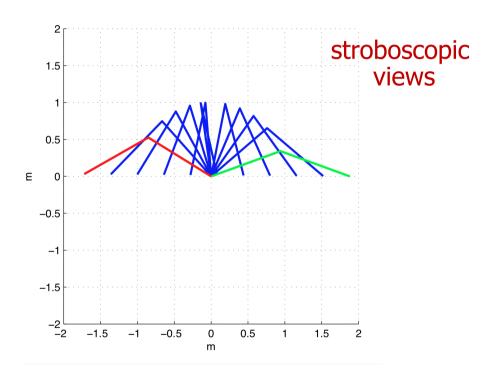
$$\dot{q} = J^{-1}(q)v$$

path at
$$\alpha = 179.5^{\circ}$$

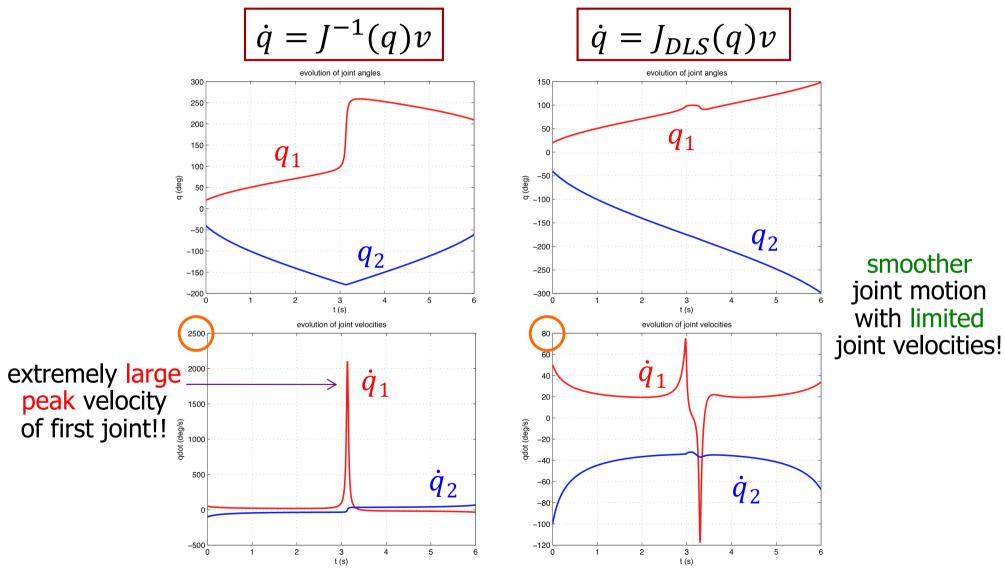
$$\dot{q} = J_{DLS}(q)v$$

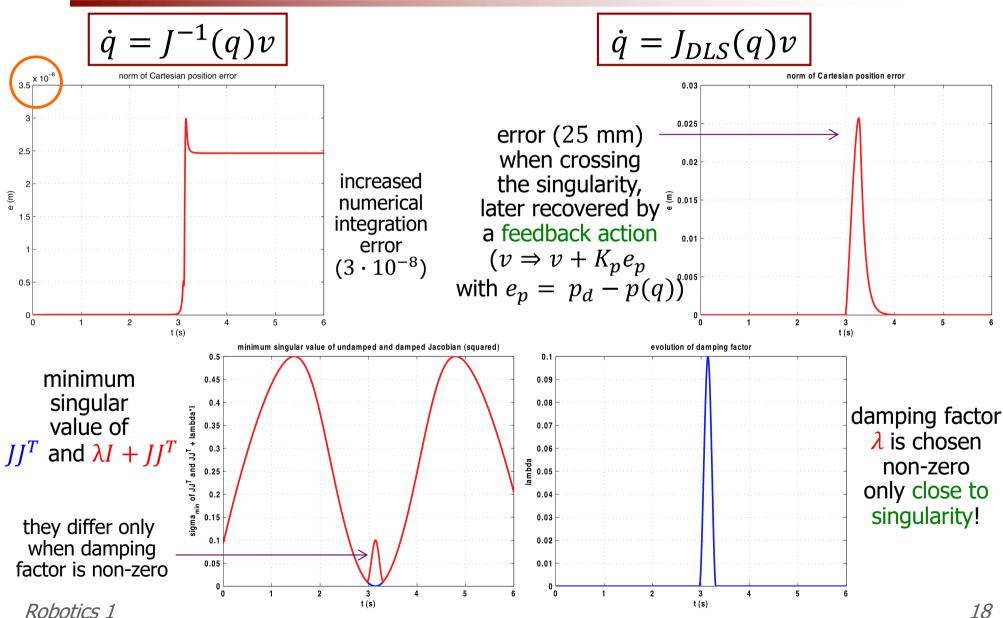


here, a very fast reconfiguration of first joint ...



a completely different inverse solution, around/after crossing the region close to the folded singularity





Pseudoinverse method

a constrained optimization (minimum norm) problem

$$\min_{\dot{q}} H = \frac{1}{2} ||\dot{q}||^2 \text{ such that } J\dot{q} = v \iff$$

 $\min_{\dot{q}} H = \frac{1}{2} ||\dot{q}||^2 \text{ such that } J\dot{q} = v \iff \begin{cases} \min_{\dot{q} \in S} H = \frac{1}{2} ||\dot{q}||^2 \\ S = \begin{cases} \dot{q} \in R^n : \\ ||J\dot{q} - v|| \text{ is minimum} \end{cases}$

solution

$$\dot{q} = J^{\#} v$$

pseudoinverse of J

- if $v \in \mathcal{R}(I)$, the differential constraint is satisfied (v is feasible)
- else, $J\dot{q} = JJ^{\#}v = v^{\perp}$ where v^{\perp} minimizes the error $||J\dot{q} v||$

orthogonal projection of v on $\mathcal{R}(I)$

given J, is the unique matrix $J^{\#}$ satisfying the four relationships \uparrow

$$JJ^{\#}J = J$$
 $J^{\#}JJ^{\#} = J^{\#}$
 $(JJ^{\#})^{T} = JJ^{\#}$ $(J^{\#}J)^{T} = J^{\#}J$

- explicit expressions for full rank cases
 - if $\rho(J) = m = n$: $J^{\#} = J^{-1}$
 - if $\rho(J) = m < n$: $J^{\#} = J^{T}(JJ^{T})^{-1}$
 - if $\rho(J) = n < m$: $J^{\#} = (J^{T}J)^{-1} J^{T}$
- $J^{\#}$ always exists and is computed in general numerically using Singular Value Decomposition* (SVD) of $J = U\Sigma V^{T}$
 - e.g., with the MATLAB function pinv (which uses in turn svd)

Numerical example

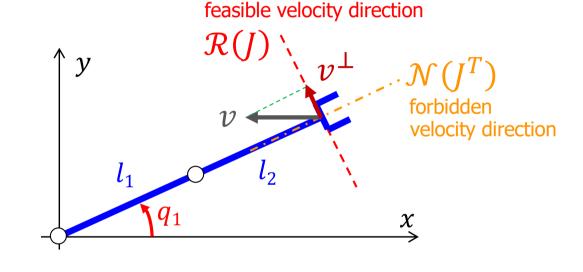
Jacobian of 2R robot with $l_1 = l_2 = 1$ at $q_2 = 0$ (rank $\rho(J) = 1$)

$$J = \begin{pmatrix} -2s_1 & -s_1 \\ 2c_1 & c_1 \end{pmatrix}$$

$$J^{\#} = \frac{1}{5} \begin{pmatrix} -2s_1 & 2c_1 \\ -s_1 & c_1 \end{pmatrix}$$

$$JJ^{\#} = \begin{pmatrix} s_1^2 & -s_1c_1 \\ -s_1c_1 & c_1^2 \end{pmatrix} \qquad J^{\#}J = \begin{pmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{pmatrix}$$

both symmetric ...



 $\dot{q} = J^{\#}v$ is the minimum norm joint velocity vector that realizes exactly v^{\perp}

• at
$$q_1 = \pi/6$$
: for $v = {-0.5 \choose 0}$ [m/s], $\dot{q} = J^{\#}v = {0.1 \choose 0.05}$ [rad/s] $\Rightarrow v^{\perp} = JJ^{\#}v = {-1/8 \choose \sqrt{3}/8}$ [m/s]

• at
$$q_1 = \pi/2$$
: $J = \begin{pmatrix} -2 & -1 \\ 0 & 0 \end{pmatrix} \Rightarrow J^\# = \begin{pmatrix} -0.4 & 0 \\ -0.2 & 0 \end{pmatrix}$; now the same $v \in \mathcal{R}(J)$, $\dot{q} = \begin{pmatrix} 0.2 \\ 0.1 \end{pmatrix} \Rightarrow v^\perp = v$ (no error!)

22

General solution for m < n

ALL solutions of the inverse differential kinematics problem can be written as

$$J\dot{q}=v \Rightarrow \dot{q}=J^{\#}v+(I-J^{\#}J)\xi$$
 any joint velocity...

(orthogonal) projection matrix P in the null space $\mathcal{N}(J)$
$$P^{T}=P$$

$$P^{2}=P$$

this is the solution of a slightly modified constrained optimization problem ("biased" toward the joint velocity ξ , chosen to avoid obstacles, joint limits, ...)

$$\min_{\dot{q}} H = \frac{1}{2} \|\dot{q} - \xi\|^2 \text{ such that } J\dot{q} = v \iff \min_{\dot{q} \in S} H = \frac{1}{2} \|\dot{q} - \xi\|^2$$

$$S = \left\{ \begin{array}{c} \dot{q} \in R^n : \\ \|J\dot{q} - v\| \text{ is minimum} \end{array} \right\}$$

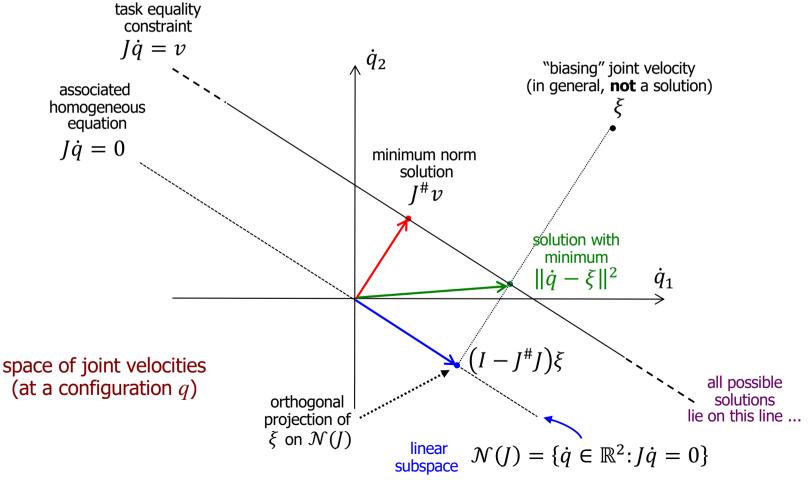
verification of the actual task velocity that is being obtained

$$v_{actual} = J\dot{q} = J(J^{\#}v + (I - J^{\#}J)\xi) = JJ^{\#}v + J(I - J^{\#}J)\xi = JJ^{\#}(Jw) = Jw = v$$

$$\text{if } v \in \mathcal{R}(J) \Rightarrow v = Jw \text{ for some } w \in \mathbb{R}^{n}$$

a simple case with $n=2,\,m=1$ at a given configuration

$$J\dot{q} = \begin{bmatrix} j_1 & j_2 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = v \in \mathbb{R}$$



Robotics 1 23

Velocity manipulability

- in a given configuration, evaluate how effective is the transformation between joint and end-effector velocities
 - "how easily" can the end-effector be moved in various directions of the task space
 - equivalently, "how far" is the robot from a singular condition
- we consider all end-effector velocities that can be obtained by choosing joint velocity vectors of unit norm

$$\dot{q}^T \dot{q} = 1$$

 $v^T J^{\#T} J^{\#} v = 1$

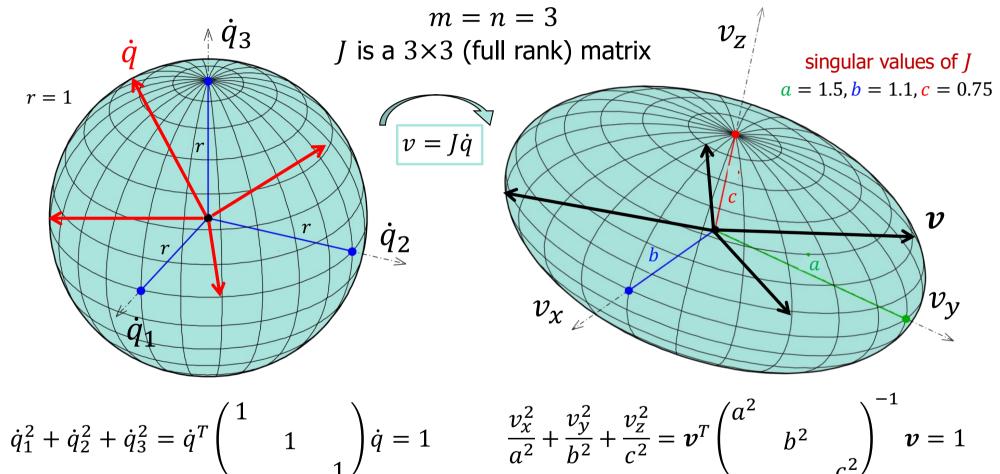
task velocity manipulability ellipsoid

$$\int \frac{\partial \rho(J)}{(JJ^T)^{-1}}$$

note: the "core" matrix of an ellipsoid equation $v^T A^{-1} v = 1$ is the matrix A!

(Hyper-)Spheres and Ellipsoids

whiteboard ...

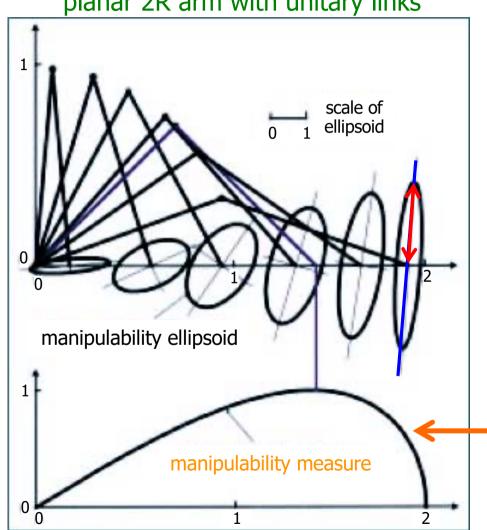


$$\dot{\boldsymbol{q}}^T \dot{\boldsymbol{q}} = 1$$

$$\boldsymbol{v}^T (JJ^T)^{-1}\boldsymbol{v} = 1$$

Manipulability ellipsoid in velocity

planar 2R arm with unitary links



length of principal (semi-)axes singular values σ_i of I (in its SVD)

$$\sigma_i(J) = \sqrt{\lambda_i(JJ^T)}$$

in a singularity, the ellipsoid loses a dimension (for m = 2, it becomes a segment)

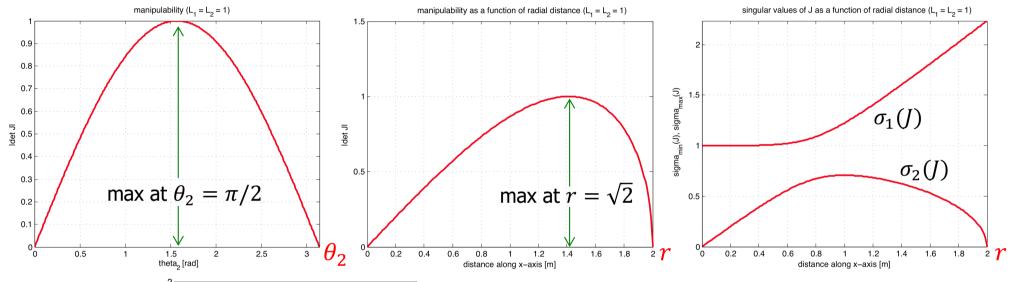
direction of principal axes eigenvectors associated to λ_i

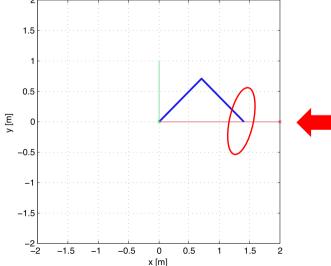
$$w = \sqrt{\det(JJ^T)} = \prod_{i=1}^m \sigma_i \ge 0$$

proportional to the volume of the ellipsoid (for m = 2, to its area)

Manipulability measure

planar 2R arm (with $l_1=l_2=1$): $\sqrt{\det(JJ^T)}=\sqrt{\det(J)\cdot\det(J^T)}=|\det J|=\prod_{i=1}^2\sigma_i$





best posture for manipulation (similar to a human arm!)

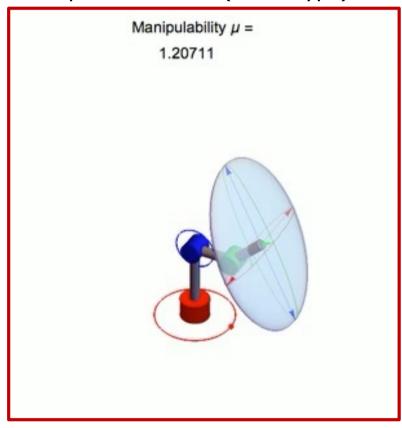
no full isotropy (i.e., a circle) is obtained for this robot since it is never $\sigma_1 = \sigma_2$

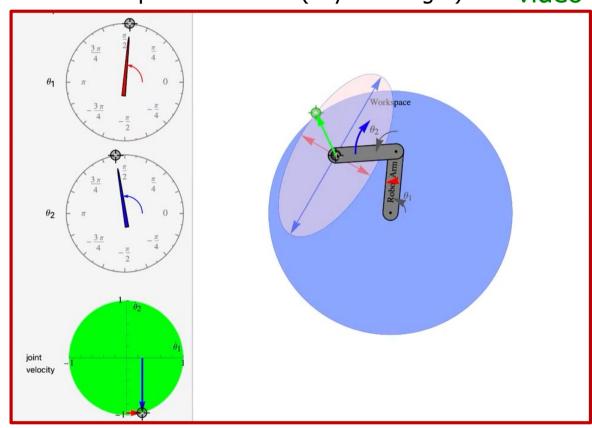
Manipulability ellipsoid in action

spatial 3R robot (elbow-type)

planar 2R robot (any link length)

video





https://youtu.be/0HDyR2pu6CY?si=cjPFad91srGiHYKK

credits to Aaron T. Becker (U Houston)

more from MathematicaTM in the Cloud https://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARobotArm

- inversion of motion from task to joint space can be performed also at a higher differential level
- acceleration level: given q, \dot{q} , for a desired \ddot{r}

$$\ddot{q} = J_r^{-1}(q) \left(\ddot{r} - \dot{J}_r(q) \dot{q} \right)$$

• jerk level: given q, \dot{q}, \ddot{q} , for a desired \ddot{r}

$$\ddot{q} = J_r^{-1}(q) \left(\ddot{r} - \dot{J}_r(q) \ddot{q} - 2 \ddot{J}_r(q) \dot{q} \right)$$

- (pseudo-)inverse of the Jacobian is always the leading term
- smoother joint motions are expected when commanding joint velocities to the robot by integrating higher-order quantities
 - at least, because of the existence of higher-order time derivatives $\ddot{r}, \ddot{r}, \dots$